1
|
Zhang H, Jiang H, Liu X, Wang X. A review of innovative electrochemical strategies for bioactive molecule detection and cell imaging: Current advances and challenges. Anal Chim Acta 2024; 1285:341920. [PMID: 38057043 DOI: 10.1016/j.aca.2023.341920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 12/08/2023]
Abstract
Cellular heterogeneity poses a major challenge for tumor theranostics, requiring high-resolution intercellular bioanalysis strategies. Over the past decades, the advantages of electrochemical analysis, such as high sensitivity, good spatio-temporal resolution, and ease of use, have made it the preferred method to uncover cellular differences. To inspire more creative research, herein, we highlight seminal works in electrochemical techniques for biomolecule analysis and bioimaging. Specifically, micro/nano-electrode-based electrochemical techniques enable real-time quantitative analysis of electroactive substances relevant to life processes in the micro-nanostructure of cells and tissues. Nanopore-based technique plays a vital role in biosensing by utilizing nanoscale pores to achieve high-precision detection and analysis of biomolecules with exceptional sensitivity and single-molecule resolution. Electrochemiluminescence (ECL) technology is utilized for real-time monitoring of the behavior and features of individual cancer cells, enabling observation of their dynamic processes due to its capability of providing high-resolution and highly sensitive bioimaging of cells. Particularly, scanning electrochemical microscopy (SECM) and scanning ion conductance microscopy (SICM) which are widely used in real-time observation of cell surface biological processes and three-dimensional imaging of micro-nano structures, such as metabolic activity, ion channel activity, and cell morphology are introduced in this review. Furthermore, the expansion of the scope of cellular electrochemistry research by innovative functionalized electrodes and electrochemical imaging models and strategies to address future challenges and potential applications is also discussed in this review.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
2
|
Dong J, Li G, Xia L. Microfluidic Magnetic Spatial Confinement Strategy for the Enrichment and Ultrasensitive Detection of MCF-7 and Escherichia coli O157:H7. Anal Chem 2022; 94:16901-16909. [DOI: 10.1021/acs.analchem.2c04314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Jianwei Dong
- School of Chemistry, Sun Yat-sen University, Guangzhou510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou510006, China
| |
Collapse
|
3
|
Wang N, Wang D, Pan R, Wang D, Jiang D, Chen HY. Self-Referenced Nanopipette for Electrochemical Analysis of Hydrogen Peroxide in the Nucleus of a Single Living Cell. Anal Chem 2021; 93:10744-10749. [PMID: 34314583 DOI: 10.1021/acs.analchem.0c05025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In a typical intracellular electroanalytical measurement, a nanoelectrode is located inside a living cell and a reference electrode outside the cell. This setup faces a problem to drop a certain potential across the cellular plasma membrane that might interrupt the cellular activity. To solve this problem, a self-referenced nanopipette is assembled by incorporating a reference electrode inside the nanocapillary, with a Pt ring at the tip as the electrochemical surface. The potential applied between the Pt ring and the reference electrode is restricted inside the capillary and thus has a negligible effect on the surrounding cellular environment. Using this new setup, the nanopipette pierces into the nucleus of a single living cell for the measurement of hydrogen peroxide under oxidative stress. It is found that a lesser amount of hydrogen peroxide is measured in the nucleus compared with the cytoplasm, revealing uneven oxidative stress inside the cell. The result will not only greatly improve the current setup for intracellular electrochemical analysis but also provide biological information of the compartment inside the living cell.
Collapse
Affiliation(s)
- Nina Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China
| | - Dongni Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China
| | - Rongrong Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Science, Beijing 100190, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210092, China
| |
Collapse
|
4
|
Sheth N, Swaminathan H, Gonzalez AJ, Duffy KR, Grgicak CM. Towards developing forensically relevant single-cell pipelines by incorporating direct-to-PCR extraction: compatibility, signal quality, and allele detection. Int J Legal Med 2021; 135:727-738. [PMID: 33484330 DOI: 10.1007/s00414-021-02503-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022]
Abstract
Current analysis of forensic DNA stains relies on the probabilistic interpretation of bulk-processed samples that represent mixed profiles consisting of an unknown number of potentially partial representations of each contributor. Single-cell methods, in contrast, offer a solution to the forensic DNA mixture problem by incorporating a step that separates cells before extraction. A forensically relevant single-cell pipeline relies on efficient direct-to-PCR extractions that are compatible with standard downstream forensic reagents. Here we demonstrate the feasibility of implementing single-cell pipelines into the forensic process by exploring four metrics of electropherogram (EPG) signal quality-i.e., allele detection rates, peak heights, peak height ratios, and peak height balance across low- to high-molecular-weight short tandem repeat (STR) markers-obtained with four direct-to-PCR extraction treatments and a common post-PCR laboratory procedure. Each treatment was used to extract DNA from 102 single buccal cells, whereupon the amplification reagents were immediately added to the tube and the DNA was amplified/injected using post-PCR conditions known to elicit a limit of detection (LoD) of one DNA molecule. The results show that most cells, regardless of extraction treatment, rendered EPGs with at least a 50% true positive allele detection rate and that allele drop-out was not cell independent. Statistical tests demonstrated that extraction treatments significantly impacted all metrics of EPG quality, where the Arcturus® PicoPure™ extraction method resulted in the lowest median allele drop-out rate, highest median average peak height, highest median average peak height ratio, and least negative median values of EPG sloping for GlobalFiler™ STR loci amplified at half volume. We, therefore, conclude the feasibility of implementing single-cell pipelines for casework purposes and demonstrate that inferential systems assuming cell independence will not be appropriate in the probabilistic interpretation of a collection of single-cell EPGs.
