1
|
Floris G, Dabrowski KR, Zanda MT, Daws SE. Psilocybin reduces heroin seeking behavior and modulates inflammatory gene expression in the nucleus accumbens and prefrontal cortex of male rats. Mol Psychiatry 2024:10.1038/s41380-024-02788-y. [PMID: 39433903 DOI: 10.1038/s41380-024-02788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
Preclinical and human studies indicate psilocybin may reduce perseverant maladaptive behaviors, including nicotine and alcohol seeking. Such studies in the opioid field are lacking, though opioids are involved in >50% of overdose deaths. Psilocybin is an agonist at the serotonin 2A receptor (5-HT2AR), a well-documented target for modulation of drug seeking, and evidence suggests 5-HT2AR agonists may dampen motivation for opioids. We sought to investigate the therapeutic efficacy of psilocybin in mediating cessation of opioid use and maintenance of long-lasting abstinence from opioid seeking behavior in a rat model of heroin self-administration (SA). Psilocybin or 5-HT2AR antagonists ketanserin and volinanserin were administered systemically to rats prior to SA of 0.075 mg/kg/infusion of heroin, or relapse following forced abstinence. Psilocybin did not alter heroin taking, but a single exposure to 3.0 mg/kg psilocybin 4-24 h prior to a relapse test blunted cue-induced heroin seeking. Conversely, 5-HT2AR antagonists exacerbated heroin relapse. To begin to elucidate mechanisms of psilocybin, drug-naïve rats received psilocybin and/or ketanserin, and tissue was collected from the prefrontal cortex (PFC), a region critical for drug seeking and responsive to psilocybin, 24 h later for RNA-sequencing. 3.0 mg/kg psilocybin regulated ~2-fold more genes in the PFC than 1.0 mg/kg, including genes involved in the cytoskeleton and cytokine signaling. Ketanserin blocked >90% of psilocybin-regulated genes, including the IL-17a cytokine receptor, Il17ra. Psychedelic compounds have reported anti-inflammatory properties, and therefore we performed a gene expression array to measure chemokine/cytokine molecules in the PFC of animals that displayed psilocybin-mediated inhibition of heroin seeking. Psilocybin regulated 4 genes, including Il17a, and a subset of genes correlated with relapse behavior. Selective inhibition of PFC IL-17a was sufficient to reduce heroin relapse. We conclude that psilocybin reduces heroin relapse and highlight IL-17a signaling as a potential downstream pathway of psilocybin that also reduces heroin seeking.
Collapse
Affiliation(s)
- Gabriele Floris
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Konrad R Dabrowski
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Mary Tresa Zanda
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA.
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Thaoboonruang N, Lohitnavy M, Lohitnavy O. Pharmacokinetics of Psilocybin, a Tryptamine Alkaloid in Magic Mushroom ( Psilocybe cubensis): A Systematic Review. J Psychoactive Drugs 2024:1-13. [PMID: 39257234 DOI: 10.1080/02791072.2024.2399128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 09/12/2024]
Abstract
Psilocybin, a major indole alkaloid found in magic mushrooms (Psilocybe cubensis), has recently drawn attention as a breakthrough therapy to treat major depressive disorder. This review aimed to summarize and identify knowledge gaps concerning their pharmacokinetic characteristics of psilocybin and its active metabolite, psilocin. Original studies related to pharmacokinetics of psilocybin conducted in vitro, animals, and humans were systematically collected from PubMed, Scopus, and ScienceDirect, from their inceptions to November 2023. Twenty articles were included in this work and assessed for study quality. A comprehensive review of the pharmacokinetics of psilocybin and psilocin in both animals and humans was performed. Psilocybin is considered a prodrug that is dephosphorylated to psilocin by alkaline phosphatase. Following ingestion, the peak psilocin plasma and brain levels were rapidly achieved in a dose-dependent manner. Psilocin is metabolized primarily through both Phase I and Phase II processes with the half-life of 2-3 hours. This review also identified lack of some pharmacokinetic related information and limitations of available research that may help direct future investigations to better understand the pharmacokinetics and improve study design including dose selection and dosage optimization.
