1
|
Lai H, Li G. Recent progress on media for biological sample preparation. J Chromatogr A 2024; 1734:465293. [PMID: 39181092 DOI: 10.1016/j.chroma.2024.465293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The analysis of biological samples is highly valuable for disease diagnosis and treatment, forensic examination, and public safety. However, the serious matrix interference effect generated by biological samples severely affects the analysis of trace analytes. Sample preparation methods are introduced to address the limitation by extracting, separating, enriching, purifying trace target analytes from biological samples. With the raising demand of biological sample analysis, a review focuses on media for biological sample preparation and analysis over the last 5 years is presented. High-performance media in biological sample preparation are first reviewed, including porous organic frameworks, imprinted polymers, hydrogels, ionic liquids, and bioactive media. Then, application of media for different biological sample preparation and analysis is briefly introduced, including liquid samples of body fluids, solid samples (hair, feces, and tissues), and gas samples of exhale breath gas. Finally, conclusions and outlooks on media promoting biological sample preparation are presented.
Collapse
Affiliation(s)
- Huasheng Lai
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China; School of chemistry, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Gongke Li
- School of chemistry, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Kataoka H, Ishizaki A, Saito K, Ehara K. Developments and Applications of Molecularly Imprinted Polymer-Based In-Tube Solid Phase Microextraction Technique for Efficient Sample Preparation. Molecules 2024; 29:4472. [PMID: 39339467 PMCID: PMC11433927 DOI: 10.3390/molecules29184472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Despite advancements in the sensitivity and performance of analytical instruments, sample preparation remains a bottleneck in the analytical process. Currently, solid-phase extraction is more widely used than traditional organic solvent extraction due to its ease of use and lower solvent requirements. Moreover, various microextraction techniques such as micro solid-phase extraction, dispersive micro solid-phase extraction, solid-phase microextraction, stir bar sorptive extraction, liquid-phase microextraction, and magnetic bead extraction have been developed to minimize sample size, reduce solvent usage, and enable automation. Among these, in-tube solid-phase microextraction (IT-SPME) using capillaries as extraction devices has gained attention as an advanced "green extraction technique" that combines miniaturization, on-line automation, and reduced solvent consumption. Capillary tubes in IT-SPME are categorized into configurations: inner-wall-coated, particle-packed, fiber-packed, and rod monolith, operating either in a draw/eject system or a flow-through system. Additionally, the developments of novel adsorbents such as monoliths, ionic liquids, restricted-access materials, molecularly imprinted polymers (MIPs), graphene, carbon nanotubes, inorganic nanoparticles, and organometallic frameworks have improved extraction efficiency and selectivity. MIPs, in particular, are stable, custom-made polymers with molecular recognition capabilities formed during synthesis, making them exceptional "smart adsorbents" for selective sample preparation. The MIP fabrication process involves three main stages: pre-arrangement for recognition capability, polymerization, and template removal. After forming the template-monomer complex, polymerization creates a polymer network where the template molecules are anchored, and the final step involves removing the template to produce an MIP with cavities complementary to the template molecules. This review is the first paper to focus on advanced MIP-based IT-SPME, which integrates the selectivity of MIPs into efficient IT-SPME, and summarizes its recent developments and applications.
Collapse
Affiliation(s)
- Hiroyuki Kataoka
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| | - Atsushi Ishizaki
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| | - Keita Saito
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| | - Kentaro Ehara
- School of Pharmacy, Shujitsu University, Nishigawara, Okayama 703-8516, Japan
| |
Collapse
|
3
|
Li Y, Guan C, Liu C, Li Z, Han G. Disease diagnosis and application analysis of molecularly imprinted polymers (MIPs) in saliva detection. Talanta 2024; 269:125394. [PMID: 37980173 DOI: 10.1016/j.talanta.2023.125394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
Saliva has significantly evolved as a diagnostic fluid in recent years, giving a non-invasive alternative to blood analysis. A high protein concentration in saliva is delivered directly from the bloodstream, making it a "human mirror" that reflects the body's physiological state. It plays an essential role in detecting diseases in biomedical and fitness monitoring. Molecularly imprinted polymers (MIPs) are biomimetic materials with custom-designed synthetic recognition sites that imitate biological counterparts renowned for sensitive analyte detection. This paper reviews the progress made in research about MIP biosensors for detecting saliva biomarkers. Specifically, we investigate the link between saliva biomarkers and various diseases, providing detailed insights into the corresponding biosensors. Furthermore, we discuss the principles of molecular imprinting for disease diagnostics and application analysis, including recent advances in integrated MIP-sensor technologies for high-affinity analyte detection in saliva. Notably, these biosensors exhibit high discrimination, allowing for the detection of saliva biomarkers linked explicitly to chronic stress disorders, diabetes, cancer, bacterial or viral-induced illnesses, and exposure to illicit toxic substances or tobacco smoke. Our findings indicate that MIP-based biosensors match and perhaps surpass their counterparts featuring integrated natural antibodies in terms of stability, signal-to-noise ratios, and detection limits. Additionally, we highlight the design of MIP coatings, strategies for synthesizing polymers, and the integration of advanced biodevices. These tailored biodevices, designed to assess various salivary biomarkers, are emerging as promising screening or diagnostic tools for real-time monitoring and self-health management, improving quality of life.
