1
|
Jin L, Tian X, Ji X, Xiao G. The expression of Catsup in the hindgut is essential for zinc homeostasis in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2024; 33:601-612. [PMID: 38664880 DOI: 10.1111/imb.12916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/10/2024] [Indexed: 11/06/2024]
Abstract
Zinc excretion is crucial for zinc homeostasis. However, the mechanism of zinc excretion has not been well characterized. Zinc homeostasis in Drosophila seems well conserved to mammals. In this study, we screened all members of the zinc transporters ZnT (SLC30) and Zip (SLC39) for their potential roles in Drosophila hindgut, an insect organ that belongs to the excretory system. The results indicated that Catecholamines up (Catsup, CG10449), a ZIP member localized to the Golgi, is responsible for zinc homeostasis in the hindgut of Drosophila hindgut-specific knockdown of Catsup leads to a developmental arrest in the larval stage, which could be rescued well by human ZIP7. Further study suggested that Catsup RNAi in the hindgut reduced zinc levels in the excretory system (containing the Malpighian tubule and hindgut) but exhibited systemic zinc overload. Besides, more calculi were observed in the Malpighian tubules of Catsup RNAi flies. The developmental arrest and calculi in the Malpighian tubules of hindgut-specific Catsup RNAi flies could be rescued by dietary zinc restriction but hypersensitivity to zinc. These results will help us understand the fundamental process of zinc excretion in higher eukaryotes.
Collapse
Affiliation(s)
- Li Jin
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
| | - Xueke Tian
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
| | - Xiaowen Ji
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, China
| |
Collapse
|
2
|
Dai Y, Zhang Q, Gu R, Chen J, Ye P, Zhu H, Tang M, Nie X. Metal ion formulations for diabetic wound healing: Mechanisms and therapeutic potential. Int J Pharm 2024; 667:124889. [PMID: 39481815 DOI: 10.1016/j.ijpharm.2024.124889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Metals are vital in human physiology, which not only act as enzyme catalysts in the processes of superoxide dismutase and glucose phosphorylation, but also affect the redox process, osmotic adjustment, metabolism and neural signals. However, metal imbalances can lead to diseases such as diabetes, which is marked by chronic hyperglycemia and affects wound healing. The hyperglycemic milieu of diabetes impairs wound healing, posing significant challenges to patient quality of life. Wound healing encompasses a complex cascade of hemostasis, inflammation, proliferation, and remodeling phases, which are susceptible to disruption in hyperglycemic conditions. In recent decades, metals have emerged as critical facilitators of wound repair by enhancing antimicrobial properties (e.g., iron and silver), providing angiogenic stimulation (copper), promoting antioxidant activity and growth factor synthesis (zinc), and supporting wound closure (calcium and magnesium). Consequently, research has pivoted towards the development of metal ion-based therapeutics, including innovative formulations such as nano-hydrogels, nano-microneedle dressings, and microneedle patches. Prepared by combining macromolecular materials such as chitosan, hyaluronic acid and sodium alginate with metals, aiming at improving the management of diabetic wounds. This review delineates the roles of key metals in human physiology and evaluates the application of metal ions in diabetic wound management strategies.
Collapse
Affiliation(s)
- Yuhe Dai
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Qianbo Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Rifang Gu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Ming Tang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
3
|
Chatatikun M, Indo HP, Imai M, Kawakami F, Kubo M, Kitagawa Y, Ichikawa H, Udomwech L, Phongphithakchai A, Sarakul O, Sukati S, Somsak V, Ichikawa T, Klangbud WK, Nissapatorn V, Tangpong J, Majima HJ. Potential of traditional medicines in alleviating COVID-19 symptoms. Front Pharmacol 2024; 15:1452616. [PMID: 39391697 PMCID: PMC11464457 DOI: 10.3389/fphar.2024.1452616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
This review discusses the prevention and treatment of coronavirus disease 2019 (COVID-19) caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Mutations in its spike glycoprotein have driven the emergence of variants with high transmissibility and immune escape capabilities. Some antiviral drugs are ineffective against the BA.2 subvariant at the authorized dose. Recently, 150 natural metabolites have been identified as potential candidates for development of new anti-COVID-19 drugs with higher efficacy and lower toxicity than those of existing therapeutic agents. Botanical drug-derived bioactive molecules have shown promise in dampening the COVID-19 cytokine storm and thus preventing pulmonary fibrosis, as they exert a strong binding affinity for viral proteins and inhibit their activity. The Health Ministry of Thailand has approved Andrographis paniculata (Jap. Senshinren) extracts to treat COVID-19. In China, over 85% of patients infected with SARS-CoV-2 receive treatments based on traditional Chinese medicine. A comprehensive map of the stages and pathogenetic mechanisms related to the disease and effective natural products to treat and prevent COVID-19 are presented. Approximately 10% of patients with COVID-19 are affected by long COVID, and COVID-19 infection impairs mitochondrial DNA. As the number of agents to treat COVID-19 is limited, adjuvant botanical drug treatments including vitamin C and E supplementation may reduce COVID-19 symptoms and inhibit progression to long COVID.
Collapse
Affiliation(s)
- Moragot Chatatikun
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Hiroko P. Indo
- Department of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Amanogawa Galaxy Astronomy Research Center, Kagoshima University Graduate School of Engineering, Kagoshima, Japan
| | - Motoki Imai
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Fumitaka Kawakami
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
- Regenerative Medicine and Cell Design Research Facility, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Makoto Kubo
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Division of Microbiology, Kitasato University School of Allied Health Sciences, Sagamihara, Japan
- Department of Environmental Microbiology, Graduate School of Medical Sciences, Kitasato University, Sagamihara, Japan
| | - Yoshimasa Kitagawa
- Oral Diagnosis and Medicine, Division of Oral Pathobiological Science, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Ichikawa
- Graduate School of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Lunla Udomwech
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Atthaphong Phongphithakchai
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Orawan Sarakul
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Suriyan Sukati
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Voravuth Somsak
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Takafumi Ichikawa
- Department of Regulation Biochemistry, Kitasato University Graduate School of Medical Sciences, Sagamihara, Japan
- Department of Health Administration, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Wiyada Kwanhian Klangbud
- Medical Technology Program, Faculty of Science, Nakhon Phanom University, Nakhon Phanom, Thailand
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Jitbanjong Tangpong
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Hideyuki J. Majima
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
- Research Excellence Center for Innovation and Health Products (RECIHP), School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
4
|
Zheng M, Xie C, Ye D, Chen Y, Wang Z, Wang L, Xiong F, Zhang S, He Q, Wu H, Wu Z, Zhou H, Li L, Xing J, Miao X. Qingzhuan dark tea polysaccharides-zinc alleviates dextran sodium sulfate-induced ulcerative colitis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7617-7628. [PMID: 38785267 DOI: 10.1002/jsfa.13597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Qingzhuan dark tea polysaccharides (QDTP) have been complexed with Zinc (Zn) to form the Qingzhuan dark tea polysaccharides-Zinc (QDTP-Zn) complex. The present study investigated the protective effects of QDTP-Zn on ulcerative colitis (UC) in mice. The UC mouse model was induced using dextran sodium sulfate (DSS), followed by oral administration of QDTP-Zn (0.2 and 0.4 g kg-1 day-1). RESULTS QDTP-Zn demonstrated alleviation of UC symptoms in mice, as evidenced by a decrease in disease activity index scores. QDTP-Zn also regulated colon tissue injury by upregulating ZO-1 and occludin protein expression, at the same time as downregulating tumor necrosis factor-α and interleukin-6β levels. Furthermore, QDTP-Zn induced significant alterations in the abundance of bacteroidetes and firmicutes and notably increased levels of short-chain fatty acids (SCFAs), particularly acetic acid, propionic acid, and butyric acid. CONCLUSION In summary, QDTP-Zn exhibits therapeutic potential in alleviating enteritis by fortifying the colonic mucosal barrier, mitigating inflammation and modulating intestinal microbiota and SCFAs levels. Thus, QDTP-Zn holds promise as a functional food for both the prevention and treatment of UC. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Zheng
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Chen Xie
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Dan Ye
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Yong Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Ziyao Wang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Le Wang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Fang Xiong
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Sheng Zhang
- Xianning Center for Disease Control and Prevention, Xianning, China
| | - Qiang He
- Xianning Public Inspection Center of Hubei Province, Xianning, China
| | - Hui Wu
- Xianning Public Inspection Center of Hubei Province, Xianning, China
| | - Zhinong Wu
- Xianning Central Hospital, Xianning, China
| | - Hongfu Zhou
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Ling Li
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Jun Xing
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Xianning, China
| | - Xiaolei Miao
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
5
|
Marín de Jesús S, Vigueras-Villaseñor RM, Cortés-Barberena E, Hernández-Rodriguez J, Montes S, Arrieta-Cruz I, Pérez-Aguirre SG, Bonilla-Jaime H, Limón-Morales O, Arteaga-Silva M. Zinc and Its Impact on the Function of the Testicle and Epididymis. Int J Mol Sci 2024; 25:8991. [PMID: 39201677 PMCID: PMC11354358 DOI: 10.3390/ijms25168991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Zinc (Zn) is an essential trace element; it exhibits a plethora of physiological properties and biochemical functions. It plays a pivotal role in regulating the cell cycle, apoptosis, and DNA organization, as well as in protein, lipid, and carbohydrate metabolism. Among other important processes, Zn plays an essential role in reproductive health. The ZIP and ZnT proteins are responsible for the mobilization of Zn within the cell. Zn is an inert antioxidant through its interaction with a variety of proteins and enzymes to regulate the redox system, including metallothioneins (MTs), metalloenzymes, and gene regulatory proteins. The role of Zn in the reproductive system is of great importance; processes, such as spermatogenesis and sperm maturation that occur in the testicle and epididymis, respectively, depend on this element for their development and function. Zn modulates the synthesis of androgens, such as testosterone, for these reproductive processes, so Zn deficiency is related to alterations in sperm parameters that lead to male infertility.
Collapse
Affiliation(s)
- Sergio Marín de Jesús
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de Mexico 09340, Mexico; (S.M.d.J.); (S.G.P.-A.)
| | | | - Edith Cortés-Barberena
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico;
| | - Joel Hernández-Rodriguez
- Cuerpo Académico de Investigación en Quiropráctica, Universidad Estatal del Valle de Ecatepec, Av. Central s/n Valle de Anáhuac, Ecatepec de Morelos 55210, Mexico;
| | - Sergio Montes
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Calle 16 y Lago de Chapala, Aztlán, Reynosa 88740, Mexico;
| | - Isabel Arrieta-Cruz
- Departamento de Investigación Básica, Instituto Nacional de Geriatría, Secretaria de Salud, Ciudad de Mexico 10200, Mexico;
| | - Sonia Guadalupe Pérez-Aguirre
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de Mexico 09340, Mexico; (S.M.d.J.); (S.G.P.-A.)
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico; (H.B.-J.); (O.L.-M.)
| | - Ofelia Limón-Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico; (H.B.-J.); (O.L.-M.)
| | - Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico; (H.B.-J.); (O.L.-M.)
- Laboratorio de Neuroendocrinología Reproductiva, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Ciudad de Mexico 09340, Mexico
| |
Collapse
|
6
|
Santo BA, Poppenberg KE, Ciecierska SS, Lim J, Baig AA, Jaikumar V, Raygor KP, Patel TR, Shah M, Levy EI, Siddiqui AH, Tutino VM. Decoding Molecular Mechanisms Underlying Outcomes After Ischemic Stroke Thrombectomy by RNA Sequencing of Retrieved Clots. Mol Diagn Ther 2024; 28:469-477. [PMID: 38769267 DOI: 10.1007/s40291-024-00716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Transcriptomic profiling has emerged as a powerful tool for exploring the molecular landscape of ischemic stroke clots and providing insights into the pathophysiological mechanisms underlying stroke progression and recovery. In this study, we aimed to investigate the relationship between stroke clot transcriptomes and stroke thrombectomy outcome, as measured by early neurological improvement (ENI) 30 (i.e., a 30% reduction in NIHSS at 24 h post-thrombectomy). HYPOTHESIS We hypothesized that there exist distinct clot gene expression patterns between good and poor neurological outcomes. METHODS Transcriptomic analysis of 32 stroke clots retrieved by mechanical thrombectomy was conducted. Transcriptome data of these clots were analyzed to identify differentially expressed genes (DEGs), defined as those with a log(fold-change) ≥ 1.5 and q < 0.05 between samples with good and poor early neurological outcomes. Gene ontology and bioinformatics analyses were performed on genes with p < 0.01 to identify enriched biological processes and Ingenuity Pathway Analysis canonical pathways. Moreover, AUC analysis assessed the predictive power of DEGs for 90-day function outcome (mRS ≤ 2) and cellular composition of clot was predicted using CIBERSORT. We also assessed whether differential enrichment of immune cell types could indicate patient survival. RESULTS A total of 41 DEGs were identified. Bioinformatics showed that enriched biological processes and pathways emphasized the chronic immune response and matrix metalloproteinase inhibition. Moreover, 25 of the DEGs were found to be significant predictors of 90-day mRS. These genes were indicative of monocytes enrichment and neutrophil depletion in patients with poorer outcomes. CONCLUSION Our study revealed a distinct gene expression pattern and dysregulated biological pathways associated with ENI. This expression pattern was also predictive of long-term outcome, suggesting a biological link between those ENIs and 90-day mRS.
Collapse
Affiliation(s)
- Briana A Santo
- Canon Stroke and Vascular Research Center, University at Buffalo, 875 Ellicott Street, Buffalo, NY, 14203, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Kerry E Poppenberg
- Canon Stroke and Vascular Research Center, University at Buffalo, 875 Ellicott Street, Buffalo, NY, 14203, USA
| | - Shiau-Sing Ciecierska
- Canon Stroke and Vascular Research Center, University at Buffalo, 875 Ellicott Street, Buffalo, NY, 14203, USA
| | - Jaims Lim
- Canon Stroke and Vascular Research Center, University at Buffalo, 875 Ellicott Street, Buffalo, NY, 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Ammad A Baig
- Canon Stroke and Vascular Research Center, University at Buffalo, 875 Ellicott Street, Buffalo, NY, 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Vinay Jaikumar
- Canon Stroke and Vascular Research Center, University at Buffalo, 875 Ellicott Street, Buffalo, NY, 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Kunal P Raygor
- Canon Stroke and Vascular Research Center, University at Buffalo, 875 Ellicott Street, Buffalo, NY, 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Tatsat R Patel
- Canon Stroke and Vascular Research Center, University at Buffalo, 875 Ellicott Street, Buffalo, NY, 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Munjal Shah
- Canon Stroke and Vascular Research Center, University at Buffalo, 875 Ellicott Street, Buffalo, NY, 14203, USA
| | - Elad I Levy
- Canon Stroke and Vascular Research Center, University at Buffalo, 875 Ellicott Street, Buffalo, NY, 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Adnan H Siddiqui
- Canon Stroke and Vascular Research Center, University at Buffalo, 875 Ellicott Street, Buffalo, NY, 14203, USA
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA
| | - Vincent M Tutino
- Canon Stroke and Vascular Research Center, University at Buffalo, 875 Ellicott Street, Buffalo, NY, 14203, USA.