Collapse
Affiliation(s)
- Nilubon Thaoboonruang
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Manupat Lohitnavy
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Ornrat Lohitnavy
- Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
3
|
Khajavinia A, Michel D, Ezeaka UC, Purves RW, Laprairie RB, El-Aneed A. Addressing a major interference in the quantification of psilocin in mouse plasma: Development of a validated liquid chromatography tandem mass spectrometry method. J Chromatogr A 2024; 1730:465123. [PMID: 38981146 DOI: 10.1016/j.chroma.2024.465123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/16/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Psilocybin is a psychedelic compound found in some hallucinogenic "magic mushrooms". Psilocin is the active metabolite of Psilocybin, and it is the subject of several studies for the treatment of psychological disorders, such as anxiety, depression, and post-traumatic stress disorder. As such, the pharmacokinetic properties of psilocin should be evaluated to ensure its safety and efficacy as part of the drug development process. Based on the previously published studies, reversed-phase liquid chromatography (LC) was tested for psilocin quantification. The analysis, however, showed a major interference in mouse plasma that was not, to the best of our knowledge, reported previously. We, therefore, aimed to identify and separate the interference, using various chromatographic columns, mobile phase conditions, and mass spectrometers (MS) instruments. Chromatographic separation was achieved on an ultra high performance liquid chromatography (UHPLC) system, and a quadrupole-linear ion trap equipped with an electrospray ionization (ESI) source was used in positive ion mode with multiple reaction monitoring (MRM). Several chromatographic conditions and column chemistries, including C-18 and Phenyl-hexyl were initially tested, and failed to separate the interference. Exact mass measurement and MS/MS analysis were used to determine the structure of the interfering compound, which was confirmed to be tryptophan. Using the identified structure of the interfering compound, a fast and reliable hydrophilic interaction liquid chromatography (HILIC)-MS/MS method was developed and validated, that was capable of separating psilocin from the interference while achieving a 0.5 ng/ml lower limit of quantification (LLOQ). The validated method was successfully applied to a pharmacokinetic study where psilocin was orally administered to C57BL/6 mouse subjects. Psilocin concentration in all the analyzed mouse plasma samples was successfully determined.
Collapse
Affiliation(s)
- Amir Khajavinia
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Deborah Michel
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Udoka C Ezeaka
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Randy W Purves
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Canadian Food Inspection Agency, Saskatoon, Saskatchewan S7N 2R3, Canada
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
4
|
Floris G, Dabrowski KR, Zanda MT, Daws SE. Psilocybin reduces heroin seeking behavior and modulates inflammatory gene expression in the nucleus accumbens and prefrontal cortex of male rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596205. [PMID: 38854027 PMCID: PMC11160682 DOI: 10.1101/2024.05.28.596205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Preclinical and human studies indicate psilocybin may reduce perseverant maladaptive behaviors, including nicotine and alcohol seeking. Such studies in the opioid field are lacking, though opioids are involved in more >50% of overdose deaths. Psilocybin is an agonist at the serotonin 2A receptor (5-HT2AR), a well-documented target for modulation of drug seeking, and evidence suggests 5-HT2AR agonists may dampen motivation for opioids. We sought to investigate the therapeutic efficacy of psilocybin in mediating cessation of opioid use and maintenance of long-lasting abstinence from opioid seeking behavior in a rat model of heroin self-administration (SA). Psilocybin or 5-HT2AR antagonists ketanserin and volinanserin were administered systemically to rats prior to SA of 0.075 mg/kg/infusion of heroin, or relapse following forced abstinence. Psilocybin did not alter heroin taking, but a single exposure to 3.0 mg/kg psilocybin 4-24 hours prior to a relapse test blunted cue-induced heroin seeking. Conversely, 5-HT2AR antagonists exacerbated heroin relapse. To begin to elucidate mechanisms of psilocybin, drug-naïve rats received psilocybin and/or ketanserin, and tissue was collected from the prefrontal cortex (PFC), a region critical for drug seeking and responsive to psilocybin, 24 hours later for RNA-sequencing. 3.0 mg/kg psilocybin regulated ~2-fold more genes in the PFC than 1.0 mg/kg, including genes involved in the cytoskeleton and cytokine signaling. Ketanserin blocked >90% of psilocybin-regulated genes, including the IL-17a cytokine receptor, Il17ra. Psychedelic compounds have reported anti-inflammatory properties, and therefore we performed a gene expression array to measure chemokine/cytokine molecules in the PFC of animals that displayed psilocybin-mediated inhibition of heroin seeking. Psilocybin regulated 4 genes, including Il17a, and a subset of genes correlated with relapse behavior. Selective inhibition of PFC IL-17a was sufficient to reduce heroin relapse. We conclude that psilocybin reduces heroin relapse and highlight IL-17a signaling as a potential downstream pathway of psilocybin that also reduces heroin seeking.