Collapse
Affiliation(s)
- Yanan Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Changjun Guan
- School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun, 130012, PR China
| | - Chaoran Liu
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Ze Li
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China
| | - Guanghong Han
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
4
|
Cardoso AT, Martins RO, Lanças FM, Chaves AR. Molecularly imprinted polymers in online extraction liquid chromatography methods: Current advances and recent applications. Anal Chim Acta 2023; 1284:341952. [PMID: 37996153 DOI: 10.1016/j.aca.2023.341952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND One of the primary objectives in green analytical practices is the seamless integration of extraction and separation steps, resulting in the augmentation of both analytical throughput and method performance. Consequently, the exploration of prospective sorbent materials has drawn significant attention in the scientific community, particularly concerning the potential for online procedures. Employing the optimal sorbent material within an automated analytical approach holds the promise of elevating the precision of the analytical evaluation. Molecularly imprinted polymers (MIPs) excel in specific analyte interaction within complex matrices. However, MIPs' full potential was not widely exploring especially for online analytical methodologies. RESULTS Here is presented a comprehensive overview of the current applications of MIPs as sorbent materials within integrated and automated separation methodologies applied to diverse matrices including biological, food, and environmental samples. Notably, their primary advantage, as evidenced in the literature, lies in their exceptional selectivity for the target analyte discussed according to the adopted synthesis protocol. Furthermore, the literature discussed here illustrates the versatility of MIPs in terms of modification with one or more phases which are so-called hybrid materials, such as molecularly imprinted monoliths (MIM), the molecularly imprinted ionic liquid polymer (IL-MIP), and restricted access to molecularly imprinted polymer (RAMIP). The reported advantages enhance their applicability in integrated and automated separation procedures, especially to the column switching methods, across a broader spectrum of applications. SIGNIFICANCE This revision aims to demonstrate the MIP's potential as a sorbent phase in integrated and automated methods, this comprehensive overview of MIP polymers in integrated and automated separation methodologies can be used as a valuable guide, inspiring new research on developing novel horizons for MIP applications to have their potential emphasized in analytical science and enhanced to the great analytical methods achievement.
Collapse
Affiliation(s)
- Alessandra Timóteo Cardoso
- Universidade Federal de Goiás, Instituto de Química, 74690-900, Goiânia, GO, Brazil; Universidade de São Paulo, Instituto de Química de São Carlos, São Carlos, SP, Brazil
| | | | - Fernando Mauro Lanças
- Universidade de São Paulo, Instituto de Química de São Carlos, São Carlos, SP, Brazil
| | | |
Collapse
|
5
|
Lamaoui A, Lahcen AA, Amine A. Unlocking the Potential of Molecularly Imprinted Polydopamine in Sensing Applications. Polymers (Basel) 2023; 15:3712. [PMID: 37765566 PMCID: PMC10536926 DOI: 10.3390/polym15183712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Molecularly imprinted polymers (MIPs) are synthetic receptors that mimic the specificity of biological antibody-antigen interactions. By using a "lock and key" process, MIPs selectively bind to target molecules that were used as templates during polymerization. While MIPs are typically prepared using conventional monomers, such as methacrylic acid and acrylamide, contemporary advancements have pivoted towards the functional potential of dopamine as a novel monomer. The overreaching goal of the proposed review is to fully unlock the potential of molecularly imprinted polydopamine (MIPda) within the realm of cutting-edge sensing applications. This review embarks by shedding light on the intricate tapestry of materials harnessed in the meticulous crafting of MIPda, endowing them with tailored properties. Moreover, we will cover the diverse sensing applications of MIPda, including its use in the detection of ions, small molecules, epitopes, proteins, viruses, and bacteria. In addition, the main synthesis methods of MIPda, including self-polymerization and electropolymerization, will be thoroughly examined. Finally, we will examine the challenges and drawbacks associated with this research field, as well as the prospects for future developments. In its entirety, this review stands as a resolute guiding compass, illuminating the path for researchers and connoisseurs alike.
Collapse
Affiliation(s)
- Abderrahman Lamaoui
- Process Engineering and Environment Lab, Chemical Analysis & Biosensors Group, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia 28806, Morocco
| | | | - Aziz Amine
- Process Engineering and Environment Lab, Chemical Analysis & Biosensors Group, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia 28806, Morocco
| |
Collapse
|
6
|
Assi N, Rypar T, Macka M, Adam V, Vaculovicova M. Microfluidic paper-based fluorescence sensor for L-homocysteine using a molecularly imprinted polymer and in situ-formed fluorescent quantum dots. Talanta 2023; 255:124185. [PMID: 36634429 DOI: 10.1016/j.talanta.2022.124185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023]
Abstract
Microfluidic paper-based analytical devices modified with molecularly imprinted polymers (μPADs@MIPs) were developed for fluorescent detection of targeted thiols via in situ UV-induced formation of quantum dots (μPADs@MIPs@QDs). The selectivity enhancement by the MIP layer formed on the filter paper surface was demonstrated for the isolation of L-homocysteine from wine. Followed by the addition of metal precursors solution (Zn/Cd/Cu) and UV irradiation, fluorescent quantum dots were formed thus enabling quantitative detection of the thiol (serving as a QD capping agent). The effect of different semiconductors was investigated to achieve a lower band gap and higher fluorescence intensity. Increasing fluorescence intensity in the presence of thiol groups was obtained for the following precursors mixture composition: ZnCdCu/S > ZnCd/S > ZnCu/S > ZnS. The proposed method has a good relationship between the fluorescence intensity of ZnCdCu/S QDs and L-homocysteine in a linear range from 0.74 to 7.40 μM with a limit of detection (LOD) and quantification (LOQ) of 0.51 and 1.71 μM respectively. This method was applied for the determination of L-homocysteine in white wine with RSD under 6.37%.