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY, USA.
- Department of Neurosurgery, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
7
|
Sorice C, Ianni A, Bennato F, Bellocci M, Pavone V, Grotta L, Chaves López C, Martino G. Zinc Supplementation Improves Texture, Oxidative Stability of Caciotta Cheese and Reduces Biogenic Amines Production. Animals (Basel) 2024; 14:1642. [PMID: 38891689 PMCID: PMC11170991 DOI: 10.3390/ani14111642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Zinc is essential for animals, playing a vital role in enzyme systems and various biochemical reactions. It is crucial to ensure a sufficient intake of zinc through the diet to maintain efficient homeostasis. Only few studies on zinc effect in cow lactating diet evaluated the effects on milk and cheese quality, with conflicting findings. 24 cows of the Friesian breed were divided into two groups (CTR: control and TRT: treated group). Cows were selected for age, body weight, parity and phase of lactations (mid lactation, 140-160 days). CTR diet contained 38 mg/kg of Zn and TRT diet was supplied with 120 mg/kg of complete feed for 60 days. The objective of current investigation was to evaluate the impact of a dietary Zinc Oxide (ZnO) integration of lactating Friesian cows on chemical composition, zinc content, fatty acid and proteic profile, ammine content, pH, aw, texture, and sensory profile of cheese and to improve the chemical-nutritional quality of milk and cheese. The results showed that ZnO supplementation reduced mesophilic aerobic bacteria and Presumptive Pseudomonas spp. growth, proteolysis, biogenic amines content, lipid oxidation, odour intensity and sour and increased hardness, gumminess, chewiness, elasticity of cheese. Biogenic amines are considered an important aspect of food safety. ZnO integration in cow diet could represent a promising strategy for improving the quality, the safety and shelf-life of caciotta cheese.
Collapse
Affiliation(s)
- Carmela Sorice
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (C.S.); (F.B.); (V.P.); (L.G.); (C.C.L.); (G.M.)
| | - Andrea Ianni
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (C.S.); (F.B.); (V.P.); (L.G.); (C.C.L.); (G.M.)
| | - Francesca Bennato
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (C.S.); (F.B.); (V.P.); (L.G.); (C.C.L.); (G.M.)
| | - Mirella Bellocci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise “G. Caporale”, Campo Boario, 64100 Teramo, Italy;
| | - Valentina Pavone
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (C.S.); (F.B.); (V.P.); (L.G.); (C.C.L.); (G.M.)
| | - Lisa Grotta
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (C.S.); (F.B.); (V.P.); (L.G.); (C.C.L.); (G.M.)
| | - Clemencia Chaves López
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (C.S.); (F.B.); (V.P.); (L.G.); (C.C.L.); (G.M.)
| | - Giuseppe Martino
- Department of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini 1, 64100 Teramo, Italy; (C.S.); (F.B.); (V.P.); (L.G.); (C.C.L.); (G.M.)
| |
Collapse
|
8
|
Nault D, Machingo TA, Shipper AG, Antiporta DA, Hamel C, Nourouzpour S, Konstantinidis M, Phillips E, Lipski EA, Wieland LS. Zinc for prevention and treatment of the common cold. Cochrane Database Syst Rev 2024; 5:CD014914. [PMID: 38719213 PMCID: PMC11078591 DOI: 10.1002/14651858.cd014914.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
BACKGROUND The common cold is an acute, self-limiting viral respiratory illness. Symptoms include nasal congestion and mucus discharge, sneezing, sore throat, cough, and general malaise. Given the frequency of colds, they are a public health burden and a significant cause of lost work productivity and school absenteeism. There are no established interventions to prevent colds or shorten their duration. However, zinc supplements are commonly recommended and taken for this purpose. OBJECTIVES To assess the effectiveness and safety of zinc for the prevention and treatment of the common cold. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, CINAHL, and LILACS to 22 May 2023, and searched Web of Science Core Collection and two trials registries to 14 June 2023. We also used reference checking, citation searching, and contact with study authors to identify additional studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) in children or adults that tested any form of zinc against placebo to prevent or treat the common cold or upper respiratory infection (URTI). We excluded zinc interventions in which zinc was combined with other minerals, vitamins, or herbs (e.g. a multivitamin, or mineral supplement containing zinc). DATA COLLECTION AND ANALYSIS We used the Cochrane risk of bias tool to assess risks of bias, and GRADE to assess the certainty of the evidence. We independently extracted data. When necessary, we contacted study authors for additional information. We assessed zinc (type and route) with placebo in the prevention and treatment of the common cold. Primary outcomes included the proportion of participants developing colds (for analyses of prevention trials only), duration of cold (measured in days from start to resolution of the cold), adverse events potentially due to zinc supplements (e.g. unpleasant taste, loss of smell, vomiting, stomach cramps, and diarrhoea), and adverse events considered to be potential complications of the common cold (e.g. respiratory bacterial infections). MAIN RESULTS We included 34 studies (15 prevention, 19 treatment) involving 8526 participants. Twenty-two studies were conducted on adults and 12 studies were conducted on children. Most trials were conducted in the USA (n = 18), followed by India, Indonesia, Iran, and Turkey (two studies each), and Australia, Burkina Faso, Colombia, Denmark, Finland, Tanzania, Thailand, and the UK (one study each). The 15 prevention studies identified the condition as either common cold (n = 8) or URTI (n = 7). However, almost all therapeutic studies (17/19) focused on the common cold. Most studies (17/34) evaluated the effectiveness of zinc administered as lozenges (3 prevention; 14 treatment) in acetate, gluconate, and orotate forms; gluconate lozenges were the most common (9/17). Zinc gluconate was given at doses between 45 and 276 mg/day for between 4.5 and 21 days. Five (5/17) lozenge studies gave acetate lozenges and two (2/17) gave both acetate and gluconate lozenges. One (1/17) lozenge study administered intranasal (gluconate) and lozenge (orotate) zinc in tandem for cold treatment. Of the 17/34 studies that did not use lozenges, 1/17 gave capsules, 3/17 administered dissolved powders, 5/17 gave tablets, 4/17 used syrups, and 4/17 used intranasal administration. Most studies were at unclear or high risk of bias in at least one domain. There may be little or no reduction in the risk of developing a cold with zinc compared to placebo (risk ratio (RR) 0.93, 95% CI 0.85 to 1.01; I2 = 20%; 9 studies, 1449 participants; low-certainty evidence). There may be little or no reduction in the mean number of colds that occur over five to 18 months of follow-up (mean difference (MD) -0.90, 95% CI -1.93 to 0.12; I2 = 96%; 2 studies, 1284 participants; low-certainty evidence). When colds occur, there is probably little or no difference in the duration of colds in days (MD -0.63, 95% CI -1.29 to 0.04; I² = 77%; 3 studies, 740 participants; moderate-certainty evidence), and there may be little or no difference in global symptom severity (standardised mean difference (SMD) 0.04, 95% CI -0.35 to 0.43; I² = 0%; 2 studies, 101 participants; low-certainty evidence). When zinc is used for cold treatment, there may be a reduction in the mean duration of the cold in days (MD -2.37, 95% CI -4.21 to -0.53; I² = 97%; 8 studies, 972 participants; low-certainty evidence), although it is uncertain whether there is a reduction in the risk of having an ongoing cold at the end of follow-up (RR 0.52, 95% CI 0.21 to 1.27; I² = 65%; 5 studies, 357 participants; very low-certainty evidence), or global symptom severity (SMD -0.03, 95% CI -0.56 to 0.50; I² = 78%; 2 studies, 261 participants; very low-certainty evidence), and there may be little or no difference in the risk of a change in global symptom severity (RR 1.02, 95% CI 0.85 to 1.23; 1 study, 114 participants; low-certainty evidence). Thirty-one studies reported non-serious adverse events (2422 participants). It is uncertain whether there is a difference in the risk of adverse events with zinc used for cold prevention (RR 1.11, 95% CI 0.84 to 1.47; I2 = 0%; 7 studies, 1517 participants; very low-certainty evidence) or an increase in the risk of serious adverse events (RR 1.67, 95% CI 0.78 to 3.57; I2 = 0%; 3 studies, 1563 participants; low-certainty evidence). There is probably an increase in the risk of non-serious adverse events when zinc is used for cold treatment (RR 1.34, 95% CI 1.15 to 1.55; I2 = 44%; 2084 participants, 16 studies; moderate-certainty evidence); no treatment study provided information on serious adverse events. No study provided clear information about adverse events considered to be potential complications of the common cold. AUTHORS' CONCLUSIONS The findings suggest that zinc supplementation may have little or no effect on the prevention of colds but may reduce the duration of ongoing colds, with an increase in non-serious adverse events. Overall, there was wide variation in interventions (including concomitant therapy) and outcomes across the studies, as well as incomplete reporting of several domains, which should be considered when making conclusions about the efficacy of zinc for the common cold.
Collapse
Affiliation(s)
- Daryl Nault
- Maryland University of Integrative Health, Laurel, MD, USA
| | - Taryn A Machingo
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
| | - Andrea G Shipper
- Health Sciences and Human Services Library, University of Maryland, Baltimore, Baltimore, MD, USA
| | | | - Candyce Hamel
- Canadian Association of Radiologists, Ottawa, Canada
| | | | - Menelaos Konstantinidis
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Canada
| | - Erica Phillips
- Department of Nutritional Sciences, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | | | - L Susan Wieland
- Center for Integrative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Haas M, Brandl B, Schinhammer L, Skurk T. Individualized Supplementation of Immunoactive Micronutrients and Severity of Upper Respiratory Infection Symptoms-A Randomized Intervention Study. Nutrients 2024; 16:1400. [PMID: 38794638 PMCID: PMC11123851 DOI: 10.3390/nu16101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Certain micronutrients exhibit immunomodulatory effects. However, no intervention has yet investigated the effect of individualized supplementation on the severity of upper respiratory tract infections (URIs). Therefore, we investigated whether a personalized supplementation moderates the incidence and severity of URI. Selenium, zinc, and vitamin D were measured in dried blood spots from 59 healthy participants. Accordingly, a personalized supplement was provided with or without the respective micronutrients. We used WURSS-21 questionnaires to assess the disease status. The blood values converged during the intervention and micronutrients no longer differed between treated and untreated volunteers at the end of the intervention period. The incidence and severity of the illness did not significantly differ between the groups. However, when analyzing the WURSS-21 scores by the intention to treat, the initially randomized treatment arm revealed a significantly higher score than the placebo arm. Upon acute administration, individualized combinations of selenium, zinc and vitamin D do not reduce the number, or contribute to a milder course of URIs. Therefore, supplementation in acute infectious situations seems questionable. Further studies must address the habitual diet in more detail, to better understand the impact of individual micronutrient status on the prevention of URI.
Collapse
Affiliation(s)
- Melanie Haas
- ZIEL–Institute for Food and Health, Core Facility Human Studies, Technical University Munich, Gregor-Mendel-Straße 2, 85354 Freising, Germany
| | - Beate Brandl
- ZIEL–Institute for Food and Health, Core Facility Human Studies, Technical University Munich, Gregor-Mendel-Straße 2, 85354 Freising, Germany
| | - Laura Schinhammer
- ZIEL–Institute for Food and Health, Core Facility Human Studies, Technical University Munich, Gregor-Mendel-Straße 2, 85354 Freising, Germany
| | - Thomas Skurk
- ZIEL–Institute for Food and Health, Core Facility Human Studies, Technical University Munich, Gregor-Mendel-Straße 2, 85354 Freising, Germany
- School of Medicine and Health, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany
| |
Collapse
|
10
|
Jin D, Wei X, He Y, Zhong L, Lu H, Lan J, Wei Y, Liu Z, Liu H. The nutritional roles of zinc for immune system and COVID-19 patients. Front Nutr 2024; 11:1385591. [PMID: 38706559 PMCID: PMC11066294 DOI: 10.3389/fnut.2024.1385591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Zinc (Zn) is a vital micronutrient that strengthens the immune system, aids cellular activities, and treats infectious diseases. A deficiency in Zn can lead to an imbalance in the immune system. This imbalance is particularly evident in severe deficiency cases, where there is a high susceptibility to various viral infections, including COVID-19 caused by SARS-CoV-2. This review article examines the nutritional roles of Zn in human health, the maintenance of Zn concentration, and Zn uptake. As Zn is an essential trace element that plays a critical role in the immune system and is necessary for immune cell function and cell signaling, the roles of Zn in the human immune system, immune cells, interleukins, and its role in SARS-CoV-2 infection are further discussed. In summary, this review paper encapsulates the nutritional role of Zn in the human immune system, with the hope of providing specific insights into Zn research.
Collapse
Affiliation(s)
- Di Jin
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Xinran Wei
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Yunyi He
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Luying Zhong
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Huijie Lu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Jiaxin Lan
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Yuting Wei
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Hongbo Liu
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| |
Collapse
|
11
|
Ramacieri G, Locatelli C, Semprini M, Pelleri MC, Caracausi M, Piovesan A, Cicilloni M, Vigna M, Vitale L, Sperti G, Corvaglia LT, Pirazzoli GL, Strippoli P, Catapano F, Vione B, Antonaros F. Zinc metabolism and its role in immunity status in subjects with trisomy 21: chromosomal dosage effect. Front Immunol 2024; 15:1362501. [PMID: 38694501 PMCID: PMC11061464 DOI: 10.3389/fimmu.2024.1362501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Trisomy 21 (T21), which causes Down syndrome (DS), is the most common chromosomal aneuploidy in humankind and includes different clinical comorbidities, among which the alteration of the immune system has a heavy impact on patient's lives. A molecule with an important role in immune response is zinc and it is known that its concentration is significantly lower in children with T21. Different hypotheses were made about this metabolic alteration and one of the reasons might be the overexpression of superoxide dismutase 1 (SOD1) gene, as zinc is part of the SOD1 active enzymatic center. Methods The aim of our work is to explore if there is a linear correlation between zinc level and immune cell levels measured in a total of 217 blood samples from subjects with T21. Furthermore, transcriptome map analyses were performed using Transcriptome Mapper (TRAM) software to investigate whether a difference in gene expression is detectable between subjects with T21 and euploid control group in tissues and cells involved in the immune response such as lymphoblastoid cells, thymus and white blood cells. Results Our results have confirmed the literature data stating that the blood zinc level in subjects with T21 is lower compared to the general population; in addition, we report that the T21/control zinc concentration ratio is 2:3, consistent with a chromosomal dosage effect due to the presence of three copies of chromosome 21. The transcriptome map analyses showed an alteration of some gene's expression which might explain low levels of zinc in the blood. Discussion Our data suggest that zinc level is not associated with the levels of immunity cells or proteins analyzed themselves and rather the main role of this ion might be played in altering immune cell function.