Collapse
Affiliation(s)
- Nidhi Sheth
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08102, USA
| | - Harish Swaminathan
- Biomedical Forensic Sciences Program, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Amanda J Gonzalez
- Department of Chemistry, Rutgers University, 315 Penn Street R306C, Camden, NJ, 08102, USA
| | - Ken R Duffy
- Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Catherine M Grgicak
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08102, USA.
- Biomedical Forensic Sciences Program, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Chemistry, Rutgers University, 315 Penn Street R306C, Camden, NJ, 08102, USA.
| |
Collapse
|
5
|
Hongzhou C, Shuping G, Wenju W, Li L, Lulu W, Linjun D, Jingmin L, Xiaoli R, Li B. Lab-on-a-chip technologies for genodermatoses: Recent progress and future perspectives. J Dermatol Sci 2017; 85:71-76. [DOI: 10.1016/j.jdermsci.2016.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/19/2016] [Accepted: 09/05/2016] [Indexed: 10/21/2022]
|
6
|
Yoshizumi Y, Okubo K, Yokokawa M, Suzuki H. Programmed Transport and Release of Cells by Self-Propelled Micromotors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9381-9388. [PMID: 27571037 DOI: 10.1021/acs.langmuir.5b04206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Autonomous transport and release of bacterial cells by self-propelled micromotors were achieved. The motors consisted of zinc and platinum hemispheres formed on polystyrene beads and moved as a result of simultaneous redox reactions occurring on both metal ends. The highly negative redox potential of zinc enabled the selection of a wide variety of organic redox compounds as fuels, such as methanol and p-benzoquinone. The movement of motors was observed in solutions of fuels. To realize autonomous capture, transport, and release of cargo, a self-assembled monolayer (SAM) was formed on the platinum part of the motor. This SAM could be desorbed by coupling the reaction with the dissolution of zinc, which could also be controlled by adjusting the concentration of Zn(2+) ions. Escherichia coli (E. coli) cells were captured by the motor (due to hydrophobic interactions), transported, and released following SAM desorption at the mixed potential.
Collapse
Affiliation(s)
- Yoshitaka Yoshizumi
- Graduate School of Pure and Applied Sciences, University of Tsukuba , 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Kyohei Okubo
- Graduate School of Pure and Applied Sciences, University of Tsukuba , 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Masatoshi Yokokawa
- Graduate School of Pure and Applied Sciences, University of Tsukuba , 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hiroaki Suzuki
- Graduate School of Pure and Applied Sciences, University of Tsukuba , 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
7
|
Tan YB, Zou JM, Gu N. Preparation of Stabilizer-Free Silver Nanoparticle-Coated Micropipettes as Surface-Enhanced Raman Scattering Substrate for Single Cell Detection. NANOSCALE RESEARCH LETTERS 2015; 10:417. [PMID: 26497732 PMCID: PMC4620108 DOI: 10.1186/s11671-015-1122-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/15/2015] [Indexed: 05/13/2023]
Abstract
In this work, we established a convenient while reproduceable method for stabilizer-free silver nanoparticle (AgNP)-coated micropipettes by the combination of magnetron sputtering and surface coupling agent. The clear surfaces of the AgNPs are beneficial for absorbing biological or functional molecules on their surfaces. By optimizing the operating parameters, such as sputtering current and sputtering time, the tip of micropipettes coated with AgNPs exhibits excellent surface-enhanced Raman scattering (SERS) performance. Finally, the Raman spectra of a single A549 lung adenocarcinoma cell are successfully acquired by these advanced SERS-active micropipettes.
Collapse
Affiliation(s)
- Yi-Bin Tan
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, People's Republic of China
| | - Jie-Meng Zou
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, People's Republic of China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, State Key Laboratory of Bioelectronics, School of Biological Sciences and Medical Engineering, Southeast University, 2 Sipailou, Nanjing, 210096, People's Republic of China.
- Suzhou Key Lab of Biomedical Materials and Technology, Research Institute of Southeast University in Suzhou, 150 Ren Ai Road, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
8
|
|
9
|
Slater JH, Culver JC, Long BL, Hu CW, Hu J, Birk TF, Qutub AA, Dickinson ME, West JL. Recapitulation and Modulation of the Cellular Architecture of a User-Chosen Cell of Interest Using Cell-Derived, Biomimetic Patterning. ACS NANO 2015; 9:6128-38. [PMID: 25988713 PMCID: PMC5292984 DOI: 10.1021/acsnano.5b01366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Heterogeneity of cell populations can confound population-averaged measurements and obscure important findings or foster inaccurate conclusions. The ability to generate a homogeneous cell population, at least with respect to a chosen trait, could significantly aid basic biological research and development of high-throughput assays. Accordingly, we developed a high-resolution, image-based patterning strategy to produce arrays of single-cell patterns derived from the morphology or adhesion site arrangement of user-chosen cells of interest (COIs). Cells cultured on both cell-derived patterns displayed a cellular architecture defined by their morphology, adhesive state, cytoskeletal organization, and nuclear properties that quantitatively recapitulated the COIs that defined the patterns. Furthermore, slight modifications to pattern design allowed for suppression of specific actin stress fibers and direct modulation of adhesion site dynamics. This approach to patterning provides a strategy to produce a more homogeneous cell population, decouple the influences of cytoskeletal structure, adhesion dynamics, and intracellular tension on mechanotransduction-mediated processes, and a platform for high-throughput cellular assays.