Collapse
Affiliation(s)
- Gabriele Floris
- Center for Substance Abuse Research, Temple University, Philadelphia, PA USA
- Department of Neural Sciences, Temple University, Philadelphia, PA USA
| | - Konrad R Dabrowski
- Center for Substance Abuse Research, Temple University, Philadelphia, PA USA
- Department of Biology, Temple University, Philadelphia, PA USA
| | - Mary Tresa Zanda
- Center for Substance Abuse Research, Temple University, Philadelphia, PA USA
- Department of Neural Sciences, Temple University, Philadelphia, PA USA
| | - Stephanie E Daws
- Center for Substance Abuse Research, Temple University, Philadelphia, PA USA
- Department of Neural Sciences, Temple University, Philadelphia, PA USA
| |
Collapse
|
5
|
Gomonit MM, Skillman B, Swortwood MJ. Quantification of psilocin in human whole blood using liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Forensic Sci 2024; 69:678-687. [PMID: 38140718 DOI: 10.1111/1556-4029.15454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
There has been burgeoning interest in psilocybin-use for the treatment of various neurological and neurodegenerative diseases. Psilocybin is mistakenly perceived as the principal pharmacologically active compound due to its high concentrations found in magic mushrooms; however, it is the prodrug of psilocin. Despite the expanding body of clinical research seeking to understand the pharmacodynamic/pharmacokinetic properties of psilocin, and its role in inducing dramatic changes to cognitive function, there has not been a corresponding increase in the development of sensitive analytical methods that can quantify psilocin in different biological fluids. Existing analytical methods have been developed using plasma, serum, and urine as the matrix of choice, but with the unknown blood-to-plasma ratio of psilocin, any pharmacokinetic conclusions drawn solely on plasma data may be misleading. Thus, the main objective of this study is to develop the first analytical method that utilizes SPE and LC-MS/MS to quantify psilocin in human whole blood. The SPE procedure yielded a high recovery efficiency (≥89%) with minimal matrix effects. The method was validated according to ANSI/ASB 036 guidelines. Linearity was between 0.7-200 ng/mL and encompassed previously reported ranges found in plasma/serum. Bias, within- and between-run precision for all quality controls met ANSI/ASB 036 acceptability criteria. Endogenous/exogenous interferences and carryover were negligible. Psilocin stability was assessed at 4°C over 48 h and was considered stable. Although a proof-of-concept study will need to be performed to characterize the method, this analytical workflow was able to detect and quantify psilocin in human whole blood at low limits of quantification.