Collapse
Affiliation(s)
- Navid Assi
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00, Brno, Czech Republic
| | - Tomas Rypar
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00, Brno, Czech Republic
| | - Mirek Macka
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00, Brno, Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ 613 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Mulder HA, Cecil TI, Fines C, Pearcy AC, Halquist MS. Advancing the use of molecularly imprinted polymers in bioanalysis: the selective extraction of cotinine in human urine. Bioanalysis 2023; 15:465-477. [PMID: 37254737 PMCID: PMC10300667 DOI: 10.4155/bio-2023-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023] Open
Abstract
Aim: To characterize a molecularly imprinted polymer via precipitation polymerization for the extraction of cotinine in urine. Methods: The polymer was created via precipitation polymerization. Physical characteristics of the polymer were assessed via scanning electron microscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. The polymer adsorption capacity was assessed and an solid-phase extraction method from urine by LC-MS/MS was developed. Results: The polymer had small, spherical morphology and little thermal decomposition. The extraction method yielded cotinine recoveries of 77-103% in urine. The molecularly imprinted polymer adsorption capacity for cotinine was 448.2 ± 2.1 μg/mg. Common interferants did not affect cotinine's extraction. Conclusion: The resulting polymer was determined to be specific for cotinine and can be used for the detection of cotinine in urine for clinical samples.
Collapse
Affiliation(s)
- Haley A Mulder
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Thomas I Cecil
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Cory Fines
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Adam C Pearcy
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Matthew S Halquist
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
8
|
Dou M, Wang S, Li W, Li Q, Xu J, Li J. High-performance molecularly imprinted polymers grafted magnetic photonic crystal microspheres for selective enrichment of Ochratoxin A. J Chromatogr A 2023; 1695:463932. [PMID: 36972663 DOI: 10.1016/j.chroma.2023.463932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Development of selective enrichment materials for the accurate analysis of ochratoxin a (OTA) in environmental and food samples is an effective way to protect human health. Here, a molecularly imprinted polymer (MIP) known as plastic antibody was synthesized onto the magnetic inverse opal photonic crystal microsphere (MIPCM) using a low-cost dummy template imprinting strategy targeting OTA. The MIP@MIPCM exhibited ultrahigh selectivity with an imprinting factor of 130, high specificity with cross-reactivity factors of 3.3-10.5, and large adsorption capacity of 60.5 μg/mg. Such MIP@MIPCM was used for selective capture of OTA in real samples which was quantified in combination with high-performance liquid chromatography, giving a wide linear detection range of 5-20,000 ng/mL, a detection limit of 0.675 ng/mL, and good recovery rates of 84-116%. Moreover, the MIP@MIPCM can be produced simply and rapidly and is very stable under different environmental conditions and easy to store and transport, so it is an ideal substitute of biological antibody modified materials for the selective enrichment of OTA in real samples.
Collapse
Affiliation(s)
- Menghua Dou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Siwei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wei Li
- Medical Imaging Center the First Affiliated Hospital, Jinan University, Guangdong 510627, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
9
|
Guo P, Liu C, Zhong F, Xu M, Zhao Y, Xu X, Zhao Y, Xue W, Xu Y, Fan D. Dummy-template Pickering emulsion imprinted microspheres online pretreatment and analysis for the estrogens in cosmetics. J Chromatogr A 2023; 1691:463815. [PMID: 36709550 DOI: 10.1016/j.chroma.2023.463815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 01/23/2023]
Abstract
Estrogens are a class of steroid hormone with strong physiological activity. Due to the pronounced beauty effect, such drugs are highly susceptible to illegal addition and cause other adverse effects. To avoid template leakage and the negative impacts on the environment caused by the estrogens, diosgenin was selected as the dummy template due to its similar skeleton structure. The Pickering emulsion polymerization was used to obtain the dummy-template molecularly imprinted polymers (dt-MIPs). Scanning electron microscopy, optical microscopy, specific surface area testing, Fourier transform infrared spectroscopy and adsorption experiments were used to characterize the apparent morphology and the recognition performance of the microspheres. Then, the prepared microspheres and commercial fillers were used to construct an on-line solid phase extraction (on-line SPE) analytical system coupled with HPLC via a two-position switching valve. On-line solid phase extraction-HPLC analytical methods were established and verified, for the simultaneous determination of four estrogens in cosmetic samples. The accuracy and precision RSDs for the established methods using the imprinted sorbents were 92.00-104.02% and less than 9.12%, respectively. All four estrogens exhibited good linearity in the range of 0.05 to 5 µg/mL with a coefficient of determination R2 greater than 0.9810. The method comparison results suggest that the established analytical method is simple in pre-treatment, easy to automate, and has excellent sensitivity to meet the analytical requirements of complex samples.