Collapse
Affiliation(s)
- John H. Slater
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - James C. Culver
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States
| | - Byron L. Long
- Department of Bioengineering, Rice University, Houston, Texas, United States
| | - Chenyue W. Hu
- Department of Bioengineering, Rice University, Houston, Texas, United States
| | - Jingzhe Hu
- Department of Bioengineering, Rice University, Houston, Texas, United States
| | - Taylor F. Birk
- Department of Bioengineering, Rice University, Houston, Texas, United States
| | - Amina A. Qutub
- Department of Bioengineering, Rice University, Houston, Texas, United States
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
- Address correspondence to:
| |
Collapse
|
10
|
Jing T, Ramji R, Warkiani ME, Han J, Lim CT, Chen CH. Jetting microfluidics with size-sorting capability for single-cell protease detection. Biosens Bioelectron 2015; 66:19-23. [DOI: 10.1016/j.bios.2014.11.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/22/2014] [Accepted: 11/01/2014] [Indexed: 10/24/2022]
|
11
|
Jin D, Deng B, Li JX, Cai W, Tu L, Chen J, Wu Q, Wang WH. A microfluidic device enabling high-efficiency single cell trapping. BIOMICROFLUIDICS 2015; 9:014101. [PMID: 25610513 PMCID: PMC4288539 DOI: 10.1063/1.4905428] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/22/2014] [Indexed: 05/03/2023]
Abstract
Single cell trapping increasingly serves as a key manipulation technique in single cell analysis for many cutting-edge cell studies. Due to their inherent advantages, microfluidic devices have been widely used to enable single cell immobilization. To further improve the single cell trapping efficiency, this paper reports on a passive hydrodynamic microfluidic device based on the "least flow resistance path" principle with geometry optimized in line with corresponding cell types. Different from serpentine structure, the core trapping structure of the micro-device consists of a series of concatenated T and inverse T junction pairs which function as bypassing channels and trapping constrictions. This new device enhances the single cell trapping efficiency from three aspects: (1) there is no need to deploy very long or complicated channels to adjust flow resistance, thus saving space for each trapping unit; (2) the trapping works in a "deterministic" manner, thus saving a great deal of cell samples; and (3) the compact configuration allows shorter flowing path of cells in multiple channels, thus increasing the speed and throughput of cell trapping. The mathematical model of the design was proposed and optimization of associated key geometric parameters was conducted based on computational fluid dynamics (CFD) simulation. As a proof demonstration, two types of PDMS microfluidic devices were fabricated to trap HeLa and HEK-293T cells with relatively significant differences in cell sizes. Experimental results showed 100% cell trapping and 90% single cell trapping over 4 × 100 trap sites for these two cell types, respectively. The space saving is estimated to be 2-fold and the cell trapping speed enhancement to be 3-fold compared to previously reported devices. This device can be used for trapping various types of cells and expanded to trap cells in the order of tens of thousands on 1-cm(2) scale area, as a promising tool to pattern large-scale single cells on specific substrates and facilitate on-chip cellular assay at the single cell level.
Collapse
Affiliation(s)
- D Jin
- Department of Precision Instruments, Tsinghua University , Beijing, China
| | - B Deng
- Institute of Electronics , Chinese Academy of Sciences, Beijing, China
| | - J X Li
- School of Life Sciences, Tsinghua University , Beijing, China
| | - W Cai
- North Navigation Control Technology Co., Ltd. , Beijing, China
| | - L Tu
- Department of Precision Instruments, Tsinghua University , Beijing, China
| | - J Chen
- Institute of Electronics , Chinese Academy of Sciences, Beijing, China
| | - Q Wu
- School of Life Sciences, Tsinghua University , Beijing, China
| | - W H Wang
- Department of Precision Instruments, Tsinghua University , Beijing, China
| |
Collapse
|
12
|
|
13
|
Mikuš P, Veizerová L, Piešťanský J, Maráková K, Havránek E. On-line coupled capillary isotachophoresis-capillary zone electrophoresis in hydrodynamically closed separation system hyphenated with laser induced fluorescence detection. Electrophoresis 2013; 34:1223-31. [DOI: 10.1002/elps.201200556] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/05/2012] [Accepted: 12/05/2012] [Indexed: 11/05/2022]
Affiliation(s)
- Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy; Faculty of Pharmacy, Comenius University; Odbojárov; Bratislava; Slovak Republic
| | - Lucia Veizerová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy; Faculty of Pharmacy, Comenius University; Odbojárov; Bratislava; Slovak Republic
| | - Juraj Piešťanský
- Department of Pharmaceutical Analysis and Nuclear Pharmacy; Faculty of Pharmacy, Comenius University; Odbojárov; Bratislava; Slovak Republic
| | - Katarína Maráková
- Department of Pharmaceutical Analysis and Nuclear Pharmacy; Faculty of Pharmacy, Comenius University; Odbojárov; Bratislava; Slovak Republic
| | - Emil Havránek
- Department of Pharmaceutical Analysis and Nuclear Pharmacy; Faculty of Pharmacy, Comenius University; Odbojárov; Bratislava; Slovak Republic
| |
Collapse
|
14
|
Menegatti E, Berardi D, Messina M, Ferrante I, Giachino O, Spagnolo B, Restagno G, Cognolato L, Roccatello D. Lab-on-a-chip: emerging analytical platforms for immune-mediated diseases. Autoimmun Rev 2012; 12:814-20. [PMID: 23219952 DOI: 10.1016/j.autrev.2012.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Miniaturization of analytical procedures has a significant impact on diagnostic testing since it provides several advantages such as: reduced sample and reagent consumption, shorter analysis time and less sample handling. Lab-on-a-chip (LoC), usually silicon, glass, or silicon-glass, or polymer disposable cartridges, which are produced using techniques inherited from the microelectronics industry, could perform and integrate the operations needed to carry out biochemical analysis through the mechanical realization of a dedicated instrument. Analytical devices based on miniaturized platforms like LoC may provide an important contribution to the diagnosis of high prevalence and rare diseases. In this paper we review some of the uses of Lab-on-a-chip in the clinical diagnostics of immune-mediated diseases and we provide an overview of how specific applications of these technologies could improve and simplify several complex diagnostic procedures.