Collapse
Affiliation(s)
- Munchelou M Gomonit
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, Huntsville, Texas, USA
| | - Britni Skillman
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, Huntsville, Texas, USA
| | - Madeleine J Swortwood
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, Huntsville, Texas, USA
- Robson Forensic, Denver, Colorado, USA
| |
Collapse
|
6
|
Polo-Castellano C, Álvarez JÁ, Palma M, Barbero GF, Ayuso J, Ferreiro-González M. Optimization through a Box-Behnken Experimental Design of the Microwave-Assisted Extraction of the Psychoactive Compounds in Hallucinogenic Fungi ( Psylocibe cubensis). J Fungi (Basel) 2022; 8:598. [PMID: 35736081 PMCID: PMC9225378 DOI: 10.3390/jof8060598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Hallucinogenic fungi, mainly those from the Psilocybe genus, are being increasingly consumed even though there is no control on their culture conditions. Due to the therapeutic potential as antidepressants and anxiolytics of the alkaloids that they produce (psilocin and psilocybin), some form of control on their production would be highly recommended. Prior to identifying their optimal culture condition, a methodology that allows their study is required. Microwave-assisted extraction method (MAE) is a technique that has proven its efficiency to extract different compounds from solid matrices. For this reason, this study intends to optimize a MAE method to extract the alkaloids found in Psylocibe cubensis. A surface-response Box-Behnken design has been employed to optimize such extraction method and significantly reduce time and other resources in the extraction process. Based on the Box-Behnken design, 50 °C temperature, 60% methanol as extraction solvent, 0.6 g:10 mL sample mass:solvent ratio and 5 min extraction time, were established as optimal conditions. These mild conditions, combined with a rapid and efficient UHPLC analysis result in a practical and economical methodology for the extraction of psilocin and psilocybin from Psylocibe cubensis.
Collapse
Affiliation(s)
- Curro Polo-Castellano
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain; (C.P.-C.); (M.P.)
| | - José Á. Álvarez
- Department of Physical Chemistry, Faculty of Sciences, INBIO, University of Cadiz, 11510 Puerto Real, Spain; (J.Á.Á.); (J.A.); (M.F.-G.)
| | - Miguel Palma
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain; (C.P.-C.); (M.P.)
| | - Gerardo F. Barbero
- Department of Analytical Chemistry, Faculty of Sciences, Agrifood Campus of International Excellence (ceiA3), IVAGRO, University of Cadiz, 11510 Puerto Real, Spain; (C.P.-C.); (M.P.)
| | - Jesús Ayuso
- Department of Physical Chemistry, Faculty of Sciences, INBIO, University of Cadiz, 11510 Puerto Real, Spain; (J.Á.Á.); (J.A.); (M.F.-G.)
| | - Marta Ferreiro-González
- Department of Physical Chemistry, Faculty of Sciences, INBIO, University of Cadiz, 11510 Puerto Real, Spain; (J.Á.Á.); (J.A.); (M.F.-G.)
| |
Collapse
|
7
|
Vejmola Č, Tylš F, Piorecká V, Koudelka V, Kadeřábek L, Novák T, Páleníček T. Psilocin, LSD, mescaline, and DOB all induce broadband desynchronization of EEG and disconnection in rats with robust translational validity. Transl Psychiatry 2021; 11:506. [PMID: 34601495 PMCID: PMC8487430 DOI: 10.1038/s41398-021-01603-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 12/22/2022] Open
Abstract
Serotonergic psychedelics are recently gaining a lot of attention as a potential treatment of several neuropsychiatric disorders. Broadband desynchronization of EEG activity and disconnection in humans have been repeatedly shown; however, translational data from animals are completely lacking. Therefore, the main aim of our study was to assess the effects of tryptamine and phenethylamine psychedelics (psilocin 4 mg/kg, LSD 0.2 mg/kg, mescaline 100 mg/kg, and DOB 5 mg/kg) on EEG in freely moving rats. A system consisting of 14 cortical EEG electrodes, co-registration of behavioral activity of animals with subsequent analysis only in segments corresponding to behavioral inactivity (resting-state-like EEG) was used in order to reach a high level of translational validity. Analyses of the mean power, topographic brain-mapping, and functional connectivity revealed that all of the psychedelics irrespective of the structural family induced overall and time-dependent global decrease/desynchronization of EEG activity and disconnection within 1-40 Hz. Major changes in activity were localized on the large areas of the frontal and sensorimotor cortex showing some subtle spatial patterns characterizing each substance. A rebound of occipital theta (4-8 Hz) activity was detected at later stages after treatment with mescaline and LSD. Connectivity analyses showed an overall decrease in global connectivity for both the components of cross-spectral and phase-lagged coherence. Since our results show almost identical effects to those known from human EEG/MEG studies, we conclude that our method has robust translational validity.