Collapse
Affiliation(s)
- Pengqi Guo
- School of Chemical Engineering, Northwest University, Xi'an, PR China; "Four Subjects One United" Biopesticide University-Enterprise Joint Engineering Technology Research Center of Shaanxi Province, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China.
| | - Chenming Liu
- School of Chemical Engineering, Northwest University, Xi'an, PR China; "Four Subjects One United" Biopesticide University-Enterprise Joint Engineering Technology Research Center of Shaanxi Province, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China
| | - Fanru Zhong
- School of Chemical Engineering, Northwest University, Xi'an, PR China; "Four Subjects One United" Biopesticide University-Enterprise Joint Engineering Technology Research Center of Shaanxi Province, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China
| | - Mingyang Xu
- School of Chemical Engineering, Northwest University, Xi'an, PR China; "Four Subjects One United" Biopesticide University-Enterprise Joint Engineering Technology Research Center of Shaanxi Province, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China
| | - Yongze Zhao
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Xinya Xu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - Yu Zhao
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Weiming Xue
- School of Chemical Engineering, Northwest University, Xi'an, PR China; "Four Subjects One United" Biopesticide University-Enterprise Joint Engineering Technology Research Center of Shaanxi Province, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China
| | - Ying Xu
- School of Chemical Engineering, Northwest University, Xi'an, PR China; "Four Subjects One United" Biopesticide University-Enterprise Joint Engineering Technology Research Center of Shaanxi Province, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China
| | - Daidi Fan
- School of Chemical Engineering, Northwest University, Xi'an, PR China; Engineering Research Center of Western Resource Innovation Medicine Green Intelligent Manufacturing, Ministry of Education of the People's Republic of China, PR China.
| |
Collapse
|
10
|
de Paula Meirelles G, Fabris AL, Ferreira Dos Santos K, Costa JL, Yonamine M. Green Analytical Toxicology for the Determination of Cocaine Metabolites. J Anal Toxicol 2023; 46:965-978. [PMID: 35022727 DOI: 10.1093/jat/bkac005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 01/26/2023] Open
Abstract
Brazil is the third largest contributor to Green Analytical Chemistry, and there is significant participation of toxicologists in the development and improvement of environmental techniques. Currently, toxicologists have their own strategies and guidelines to promote the reduction/replacement or elimination of solvents, reduce the impacts of derivatization and save time, among other objectives, due to the peculiarities of toxicological analysis. Thus, this review aims to propose the concept of Green Analytical Toxicology and conduct a discussion about its relevance and applications specifically in forensic toxicology, using the microextraction methods developed for the determination of cocaine and its metabolites as examples.
Collapse
Affiliation(s)
- Gabriela de Paula Meirelles
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo (USP), Av. Professor Lineu Prestes, 580, 13B, Sao Paulo, SP 05508-000, Brazil
| | - André Luis Fabris
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo (USP), Av. Professor Lineu Prestes, 580, 13B, Sao Paulo, SP 05508-000, Brazil
| | - Karina Ferreira Dos Santos
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo (USP), Av. Professor Lineu Prestes, 580, 13B, Sao Paulo, SP 05508-000, Brazil
| | - José Luiz Costa
- Campinas Poison Control Center, University of Campinas (UNICAMP), R. Tessália Vieira de Camargo, 126, Campinas, SP 13083-859, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), R. Cândido Portinari, 200, Campinas, SP 13083-871, Brazil
| | - Mauricio Yonamine
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo (USP), Av. Professor Lineu Prestes, 580, 13B, Sao Paulo, SP 05508-000, Brazil
| |
Collapse
|
11
|
Sampaio NMFM, de Oliveira BH, Riegel-Vidotti IC, da Silva BJG. Polyvinyl alcohol-based hydrogel sorbent for extraction of parabens in human milk samples by in-tube SPME–LC–UV. Anal Bioanal Chem 2022:10.1007/s00216-022-04481-x. [PMID: 36525120 DOI: 10.1007/s00216-022-04481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
In this work, we developed an in-tube solid-phase microextraction (SPME) device consisting of a fused silica capillary modified with a polyvinyl alcohol (PVOH) hydrogel. Methylparaben, ethylparaben, propylparaben, and butylparaben were determined in human milk samples by using the in-tube SPME device coupled with liquid chromatography with spectrophotometric detection in the ultraviolet region (LC-UV). The inner surface of the fused silica capillary was silanized to allow covalent modification with the PVOH-hydrogel, using glutaraldehyde as cross-linking agent. The developed device was used up to 250 times with no reduction in the analytes' peak areas or carryover effect, besides having a low production cost. The human milk samples showed a significant matrix effect for parabens with higher logKo/w. Low limits of quantification (LLOQ) between 10.0 and 15.0 ng mL-1 were obtained with RSD values in the range of 1.18 to 18.3%. For the intra- and inter-day assays, RSD values from 5.6 to 16.5% and accuracy from 74.5 to 128.8% were achieved. The PVOH-based hydrogel sorbent allowed the use of water as desorption solvent, eliminating the use of organic solvents, which follows the principles of green chemistry. The results showed a great application potential of the PVOH-based hydrogel sorbent for the extraction of organic compounds from high-complexity samples.