Collapse
Affiliation(s)
- Giuseppe Ramacieri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Specialist School of Child Neuropsychiatry - University of Bologna, Bologna, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Michela Semprini
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Maria Chiara Pelleri
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Maria Caracausi
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Allison Piovesan
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Michela Cicilloni
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Marco Vigna
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Lorenza Vitale
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Giacomo Sperti
- Speciality School of Paediatrics - Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Luigi Tommaso Corvaglia
- Neonatology Unit, Department of Medical and Surgical Sciences (DIMEC), St. Orsola-Malpighi Polyclinic, University of Bologna, Bologna, Italy
| | | | - Pierluigi Strippoli
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Catapano
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Beatrice Vione
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Antonaros
- Unit of Histology, Embryology and Applied Biology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Rizwan M, Cheng K, Gang Y, Hou Y, Wang C. Immunomodulatory Effects of Vitamin D and Zinc on Viral Infection. Biol Trace Elem Res 2024:10.1007/s12011-024-04139-y. [PMID: 38451442 DOI: 10.1007/s12011-024-04139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Several nutrients are crucial in enhancing the immune system and preserving the structural integrity of bodily tissue barriers. Vitamin D (VD) and zinc (Zn) have received considerable interest due to their immunomodulatory properties and ability to enhance the body's immune defenses. Due to their antiviral, anti-inflammatory, antioxidative, and immunomodulatory properties, the two nutritional powerhouses VD and Zn are crucial for innate and adaptive immunity. As observed with COVID-19, deficiencies in these micronutrients impair immune responses, increasing susceptibility to viral infections and severe disease. Ensuring an adequate intake of VD and Zn emerges as a promising strategy for fortifying the immune system. Ongoing clinical trials are actively investigating their potential therapeutic advantages. Beyond the immediate context of the pandemic, these micronutrients offer valuable tools for enhancing immunity and overall well-being, especially in the face of future viral threats. This analysis emphasizes the enduring significance of VD and Zn as both treatment and preventive measures against potential viral challenges beyond the current health crisis. The overview delves into the immunomodulatory potential of VD and Zn in combating viral infections, with particular attention to their effects on animals. It provides a comprehensive summary of current research findings regarding their individual and synergistic impacts on immune function, underlining their potential in treating and preventing viral infections. Overall, this overview underscores the need for further research to understand how VD and Zn can modulate the immune response in combatting viral diseases in animals.
Collapse
Affiliation(s)
- Muhammad Rizwan
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Ke Cheng
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yang Gang
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yuntao Hou
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China
| | - Chunfang Wang
- College of Fisheries, Huazhong Agriculture University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Xiao C, Comer L, Pan X, Everaert N, Schroyen M, Song Z. Zinc glycinate alleviates LPS-induced inflammation and intestinal barrier disruption in chicken embryos by regulating zinc homeostasis and TLR4/NF-κB pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116111. [PMID: 38350216 DOI: 10.1016/j.ecoenv.2024.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/26/2024] [Accepted: 02/11/2024] [Indexed: 02/15/2024]
Abstract
The effect of an immune challenge induced by a lipopolysaccharide (LPS) exposure on systemic zinc homeostasis and the modulation of zinc glycinate (Zn-Gly) was investigated using a chicken embryo model. 160 Arbor Acres broiler fertilized eggs were randomly divided into 4 groups: CON (control group, injected with saline), LPS (LPS group, injected with 32 µg of LPS saline solution), Zn-Gly (zinc glycinate group, injected with 80 µg of zinc glycinate saline solution) and Zn-Gly+LPS (zinc glycinate and LPS group, injected with the same content of zinc glycinate and LPS saline solution). Each treatment consisted of eight replicates of five eggs each. An in ovo feeding procedure was performed at 17.5 embryonic day and samples were collected after 12 hours. The results showed that Zn-Gly attenuated the effects of LPS challenge-induced upregulation of pro-inflammatory factor interleukin 1β (IL-1β) level (P =0.003). The LPS challenge mediated zinc transporter proteins and metallothionein (MT) to regulate systemic zinc homeostasis, with increased expression of the jejunum zinc export gene zinc transporter protein 1 (ZnT-1) and elevated expression of the import genes divalent metal transporter 1 (DMT1), Zrt- and Irt-like protein 3 (Zip3), Zip8 and Zip14 (P < 0.05). A similar trend could be observed for the zinc transporter genes in the liver, which for ZnT-1 mitigated by Zn-Gly supplementation (P =0.01). Liver MT gene expression was downregulated in response to the LPS challenge (P =0.004). These alterations caused by LPS resulted in decreased serum and liver zinc levels and increased small intestinal, muscle and tibial zinc levels. Zn-Gly reversed the elevated expression of the liver zinc finger protein A20 induced by the LPS challenge (P =0.025), while Zn-Gly reduced the gene expression of the pro-inflammatory factors IL-1β and IL-6, decreased toll-like receptor 4 (TLR4) and nuclear factor kappa-B p65 (NF-κB p65) (P < 0.05). Zn-Gly also alleviated the LPS-induced downregulation of the intestinal barrier gene Claudin-1. Thus, LPS exposure prompted the mobilization of zinc transporter proteins and MT to perform the remodeling of systemic zinc homeostasis, Zn-Gly participated in the regulation of zinc homeostasis and inhibited the production of pro-inflammatory factors through the TLR4/NF-κB pathway, attenuating the inflammatory response and intestinal barrier damage caused by an immune challenge.
Collapse
Affiliation(s)
- Chuanpi Xiao
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Luke Comer
- Nutrition and Animal Microbiota Ecosystems lab, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Xue Pan
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China
| | - Nadia Everaert
- Nutrition and Animal Microbiota Ecosystems lab, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Zhigang Song
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources, Department of Animal Science, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
14
|
Pavlidou E, Poulios E, Papadopoulou SK, Fasoulas A, Dakanalis A, Giaginis C. Clinical Evidence on the Potential Beneficial Effects of Diet and Dietary Supplements against COVID-19 Infection Risk and Symptoms' Severity. Med Sci (Basel) 2024; 12:11. [PMID: 38390861 PMCID: PMC10885051 DOI: 10.3390/medsci12010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Diet and dietary supplements aim to add trace elements, vitamins, and minerals to the body to improve human health and boost the immune system. In the previous few years, the new SARS-CoV-2 coronavirus strain has been threatening the health of individuals and public health more broadly, with rates of intensive care unit cases on the rise, while long-term COVID-19 complications are persisting until today. In the peculiar circumstances of the COVID-19 pandemic, in combination with disease prevention techniques, the strengthening of the immune system is considered particularly important to enable it to effectively respond to and eliminate the SARS-CoV-2 viral pathogen in the event of infection. The purpose of the current literature review is to thoroughly summarize and critically analyze the current clinical data concerning the potential beneficial effects of diet and dietary supplements against COVID-19 infection risk and symptoms' severity. The micronutrients/supplements examined in this study in relation to COVID-19 infection are vitamins A, B, C, and D, zinc, selenium, magnesium, iron, omega-3 fatty acids, glutamine, resveratrol, beta-glucans, and probiotics. The potential effects of dietary patterns such as the Mediterranean diet against SARS-CoV-2 infection risk and symptoms' severity were also analyzed. Our literature review suggests that micro- and macronutrient supplementation and a healthy diet and lifestyle may provide support to immune system function, with beneficial effects both before and during SARS-CoV-2 infection. However, additional studies are recommended to draw safe conclusions and formulate dietary recommendations concerning dietary supplements and their possible effects on preventing and co-treating COVID-19 disease.
Collapse
Affiliation(s)
- Eleni Pavlidou
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (E.P.); (A.F.)
| | - Efthymios Poulios
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (E.P.); (A.F.)
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| | - Aristeidis Fasoulas
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (E.P.); (A.F.)
| | - Antonios Dakanalis
- Department of Mental Health, Fondazione IRCCS San Gerardo dei Tintori, Via G.B. Pergolesi 33, 20900 Monza, MB, Italy;
- Department of Medicine and Surgery, University of Milan Bicocca, Via Cadore 38, 20900 Monza, MB, Italy
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of the Aegean, 81400 Lemnos, Greece; (E.P.); (E.P.); (A.F.)
| |
Collapse
|
15
|
Chang Y, Wang K, Liu G, Zhao H, Chen X, Cai J, Jia G. Zinc glycine chelate ameliorates DSS-induced intestinal barrier dysfunction via attenuating TLR4/NF-κB pathway in meat ducks. J Anim Sci Biotechnol 2024; 15:5. [PMID: 38243258 PMCID: PMC10797781 DOI: 10.1186/s40104-023-00962-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/01/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Zinc glycine chelate (Zn-Gly) has anti-inflammation and growth-promoting properties; however, the mechanism of Zn-Gly contribution to gut barrier function in Cherry Valley ducks during intestinal inflammation is unknown. Three-hundred 1-day-old ducks were divided into 5 groups (6 replicates and 10 ducks per replicate) in a completely randomized design: the control and dextran sulfate sodium (DSS) groups were fed a corn-soybean meal basal diet, and experimental groups received supplements of 70, 120 or 170 mg/kg Zn in form of Zn-Gly. The DSS and treatment groups were given 2 mL of 0.45 g/mL DSS daily during d 15-21, and the control group received normal saline. The experiment lasted 21 d. RESULTS Compared with DSS group, 70, 120 and 170 mg/kg Zn significantly increased body weight (BW), villus height and the ratio of villus to crypt, and significantly decreased the crypt depth of jejunum at 21 d. The number of goblet cells in jejunal villi in the Zn-Gly group was significantly increased by periodic acid-Schiff staining. Compared with control, the content of intestinal permeability marker D-lactic acid (D-LA) and fluxes of fluorescein isothiocyanate (FITC-D) in plasma of DSS group significantly increased, and 170 mg/kg Zn supplementation significantly decreased the D-LA content and FITC-D fluxes. Compared with control, contents of plasma, jejunum endotoxin and jejunum pro-inflammatory factors IL-1β, IL-6 and TNF-α were significantly increased in DSS group, and were significantly decreased by 170 mg/kg Zn supplementation. Dietary Zn significantly increased the contents of anti-inflammatory factors IL-10, IL-22 and sIgA and IgG in jejunum. Real-time PCR and Western blot results showed that 170 mg/kg Zn supplementation significantly increased mRNA expression levels of CLDN-1 and expression of OCLN protein in jejunum, and decreased gene and protein expression of CLDN-2 compared with DSS group. The 120 mg/kg Zn significantly promoted the expressions of IL-22 and IgA. Dietary Zn-Gly supplementation significantly decreased pro-inflammatory genes IL-8 and TNF-α expression levels and TNF-α protein expression in jejunum. Additionally, Zn significantly reduced the gene and protein expression of TLR4, MYD88 and NF-κB p65. CONCLUSIONS Zn-Gly improved duck BW and alleviated intestinal injury by regulating intestinal morphology, barrier function and gut inflammation-related signal pathways TLR4/MYD88/NF-κB p65.
Collapse
Affiliation(s)
- Yaqi Chang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ke Wang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
16
|
Hong J, Li M, Chen Y, Du Y, Song D. A zinc metabolism-related gene signature for predicting prognosis and characteristics of breast cancer. Front Immunol 2024; 14:1276280. [PMID: 38259456 PMCID: PMC10800782 DOI: 10.3389/fimmu.2023.1276280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Background Breast cancer is one of the most serious and prevalent malignancies. Zinc is commonly known to play a crucial role in the development and progression of breast cancer; however, the detailed mechanisms underlying this role are not well understood. This study aimed to develop a zinc metabolism-related gene (ZMRG) signature based on a multi-database study to predict patient prognosis and investigate the relationship between drug therapy response and immune enrichment. Methods Data for breast cancer samples from The Cancer Genome Atlas and Gene Expression Omnibus databases were screened for zinc metabolism-related genes using the Molecular Signature Database. Cox and Least Absolute Shrinkage and Selection Operator regressions were performed to construct a ZMRG signature. To assess the predictive performance of the gene signature, Kaplan-Meier analysis and receiver operating characteristic curves were used. Additionally, we utilised single-sample gene set enrichment analysis, the Tumour Immune Estimation Resource, the Genomics of Drug Sensitivity in Cancer database, and the Cancer Therapeutics Response Portal to investigate the association between the tumour microenvironment and drug sensitivity. Quantitative PCR was used to assess the expression of each gene in the signature in breast cancer cell lines and patient samples. Results Five ZMRGs were identified (ATP7B, BGLAP, P2RX4, SLC39A11, and TH) and a risk profile was constructed for each. Two risk groups, high- and low-risk, were identified in this way, and the high-risk score subgroups were found to have worse prognosis. This risk profile was validated using the GSE42568 dataset. Tumour microenvironment and drug sensitivity analyses showed that the expression of these five ZMRGs was significantly associated with immune response. The high-risk group showed substantial immune cell infiltration and enrichment of immune pathways, and patients were more sensitive to drugs commonly used in breast cancer. Conclusion The ZMRG signature represents a new prognostic predictor for patients with breast cancer, and may also provide new insights into individualised treatment of breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Dong Song
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
17
|
Thind MK, Uhlig HH, Glogauer M, Palaniyar N, Bourdon C, Gwela A, Lancioni CL, Berkley JA, Bandsma RHJ, Farooqui A. A metabolic perspective of the neutrophil life cycle: new avenues in immunometabolism. Front Immunol 2024; 14:1334205. [PMID: 38259490 PMCID: PMC10800387 DOI: 10.3389/fimmu.2023.1334205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Neutrophils are the most abundant innate immune cells. Multiple mechanisms allow them to engage a wide range of metabolic pathways for biosynthesis and bioenergetics for mediating biological processes such as development in the bone marrow and antimicrobial activity such as ROS production and NET formation, inflammation and tissue repair. We first discuss recent work on neutrophil development and functions and the metabolic processes to regulate granulopoiesis, neutrophil migration and trafficking as well as effector functions. We then discuss metabolic syndromes with impaired neutrophil functions that are influenced by genetic and environmental factors of nutrient availability and usage. Here, we particularly focus on the role of specific macronutrients, such as glucose, fatty acids, and protein, as well as micronutrients such as vitamin B3, in regulating neutrophil biology and how this regulation impacts host health. A special section of this review primarily discusses that the ways nutrient deficiencies could impact neutrophil biology and increase infection susceptibility. We emphasize biochemical approaches to explore neutrophil metabolism in relation to development and functions. Lastly, we discuss opportunities and challenges to neutrophil-centered therapeutic approaches in immune-driven diseases and highlight unanswered questions to guide future discoveries.