Collapse
Affiliation(s)
- Čestmír Vejmola
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Filip Tylš
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Václava Piorecká
- National Institute of Mental Health, Klecany, Czechia
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czechia
| | | | | | - Tomáš Novák
- National Institute of Mental Health, Klecany, Czechia
| | - Tomáš Páleníček
- National Institute of Mental Health, Klecany, Czechia.
- Third Faculty of Medicine, Charles University, Prague, Czechia.
| |
Collapse
|
8
|
Sensitive quantitative analysis of psilocin and psilocybin in hair samples from suspected users and their distribution in seized hallucinogenic mushrooms. Forensic Toxicol 2021. [DOI: 10.1007/s11419-020-00566-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Purpose
In this study, we developed a very sensitive method for quantitative analysis of psilocin and psilocybin in hair samples of magic mushroom consumers.
Methods
The analyses were performed with pretreatments of samples, followed by ultra-high pressure liquid chromatography (LC) connected to a Q-Trap type tandem mass spectrometry (MS/MS). For LC, mobile phase (A) consisted of 0.1% formic acid in water, and mobile phase (B) was acetonitrile for gradient elution using a Acquity™ UPLC HSS T3 column. For MS/MS, electrospray ionization measurements in positive selected reaction monitoring mode were used.
Results
The calibration curves were linear from 5 to 500 pg/mg (r > 0.99) and no selectivity problems occurred. The limit of detection was 1 pg/mg, and the lower limit of quantitation was 5 pg/mg. The ranges of the matrix effects and recovery rates were 90.4–107% and 76.0–102%, respectively.
Conclusions
The concentrations of psilocin in two authentic hair were 161 and 150 pg/mg, respectively, and psilocybin was not detected from both samples. This method was also used to analyze the distribution of psilocin and psilocybin in seven hallucinogenic mushrooms. To our knowledge, this is the first demonstration of psilocin concentrations in hair samples of hallucinogenic mushroom consumers, and also our method is most sensitive for quantitative analysis of psilocin and psilocybin in hair samples.
Collapse
|
9
|
Mishraki-Berkowitz T, Kochelski E, Kavanagh P, O'Brien J, Dunne C, Talbot B, Ennis P, Wolf UE. The Psilocin (4-hydroxy-N,N-dimethyltryptamine) and Bufotenine (5-hydroxy-N,N-dimethyltryptamine) Case: Ensuring the Correct Isomer has Been Identified. J Forensic Sci 2020; 65:1450-1457. [PMID: 32374425 DOI: 10.1111/1556-4029.14368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 11/29/2022]
Abstract
Psilocin (4-hydroxy-N,N-dimethyltryptamine, 4-HO-DMT) and bufotenine (5-hydroxy-N,N-dimethyltryptamine, 5-HO-DMT), which are both naturally occurring compounds, are classified as controlled substances in numerous countries due to their pharmacological activities and recreational usage. There are two other benzene ring regioisomers, 6-hydroxy-N,N-dimethyltryptamine (6-HO-DMT) and 7-hydroxy-N,N-dimethyltryptamine (7-HO-DMT), which are not classified by name as controlled substances, and which were synthesized for this current work. The four isomers were analyzed using routine methodologies employed by the Israel's Police Division of Identification and Forensic Science (DIFS) Laboratory, namely thin layer chromatography (TLC), Fourier transform infrared spectroscopy (FTIR), and gas chromatography mass spectroscopy (GC-MS). It was found possible to differentiate the four isomers. Forensic specimens that were suspected to be psilocybe mushrooms were examined, confirming that it is now possible to unequivocally identify the presence of psilocin and rule out the presence of its other isomers.