Collapse
|
12
|
Zhang S, Ange KU, Ali N, Yang Y, Khan A, Ali F, Sajid M, Tian CT, Bilal M. Analytical perspective and environmental remediation potentials of magnetic composite nanosorbents. CHEMOSPHERE 2022; 304:135312. [PMID: 35709848 DOI: 10.1016/j.chemosphere.2022.135312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The synthesis and application of magnetic nanosorbents to remove emerging pollutants have been considered the best environmental remediation and sustainability option. Incorporating magnetism shortens the treatment time and allows the sorbent to be recovered quickly using external magnetic with many cycles. The implementation of magnetic solid-phase extraction (MSPE) using magnetic materials of different shapes, sizes, and surface morphology can be a valuable tool in applying materials to prepare analytical samples. In MSPE applications, materials with strong magnetic domain can be used as precursors for constructing magnetic composite as a promising sorbent. This article focuses on the most recent and exceptional applications of magnetic adsorbents for preconcentration and removal purposes. Magnetic adsorbents, such as nanoparticles (NPs), foam, sponges, nanocomposites, hydrogels, and beads with multifunctional attributes have been comprehensively studied in terms of preparation procedures, limitations, advantages, and interactions between pollutants and magnetic composites. The role of magnetic sorbents in sample preparation methods, such as simple solid-phase extraction and microextraction, as well as sorptive extraction using a stir bar, was also examined. The use of magnetic adsorbents with analytical techniques, such as solid-phase extraction and solid-phase microextraction improves the method for preparing samples concerning the influential role of magnetic adsorbents. Towards the end, promising features and future outlook are also directed.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Kunda Umuhoza Ange
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Chen Tian Tian
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
13
|
Razlansari M, Ulucan-Karnak F, Kahrizi M, Mirinejad S, Sargazi S, Mishra S, Rahdar A, Díez-Pascual AM. Nanobiosensors for detection of opioids: A review of latest advancements. Eur J Pharm Biopharm 2022; 179:79-94. [PMID: 36067954 DOI: 10.1016/j.ejpb.2022.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/28/2022] [Accepted: 08/27/2022] [Indexed: 11/28/2022]
Abstract
Opioids are generally used as analgesics in pain treatment. Like many drugs, they have side effects when overdosing and causeaddiction problems.Illegal drug use and misuse are becoming a major concern for authorities worldwide; thus, it is critical to have precise procedures for detecting them in confiscated samples, biological fluids, and wastewaters. Routine blood and urine tests are insufficient for highly selective determinations and can cause cross-reactivities. For this purpose, nanomaterial-based biosensors are great tools to determine opioid intakes, continuously monitoring the drugs with high sensitivity and selectivity even at very low sample volumes.Nanobiosensors generally comprise a signal transducer nanostructure in which a biological recognition molecule is immobilized onto its surface. Lately, nanobiosensors have been extensively utilized for the molecular detection of opioids. The usage of novel nanomaterials in biosensing has impressed biosensing studies. Nanomaterials with a large surface area have been used to develop nanobiosensors with shorter reaction times and higher sensitivity than conventional biosensors. Colorimetric and fluorescence sensing methods are two kinds of optical sensor systems based on nanomaterials. Noble metal nanoparticles (NPs), such as silver and gold, are the most frequently applied nanomaterials in colorimetric techniques, owing to their unique optical feature of surface plasmon resonance. Despite the progress of an extensive spectrum of nanobiosensors over the last two decades, the future purpose of low-cost, high-throughput, multiplexed clinical diagnostic lab-on-a-chip instruments has yet to be fulfilled. In this review, a concise overview of opioids (such as tramadol and buprenorphine, oxycodone and fentanyl, methadone and morphine) is provided as well as information on their classification, mechanism of action, routine tests, and new opioid sensing technologies based on various NPs. In order to highlight the trend of nanostructure development in biosensor applications for opioids, recent literature examples with the nanomaterial type, target molecules, and limits of detection are discussed.
Collapse
Affiliation(s)
- Mahtab Razlansari
- Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran.
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Institute of Health Sciences, Ege University, İzmir 35100, Turkey.
| | | | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran.
| | - Sachin Mishra
- NDAC Centre, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea; RFIC Lab, Department of Electronic Engineering, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P.O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
14
|
Song Y, Zhang Y, Wang L, Hu C, Liu ZF, Feng XS, He ZW. Cocaine in Different Matrices: Recent Updates on Pretreatment and Detection Techniques. Crit Rev Anal Chem 2022; 54:529-548. [PMID: 35708993 DOI: 10.1080/10408347.2022.2087467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cocaine abuse has attracted increased attention in the recent past since it can cause addiction and great harm to the normal human body. Due to cocaine exists in various complex matrices, the detection of it in different matrices is helpful to prevent abuse. It is thus imperative to establish efficient and accurate methods for pretreatment and detection of cocaine in different samples. The present study provides a summary of the research progress of cocaine pretreatment methods (such as different microextraction methods, QuEChERS, and solid phase extraction based on novel extraction materials) and detection approaches (such as liquid chromatography coupled with different detectors, gas chromatography and related techniques, capillary electrophoresis and sensors). A comparison of the pros and cons of different pretreatment and detection methods is presented. The findings of this study will provide a reference for selection of the most suitable cocaine pretreatment and detection techniques.