Collapse
Affiliation(s)
- Elisa Menegatti
- Department of Medicine and Experimental Oncology, Section of Clinical Pathology, University of Turin, Turin, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu KK, Wu RG, Chuang YJ, Khoo HS, Huang SH, Tseng FG. Microfluidic systems for biosensing. SENSORS (BASEL, SWITZERLAND) 2010; 10:6623-61. [PMID: 22163570 PMCID: PMC3231127 DOI: 10.3390/s100706623] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 06/20/2010] [Accepted: 06/30/2010] [Indexed: 01/09/2023]
Abstract
In the past two decades, Micro Fluidic Systems (MFS) have emerged as a powerful tool for biosensing, particularly in enriching and purifying molecules and cells in biological samples. Compared with conventional sensing techniques, distinctive advantages of using MFS for biomedicine include ultra-high sensitivity, higher throughput, in-situ monitoring and lower cost. This review aims to summarize the recent advancements in two major types of micro fluidic systems, continuous and discrete MFS, as well as their biomedical applications. The state-of-the-art of active and passive mechanisms of fluid manipulation for mixing, separation, purification and concentration will also be elaborated. Future trends of using MFS in detection at molecular or cellular level, especially in stem cell therapy, tissue engineering and regenerative medicine, are also prospected.
Collapse
Affiliation(s)
- Kuo-Kang Liu
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Ren-Guei Wu
- Department of Engineering and System Science, National Tsing-Hua University, Hsinchu, Taiwan; E-Mails: (R.-G.W.), (H.S.K.)
| | - Yun-Ju Chuang
- Department of Biomedical Engineering, Ming Chuang University, Taoyuan County 333, Taiwan; E-Mail: (Y.-J.C.)
| | - Hwa Seng Khoo
- Department of Engineering and System Science, National Tsing-Hua University, Hsinchu, Taiwan; E-Mails: (R.-G.W.), (H.S.K.)
| | - Shih-Hao Huang
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202-24, Taiwan; E-Mail: (S.-H.H.)
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing-Hua University, Hsinchu, Taiwan; E-Mails: (R.-G.W.), (H.S.K.)
- Division of Mechanics, Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan; E-Mail: (F.-G.T.)
| |
Collapse
|
16
|
|
17
|
Wu RG, Yang CS, Lian CK, Cheing CC, Tseng FG. Dual-asymmetry electrokinetic flow focusing for pre-concentration and analysis of catecholamines in CE electrochemical nanochannels. Electrophoresis 2009; 30:2523-31. [PMID: 19639573 DOI: 10.1002/elps.200800809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this research, a technique incorporating dual-asymmetry electrokinetic flow (DAEKF) was applied to a nanoCE electrochemical device for the pre-concentration and detection of catecholamines. The DAEKF was constructed by first generating a zeta-potential difference between the top and bottom walls, which had been pre-treated with O2 and H2O surface plasma, respectively, yielding a 2-D gradient shear flow across the channel depth. The shear flow was then exposed to a varying zeta-potential along the downstream direction by control of the field-effect in order to cause downward rotational flow in the channel. By this mechanism, almost all of the samples were effectively brought down to the electrode surface for analysis. Simulations were carried out to reveal the mechanism of concentration caused by the DAEKF, and the results reasonably describe our experiment findings. This DAEKF technique was applied to a glass/glass CE electrochemical nanochip for the analysis of catecholamines. The optimum detection limit was determined to be 1.25 and 3.3 nM of dopamine and catechol, respectively. A detection limit at the zeptomole level for dopamine can be obtained in this device, which is close to the level released by a single neuron cell in vitro.