Collapse
Affiliation(s)
- Mehakpreet K Thind
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Celine Bourdon
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Agnes Gwela
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Christina L Lancioni
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - James A Berkley
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Robert H J Bandsma
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - Amber Farooqui
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Omega Laboratories Inc, Mississauga, ON, Canada
| |
Collapse
|
18
|
Atta A, Aftab A, Shafqat A, Yousuf MH, Ahmed A, Pirzada H, Khalid H, Hastings NE. Investigating the Efficacy of Zinc and Vitamin A in Treating Pediatric Community-Acquired Pneumonia. Cureus 2024; 16:e52197. [PMID: 38348004 PMCID: PMC10859780 DOI: 10.7759/cureus.52197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Community-acquired pneumonia (CAP) poses a significant global health challenge, even more so for children less than five years old. Nutritional interventions, such as zinc and vitamin A supplementation, are gaining attention for their therapeutic potential in enhancing recovery and minimizing pneumonia severity in pediatric patients. OBJECTIVE To assess the therapeutic benefits of zinc and vitamin A supplementation in pediatric CAP patients under five years old and to advocate for their use in clinical settings. METHODOLOGY Three groups were formed in a randomized controlled trial conducted from October 2022 to September 2023, to address zinc and vitamin A supplementation in pediatric patients under five years old in the intensive care unit with severe pneumonia. Group 1 received zinc supplementation, group 2 received vitamin A supplementation, and group 3 served as the control group, receiving antibiotic treatment exclusively for pneumonia. This treatment comprised either a β-lactam (amoxicillin-clavulanate, commonly referred to as Augmentin) administered orally at 500 mg/125 mg three times a day, Augmentin 875 mg/125 mg orally twice daily, or Augmentin 2000 mg/125 mg orally once daily. Additionally, the control group received a macrolide (azithromycin or clarithromycin) or doxycycline at a dosage of 100 mg orally twice daily. Linear regression analysis identified statistically significant decreases in both length of hospital stay and active pneumonic effusion. RESULTS The study encompassed 90 pediatric pneumonia patients with an age range of six to 55 months. Multiple linear regression analysis showed that both vitamin A and zinc led to a significant decrease in hospitalization length by 2.39 days (p < 0.01, 95% CI: 4.19-0.47) and 3.17 days (p < 0.01, 95% CI: 5.19-1.31), respectively. In comparison to the control group, both the vitamin A and zinc supplementation groups were linked to a shorter pneumonic effusion duration (p < 0.001). CONCLUSION Both interventions significantly reduced the duration of hospitalization (2.39 days for vitamin A and 3.17 days for zinc) and pneumonic effusion compared to the control group. These findings highlight the potential of zinc and vitamin A as valuable additions to standard CAP treatment regimens, potentially leading to improved clinical outcomes and reduced healthcare burdens.
Collapse
Affiliation(s)
- Aqsa Atta
- Human Nutrition and Dietetics, Nishtar Medical University, Multan, PAK
| | - Ayesha Aftab
- Pharmacology, Al Nafees Medical College and Hospital, Islamabad, PAK
| | - Ayesha Shafqat
- Physiology, HBS (Hazrat Bari Imam Sarkar) Medical College, Islamabad, PAK
| | | | - Akbar Ahmed
- Gynaecology and Obstetrics, Ziauddin University Hospital, Karachi, PAK
| | - Hannah Pirzada
- Pharmacology, Bakhtawar Amin Medical College, Multan, PAK
| | - Humna Khalid
- Internal Medicine/Dermatology, Bahawal Victoria Hospital, Bahawalpur, PAK
| | | |
Collapse
|
19
|
Aigner GP, Peer V, Fiechtner B, Piechnik CA, Höckner M. Wound healing and Cadmium detoxification in the earthworm Lumbricus terrestris - a potential case for coelomocytes? Front Immunol 2023; 14:1272191. [PMID: 38116011 PMCID: PMC10728717 DOI: 10.3389/fimmu.2023.1272191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
Earthworms are affected by physical stress, like injury, and by exposure to xenobiotics, such as the toxic metal cadmium (Cd), which enters the environment mainly through industry and agriculture. The stress response to the single and the combination of both stressors was examined in regenerative and unharmed tissue of Lumbricus terrestris to reveal if the stress response to a natural insult like injury (amputation) interferes with Cd detoxification mechanisms. We characterized the roles of metallothionein 1 (MT1) and MT2 isoforms, heat shock protein 70 as well as immune biomarkers such as the toll-like receptors (TLR) single cysteine cluster TLR and multiple cysteine cluster TLR. The role of the activated transcription factors (ATFs) ATF2, ATF7, and the cAMP responsive element binding protein as putative regulatory intersection as well as a stress-dependent change of the essential trace elements zinc and calcium was analyzed. Phosphorylated AMP activated protein kinase, the cellular energy sensor, was measured to explore the energy demand, while the energy status was determined by detecting carbohydrate and protein levels. Taken together, we were able to show that injury rather than Cd is the driving force that separates the four treatment groups - Control, Cd exposure, Injury, Cd exposure and injury. Interestingly, we found that gene expression differed regarding the tissue section that was analyzed and we hypothesize that this is due to the migration of coelomocytes, earthworm immune cells, that take over a key role in protecting the organism from a variety of environmental challenges. Surprisingly, we discovered a role for MT1 in the response to multiple stressors and an isoform-specific function for the two newly characterized TLRs. In conclusion, we gathered novel information on the relation of innate immunity, wound healing, and Cd detoxification mechanisms in earthworms.
Collapse
Affiliation(s)
| | | | | | | | - Martina Höckner
- Department of Zoology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
da Silva Lima F, da Silva Gonçalves CE, Fock RA. A review of the role of zinc finger proteins on hematopoiesis. J Trace Elem Med Biol 2023; 80:127290. [PMID: 37659124 DOI: 10.1016/j.jtemb.2023.127290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
The bone marrow is responsible for producing an incredible number of cells daily in order to maintain blood homeostasis through a process called hematopoiesis. Hematopoiesis is a greatly demanding process and one entirely dependent on complex interactions between the hematopoietic stem cell (HSC) and its surrounding microenvironment. Zinc (Zn2+) is considered an important trace element, playing diverse roles in different tissues and cell types, and zinc finger proteins (ZNF) are proteins that use Zn2+ as a structural cofactor. In this way, the ZNF structure is supported by a Zn2+ that coordinates many possible combinations of cysteine and histidine, with the most common ZNF being of the Cys2His2 (C2H2) type, which forms a family of transcriptional activators that play an important role in different cellular processes such as development, differentiation, and suppression, all of these being essential processes for an adequate hematopoiesis. This review aims to shed light on the relationship between ZNF and the regulation of the hematopoietic tissue. We include works with different designs, including both in vitro and in vivo studies, detailing how ZNF might regulate hematopoiesis.
Collapse
Affiliation(s)
- Fabiana da Silva Lima
- Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
21
|
Holdbrooke SJ, Afolabi BM, David NA, Kareem KO, Salako A, Aina OO. Perception, knowledge, and consumption pattern of dietary supplement used during COVID-19 pandemic among black Africans: Perspective of Nigerians. DIALOGUES IN HEALTH 2023; 2:100106. [PMID: 36744009 PMCID: PMC9889116 DOI: 10.1016/j.dialog.2023.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
The awareness of the health implication of Covid-19 pandemic marked an increase consumption of various dietary and herbal supplements (DHS) for the deterrence and/or prophylaxis against the novel emerging and infectious disease. However, there is little indication of the usefulness or otherwise of their use in alleviating symptoms of COVID-19. Objectives To investigate the pattern and determinants of DHS use among the Nigerian population for the prevention and treatment of COVID-19. Design Cross-sectional questionnaire survey. Setting: Older adolescents and adults residing in Nigeria. Participants Participants (n = 645) residing in the Nigeria were recruited from different geo-political zones and various ethnic groups. Primary and secondary outcomes Prevalence and determinants for the use of different DHS for the prevention and treatment of COVID-19 in Nigeria, and sources of information for DHS use. Results Most participants (425, 65.9%) believed that dietary supplements are necessary during infectious disease outbreak, but a fewer proportion believed that supplements can be used in conjunction with other drugs to treat Covid-19. Vitamin C was the most known (70.0%) and Vitamin A. The least known (0.3%) dietary supplement Approximately half (50.2%) of the study subjects, more than a third (37.8%) and less than a quarter (22.7%) were aware that Folic acid, vitamin D and vitamin E are DS. Herbal dietary supplements mentioned as known by the study participants included Garlic (46.5%), Ginger (44.7%), Tumeric (36.3%), Moringa (40.0%) and Ginseng (26.3%). Citrus fruit as a DS was recognized by fewer (6.5%) study participants and only 1.6% referred to herbal tea as DHS. In all, 571 (88.5%) of the study participants took DHS during the Covid-19 pandemic with males 1.5 times more likely to take DHS than females (χ2 = 3.09, P-value = 0.08, OR = 1.54, 95% CI = 0.95, 2.47) during the pandemic. Participants reported lesser consumption of Selenium (27, 4.2%), Iron (20,3.1%), Zinc (61, 9.5%) and calcium (101, 15.7%) to prevent/treat Covid-19. Majority (271, 42.0%) of the study participants mentioned "health worker" as source of information on DHS while 13% mentioned "Social media". The sociodemographic determinants of DHS practices used to prevent/treat COVID-19 during the pandemic included older age group of 61-70 years, widows, secondary level of education and not employed. Conclusions The findings showed widespread use of DHS for the prevention and treatment of COVID-19. The use of DHS in this study was mainly guided by health workers with a marginal role of social media and Mass media. These findings call for a more robust consolidative tactic towards DHS to ensure its proper and safe use.
Collapse
Affiliation(s)
| | - Bamgboye M. Afolabi
- Nigerian Institute of Medical Research, 6 Edmond Crescent, Yaba, Lagos, Nigeria
- Health, Environment and Development Foundation, Yaba, Lagos, Nigeria
| | - Nkiru A. David
- Nigerian Institute of Medical Research, 6 Edmond Crescent, Yaba, Lagos, Nigeria
| | - Kafilat O. Kareem
- Nigerian Institute of Medical Research, 6 Edmond Crescent, Yaba, Lagos, Nigeria
| | - Abideen Salako
- Nigerian Institute of Medical Research, 6 Edmond Crescent, Yaba, Lagos, Nigeria
| | | |
Collapse
|
22
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
23
|
Briassoulis G, Briassoulis P, Ilia S, Miliaraki M, Briassouli E. The Anti-Oxidative, Anti-Inflammatory, Anti-Apoptotic, and Anti-Necroptotic Role of Zinc in COVID-19 and Sepsis. Antioxidants (Basel) 2023; 12:1942. [PMID: 38001795 PMCID: PMC10669546 DOI: 10.3390/antiox12111942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Zinc is a structural component of proteins, functions as a catalytic co-factor in DNA synthesis and transcription of hundreds of enzymes, and has a regulatory role in protein-DNA interactions of zinc-finger proteins. For many years, zinc has been acknowledged for its anti-oxidative and anti-inflammatory functions. Furthermore, zinc is a potent inhibitor of caspases-3, -7, and -8, modulating the caspase-controlled apoptosis and necroptosis. In recent years, the immunomodulatory role of zinc in sepsis and COVID-19 has been investigated. Both sepsis and COVID-19 are related to various regulated cell death (RCD) pathways, including apoptosis and necroptosis. Lack of zinc may have a negative effect on many immune functions, such as oxidative burst, cytokine production, chemotaxis, degranulation, phagocytosis, and RCD. While plasma zinc concentrations decline swiftly during both sepsis and COVID-19, this reduction is primarily attributed to a redistribution process associated with the inflammatory response. In this response, hepatic metallothionein production increases in reaction to cytokine release, which is linked to inflammation, and this protein effectively captures and stores zinc in the liver. Multiple regulatory mechanisms come into play, influencing the uptake of zinc, the binding of zinc to blood albumin and red blood cells, as well as the buffering and modulation of cytosolic zinc levels. Decreased zinc levels are associated with increasing severity of organ dysfunction, prolonged hospital stay and increased mortality in septic and COVID-19 patients. Results of recent studies focusing on these topics are summarized and discussed in this narrative review. Existing evidence currently does not support pharmacological zinc supplementation in patients with sepsis or COVID-19. Complementation and repletion should follow current guidelines for micronutrients in critically ill patients. Further research investigating the pharmacological mechanism of zinc in programmed cell death caused by invasive infections and its therapeutic potential in sepsis and COVID-19 could be worthwhile.
Collapse
Affiliation(s)
- George Briassoulis
- Postgraduate Program “Emergency and Intensive Care in Children, Adolescents, and Young Adults”, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Panagiotis Briassoulis
- Second Department of Anesthesiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Stavroula Ilia
- Postgraduate Program “Emergency and Intensive Care in Children, Adolescents, and Young Adults”, School of Medicine, University of Crete, 71003 Heraklion, Greece;
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece;
| | - Marianna Miliaraki
- Paediatric Intensive Care Unit, University Hospital, School of Medicine, University of Crete, 71110 Heraklion, Greece;
| | - Efrossini Briassouli
- Infectious Diseases Department “MAKKA”, First Department of Paediatrics, “Aghia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
24
|
Alselami A, Drummond RA. How metals fuel fungal virulence, yet promote anti-fungal immunity. Dis Model Mech 2023; 16:dmm050393. [PMID: 37905492 PMCID: PMC10629672 DOI: 10.1242/dmm.050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Invasive fungal infections represent a significant global health problem, and present several clinical challenges, including limited treatment options, increasing rates of antifungal drug resistance and compounding comorbidities in affected patients. Metals, such as copper, iron and zinc, are critical for various biological and cellular processes across phyla. In mammals, these metals are important determinants of immune responses, but pathogenic microbes, including fungi, also require access to these metals to fuel their own growth and drive expression of major virulence traits. Therefore, host immune cells have developed strategies to either restrict access to metals to induce starvation of invading pathogens or deploy toxic concentrations within phagosomes to cause metal poisoning. In this Review, we describe the mechanisms regulating fungal scavenging and detoxification of copper, iron and zinc and the importance of these mechanisms for virulence and infection. We also outline how these metals are involved in host immune responses and the consequences of metal deficiencies or overloads on how the host controls invasive fungal infections.