Collapse
Affiliation(s)
- Yang Song
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Ling Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Hu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| | - Zhen-Wei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Cruz JC, Souza IDD, Lanças FM, Queiroz MEC. Current advances and applications of online sample preparation techniques for miniaturized liquid chromatography systems. J Chromatogr A 2022; 1668:462925. [DOI: 10.1016/j.chroma.2022.462925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 10/19/2022]
|
16
|
Banan K, Ghorbani-Bidkorbeh F, Afsharara H, Hatamabadi D, Landi B, Keçili R, Sellergren B. Nano-sized magnetic core-shell and bulk molecularly imprinted polymers for selective extraction of amiodarone from human plasma. Anal Chim Acta 2022; 1198:339548. [DOI: 10.1016/j.aca.2022.339548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 01/04/2023]
|
17
|
Morsi SMM, Abd El-Aziz ME, Mohamed HA. Smart polymers as molecular imprinted polymers for recognition of target molecules. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2042287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Samir M. M. Morsi
- Polymer and Pigments Department, National Research Centre, Dokki, Egypt
| | | | - Heba A. Mohamed
- Polymer and Pigments Department, National Research Centre, Dokki, Egypt
| |
Collapse
|
18
|
Simplified miniaturized analytical set-up based on molecularly imprinted polymer directly coupled to UV detection for the determination of benzoylecgonine in urine. Talanta 2021; 233:122611. [PMID: 34215095 DOI: 10.1016/j.talanta.2021.122611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023]
Abstract
A simple, selective, and sensitive method involving a miniaturized solid phase extraction step based on a monolithic molecularly imprinted polymer (MIP) directly coupled on-line to UV detection was developed for the determination of benzoylecgonine (BZE) in complex biological samples. Monolithic MIPs were prepared into 100 μm internal diameter fused-silica capillaries either by thermal or photopolymerization. While leading to similar selectivities with respect to BZE, photopolymerization has made it possible to produce monoliths of different lengths that can be adapted to the targeted miniaturized application. The homogeneous morphology of these monolithic MIPs was evaluated by scanning electron microscopy prior to measuring their permeability. Their selectivity was evaluated leading to imprinting factors of 2.7 ± 0.1 for BZE and 4.0 ± 0.6 for cocaine (selected as template for the MIP synthesis) with polymers resulting from three independent syntheses, showing both the high selectivity of the MIPs and the reproducibility of their synthesis. After selecting the appropriate capillary length and the set-up configuration and optimizing the extraction protocol to promote selectivity, the extraction of BZE present in human urine samples spiked at 150, 250, and 500 ng mL-1 was successfully carried out on the monolithic MIP and coupled directly on-line with UV detection. The very clean-baseline of the resulting chromatograms revealing only the peak of interest for BZE illustrated the high selectivity brought by the monolithic MIP. Limits of detection and quantification of 56.4 ng mL-1 and 188.0 ng mL-1 were achieved in urine samples, respectively. It is therefore possible to achieve analytical threshold in accordance with the legislation on BZE detection in urine without the need for an additional chromatographic separation.
Collapse
|
19
|
Martín-Esteban A. Green molecularly imprinted polymers for sustainable sample preparation. J Sep Sci 2021; 45:233-245. [PMID: 34562063 DOI: 10.1002/jssc.202100581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/18/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022]
Abstract
The use of molecularly imprinted polymers in sample preparation as selective sorbent materials has received great attention during the last years leading to analytical methods with unprecedented selectivity. However, with the progressive implementation of Green Analytical Chemistry principles, it is necessary to critically review the greenness of synthesis and further use of molecularly imprinted polymers in sample preparation. Accordingly, in the present review, the different steps and strategies for the preparation of molecularly imprinted polymers, the used reagents, as well as their incorporation to microextraction techniques are reviewed from a green perspective and recent alternatives to make the use of molecularly imprinted polymers more sustainable are provided.
Collapse
Affiliation(s)
- Antonio Martín-Esteban
- Departamento de Medio Ambiente y Agronomía, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| |
Collapse
|
20
|
Faraji M, Shirani M, Rashidi-Nodeh H. The recent advances in magnetic sorbents and their applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116302] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
21
|
Lamaoui A, Palacios-Santander JM, Amine A, Cubillana-Aguilera L. Molecularly imprinted polymers based on polydopamine: Assessment of non-specific adsorption. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Mulder HA, Halquist MS. Growing Trends in the Efficient and Selective Extraction of Compounds in Complex Matrices Using Molecularly Imprinted Polymers and Their Relevance to Toxicological Analysis. J Anal Toxicol 2021; 45:312-321. [PMID: 32672824 DOI: 10.1093/jat/bkaa079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 11/12/2022] Open
Abstract
In the world of forensic and clinical toxicology, proper sample preparation is one of the key steps in identification and quantification of drugs of abuse. Traditional extraction methods such as solid-phase extraction and liquid-liquid extraction are often laborious and nonselective for the target analytes being measured. Molecularly imprinted polymers (MIPs) can be synthesized for sample extraction and their versatility allows the polymer to be employed in off-line, benchtop extractions or on/in-line instrument extractions, offering a faster and more selective sample preparation without the risk of interfering matrix effects. This review details the synthesis and applications of MIP materials for the extraction of drug compounds from biological matrices in publications from 1994 to today.