Collapse
Affiliation(s)
- Ren-Guei Wu
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | |
Collapse
|
18
|
Gong X, Wen W. Polydimethylsiloxane-based conducting composites and their applications in microfluidic chip fabrication. BIOMICROFLUIDICS 2009; 3:12007. [PMID: 19693388 PMCID: PMC2717593 DOI: 10.1063/1.3098963] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 02/23/2009] [Indexed: 05/06/2023]
Abstract
This paper reviews the design and fabrication of polydimethylsiloxane (PDMS)-based conducting composites and their applications in microfluidic chip fabrication. Owing to their good electrical conductivity and rubberlike elastic characteristics, these composites can be used variously in soft-touch electronic packaging, planar and three-dimensional electronic circuits, and in-chip electrodes. Several microfluidic components fabricated with PDMS-based composites have been introduced, including a microfluidic mixer, a microheater, a micropump, a microdroplet controller, as well as an all-in-one microfluidic chip.
Collapse
Affiliation(s)
- Xiuqing Gong
- Department of Physics and Joint KAUST-HKUST MicroNano-Fluidics Laboratory,Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|
19
|
Liu W, Dechev N, Lee SW, Foulds IG, Parameswaran A, Burke R, Park EJ. Development of a magnetic Single Cell Micro Array. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2008:3170-3. [PMID: 19163380 DOI: 10.1109/iembs.2008.4649877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Experiments using single cells are valuable for revealing individual cell behaviour, which is of interest to many biomedical researchers. In such experiments, various types of devices capable of aligning cells into organized arrays are often used. In this paper, we present a novel Single Cell Micro Array device that makes use of magnetic forces. Prototypes of this device have been fabricated, and successfully tested using Jurkat cells that have been labelled with nano-magnetic particles. Experimental results show that the prototypes are effective on capturing and placing the labelled cells in an array.
Collapse
Affiliation(s)
- W Liu
- Department of Mechanical Engineering, University of Victoria, BC, Canada.
| | | | | | | | | | | | | |
Collapse
|
20
|
Dittami GM, Ayliffe HE, King CS, Rabbitt RD. A Multilayer MEMS Platform for Single-Cell Electric Impedance Spectroscopy and Electrochemical Analysis. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS : A JOINT IEEE AND ASME PUBLICATION ON MICROSTRUCTURES, MICROACTUATORS, MICROSENSORS, AND MICROSYSTEMS 2008; 17:850-862. [PMID: 19756255 PMCID: PMC2743150 DOI: 10.1109/jmems.2008.921726] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The fabrication and characterization of a microchamber electrode array for electrical and electrochemical studies of individual biological cells are presented. The geometry was tailored specifically for measurements from sensory hair cells isolated from the cochlea of the mammalian inner ear. Conventional microelectromechanical system (MEMS) fabrication techniques were combined with a heat-sealing technique and polydimethylsiloxane micromolding to achieve a multilayered microfluidic system that facilitates cell manipulation and selection. The system allowed for electrical stimulation of individual living cells and interrogation of excitable cell membrane dielectric properties as a function of space and time. A three-electrode impedimetric system was incorporated to provide the additional ability to record the time-dependent concentrations of specific biochemicals in microdomain volumes near identified regions of the cell membrane. The design and fabrication of a robust fluidic and electrical interface are also described. The interface provided the flexibility and simplicity of a "cartridge-based" approach in connecting to the MEMS devices. Cytometric measurement capabilities were characterized by using electric impedance spectroscopy (1 kHz-10 MHz) of isolated outer hair cells. Chemical sensing capability within the microchannel recording chamber was characterized by using cyclic voltammetry with varying concentrations of potassium ferricyanide (K(3)Fe(CN)(6)). Chronoamperometric recordings of electrically stimulated PC12 cells highlight the ability of the platform to resolve exocytosis events from individual cells.
Collapse
Affiliation(s)
- Gregory M Dittami
- G. M. Dittami and R. D. Rabbitt are with the Department of Bioengineering, University of Utah, Salt Lake City, UT 84112 USA
| | | | | | | |
Collapse
|
21
|
Huang WH, Ai F, Wang ZL, Cheng JK. Recent advances in single-cell analysis using capillary electrophoresis and microfluidic devices. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 866:104-22. [DOI: 10.1016/j.jchromb.2008.01.030] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 01/10/2008] [Accepted: 01/18/2008] [Indexed: 01/09/2023]
|
22
|
Contributions of capillary electrophoresis to neuroscience. J Chromatogr A 2007; 1184:144-58. [PMID: 18054026 DOI: 10.1016/j.chroma.2007.10.098] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 10/16/2007] [Accepted: 10/29/2007] [Indexed: 11/23/2022]
Abstract
Capillary electrophoresis (CE) is a small-volume separation approach amenable to the analysis of complex samples for their small molecule, peptide and protein content. A number of the features of CE make it a method of choice for addressing questions related to neurochemistry. The figures of merit inherent to CE that make it well suited for studying cell-to-cell and intracellular signaling include small sample volumes, high separation efficiency, the ability for online analyte concentration, and compatibility with sensitive and high-information content detection methods. A variety of instrumental aspects are detailed, including detection methods and sampling techniques that are particularly useful for the analysis of signaling molecules. Studies that have used these techniques to increase our understanding of neurobiology are emphasized throughout. One notable application is single neuron chemical analysis, a research area that has been greatly advanced by CE.