Collapse
Affiliation(s)
| | - Esti Kochelski
- Division of Identification and Forensic Science, Israel Police, Jerusalem, 91906, Israel
| | - Pierce Kavanagh
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. James's Hospital, Dublin 8, D08 W9RT, Ireland
| | - John O'Brien
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 EV57, Ireland
| | - Clodagh Dunne
- School of Chemical and Pharmaceutical Sciences, Grangegorman Lower, Technological University Dublin, Dublin 7, Ireland
| | - Brian Talbot
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, D02 EV57, Ireland
| | - Patricia Ennis
- School of Chemical and Pharmaceutical Sciences, Grangegorman Lower, Technological University Dublin, Dublin 7, Ireland
| | - Udi Ehud Wolf
- Division of Identification and Forensic Science, Israel Police, Jerusalem, 91906, Israel
| |
Collapse
|
10
|
Abstract
OBJECTIVE Psilocybin is a serotonin receptor agonist with a therapeutic potential for treatment-resistant depression and other psychiatric illnesses. We investigated whether the administration of psilocybin had an antidepressant-like effect in a rat model of depression. METHODS Using the Flinders Sensitive Line (FSL) rat model of depression, we assessed the antidepressant-like effect of psilocin and psilocybin, measured as a reduction in immobility time in the forced swim test (FST). We measured locomotor activity in an open field test (OFT) to control for stimulant properties of the drugs. We performed a set of experiments to test different doses, treatment paradigms, and timing of the tests in relation to the drug administration. RESULTS Psilocin and psilocybin showed no effect on immobility, struggling, or swimming behaviour in the FST and no effect on locomotor activity in the OFT. FSL rats did show significantly more immobility than their control strain, the Flinders Resistant Line, as expected. CONCLUSION Psilocin and psilocybin showed no antidepressant-like effect in the FSL rats, despite a positive effect in humans. This suggests that other animal models of depression and other behavioural tests may be more appropriate for translational studies in the effects of psilocybin.
Collapse
|
11
|
Wieczorek PP, Witkowska D, Jasicka-Misiak I, Poliwoda A, Oterman M, Zielińska K. Bioactive Alkaloids of Hallucinogenic Mushrooms. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/b978-0-444-63462-7.00005-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
12
|
|
13
|
Determination of psilocin, bufotenine, LSD and its metabolites in serum, plasma and urine by SPE-LC-MS/MS. Int J Legal Med 2012. [DOI: 10.1007/s00414-012-0796-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Toyo'oka T. Development of Benzofurazan−bearing Fluorescence Labeling Reagents for Separation and Detection in High−performance Liquid Chromatography. CHROMATOGRAPHY 2012. [DOI: 10.15583/jpchrom.2012.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Toshimasa Toyo'oka
- Laboratory of Analytical and Bio−Analytical Chemistry, Graduate School of Pharmaceutical Sciences, and Global COE Program, University of Shizuoka
| |
Collapse
|
15
|
Martin R, Schürenkamp J, Pfeiffer H, Köhler H. A validated method for quantitation of psilocin in plasma by LC–MS/MS and study of stability. Int J Legal Med 2011; 126:845-9. [DOI: 10.1007/s00414-011-0652-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 11/21/2011] [Indexed: 11/28/2022]
|
16
|
Chen J, Li M, Yan X, Wu E, Zhu H, Lee KJ, Chu VM, Zhan L, Lee W, Kang JS. Determining the pharmacokinetics of psilocin in rat plasma using ultra-performance liquid chromatography coupled with a photodiode array detector after orally administering an extract of Gymnopilus spectabilis. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2669-72. [DOI: 10.1016/j.jchromb.2011.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 07/03/2011] [Accepted: 07/07/2011] [Indexed: 10/18/2022]
|
17
|