Collapse
Affiliation(s)
- Haley A Mulder
- Department of Pharmaceutics, Virginia Commonwealth University, School of Pharmacy, 410 N 12th St, Richmond, VA 23298, USA
| | - Matthew S Halquist
- Department of Pharmaceutics, Virginia Commonwealth University, School of Pharmacy, 410 N 12th St, Richmond, VA 23298, USA
| |
Collapse
|
23
|
Janczura M, Luliński P, Sobiech M. Imprinting Technology for Effective Sorbent Fabrication: Current State-of-Art and Future Prospects. MATERIALS 2021; 14:ma14081850. [PMID: 33917896 PMCID: PMC8068262 DOI: 10.3390/ma14081850] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022]
Abstract
In the last 10 years, we have witnessed an extensive development of instrumental techniques in analytical methods for determination of various molecules and ions at very low concentrations. Nevertheless, the presence of interfering components of complex samples hampered the applicability of new analytical strategies. Thus, additional sample pre-treatment steps were proposed to overcome the problem. Solid sorbents were used for clean-up samples but insufficient selectivity of commercial materials limited their utility. Here, the application of molecularly imprinted polymers (MIPs) or ion-imprinted polymers (IIPs) in the separation processes have recently attracted attention due to their many advantages, such as high selectivity, robustness, and low costs of the fabrication process. Bulk or monoliths, microspheres and core-shell materials, magnetically susceptible and stir-bar imprinted materials are applicable to different modes of solid-phase extraction to determine target analytes and ions in a very complex environment such as blood, urine, soil, or food. The capability to perform a specific separation of enantiomers is a substantial advantage in clinical analysis. The ion-imprinted sorbents gained interest in trace analysis of pollutants in environmental samples. In this review, the current synthetic approaches for the preparation of MIPs and IIPs are comprehensively discussed together with a detailed characterization of respective materials. Furthermore, the use of sorbents in environmental, food, and biomedical analyses will be emphasized to point out current limits and highlight the future prospects for further development in the field.
Collapse
|
24
|
Cubuk H, Ozbil M, Cakir Hatir P. Computational analysis of functional monomers used in molecular imprinting for promising COVID-19 detection. COMPUT THEOR CHEM 2021; 1199:113215. [PMID: 33747754 PMCID: PMC7960027 DOI: 10.1016/j.comptc.2021.113215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
Today, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has recently caused a severe outbreak worldwide. There are still several challenges in COVID-19 diagnoses, such as limited reagents, equipment, and long turnaround times. In this research, we propose to design molecularly imprinted polymers as a novel approach for the rapid and accurate detection of SARS-CoV-2. For this purpose, we investigated molecular interactions between the target spike protein, receptor-binding domain of the virus, and the common functional monomers used in molecular imprinting by a plethora of computational analyses; sequence analysis, molecular docking, and molecular dynamics (MD) simulations. Our results demonstrated that AMPS and IA monomers gave promising results on the SARS-CoV-2 specific TEIYQAGST sequence for further analysis. Therefore, we propose an epitope approach-based synthesis route for specific recognition of SARS-CoV-2 by using AMPS and IA as functional monomers and the peptide fragment of the TEIYQAGST sequence as a template molecule.