Collapse
|
23
|
Boudko DY. Bioanalytical profile of the L-arginine/nitric oxide pathway and its evaluation by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 851:186-210. [PMID: 17329176 PMCID: PMC2040328 DOI: 10.1016/j.jchromb.2007.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 01/30/2007] [Accepted: 02/06/2007] [Indexed: 02/07/2023]
Abstract
This review briefly summarizes recent progress in fundamental understanding and analytical profiling of the L-arginine/nitric oxide (NO) pathway. It focuses on key analytical references of NO actions and the experimental acquisition of these references in vivo, with capillary electrophoresis (CE) and high-performance capillary electrophoresis (HPCE) comprising one of the most flexible and technologically promising analytical platform for comprehensive high-resolution profiling of NO-related metabolites. Another aim of this review is to express demands and bridge efforts of experimental biologists, medical professionals and chemical analysis-oriented scientists who strive to understand evolution and physiological roles of NO and to develop analytical methods for use in biology and medicine.
Collapse
Affiliation(s)
- Dmitri Y Boudko
- The Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Blvd., St. Augustine, FL 32080, USA.
| |
Collapse
|
24
|
Abstract
A goal of modern biology is to understand the molecular mechanisms underlying cellular function. The ability to manipulate and analyze single cells is crucial for this task. The advent of microengineering is providing biologists with unprecedented opportunities for cell handling and investigation on a cell-by-cell basis. For this reason, lab-on-a-chip (LOC) technologies are emerging as the next revolution in tools for biological discovery. In the current discussion, we seek to summarize the state of the art for conventional technologies in use by biologists for the analysis of single, mammalian cells, and then compare LOC devices engineered for these same single-cell studies. While a review of the technical progress is included, a major goal is to present the view point of the practicing biologist and the advances that might increase adoption by these individuals. The LOC field is expanding rapidly, and we have focused on areas of broad interest to the biology community where the technology is sufficiently far advanced to contemplate near-term application in biological experimentation. Focus areas to be covered include flow cytometry, electrophoretic analysis of cell contents, fluorescent-indicator-based analyses, cells as small volume reactors, control of the cellular microenvironment, and single-cell PCR.
Collapse
Affiliation(s)
- Christopher E Sims
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
25
|
|
26
|
Junyi Y, Dingli L, Yi P, Shuming Y, Shaojia G. The establishment of an automatic separation system for marine meiobenthos. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2006:674-7. [PMID: 17282272 DOI: 10.1109/iembs.2005.1616503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Research of the marine meiobenthos is of great value in the marine ecology and the marine mineralogy. At present, picking up meiobenthos from the sedments manually under microscope is still prvalent in spite of the large consumption of human power and time. So that in this paper, an automatic separation system was established. The excellent performance in separating marine meiobenthos was demonstrated by the precision of above 95%.
Collapse
Affiliation(s)
- Yang Junyi
- Second Institute of Oceanography (SOA), HangZhou 310027, China
| | | | | | | | | |
Collapse
|
27
|
Wolbers F, ter Braak P, Le Gac S, Luttge R, Andersson H, Vermes I, van den Berg A. Viability study of HL60 cells in contact with commonly used microchip materials. Electrophoresis 2006; 27:5073-80. [PMID: 17124709 DOI: 10.1002/elps.200600203] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper presents a study in which different commonly used microchip materials (silicon oxide, borosilicate glass, and PDMS) were analyzed for their effect on human promyelocytic leukemic (HL60) cells. Copper-coated silicon was analyzed for its toxicity and therefore served as a positive control. With quantitative PCR, the expression of the proliferation marker Cyclin D1 and the apoptosis marker tissue transglutaminase were measured. Flow cytometry was used to analyze the distribution through the different phases of the cell cycle (propidium iodide, PI) and the apoptotic cascade (Annexin V in combination with PI). All microchip materials, with the exception of Cu, appeared to be suitable for HL60 cells, showing a ratio apoptosis/proliferation (R(ap)) comparable to materials used in conventional cell culture (polystyrene). These results were confirmed with cell cycle analysis and apoptosis studies. Precoating the microchip material surfaces with serum favor the proliferation, as demonstrated by a lower R(ap) as compared to uncoated surfaces. The Cu-coated surface appeared to be toxic for HL60 cells, showing over 90% decreased viability within 24 h. From these results, it can be concluded that the chosen protocol is suitable for selection of the cell culture material, and that the most commonly used microchip materials are compatible with HL60 culturing.
Collapse
Affiliation(s)
- Floor Wolbers
- Department of Sensor systems for Biomedical and Environmental Applications, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
28
|
Cheng W, Klauke N, Sedgwick H, Smith GL, Cooper JM. Metabolic monitoring of the electrically stimulated single heart cell within a microfluidic platform. LAB ON A CHIP 2006; 6:1424-31. [PMID: 17066165 DOI: 10.1039/b608202e] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A device based on five individually addressable microelectrodes, fully integrated within a microfluidic system, has been fabricated to enable the real-time measurement of ionic and metabolic fluxes from electrically active, beating single heart cells. The electrode array comprised one pair of pacing microelectrodes, used for field-stimulation of the cell, and three other microelectrodes, configured as an electrochemical lactate microbiosensor, that were used to measure the amounts of lactate produced by the heart cell. The device also allowed simultaneous in-situ microscopy, enabling optical measurements of cell contractility and fluorescence measurements of extracellular pH and cellular Ca2+. Initial experiments aimed to create a metabolic profile of the beating heart cell, and results show well defined excitation-contraction (EC) coupling at different rates. Ca2+ transients and extracellular pH measurements were obtained from continually paced single myocytes, both as a function of the rate of cell contraction. Finally, the relative amounts of intra- and extra-cellular lactate produced during field stimulation were determined, using cell electroporation where necessary.