Gruber DF, Simjouw JP, Seitzinger SP, Taghon GL. Dynamics and characterization of refractory dissolved organic matter produced by a pure bacterial culture in an experimental predator-prey system. Appl Environ Microbiol 2006; 72:4184-91. [PMID: 16751530 PMCID: PMC1489638 DOI: 10.1128/aem.02882-05] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the effects of a bacterium (Pseudomonas chlororaphis) and a bactivorous protozoan (Uronema sp.) on transformations of labile dissolved organic carbon (DOC). In 36-day time series experiments, bacteria were grown on glucose both with and without protozoa. We measured bulk organic carbon pools and used electrospray ionization mass spectrometry to characterize dissolved organic matter on a molecular level. Bacteria rapidly utilized glucose, depleting it to nondetectable levels and producing new DOC compounds of higher molecular weight within 2 days. Some of these new compounds, representing 3 to 5% of the initial glucose-C, were refractory and persisted for over a month. Other new compounds were produced and subsequently used by bacteria during the lag and exponential growth phases, pointing to a dynamic cycling of organic compounds. Grazers caused a temporary spike in the DOC concentration consisting of labile compounds subsequently utilized by the bacteria. Grazing did not increase the complexity of the DOC pool already established by the bacteria but did continually decrease the particulate organic carbon pool and expedited the conversion of glucose-C to CO2. After 36 days, 29% of initial glucose-C remained in pure bacteria cultures, while only 6% remained in cultures where a grazer was present. In this study the bacteria were the primary shapers of the complex DOC continuum, suggesting higher trophic levels possibly have less of an impact on the qualitative composition of DOC than previously assumed.
Collapse
Affiliation(s)
- David F Gruber
- Institute of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, 71 Dudley Rd., New Brunswick, NJ 08901, USA
| | | | | | | |
Collapse
|
18
|
Anastos N, Lewis SW, Barnett NW, Sims DN. The determination of psilocin and psilocybin in hallucinogenic mushrooms by HPLC utilizing a dual reagent acidic potassium permanganate and tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence detection system. J Forensic Sci 2006; 51:45-51. [PMID: 16423222 DOI: 10.1111/j.1556-4029.2005.00033.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This paper describes a procedure for the determination of psilocin and psilocybin in mushroom extracts using high-performance liquid chromatography with postcolumn chemiluminescence detection. A number of extraction methods for psilocin and psilocybin in hallucinogenic mushrooms were investigated, with a simple methanolic extraction being found to be most effective. Psilocin and psilocybin were extracted from a variety of hallucinogenic mushrooms using methanol. The analytes were separated on a C12 column using a (95:5% v/v) methanol:10 mM ammonium formate, pH 3.5 mobile phase with a run time of 5 min. Detection was realized through a dual reagent chemiluminescence detection system of acidic potassium permanganate and tris(2,2'-bipyridyl)ruthenium(II). The chemiluminescence detection system gave improved detectability when compared with UV absorption at 269 nm, with detection limits of 1.2 x 10(-8) and 3.5 x 10(-9) mol/L being obtained for psilocin and psilocybin, respectively. The procedure was applied to the determination of psilocin and psilocybin in three Australian species of hallucinogenic mushroom.
Collapse
Affiliation(s)
- Nicole Anastos
- School of Biological and Chemical Sciences, Deakin University, Geelong, VIC 3217, Australia
| | | | | | | |
Collapse
|
19
|
Anastos N, Barnett NW, Pfeffer FM, Lewis SW. Investigation into the temporal stability of aqueous standard solutions of psilocin and psilocybin using high performance liquid chromatography. Sci Justice 2006; 46:91-6. [PMID: 17002211 DOI: 10.1016/s1355-0306(06)71579-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This paper reports an investigation into the temporal stability of aqueous solutions of psilocin and psilocybin reference drug standards over a period of fourteen days. This study was performed using high performance liquid chromatography utilising a (95:5% v/v) methanol: 10 mM ammonium formate, pH 3.5 mobile phase and absorption detection at 269 nm. It was found that the exclusion of light significantly prolonged the useful life of standards, with aqueous solutions of both psilocin and psilocybin being stable over a period of seven days.
Collapse
Affiliation(s)
- N Anastos
- School of Biological and Chemical Sciences, Deakin University, Geelong, VIC 3217, Australia
| | | | | | | |
Collapse
|