Collapse
Affiliation(s)
- Alanoud Alselami
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rebecca A. Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
25
|
Bahramian A, Rahbaran M, Bahramian M, Bohlouli S, Katebi K. Effect of zinc supplementation as an adjuvant to corticosteroid treatment in patients with oral lichen planus: A systematic review. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2023; 15:128-133. [PMID: 38357334 PMCID: PMC10862047 DOI: 10.34172/japid.2023.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/23/2023] [Indexed: 02/16/2024]
Abstract
Background Oral lichen planus (OLP) and one of its main presentations, desquamative gingivitis, are common diseases with no definite treatment. Zinc deficiency has a critical role in the pathogenesis of oral mucosal diseases. The current study systematically reviewed the effect of zinc in addition to topical corticosteroids in the treatment of OLP. Methods English articles in PubMed, Web of Sciences, Embase, and Scopus were searched until August 2022. The differences in symptoms were analyzed, including pain, burning sensation, and lesion sizes in patients with lichen planus receiving zinc supplementation as an adjuvant to corticosteroid treatment. Results A total of 148 articles related to the searched keywords were found. Eventually, two clinical trials were selected. The total population of studied individuals included 60 patients. Due to the high heterogeneity between the studies, meta-analysis was not possible. Administering zinc, in addition to corticosteroids, did not improve the symptoms compared to corticosteroid monotherapy. Conclusion Considering the limited number of studies and lack of sufficient evidence, it is not currently possible to reach a definite conclusion regarding the effects of zinc on OLP.
Collapse
Affiliation(s)
- Ayla Bahramian
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mona Rahbaran
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maria Bahramian
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Bohlouli
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Katayoun Katebi
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Liu J, Yu X, Ma F, Wo Y, Jin Y, Hashem NM, Sun P. Early supplementation with zinc proteinate does not change rectal microbiota but increases growth performance by improving antioxidant capacity and plasma zinc concentration in preweaned dairy calves. Front Vet Sci 2023; 10:1236635. [PMID: 37829355 PMCID: PMC10565034 DOI: 10.3389/fvets.2023.1236635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
The present study evaluated the effects of early supplementation with zinc proteinate (ZnP) or zinc oxide (ZnO) for 2 weeks on the growth performance, redox status, plasma trace element concentrations, and rectal microbiota of preweaned dairy calves. A total of 60 newborn healthy female Holstein dairy calves, with initial body weight (BW): 41.33 ± 0.62 kg, were randomly allocated to 5 groups of 12 each: a control group (CON); three groups supplemented with 261 (L-ZnP), 523 (M-ZnP), and 784 (H-ZnP) mg/day ZnP, equivalent to 40, 80, and 120 mg/day zinc, respectively; and one group supplemented with 232 mg/day ZnO, equivalent to 180 mg/day zinc (ZnO). Zinc supplements were administered on days 1-14, and the calves were followed up until day 70. Zinc supplementation increased total dry matter intake (DMI) and starter DMI compared with the CON group (p < 0.01). The final BW, average daily gain, and feed efficiency were higher in the M-ZnP, H-ZnP, and ZnO groups (p < 0.05). The incidence of diarrhea on days 1-28 was reduced by zinc administration (p < 0.01), whereas the incidence on days 29-56 was lower in the M-ZnP and ZnO groups (p < 0.05). Serum glutathione peroxidase activity, total antioxidant capacity, immunoglobulin G and plasma zinc concentrations were increased linearly (p < 0.05), while the serum concentration of malondialdehyde was decreased linearly (p < 0.01), as the dose of ZnP increased. ZnP yielding 80 mg/day zinc had similar effects as ZnO yielding 180 mg/day zinc, except that final BW was higher in the ZnO group (p < 0.05). At the phylum level, ZnO decreased the relative abundance of Firmicutes while increasing the abundance of Bacteroidetes (p < 0.05). At the genus level, ZnO increased the relative abundances of Prevotella, Subdoligranulum, and Odoribacter (p < 0.05). These findings indicated that early supplementation with ZnP did not affect the rectal microbiota of preweaned dairy calves but increased their growth performance, antioxidant capacity, and plasma zinc concentration. In summary, ZnP is an organic zinc source with greater bioavailability than ZnO for preweaned dairy calves. Early dietary supplementation with ZnP yielding 80 mg/day zinc is recommended.
Collapse
Affiliation(s)
- Junhao Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Yu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengtao Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yeqianli Wo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhang Jin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Knebusch N, Mansour M, Vazquez S, Coss-Bu JA. Macronutrient and Micronutrient Intake in Children with Lung Disease. Nutrients 2023; 15:4142. [PMID: 37836425 PMCID: PMC10574027 DOI: 10.3390/nu15194142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
This review article aims to summarize the literature findings regarding the role of micronutrients in children with lung disease. The nutritional and respiratory statuses of critically ill children are interrelated, and malnutrition is commonly associated with respiratory failure. The most recent nutrition support guidelines for critically ill children have recommended an adequate macronutrient intake in the first week of admission due to its association with good outcomes. In children with lung disease, it is important not to exceed the proportion of carbohydrates in the diet to avoid increased carbon dioxide production and increased work of breathing, which potentially could delay the weaning of the ventilator. Indirect calorimetry can guide the process of estimating adequate caloric intake and adjusting the proportion of carbohydrates in the diet based on the results of the respiratory quotient. Micronutrients, including vitamins, trace elements, and others, have been shown to play a role in the structure and function of the immune system, antioxidant properties, and the production of antimicrobial proteins supporting the defense mechanisms against infections. Sufficient levels of micronutrients and adequate supplementation have been associated with better outcomes in children with lung diseases, including pneumonia, cystic fibrosis, asthma, bronchiolitis, and acute respiratory failure.
Collapse
Affiliation(s)
- Nicole Knebusch
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (N.K.); (M.M.); (S.V.)
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Marwa Mansour
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (N.K.); (M.M.); (S.V.)
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Stephanie Vazquez
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (N.K.); (M.M.); (S.V.)
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Jorge A. Coss-Bu
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; (N.K.); (M.M.); (S.V.)
- Texas Children’s Hospital, Houston, TX 77030, USA
| |
Collapse
|
28
|
Kiouri DP, Tsoupra E, Peana M, Perlepes SP, Stefanidou ME, Chasapis CT. Multifunctional role of zinc in human health: an update. EXCLI JOURNAL 2023; 22:809-827. [PMID: 37780941 PMCID: PMC10539547 DOI: 10.17179/excli2023-6335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 10/03/2023]
Abstract
Zinc is a multipurpose trace element for the human body, as it plays a crucial part in various physiological processes, such as cell growth and development, metabolism, cognitive, reproductive, and immune system function. Its significance in human health is widely acknowledged, and this has led the scientific community towards more research that aims to uncover all of its beneficial properties, especially when compared to other essential metal ions. One notable area where zinc has shown beneficial effects is in the prevention and treatment of various diseases, including cancer. This review aims to explain the involvement of zinc in specific health conditions such as cancer, coronavirus disease 2019 (COVID-19) and neurological disorders like Alzheimer's disease, as well as its impact on the gut microbiome.
Collapse
Affiliation(s)
- Despoina P. Kiouri
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
- Department of Chemistry, Laboratory of Organic Chemistry, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Evi Tsoupra
- Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | | | - Maria E. Stefanidou
- Department of Forensic Medicine and Toxicology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos T. Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
29
|
Pereira CGM, Nunes MAP, Lessa AL, Cerqueira LC, Veloso OM, Delpino FM, Ferreira A, de Góis FN, Costa PSR, Santos HO. Sex distinctions regarding serum zinc levels in critically ill COVID-19 patients. J Trace Elem Med Biol 2023; 79:127262. [PMID: 37451092 DOI: 10.1016/j.jtemb.2023.127262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE Men and women exhibit different presentations in COVID-19. Changes in zinc finger domains in X chromosome causes disorders of sex development. So, we aimed to evaluate sex distinctions regarding serum zinc in severe COVID-19. METHOD Data from electronic records of severe COVID-19 patients were correlated with serum zinc. Logistic regression investigated predictors and protectors of hypozincemia in men and women. RESULTS We assessed 188 medical records (men = 114, women = 74). Men correlated low zinc with hypertension (cc = 0.303, p < 0.001), diabetes (cc = 0.198, p = 0.031), hemoglobin (cc = -0.258, p = 0.005), and albumin (cc = -0.219, p = 0.027). Low lymphocyte count (cc = 0.315, p = 0.005), C-reactive protein (cc = -0.248, p = 0.037), and enteral nutrition (cc = 0.269, p = 0.016) were correlated with hypozincemia in women. Age correlated with low zinc in men (c = -0.304, p = 0.001) and women (cc = -0.298, p = 0.010). In men, hypertension (OR = 4.905, p = 0.005) and lymphopenia (OR = -0.999, p = 0.019) were low zinc predictors, while lung injury > 50% was a protective factor (OR = -0.280, p = 0.025). Lymphopenia (OR = -0.999, p = 0.005) and difficult weaning from mechanical ventilation (MV) (OR = 4.359, p = 0.036) were predictors of hypozincemia in women. Difficult weaning from MV (OR = 3.012, p = 0.003) and age (OR = 1.038, p = 0.002) were hypozincemia predictors regardless sex. CONCLUSION Hypertension, diabetes, hemoglobin and albumin were correlated with low zinc in men. Lymphopenia, reactive-C protein and enteral nutrition were correlated with low zinc in women. In men, hypertension and low lymphocytes were predictors of hypozincemia. Lymphopenia and difficult weaning from MV were predictors of low zinc in women.
Collapse
Affiliation(s)
- Cristina Gama Matos Pereira
- Departamento de Medicina, Universidade Federal de Sergipe (UFS), Campus da Saúde Prof. João Cardoso Do Nascimento Júnior, CCBS, Rua Cláudio Batista, s/n, Aracaju, Sergipe, Brazil; São Lucas Hospital - Rede D'OR (HSL), EMTN, Avenida Coronel Stanley da Silveira s/n, Aracaju, Sergipe, Brazil.
| | - Marco Antônio Prado Nunes
- Departamento de Medicina, Universidade Federal de Sergipe (UFS), Campus da Saúde Prof. João Cardoso Do Nascimento Júnior, CCBS, Rua Cláudio Batista, s/n, Aracaju, Sergipe, Brazil
| | - Arthur Leite Lessa
- Departamento de Medicina, Universidade Federal de Sergipe (UFS), Campus da Saúde Prof. João Cardoso Do Nascimento Júnior, CCBS, Rua Cláudio Batista, s/n, Aracaju, Sergipe, Brazil
| | - Lara Carvalho Cerqueira
- Departamento de Medicina, Universidade Federal de Sergipe (UFS), Campus da Saúde Prof. João Cardoso Do Nascimento Júnior, CCBS, Rua Cláudio Batista, s/n, Aracaju, Sergipe, Brazil
| | - Octavio Morais Veloso
- Departamento de Medicina, Universidade Federal de Sergipe (UFS), Campus da Saúde Prof. João Cardoso Do Nascimento Júnior, CCBS, Rua Cláudio Batista, s/n, Aracaju, Sergipe, Brazil
| | - Felipe Mendes Delpino
- Pós Graduação em Enfermagem, Universidade Federal de Pelotas (UFPel), Rua Gomes Carneiro, 01 / 2º andar - Sala 208, Pelotas, Rio Grande do Sul, Brazil
| | - Andrêa Ferreira
- Departamento de Nutrição, Universidade Federal da Bahia, (UFBA), Rua Araújo Pinho 32, Canela, Salvador, Bahia, Brazil
| | - Fernanda Noronha de Góis
- São Lucas Hospital - Rede D'OR (HSL), EMTN, Avenida Coronel Stanley da Silveira s/n, Aracaju, Sergipe, Brazil
| | - Patrícia Santos Rodrigues Costa
- Departamento de Medicina, Universidade Federal de Sergipe (UFS), Campus da Saúde Prof. João Cardoso Do Nascimento Júnior, CCBS, Rua Cláudio Batista, s/n, Aracaju, Sergipe, Brazil; São Lucas Hospital - Rede D'OR (HSL), EMTN, Avenida Coronel Stanley da Silveira s/n, Aracaju, Sergipe, Brazil
| | - Heitor Oliveira Santos
- Escola de Medicina, Universidade Federal de Uberlândia (UFU), Avenida Pará, bloco 2u, Uberlândia, Minas Gerais 1720, Brazil
| |
Collapse
|
30
|
Lu H, Ma J, Li Y, Zhang J, An Y, Du W, Cai X. Bioinformatic and systems biology approach revealing the shared genes and molecular mechanisms between COVID-19 and non-alcoholic hepatitis. Front Mol Biosci 2023; 10:1164220. [PMID: 37405258 PMCID: PMC10315682 DOI: 10.3389/fmolb.2023.1164220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction: Coronavirus disease 2019 (COVID-19) has become a global pandemic and poses a serious threat to human health. Many studies have shown that pre-existing nonalcoholic steatohepatitis (NASH) can worsen the clinical symptoms in patients suffering from COVID-19. However, the potential molecular mechanisms between NASH and COVID-19 remain unclear. To this end, key molecules and pathways between COVID-19 and NASH were herein explored by bioinformatic analysis. Methods: The common differentially expressed genes (DEGs) between NASH and COVID-19 were obtained by differential gene analysis. Enrichment analysis and protein-protein interaction (PPI) network analysis were carried out using the obtained common DEGs. The key modules and hub genes in PPI network were obtained by using the plug-in of Cytoscape software. Subsequently, the hub genes were verified using datasets of NASH (GSE180882) and COVID-19 (GSE150316), and further evaluated by principal component analysis (PCA) and receiver operating characteristic (ROC). Finally, the verified hub genes were analyzed by single-sample gene set enrichment analysis (ssGSEA) and NetworkAnalyst was used for the analysis of transcription factor (TF)-gene interactions, TF-microRNAs (miRNA) coregulatory network, and Protein-chemical Interactions. Results: A total of 120 DEGs between NASH and COVID-19 datasets were obtained, and the PPI network was constructed. Two key modules were obtained via the PPI network, and enrichment analysis of the key modules revealed the common association between NASH and COVID-19. In total, 16 hub genes were obtained by five algorithms, and six of them, namely, Kruppel-like factor 6 (KLF6), early growth response 1 (EGR1), growth arrest and DNA-damage-inducible 45 beta (GADD45B), JUNB, FOS, and FOS-like antigen 1 (FOSL1) were confirmed to be closely related to NASH and COVID-19. Finally, the relationship between hub genes and related pathways was analyzed, and the interaction network of six hub genes was constructed with TFs, miRNAs, and compounds. Conclusion: This study identified six hub genes related to COVID-19 and NASH, providing a new perspective for disease diagnosis and drug development.