Collapse
Affiliation(s)
- Wei Cheng
- Bioelectronics Research Centre, Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow, UK
| | | | | | | | | |
Collapse
|
29
|
Knemeyer JP, Marmé N, Hoheisel JD. Spectrally resolved fluorescence lifetime imaging microscopy (SFLIM)--an appropriate method for imaging single molecules in living cells. Anal Bioanal Chem 2006; 387:37-40. [PMID: 17180341 DOI: 10.1007/s00216-006-0762-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 08/08/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Affiliation(s)
- Jens-Peter Knemeyer
- Department of Functional Genome Analysis, German Cancer Research Center, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany.
| | | | | |
Collapse
|
30
|
Arcibal IG, Santillo MF, Ewing AG. Recent advances in capillary electrophoretic analysis of individual cells. Anal Bioanal Chem 2006; 387:51-7. [PMID: 16912862 PMCID: PMC2211411 DOI: 10.1007/s00216-006-0690-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 07/04/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
Because variability exists within populations of cells, single-cell analysis has become increasingly important for probing complex cellular environments. Capillary electrophoresis (CE) is an excellent technique for identifying and quantifying the contents of single cells owing to its small volume requirements and fast, efficient separations with highly sensitive detection. Recent progress in both whole-cell and subcellular sampling has allowed researchers to study cellular function in the areas of neuroscience, oncology, enzymology, immunology, and gene expression.
Collapse
Affiliation(s)
- Imee G Arcibal
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | | | | |
Collapse
|
31
|
Mourzina Y, Steffen A, Kaliaguine D, Wolfrum B, Schulte P, Böcker-Meffert S, Offenhäusser A. Spatially resolved non-invasive chemical stimulation for modulation of signalling in reconstructed neuronal networks. J R Soc Interface 2006; 3:333-43. [PMID: 16849242 PMCID: PMC1578747 DOI: 10.1098/rsif.2005.0099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Functional coupling of reconstructed neuronal networks with microelectronic circuits has potential for the development of bioelectronic devices, pharmacological assays and medical engineering. Modulation of the signal processing properties of on-chip reconstructed neuronal networks is an important aspect in such applications. It may be achieved by controlling the biochemical environment, preferably with cellular resolution. In this work, we attempt to design cell-cell and cell-medium interactions in confined geometries with the aim to manipulate non-invasively the activity pattern of an individual neuron in neuronal networks for long-term modulation. Therefore, we have developed a biohybrid system in which neuronal networks are reconstructed on microstructured silicon chips and interfaced to a microfluidic system. A high degree of geometrical control over the network architecture and alignment of the network with the substrate features has been achieved by means of aligned microcontact printing. Localized non-invasive on-chip chemical stimulation of micropatterned rat cortical neurons within a network has been demonstrated with an excitatory neurotransmitter glutamate. Our system will be useful for the investigation of the influence of localized chemical gradients on network formation and long-term modulation.
Collapse
Affiliation(s)
- Yulia Mourzina
- Institute of Thin Films and Interfaces, Research Center Jülich, Jülich, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
Mourzina Y, Kaliaguine D, Schulte P, Offenhäusser A. Patterning chemical stimulation of reconstructed neuronal networks. Anal Chim Acta 2006; 575:281-9. [PMID: 17723603 DOI: 10.1016/j.aca.2006.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 01/16/2006] [Accepted: 06/05/2006] [Indexed: 10/24/2022]
Abstract
A spatially resolved delivery of substances integrated with cell culture substrates shows promise for application in pharmacological assays, bioanalytical studies on cell signaling pathways and cell-based biosensors, where control over the extracellular biochemical environment with a cellular resolution is desirable. In this work, we studied a biohybrid system where rat embryonic cortical neuronal networks are reconstructed on microstructured silicon chips and interfaced to microfluidics. The design of cell-cell and cell-medium interactions in confined geometries is presented. We developed an aligned microcontact printing technique (AmicroCP) for poly(lysine)-extracellular matrix proteins on microstructured chips, which allows a high degree of geometrical control over the network architecture and alignment of the neuronal network with the microfluidic features of a substrate. Spatially resolved on-chip delivery of compounds with a cellular resolution is demonstrated by chemical stimulation of patterned rat cortical neurons within a network with a number of solutions of excitatory neurotransmitter glutamate delivered via microfluidics. The combination of the system described with a patch-clamp technique allowed both modulation of the biochemical environment on a cellular level and the monitoring of electrophysiological properties in the reconstructed rat embryonic cortical networks changed by this microenvironment.