Collapse
|
31
|
Guerrero-Romero F, Micke O, Simental-Mendía LE, Rodríguez-Morán M, Vormann J, Iotti S, Banjanin N, Rosanoff A, Baniasadi S, Pourdowlat G, Nechifor M. Importance of Magnesium Status in COVID-19. BIOLOGY 2023; 12:735. [PMID: 37237547 PMCID: PMC10215232 DOI: 10.3390/biology12050735] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
A large amount of published research points to the interesting concept (hypothesis) that magnesium (Mg) status may have relevance for the outcome of COVID-19 and that Mg could be protective during the COVID disease course. As an essential element, Mg plays basic biochemical, cellular, and physiological roles required for cardiovascular, immunological, respiratory, and neurological functions. Both low serum and dietary Mg have been associated with the severity of COVID-19 outcomes, including mortality; both are also associated with COVID-19 risk factors such as older age, obesity, type 2 diabetes, kidney disease, cardiovascular disease, hypertension, and asthma. In addition, populations with high rates of COVID-19 mortality and hospitalization tend to consume diets high in modern processed foods, which are generally low in Mg. In this review, we review the research to describe and consider the possible impact of Mg and Mg status on COVID-19 showing that (1) serum Mg between 2.19 and 2.26 mg/dL and dietary Mg intakes > 329 mg/day could be protective during the disease course and (2) inhaled Mg may improve oxygenation of hypoxic COVID-19 patients. In spite of such promise, oral Mg for COVID-19 has thus far been studied only in combination with other nutrients. Mg deficiency is involved in the occurrence and aggravation of neuropsychiatric complications of COVID-19, including memory loss, cognition, loss of taste and smell, ataxia, confusion, dizziness, and headache. Potential of zinc and/or Mg as useful for increasing drug therapy effectiveness or reducing adverse effect of anti-COVID-19 drugs is reviewed. Oral Mg trials of patients with COVID-19 are warranted.
Collapse
Affiliation(s)
- Fernando Guerrero-Romero
- Biomedical Research Unit, Mexican Social Security Institute, Durango 34067, Mexico; (F.G.-R.); (L.E.S.-M.); (M.R.-M.)
| | - Oliver Micke
- Department of Radiation Therapy and Radiation Oncology, Franziskus Hospital, 33615 Bielefeld, Germany;
| | - Luis E. Simental-Mendía
- Biomedical Research Unit, Mexican Social Security Institute, Durango 34067, Mexico; (F.G.-R.); (L.E.S.-M.); (M.R.-M.)
| | - Martha Rodríguez-Morán
- Biomedical Research Unit, Mexican Social Security Institute, Durango 34067, Mexico; (F.G.-R.); (L.E.S.-M.); (M.R.-M.)
| | - Juergen Vormann
- Institute for Prevention and Nutrition, 85737 Ismaning, Germany;
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, Universita di Bologna, 40126 Bologna, Italy;
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Nikolina Banjanin
- Institute of Hygiene and Medical Ecology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Andrea Rosanoff
- CMER Center for Magnesium Education & Research, Pahoa, HI 96778, USA
| | - Shadi Baniasadi
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran;
| | - Guitti Pourdowlat
- Chronic Respiratory Diseases Research Centre, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran;
| | - Mihai Nechifor
- Department of Pharmacology, Gr. T Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
32
|
Rodelgo Jiménez L, Anchuelo AC, Soler PM, Muñoz RP, Ferrer MF, Fornie IS, Mosquera MG, González MMN. Zinc levels of patients with a moderate to severe COVID-19 infection at hospital admission and after 4th days of ward hospitalization and their clinical outcome. J Trace Elem Med Biol 2023; 79:127200. [PMID: 37229980 PMCID: PMC10181947 DOI: 10.1016/j.jtemb.2023.127200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/08/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Previous studies associate the disturbance of the Zinc (Zn) status with the severity of the disease and the inflammatory process in the critically ill patient. This decrease in Zn concentrations is an indicator of poor prognosis. Our aim was to evaluate Zn levels at admission and after four days, and to study if lower Zn levels at those days were related to a worse clinical outcome. MATERIAL AND METHODS Observational cohort study at a tertiary Hospital. Recruitment period: 09/04/2020-04/24/2021. Clinical information on hypertension, diabetes mellitus (DM), chronic obstructive pulmonary disease (COPD), or bronchial asthma was collected. Obesity was defined as BMI ≥ 30 Kg/m2. Blood extraction was performed at admission and after 4 days. Zn was measured by atomic absorption using a flame method. Worse clinical outcome was defined as death during admission, intensive critical care unit admission or receiving supplemental oxygen through noninvasive or invasive ventilator care. RESULTS 129 subjects were invited to participate but only 100 subjects completed the survey. According to ROC curve [AUC= 0.63 (95% CI 0.60-0.66)], Zn < 79 μg/dL showed the best performance to detect a worse outcome (Sn=0.85; Sp=0.36). Patients with Zn < 79 μg/dL were older (70 vs 61 y; p = 0.002) with no differences by sex. Most patients presented with fever, dysthermic symptoms and cough, without differences between groups. Pre-existing comorbid conditions did not differ significantly between groups. Less obese subjects were found in the Zn < 79 μg/dL group (21.4 vs 43.3%, p = 0.025). In the univariate analysis, Zn < 79 μg/dL at hospital admission was related to a worse outcome (p = 0.044), but after adjusting for age, C-reactive protein, and obesity there was no difference, but a tendency towards a worse prognosis [OR 2.20 (0.63-7.70), p = 0.215]. Zn levels increased in both groups after 4 days (66.6 vs 73.1 μg/dL at admission, and 72.2 vs 80.5 μg/dL at 4th day), with ns. difference (p = 0.214). CONCLUSION Zn < 79 μg/dL at admission for a moderate to severe COVID-19 infection could be related to a worse outcome, although after adjustment for age, C-reactive protein levels and obesity, this Zn level threshold did not show statistically significant difference in the composite end point, but a tendency towards a worse prognosis. In addition, patients with the best clinical evolution showed higher serum Zn levels at 4th day after hospital admission than the patients with a worse prognosis.
Collapse
Affiliation(s)
- Laura Rodelgo Jiménez
- Instituto de Medicina de Laboratorio (IML), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Arturo Corbatón Anchuelo
- Grupo de Riesgo Vascular, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| | - Pablo Matías Soler
- Grupo de Patología de Urgencias y Emergencias, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Raúl Perales Muñoz
- Grupo de Patología de Urgencias y Emergencias, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Manuel Fuentes Ferrer
- Unidad de Investigación (UI) del Hospital Universitario Nuestra Señora de Candelaria (HUNSC-GAP), Santa Cruz de Tenerife, Spain
| | - Iñigo Sagastagoitia Fornie
- Grupo de Infecciosas/VIH, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Marina Gil Mosquera
- Grupo de Patología de Urgencias y Emergencias, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Mercedes Martínez-Novillo González
- Instituto de Medicina de Laboratorio (IML), Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
33
|
Shen J, Fan J, Zhao Y, Jiang D, Niu Z, Zhang Z, Cao G. Innate and adaptive immunity to SARS-CoV-2 and predisposing factors. Front Immunol 2023; 14:1159326. [PMID: 37228604 PMCID: PMC10203583 DOI: 10.3389/fimmu.2023.1159326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), has affected all countries worldwide. Although some symptoms are relatively mild, others are still associated with severe and even fatal clinical outcomes. Innate and adaptive immunity are important for the control of SARS-CoV-2 infections, whereas a comprehensive characterization of the innate and adaptive immune response to COVID-19 is still lacking and the mechanisms underlying immune pathogenesis and host predisposing factors are still a matter of scientific debate. Here, the specific functions and kinetics of innate and adaptive immunity involved in SARS-CoV-2 recognition and resultant pathogenesis are discussed, as well as their immune memory for vaccinations, viral-mediated immune evasion, and the current and future immunotherapeutic agents. We also highlight host factors that contribute to infection, which may deepen the understanding of viral pathogenesis and help identify targeted therapies that attenuate severe disease and infection.
Collapse
Affiliation(s)
- Jiaying Shen
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Junyan Fan
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Yue Zhao
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Doming Jiang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zheyun Niu
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zihan Zhang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Guangwen Cao
- Tongji University School of Medicine, Tongji University, Shanghai, China
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| |
Collapse
|
34
|
Equey A, Berger MM, Gonseth-Nusslé S, Augsburger M, Rezzi S, Hodgson ACC, Estoppey S, Pantaleo G, Pellaton C, Perrais M, Lenglet S, Rousson V, D'Acremont V, Bochud M. Association of plasma zinc levels with anti-SARS-CoV-2 IgG and IgA seropositivity in the general population: A case-control study. Clin Nutr 2023; 42:972-986. [PMID: 37130500 PMCID: PMC10110932 DOI: 10.1016/j.clnu.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Some micronutrients have key roles in immune defence, including mucosal defence mechanisms and immunoglobulin production. Altered micronutrient status has been linked with COVID-19 infection and disease severity. We assessed the associations of selected circulating micronutrients with anti-SARS-CoV-2 IgG and IgA seropositivity in the Swiss community using early pandemic data. METHODS Case-control study comparing the first PCR-confirmed COVID-19 symptomatic cases in the Vaud Canton (May to June 2020, n = 199) and controls (random population sample, n = 447), seronegative for IgG and IgA. The replication analysis included seropositive (n = 134) and seronegative (n = 152) close contacts from confirmed COVID-19 cases. Anti-SARS-CoV-2 IgG and IgA levels against the native trimeric spike protein were measured using the Luminex immunoassay. We measured plasma Zn, Se and Cu concentrations by ICP-MS, and 25-hydroxy-vitamin D3 (25(OH)D3) with LC-MS/MS and explored associations using multiple logistic regression. RESULTS The 932 participants (54.1% women) were aged 48.6 ± 20.2 years (±SD), BMI 25.0 ± 4.7 kg/m2 with median C-Reactive Protein 1 mg/l. In logistic regressions, log2(Zn) plasma levels were negatively associated with IgG seropositivity (OR [95% CI]: 0.196 [0.0831; 0.465], P < 0.001; replication analyses: 0.294 [0.0893; 0.968], P < 0.05). Results were similar for IgA. We found no association of Cu, Se, and 25(OH)D3 with anti-SARS-CoV-2 IgG or IgA seropositivity. CONCLUSION Low plasma Zn levels were associated with higher anti-SARS-CoV-2 IgG and IgA seropositivity in a Swiss population when the initial viral variant was circulating, and no vaccination available. These results suggest that adequate Zn status may play an important role in protecting the general population against SARS-CoV-2 infection. REGISTRY CORONA IMMUNITAS:: ISRCTN18181860.
Collapse
Affiliation(s)
- Antoine Equey
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Mette M Berger
- Service of Adult Intensive Care, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Semira Gonseth-Nusslé
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Marc Augsburger
- Forensic Toxicology and Chemistry Unit, University Centre of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne - Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland
| | - Serge Rezzi
- Swiss Nutrition and Health Foundation, Épalinges, Switzerland
| | | | - Sandrine Estoppey
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Céline Pellaton
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Maïwenn Perrais
- Forensic Toxicology and Chemistry Unit, University Centre of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne - Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland
| | - Sébastien Lenglet
- Forensic Toxicology and Chemistry Unit, University Centre of Legal Medicine, Lausanne-Geneva, Lausanne University Hospital and University of Lausanne - Geneva University Hospital and University of Geneva, Lausanne-Geneva, Switzerland
| | - Valentin Rousson
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Valérie D'Acremont
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| | - Murielle Bochud
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Route de La Corniche 10, 1010, Lausanne, Switzerland
| |
Collapse
|
35
|
Rust P, Ekmekcioglu C. The Role of Diet and Specific Nutrients during the COVID-19 Pandemic: What Have We Learned over the Last Three Years? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5400. [PMID: 37048015 PMCID: PMC10093865 DOI: 10.3390/ijerph20075400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Nutrients and diets have an important impact on our immune system and infection risk and a huge number of papers have been published dealing with various aspects of nutrition in relation to SARS-CoV-2 infection risk or COVID-19 severity. This narrative review aims to give an update on this association and tries to summarize some of the most important findings after three years of pandemic. The analysis of major studies and systematic reviews leads to the conclusion that a healthy plant-based diet reduces the risks for SARS-CoV-2 infection and especially COVID-19 severity. Regarding micronutrients, vitamin D is to the fore, but also zinc, vitamin C and, to some extent, selenium may play a role in COVID-19. Furthermore, omega-3-fatty acids with their anti-inflammatory effects also deserve attention. Therefore, a major aim of societal nutritional efforts in future should be to foster a high quality plant-based diet, which not only exerts beneficial effects on the immune system but also reduces the risk for non-communicable diseases such as type 2 diabetes or obesity which are also primary risk factors for worse COVID-19 outcomes. Another aim should be to focus on a good supply of critical immune-effective nutrients, such as vitamin D and zinc.
Collapse
Affiliation(s)
- Petra Rust
- Department of Nutritional Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Cem Ekmekcioglu
- Department of Environmental Health, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
36
|
Alfawaz W, Almutlaq M, Alzeer H, Alwashmi Y, Aljuraiban GS, Alsaid M, Alnashmi S. The relation between dietary zinc and immune status in saudi adults. Heliyon 2023; 9:e15042. [PMID: 37151648 PMCID: PMC10161369 DOI: 10.1016/j.heliyon.2023.e15042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Although there is an increased interest in zinc intake and its role in boosting immunity, to our knowledge, no studies have investigated the relationship between dietary zinc intake and immunity in Saudi adults. This cross-sectional study aimed to measure the extent to which the dietary zinc impacted the immune health of 252 Saudi adults aged 18 years and above. Immune health was assessed using the Immune Status Questionnaire (ISQ), and dietary zinc intake was estimated using an adapted zinc-specific version of the Saudi Food Frequency Questionnaire (SFFQ). Three scores were calculated for use in the statistical analyses (zinc intake score, immune status score, and health status score). A linear regression analysis was used to investigate the association between the dietary zinc intake and immune and health status scores. The means of dietary zinc intake, ISQ, and health status scores were 46.94, 7.10, and 7.84, respectively. We found that a high zinc intake score was directly associated with immune status score (p = 0.006) but was not associated with the health status score. The association remained significant after controlling for socio-demographic factors. Further studies are needed to confirm these findings.