Collapse
Affiliation(s)
- Yulia Mourzina
- Institute of Bio- and Nanosystems and Center of Nanoelectronic Systems for Information Technology, Research Center Jülich, 52425 Jülich, Germany.
| | | | | | | |
Collapse
|
33
|
Yue S, Xue-Feng Y. Novel multi-depth microfluidic chip for single cell analysis. J Chromatogr A 2006; 1117:228-33. [PMID: 16620849 DOI: 10.1016/j.chroma.2006.03.088] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 03/20/2006] [Accepted: 03/22/2006] [Indexed: 11/26/2022]
Abstract
A novel multi-depth microfluidic chip was fabricated on glass substrate by use of conventional lithography and three-step etching technology. The sampling channel on the microchip was 37 microm deep, while the separation channel was 12 microm deep. A 1mm long weir was constructed in the separation channel, 300 microm down the channel crossing. The channel at the weir section was 6 microm deep. By using the multi-depth microfluidic chip, human carcinoma cells, which easily aggregate, settle and adhere to the surface of the channel, can be driven from the sample reservoir to the sample waste reservoir by hydrostatic pressure generated by the difference of liquid level between sample and sample waste reservoirs. Single cell loading into the separation channel was achieved by applying a set of pinching potentials at the four reservoirs. The loaded cell was stopped by the weir and precisely positioned within the separation channel. The trapped cell was lysed by sodium dodecyl sulfate (SDS) containing buffer solution in 20s. This approach reduced the lysing time and improved the reproducibility of chip-based electrophoresis separations. Reduced glutathione (GSH) and reactive oxygen species (ROS) were used as model intracellular components in single human carcinoma cells, and the constituents were separated by chip-based electrophoresis and detected by laser-induced fluorescence (LIF). A throughput of 15 samples/h, a migration time precision of 3.1% RSD for ROS and 4.9% RSD for GSH were obtained for 10 consecutively injected cells.
Collapse
Affiliation(s)
- Sun Yue
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | | |
Collapse
|
34
|
Sun Y, Kwok YC. Polymeric microfluidic system for DNA analysis. Anal Chim Acta 2006; 556:80-96. [PMID: 17723333 DOI: 10.1016/j.aca.2005.09.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 09/02/2005] [Accepted: 09/06/2005] [Indexed: 10/25/2022]
Abstract
The application of micro total analysis system (microTAS) has grown exponentially in the past decade. DNA analysis is one of the primary applications of microTAS technology. This review mainly focuses on the recent development of the polymeric microfluidic devices for DNA analysis. After a brief introduction of material characteristics of polymers, the various microfabrication methods are presented. The most recent developments and trends in the area of DNA analysis are then explored. We focus on the rapidly developing fields of cell sorting, cell lysis, DNA extraction and purification, polymerase chain reaction (PCR), DNA separation and detection. Lastly, commercially available polymer-based microdevices are included.
Collapse
Affiliation(s)
- Yi Sun
- Department of Science, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | | |
Collapse
|
35
|
Xiao H, Li X, Zou H, Yang L, Yang Y, Wang Y, Wang H, Le XC. Immunoassay of P-glycoprotein on single cell by capillary electrophoresis with laser induced fluorescence detection. Anal Chim Acta 2006. [DOI: 10.1016/j.aca.2005.09.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Ling YY, Yin XF, Fang ZL. Simultaneous determination of glutathione and reactive oxygen species in individual cells by microchip electrophoresis. Electrophoresis 2005; 26:4759-66. [PMID: 16278919 DOI: 10.1002/elps.200500232] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A microchip electrophoresis method was developed for simultaneous determination of reactive oxygen species (ROS) and reduced glutathione (GSH) in the individual erythrocyte cell. In this method, cell sampling, single-cell loading, docking, lysing, and capillary electrophoretic separation with LIF detection were integrated on a microfluidic chip with crossed channels. ROS was labeled with dihydrorhodamine 123 in the intact cell, while GSH was on-chip labeled with 2,3-naphthalene-dicarboxaldehyde, which was included in the separation medium. On-chip electrical lysis, characterized by extremely fast disruption of the cellular membrane (<40 ms), was exploited to minimize enzymatic effects on analyte concentrations during the determination. The microfluidic network was optimized to prevent cell leaking from the sample reservoir (S) into separation during the separation phase. The structure of the S was modified to avoid blockage of its outlet by deposited cells. Detection limits of 0.5 and 6.9 amol for ROS and GSH, respectively, were achieved. The average cell throughput was 25 cells/h. The effectiveness of the method was demonstrated in the simultaneous determination of GSH and ROS in individual cells and the variations of cellular GSH and ROS contents in response to external stimuli.
Collapse
Affiliation(s)
- Yun-Yang Ling
- Department of Chemistry, Institute of Microanalytical Systems, Zhejiang University, Hangzhou, China
| | | | | |
Collapse
|
37
|
Ye SM, Gao SJ, Pan Y, Yang JY, Li SL. Automatic separation system for marine meiobenthos based on laser-induced fluorescence technology. J Zhejiang Univ Sci B 2005; 6:535-9. [PMID: 15909339 PMCID: PMC1389885 DOI: 10.1631/jzus.2005.b0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
An automatic system for marine meiobenthos separation was developed by using laser-induced fluorescence technology. Rose Bengal was used as organism dye and the spectrums of Rose Bengal were measured. Laser-induced fluorescence system was established to detect marine meiobenthos in sediments. Data obtained from experiments were analyzed by using a mathematical model. The results showed that laser-induced fluorescence technology worked well in the system. The system could select the meiobenthos efficiently and precisely.
Collapse
Affiliation(s)
- Shu-ming Ye
- School of Life Science, Zhejiang University, Hangzhou 310027, China
| | - Shao-jia Gao
- School of Life Science, Zhejiang University, Hangzhou 310027, China
- †E-mail:
| | - Yi Pan
- School of Life Science, Zhejiang University, Hangzhou 310027, China
| | - Jun-yi Yang
- Second Institute of Oceanography, Hangzhou 310027, China
| | - Shi-lun Li
- Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|