Collapse
|
37
|
Dadashkhan S, Mirmotalebisohi SA, Poursheykhi H, Sameni M, Ghani S, Abbasi M, Kalantari S, Zali H. Deciphering crucial genes in multiple sclerosis pathogenesis and drug repurposing: A systems biology approach. J Proteomics 2023; 280:104890. [PMID: 36966969 DOI: 10.1016/j.jprot.2023.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 04/10/2023]
Abstract
This study employed systems biology and high-throughput technologies to analyze complex molecular components of MS pathophysiology, combining data from multiple omics sources to identify potential biomarkers and propose therapeutic targets and repurposed drugs for MS treatment. This study analyzed GEO microarray datasets and MS proteomics data using geWorkbench, CTD, and COREMINE to identify differentially expressed genes associated with MS disease. Protein-protein interaction networks were constructed using Cytoscape and its plugins, and functional enrichment analysis was performed to identify crucial molecules. A drug-gene interaction network was also created using DGIdb to propose medications. This study identified 592 differentially expressed genes (DEGs) associated with MS disease using GEO, proteomics, and text-mining datasets. 37 DEGs were found to be important by topographical network studies, and 6 were identified as the most significant for MS pathophysiology. Additionally, we proposed six drugs that target these key genes. Crucial molecules identified in this study were dysregulated in MS and likely play a key role in the disease mechanism, warranting further research. Additionally, we proposed repurposing certain FDA-approved drugs for MS treatment. Our in silico results were supported by previous experimental research on some of the target genes and drugs. SIGNIFICANCE: As the long-lasting investigations continue to discover new pathological territories in neurodegeneration, here we apply a systems biology approach to determine multiple sclerosis's molecular and pathophysiological origin and identify multiple sclerosis crucial genes that contribute to candidating new biomarkers and proposing new medications.
Collapse
Affiliation(s)
- Sadaf Dadashkhan
- Molecular Medicine Research Centre, Universitätsklinikum Jena, Jena, Germany; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Poursheykhi
- Department of New Scientist, Faculty of Medical Sciences, Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Sameni
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Ghani
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sima Kalantari
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Uddin MN, Mondal T, Yao Y, Manley K, Lawrence DA. Oxidative stress and neuroimmune proteins in a mouse model of autism. Cell Stress Chaperones 2023; 28:201-217. [PMID: 36795226 PMCID: PMC10050529 DOI: 10.1007/s12192-023-01331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Oxidative stress including decreased antioxidant enzyme activities, elevated lipid peroxidation, and accumulation of advanced glycation end products in the blood from children with autism spectrum disorders (ASD) has been reported. The mechanisms affecting the development of ASD remain unclear; however, toxic environmental exposures leading to oxidative stress have been proposed to play a significant role. The BTBRT+Itpr3tf/J (BTBR) strain provides a model to investigate the markers of oxidation in a mouse strain exhibiting ASD-like behavioral phenotypes. In the present study, we investigated the level of oxidative stress and its effects on immune cell populations, specifically oxidative stress affecting surface thiols (R-SH), intracellular glutathione (iGSH), and expression of brain biomarkers that may contribute to the development of the ASD-like phenotypes that have been observed and reported in BTBR mice. Lower levels of cell surface R-SH were detected on multiple immune cell subpopulations from blood, spleens, and lymph nodes and for sera R-SH levels of BTBR mice compared to C57BL/6 J (B6) mice. The iGSH levels of immune cell populations were also lower in the BTBR mice. Elevated protein expression of GATA3, TGM2, AhR, EPHX2, TSLP, PTEN, IRE1α, GDF15, and metallothionein in BTBR mice is supportive of an increased level of oxidative stress in BTBR mice and may underpin the pro-inflammatory immune state that has been reported in the BTBR strain. Results of a decreased antioxidant system suggest an important oxidative stress role in the development of the BTBR ASD-like phenotype.
Collapse
Affiliation(s)
- Mohammad Nizam Uddin
- Wadsworth Center, New York State Department of Health, Center for Medical Science, 150 New Scotland Avenue, Albany, NY, 12208, USA
| | - Tapan Mondal
- Wadsworth Center, New York State Department of Health, Center for Medical Science, 150 New Scotland Avenue, Albany, NY, 12208, USA
| | - Yunyi Yao
- Wadsworth Center, New York State Department of Health, Center for Medical Science, 150 New Scotland Avenue, Albany, NY, 12208, USA
| | - Kevin Manley
- Wadsworth Center, New York State Department of Health, Center for Medical Science, 150 New Scotland Avenue, Albany, NY, 12208, USA
| | - David A Lawrence
- Wadsworth Center, New York State Department of Health, Center for Medical Science, 150 New Scotland Avenue, Albany, NY, 12208, USA.
- University at Albany School of Public Health, Rensselaer, NY, USA.
| |
Collapse
|
39
|
Ye F, Wu L, Li H, Peng X, Xu Y, Li W, Wei Y, Chen F, Zhang J, Liu Q. SIRT1/PGC-1α is involved in arsenic-induced male reproductive damage through mitochondrial dysfunction, which is blocked by the antioxidative effect of zinc. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121084. [PMID: 36681380 DOI: 10.1016/j.envpol.2023.121084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Exposure to arsenic poses threats to male reproductive system, including impairing the testes and sperm quality. Although an association regarding arsenic exposure and male reproductive damage has been reported, the undergoing molecular mechanisms and interventions for prevention remain unclear. For the present work, male mice were exposed to 0, 2.5, 5, or 10 ppm sodium arsenite (NaAsO2) for 8 months. The results showed that arsenic-exposed mice had reduced fertility with abnormalities in the testes, epididymides, and sperm. Exposure of mice to arsenic caused a redox imbalance, decreased SIRT1 and PGC-1α levels, and affected mitochondrial biogenesis and proteins related to mitochondrial dynamics. For immortalized spermatogenic (GC-2) cells, arsenic caused apoptosis and oxidative stress, reduced SIRT1/PGC-1α levels and ATP production, inhibited mitochondrial respiration, and changed the mitochondrial membrane potential (MMP). Mitochondrial biogenesis and dynamics were also impaired. However, by reducing mitochondrial damage in GC-2 cells, upregulation of SIRT1 or zinc (Zn) supplementation reversed the apoptosis induced by arsenic. For mice, Zn supplementation blocked arsenic-induced oxidative stress, the decreases of SIRT1 and PGC-1α levels, and the impairment of mitochondrial function, and it reversed the damage to testes, low sperm quality, and low litter size. Collectively, these results suggest that arsenic causes excessive production of ROS, inhibits the SIRT1/PGC-1α pathway, and causing mitochondrial dysfunction by mediating impairment of mitochondrial biogenesis and dynamics, which results in germ cells apoptosis and male reproductive damage, processes that are blocked by Zn via an antioxidative effect. Our study contributes to understanding of the mechanisms for arsenic-induced male reproductive damage and points to the therapeutic significance of Zn.
Collapse
Affiliation(s)
- Fuping Ye
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lu Wu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Suzhou Center for Disease Control and Prevention, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Han Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xiaoshan Peng
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yuan Xu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Wenqi Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yongyue Wei
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Feng Chen
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jingshu Zhang
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Suzhou Center for Disease Control and Prevention, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Suzhou, 215004, Jiangsu, People's Republic of China.
| |
Collapse
|
40
|
van Bömmel-Wegmann S, Zentek J, Gehlen H, Barton AK, Paßlack N. Effects of dietary zinc chloride hydroxide and zinc methionine on the immune system and blood profile of healthy adult horses and ponies. Arch Anim Nutr 2023; 77:17-41. [PMID: 36790082 DOI: 10.1080/1745039x.2023.2168993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The effects of dietary zinc on the immune function of equines have not been evaluated in detail so far. In the present study, eight healthy adult ponies and two healthy adult horses were fed a diet supplemented with either zinc chloride hydroxide or zinc methionine in six feeding periods of four weeks each (according to maintenance zinc requirement, 120 mg zinc/kg dry matter, and 240 mg zinc/kg dry matter, for both dietary zinc supplements, respectively). All animals received the six diets, with increasing amounts of zinc chloride hydroxide in the feeding periods 1-3, and with increasing amounts of zinc methionine in the feeding periods 4-6. At the end of each feeding period, blood samples were collected for a blood profile and the measurement of selected immune variables. Increasing dietary zinc chloride hydroxide doses increased the glutathione concentrations in the erythrocyte concentrate and the glutathione peroxidase activity in the erythrocyte lysate, decreased the numbers of total leukocytes and granulocytes in the blood, and also decreased the interleukin-2 concentrations in the plasma of the animals. The dietary supplementation of increasing doses of zinc methionine enhanced the mitogen-stimulated proliferative activity of peripheral blood mononuclear cells, and decreased the glutathione concentrations in the erythrocyte concentrate and the glutathione peroxidase activity in the plasma of the animals. The percentage of blood monocytes with oxidative burst after in vitro stimulation with E. coli decreased with increasing dietary zinc concentrations, independently of the zinc compound used. The blood profile demonstrated effects of the zinc supplements on the red blood cells and the bilirubin metabolism of the horses and ponies, which require further investigation. Overall, high doses of dietary zinc modulate the equine immune system, for the most part also depending on the zinc compound used.
Collapse
Affiliation(s)
| | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Heidrun Gehlen
- Equine Clinic, Freie Universität Berlin, Berlin, Germany
| | | | - Nadine Paßlack
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
41
|
Manuja A, Chhabra D, Kumar B. Chloroquine chaos and COVID-19: Smart delivery perspectives through pH sensitive polymers/micelles and ZnO nanoparticles. ARAB J CHEM 2023; 16:104468. [PMID: 36466721 PMCID: PMC9710101 DOI: 10.1016/j.arabjc.2022.104468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
The global pandemic of COVID-19 had a consequential impact on our lives. (Hydroxy)chloroquine, a well-known drug for treatment or prevention against malaria and chronic inflammatory conditions, was also used for COVID patients with reported potential efficacy. Although it was well tolerated, however in some cases, it produced severe side effects, including grave cardiac issues. The variable reports on the administration of (hydroxy)chloroquine in COVID19 patients led to chaos. This drug is a well-known zinc ionophore, besides possessing antiviral effects. Zinc ionophores augment the intracellular Zn2+ concentration by facilitating the zinc ions into the cells and subsequently impair virus replication. Zinc oxide nanoparticles (ZnO NPs) have been reported to possess antiviral activity. However, the adverse effects of both components are also reported. We discussed in depth their possible mechanism as antiviral and smart delivery perspectives through pH-sensitive polymers/ micelles and ZnO NPs.
Collapse
Affiliation(s)
- Anju Manuja
- Corresponding authors at: ICAR-National Research Centre on Equines, Hisar-125001, Haryana, India
| | | | - Balvinder Kumar
- Corresponding authors at: ICAR-National Research Centre on Equines, Hisar-125001, Haryana, India
| |
Collapse
|
42
|
Abstract
Acute rhinopharyngitis, usually called common cold, is a widespread disease, mainly in childhood and adolescence. The use of common cold relievers is, therefore, prevalent as documented by the market data. A well-established tradition considers natural remedies an effective and safe way to relieve the common cold. Hundreds of products for treating the common cold contain non-pharmacological components. Nevertheless, a few studies investigated the role of non-pharmacologic remedies for the common cold. The current study reported the most common non-pharmacological remedies for the common cold, including herbal medicines and other substances. As ancient people used traditional herbs to treat and prevent the common cold, various herbs are widely used to clear viral infections. The herbal agents include polyphenols, flavonoids, saponins, glucosides, and alkaloids. Moreover, other non-pharmacological agents are widely used in real-life. Many multi- or monocomponent dietary supplements or medical devices contain these substances and are available in the market as tablets, syrups, drops, nasal or oral sprays, and nebulization solutions. Many products are available in the market. However, there is some evidence only for some substances. Consequently, further rigorous studies should confirm natural products' efficacy and safety to relieve the common cold.
Collapse
Affiliation(s)
- Giorgio Ciprandi
- Outpatients Department, Allergy Clinic, Casa di Cura Villa Montallegro, Genoa, Italy -
| | - Maria A Tosca
- Department of Pediatrics, Allergy Center, Istituto G. Gaslini, Genoa, Italy
| |
Collapse
|
43
|
Ruangritchankul S, Sumananusorn C, Sirivarasai J, Monsuwan W, Sritara P. Association between Dietary Zinc Intake, Serum Zinc Level and Multiple Comorbidities in Older Adults. Nutrients 2023; 15:nu15020322. [PMID: 36678192 PMCID: PMC9865239 DOI: 10.3390/nu15020322] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/10/2023] Open
Abstract
Zinc is one of the essential micronutrients in the geriatric population, but the importance of zinc status and dietary zinc intake has been poorly characterized. We aimed to explore the relationships among dietary zinc intake, serum zinc concentrations and multimorbidity in a cross-sectional study of 300 employees of Electric Generating Authority of Thailand aged ≥ 60 years. Comprehensive questionnaires were completed, and clinical and laboratory assessments were performed. Factors associated with low serum zinc concentrations were identified using multivariate multinomial logistic regression analyses. The mean serum zinc level was 80.5 (12.8) µg/dL. After adjustment for baseline characteristics, being female and having been in education for ≤12 years were independent risk factors for the lowest tertile (T1) of serum zinc. After additional adjustment for clinical and biochemical parameters, there was a significant association between depression (Thai Geriatric Depression Scale-15 score > 5) and low serum zinc levels (T1 vs. T3, odds ratio (OR): 2.24; 95% confidence interval (CI): 1.06−4.77). Furthermore, as serum albumin increased, serum zinc concentration substantially increased (T1 vs. T3, OR: 0.01; 95% CI: 0.002−0.070). Therefore, the early detection of risk factors and the further management of depression and low serum albumin may assist physicians in preventing low serum concentrations.
Collapse
Affiliation(s)
- Sirasa Ruangritchankul
- Division of Geriatric Medicine, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Correspondence: ; Tel.: +66-81-640-4373
| | - Chutima Sumananusorn
- Master of Science Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok 10400, Thailand
| | - Jintana Sirivarasai
- Graduate Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Wutarak Monsuwan
- Graduate Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Piyamitr Sritara
- Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
44
|
Abbas HS, Abd-elhakeem MM, Abd El Galil RM, Reyad OA, Mohamed HA, Ismail SES, Nabil MA. Natural Immunomodulators Treat the Cytokine Storm in SARS-CoV-2. Adv Pharm Bull 2023; 13:79-87. [PMID: 36721816 PMCID: PMC9871270 DOI: 10.34172/apb.2023.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 09/27/2021] [Indexed: 02/03/2023] Open
Abstract
Recently, the world has been dealing with a destructive global pandemic Coronavirus disease 2019 (COVID-19) infection, since 2020; there were millions of infections and hundreds of thousands of deaths worldwide. With sequencing generations of the virus, around 60% are expected to become infected during the pandemic. Unfortunately, no drug or vaccine has been approved because no real evidence from clinical trials in treatment was reached. According to current thinking, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mortality is caused by a cytokine storm syndrome in patients with hyper-inflammatory conditions, resulting in acute respiratory distress and finally death. In this review, we discuss the various types of natural immune-modulatory agents and their role in the management of SARS-CoV-2, and cytokine storm syndrome. For example, Polyphenols as natural products can block the binding of SARS-CoV-2 spike protein to host cell receptor ACE2, stop viral entry into the host cell and block viral RNA replication. Also, saikosaponins (A, B2, C, and D), triterpene glycosides, which are isolated from medicinal plants exert antiviral action against HCoV-22E9, and Houttuynia cordata water extract has antiviral effects on SARS-CoV. Moreover, eucalyptus oil has promising potential for COVID-19 prevention and treatment. There is an urgent need for research to improve the function of the human immune system all over the world. As a result, actions for better understanding and improving the human immune system are critical steps toward mitigating risks and negative outcomes. These approaches will be strongly recommended for future emerging viruses and pathogens.
Collapse
Affiliation(s)
- Heba Salah Abbas
- Microbiology Department, National Organization for Drug Control and Research(NODCAR), Egyptian Drug Authority, Giza, Egypt.,Corresponding Author: Heba Salah Abbas,
| | | | | | | | - Heba Ahmed Mohamed
- Master Student, Microbiology, Faculty of Science, Suez University, Egypt
| | | | - Manal Ahmed Nabil
- Department of Immunology & Allergy, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
45
|
Thomas M, Coneyworth L, Welham S. Influence of income on diet quality and daily iron and zinc intake: analysis of the National Diet and Nutrition Survey of British females aged 11-14 and 15-18 years. Eur J Nutr 2023; 62:499-510. [PMID: 36149464 PMCID: PMC9510520 DOI: 10.1007/s00394-022-03000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/07/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE A negative socio-economic gradient exists for diet and health outcomes. Since cheaper diets are associated with increased energy and lower nutrient density, we investigated the influence of income on iron and zinc intakes and overall diet quality for adolescent (DQI-A) females aged 11-18 years. METHODS National Diet and Nutrition Survey (NDNS years 7 and 8) data for iron and zinc intake and overall diet quality was assessed by household income quintile across females aged 11-18 years. RESULTS Equivalised household income positively correlated with Diet quality index for adolescents (DQI-A) (P < 0.001) Females aged 15-18 years in income quintiles (IQs) I and 2, had a greater proportion of respondents with low to intermediate DQI-A score compared to higher IQs (P = 0.002). NDNS data showed intake was negatively influenced by income amongst females aged 11-14 years for iron (P = 0.009) and zinc (P = 0.001) with those from the lowest incomes consistently consuming significantly less than those from the highest. DQI-A was positively correlated with iron intakes for 11-14 (P = 0.001) and 15-18 years (P < 0.001). Forty-one percent of 15-18-year-olds plasma ferritin stores were below the 15 µg L-1 and 21% had some form of anaemia. Cereal and cereal products were the greatest contributors to iron in all groups. CONCLUSION Females in the lowest income groups are at greater risk of lower overall diet quality and inadequate iron and zinc intakes. Amongst older adolescents, there is evidence of iron stores being depleted and an increased prevalence of anaemia.
Collapse
Affiliation(s)
- Michelle Thomas
- Division of Nutritional Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD UK
| | - Lisa Coneyworth
- Division of Nutritional Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD UK
| | - Simon Welham
- Division of Nutritional Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD UK
| |
Collapse
|
46
|
Duan M, Li T, Liu B, Yin S, Zang J, Lv C, Zhao G, Zhang T. Zinc nutrition and dietary zinc supplements. Crit Rev Food Sci Nutr 2023; 63:1277-1292. [PMID: 34382897 DOI: 10.1080/10408398.2021.1963664] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As the second most abundant trace element in the human body, zinc nutrition is constantly a hot topic. More than one-third population is suffering zinc deficiency, which results in various types of diseases or nutritional deficiencies. Traditional ways of zinc supplementation seem with low absorption rates and significant side effects. Zinc supplements with dietary components are easily accessible and improve zinc utilization rate significantly. Also, mechanisms of maintaining zinc homeostasis are of broad interest. The present review focuses on zinc nutrition in human health in inductive methods. Mainly elaborate on different diseases relating to zinc disorder, highlighting the impact on the immune system and the recent COVID-19. Then raise food-derived zinc-binding compounds, including protein, peptide, polysaccharide, and polyphenol, and also analyze their possibilities to serve as zinc complementary. Finally, illustrate the way to maintain zinc homeostasis and the corresponding mechanisms. The review provides data information for maintaining zinc homeostasis with the food-derived matrix.
Collapse
Affiliation(s)
- Maoping Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tian Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bo Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shuhua Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tuo Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Department of Nutrition and Health, China Agricultural University, Beijing, China
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
47
|
Li P, Qian T, Sun S. Spatial architecture of the cochlear immune microenvironment in noise-induced and age-related sensorineural hearing loss. Int Immunopharmacol 2023; 114:109488. [PMID: 36470117 DOI: 10.1016/j.intimp.2022.109488] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
The cochlea encodes sound stimuli and transmits them to the central nervous system, and damage to sensory cells and synapses in the cochlea leads to hearing loss. The inner ear was previously considered to be an immune privileged organ to protect the auditory organ from reactions with the immune system. However, recent studies have revealed the presence of resident macrophages in the cochlea, especially in the spiral ligament, spiral ganglion, and stria vascularis. The tissue-resident macrophages are responsible for the detection, phagocytosis, and clearance of cellular debris and pathogens from the tissues, and they initiate inflammation and influence tissue repair by producing inflammatory cytokines and chemokines. Insult to the cochlea can activate the cochlear macrophages to initiate immune responses. In this review, we describe the distribution and functions of cochlear macrophages in noise-induced hearing impairment and age-related hearing disabilities. We also focus on potential therapeutic interventions concerning hearing loss by modulating local immune responses.
Collapse
Affiliation(s)
- Peifan Li
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Tingting Qian
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Shan Sun
- ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, China; Eye and ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
48
|
Perna A, Hay E, Sellitto C, Del Genio E, De Falco M, Guerra G, De Luca A, De Blasiis P, Lucariello A. Antiinflammatory Activities of Curcumin and Spirulina: Focus on Their Role against COVID-19. J Diet Suppl 2023; 20:372-389. [PMID: 36729019 DOI: 10.1080/19390211.2023.2173354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nutraceuticals have for several years aroused the interest of researchers for their countless properties, including the management of viral infections. In the context of the COVID-19 pandemic, studies and research on the antiviral properties of nutraceuticals have greatly increased. More specifically, over the past two years, researchers have focused on analyzing the possible role of nutraceuticals in reducing the risk of SARS-CoV-2 infection or mitigating the symptoms of COVID-19. Among nutraceuticals, turmeric, extracted from the rhizome of the Curcuma Longa plant, and spirulina, commercial name of the cyanobacterium Arthrospira platensis, have assumed considerable importance in recent years. The purpose of this review is to collect, through a search of the most recent articles on Pubmed, the scientific evidence on the role of these two compounds in the fight against COVID-19. In the last two years many hypotheses, some confirmed by clinical and experimental studies, have been made on the possible use of turmeric against COVID-19, while on spirulina and its possible role against SARS-CoV-2 infection information is much less. The demonstrated antiviral properties of spirulina and the fact that these cyanobacteria may modulate or modify some mechanisms also involved in the onset of COVID-19, lead us to think that it may have the same importance as curcumin in fighting this disease and to speculate on the possible combined use of these two substances to obtain a synergistic effect.
Collapse
Affiliation(s)
- Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Eleonora Hay
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carmine Sellitto
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emiliano Del Genio
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria De Falco
- Department of Biology, University of Naples ''Federico II'', Naples, Italy
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
- Center for Studies on Bioinspired Agro-Environmental Technology (BAT Center), Portici, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo De Blasiis
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| |
Collapse
|
49
|
Assessment of intracellular zinc levels in infants with food protein-induced allergic proctocolitis. Allergol Immunopathol (Madr) 2023; 51:9-15. [PMID: 36617816 DOI: 10.15586/aei.v51i1.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/11/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Food protein-induced allergic proctocolitis (FPIAP) is characterized by bloody stools in well-appearing infants. Zinc is a micronutrient that plays a crucial role in immune modulation and is essential for cellular function during immune response. Although there are studies on the assessment of intracellular zinc levels in allergic diseases, no data is available on erythrocyte zinc levels of patients with FPIAP. OBJECTIVE This study aimed to assess the erythrocyte zinc levels of children with allergic proctocolitis and compare zinc levels with clinical and demographic characteristics. METHODS This was a case-control study that prospectively compared 50 patients with FPIAP and 50 healthy children without malnutrition. The erythrocyte zinc levels of children were determined using atomic absorption spectrophotometry. RESULTS Fifty patients with FPIAP, including 28 (51%) girls, with median age of 7.1 ± 2.9 (3-14) months and 50 healthy children, including 26 (53.1%) girls, with median age of 7.7 ± 2.8 (3-13) months were included in the study. Seventy percent (n = 35) of the patients with FPIAP started to have symptoms while they were exclusively breastfeeding. Offending allergen foods were cow's milk (78%), egg (40%), sesame (10%), hazelnut (8%), almond (6%), beef (6%), and peanuts (6%, n = 3). Intracellular (erythrocyte) zinc levels in patients with FPIAP were lower than in the healthy control group (495.5 ± 134 µg/dL, 567.3 ± 154.4 µg/dL, respectively, P = 0.01). Patients with FPIAP aged younger than 6 months had lower intracellular zinc levels compared with those aged above 6 months (457 ± 137 µg/dL; 548 ± 112 µg/dL, respectively, P = 0.01). There was no relationship between zinc levels and time of symptom onset, presence of concomitant disease, being allergic to multiple foods, and family history of atopy (P > 0.05). CONCLUSIONS FPIAP is a food allergy with limited information on its pathogenesis. Considering the beneficial effects on gastrointestinal system epithelia, zinc may be involved in the pathogenesis of FPIAP. Future comprehensive prospective research on this subject is of importance.
Collapse
|
50
|
Martínez-Navarro I, Vilchis-Gil J, Cossío-Torres PE, Hernández-Mendoza H, Klünder-Klünder M, Layseca-Espinosa E, Galicia-Cruz OG, Rios-Lugo MJ. Relationship of Serum Zinc Levels with Cardiometabolic Traits in Overweight and Obese Schoolchildren from Mexico City. Biol Trace Elem Res 2022:10.1007/s12011-022-03533-8. [PMID: 36572827 PMCID: PMC9792317 DOI: 10.1007/s12011-022-03533-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022]
Abstract
Zinc (Zn) participates as a cofactor for many enzymes in the cellular metabolism, and its serum levels have been associated with different metabolic diseases, especially obesity (OB). Nevertheless, its associations are not clear in the children population. The objective of this study is to evaluate the association between serum Zn levels (SZn) with overweight/obesity status (OW/OB), as well as its cardiometabolic traits in a population of children in Mexico City. Anthropometrical data (body mass index z score (BMIz)), demographic variables (age and sex), and cardiometabolic traits (total cholesterol (TC), high-density lipoprotein cholesterol (HDLc), low-density lipoprotein cholesterol (LDLc), triglycerides (TG), fasting plasma glucose (FPG), and insulin) were analyzed in this cross-sectional study. SZn were measured by inductively coupled plasma mass spectrometry (ICP-MS). The population included 210 children from Mexico City (girls (n = 105) and boys (n = 105)) between ages 6 and 10 years. Normal-weight (NW) schoolchildren had higher SZn concentrations (66 µg/dL; IQR: 48 to 91) compared to OW or OB schoolchildren (61 µg/dL; IQR: 45 to 76). The data showed a significant negative association between SZn and BMIz without sex exclusion (r = - 0.181 and p = 0.009). The boy's population did not show an association between the SZn and BMIz compared to the girl's population which showed a significant negative association (r = - 0.277 and p = 0.004). In addition, other associations were found between SZn and TC (boys (r = 0.214 and p = 0.025), LDLc (boys (r = 0.213 and p = 0.029), and TG (girls (r = - 0.260 and p = 0.007)). Moreover, 38.6% of the total children in our population study had Zn deficiency (ZnD). NW schoolchildren had higher SZn concentrations compared to OW or OB schoolchildren. A diet low in Zn can be a factor to evaluate in the development of childhood OB in Mexico. However, further studies need to be performed on the children Mexican population to replicate and confirm our findings.
Collapse
Affiliation(s)
- Israel Martínez-Navarro
- Posgrado de Ciencias Basicas, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, S.L.P, México
| | - Jenny Vilchis-Gil
- Unidad de Investigación Epidemiológica en Endocrinología y Nutrición, Hospital Infantil de México Federico Gómez, Secretaría de Salud, CP 06720, Ciudad de Mexico, México
| | - Patricia Elizabeth Cossío-Torres
- Departamento de Salud Pública y Ciencias Médicas, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, S.L.P, México
| | - Héctor Hernández-Mendoza
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, Altair 200, CP 78377, San Luis, S.L.P, México.
- Hospital General de Soledad de Graciano Sánchez, Secretaría de Salud, Valentín Amador 1112, Soledad de Graciano Sánchez, CP 78435, San Luis Potosí, S.L.P., Mexico.
| | - Miguel Klünder-Klünder
- Dirección de Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, CP 06720, Ciudad de Mexico, México
| | - Esther Layseca-Espinosa
- Centro de Investigación en Ciencias de La Salud y Biomedicina, Sección de Medicina Molecular y Traslacional, Universidad Autónoma de San Luis Potosí, Avda Sierra Leona 550, CP 78210, San Luis Potosí, S.L.P, México
| | - Othir Gidalti Galicia-Cruz
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, S.L.P, México
| | - María Judith Rios-Lugo
- Centro de Investigación en Ciencias de La Salud y Biomedicina, Sección de Medicina Molecular y Traslacional, Universidad Autónoma de San Luis Potosí, Avda Sierra Leona 550, CP 78210, San Luis Potosí, S.L.P, México.
- Facultad de Enfermería y Nutrición, Unidad de Posgrado, Universidad Autónoma de San Luis Potosí, Avda. Niño Artillero 130, CP 78210, San Luis Potosí, S.L.P, México.
| |
Collapse
|