Collapse
Affiliation(s)
- Hasan Cubuk
- Istanbul Arel University, Department of Biomedical Engineering, Bioinspired Functional Polymers and Nanomaterials Laboratory, 34537 Buyukcekmece, Istanbul, Turkey
| | - Mehmet Ozbil
- Gebze Technical University, Institute of Biotechnology, 41400 Gebze, Kocaeli, Turkey
| | - Pinar Cakir Hatir
- Istanbul Arel University, Department of Biomedical Engineering, Bioinspired Functional Polymers and Nanomaterials Laboratory, 34537 Buyukcekmece, Istanbul, Turkey
| |
Collapse
|
25
|
Roberg-Larsen H, Wilson SR, Lundanes E. Recent advances in on-line upfront devices for sensitive bioanalytical nano LC methods. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Bouvarel T, Delaunay N, Pichon V. Molecularly imprinted polymers in miniaturized extraction and separation devices. J Sep Sci 2021; 44:1727-1751. [DOI: 10.1002/jssc.202001223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas Bouvarel
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation—UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS PSL University Paris 75005 France
| | - Nathalie Delaunay
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation—UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS PSL University Paris 75005 France
| | - Valérie Pichon
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation—UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS PSL University Paris 75005 France
- Sorbonne Université Paris 75005 France
| |
Collapse
|
27
|
Haixi T, Li H, Lin M, Kegang L. Preparation of a pinoresinol diglucoside imprinted polymer using metal organic frame as the matrix for extracting target compound from Eucommia ulmoides. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2020.1869258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tian Haixi
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
- National and Local United Engineering Laboratory of Integrative Utilization of Eucommia Ulmoides, Jishou University, Jishou, China
| | - Mao Lin
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Li Kegang
- National and Local United Engineering Laboratory of Integrative Utilization of Eucommia Ulmoides, Jishou University, Jishou, China
| |
Collapse
|
28
|
Díaz-Liñán M, García-Valverde M, Lucena R, Cárdenas S, López-Lorente A. Dual-template molecularly imprinted paper for the determination of drugs of abuse in saliva samples by direct infusion mass spectrometry. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105686] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Xu H, Gao Y, Tao Q, Li A, Liu Z, Jiang Y, Liu H, Yang R, Liu Y. Synthesizing a surface-imprinted polymer based on the nanoreactor SBA-15 for optimizing the adsorption of salicylic acid from aqueous solution by response surface methodology. NEW J CHEM 2021. [DOI: 10.1039/d1nj00016k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The molecularly imprinted polymer prepared on the nanoreactor SBA-15 displayed excellent ordered mesoporous structure and superior adsorption property for salicylic acid.
Collapse
Affiliation(s)
- Haiqing Xu
- Key Laboratory of Regional Resource Exploitation and Medicinal Research
- Huaiyin Institute of Technology
- Huai'an 223003
- P. R. China
| | - Yuhang Gao
- Key Laboratory of Regional Resource Exploitation and Medicinal Research
- Huaiyin Institute of Technology
- Huai'an 223003
- P. R. China
| | - Qiantu Tao
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Aiping Li
- Key Laboratory of Regional Resource Exploitation and Medicinal Research
- Huaiyin Institute of Technology
- Huai'an 223003
- P. R. China
| | - Zhanchao Liu
- School of Materials Science and Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| | - Yinhua Jiang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Hongwei Liu
- College of Civil Engineering
- Yancheng Institute of Technology
- Yancheng
- China
| | - Rongguang Yang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| |
Collapse
|
30
|
A micro-solid phase extraction device to prepare a molecularly imprinted porous monolith in a facile mode for fast protein separation. J Chromatogr A 2020; 1627:461415. [DOI: 10.1016/j.chroma.2020.461415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 01/08/2023]
|
31
|
Aydoğan C, Rigano F, Krčmová LK, Chung DS, Macka M, Mondello L. Miniaturized LC in Molecular Omics. Anal Chem 2020; 92:11485-11497. [DOI: 10.1021/acs.analchem.0c01436] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cemil Aydoğan
- Biochemistry Division, Department of Chemistry, Bingöl University, Bingöl 12000,Turkey
- Department of Food Engineering, Bingöl University, Bingöl 12000,Turkey
| | - Francesca Rigano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, Hradec Králové 500 05, Czech Republic
- Department of Clinical Biochemistry and Diagnostics, University Hospital, Sokolská 581, Hradec Králové 500 05, Czech Republic
| | - Doo Soo Chung
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Mirek Macka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00Brno, Czech Republic
- School of Natural Sciences and Australian Centre for Research on Separation Science (ACROSS), University of Tasmania, Private Bag 75, Hobart 7001, Australia
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy
- Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, Rome I-00128, Italy
- BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina I-98168, Italy
| |
Collapse
|
32
|
Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, Wang X, Li B, Chen L. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115923] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Innovations in Extractive Phases for In-Tube Solid-Phase Microextraction Coupled to Miniaturized Liquid Chromatography: A Critical Review. Molecules 2020; 25:molecules25102460. [PMID: 32466305 PMCID: PMC7287690 DOI: 10.3390/molecules25102460] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past years, a great effort has been devoted to the development of new sorbents that can be used to pack or to coat extractive capillaries for in-tube solid-phase microextraction (IT-SPME). Many of those efforts have been focused on the preparation of capillaries for miniaturized liquid chromatography (LC) due to the reduced availability of capillary columns with appropriate dimensions for this kind of system. Moreover, many of the extractive capillaries that have been used for IT-SPME so far are segments of open columns from the gas chromatography (GC) field, but the phase nature and dimensions are very limited. In particular, polar compounds barely interact with stationary GC phases. Capillary GC columns may also be unsuitable when highly selective extractions are needed. In this work, we provide an overview of the extractive capillaries that have been specifically developed for capillary LC (capLC) and nano LC (nanoLC) to enhance the overall performance of the IT-SPME, the chromatographic separation, and the detection. Different monolithic polymers, such as silica C18 and C8 polymers, molecularly imprinted polymers (MIPs), polymers functionalized with antibodies, and polymers reinforced with different types of carbon nanotubes, metal, and metal oxide nanoparticles (including magnetic nanoparticles), and restricted access materials (RAMs) will be presented and critically discussed.
Collapse
|
34
|
Saylan Y, Erdem Ö, Inci F, Denizli A. Advances in Biomimetic Systems for Molecular Recognition and Biosensing. Biomimetics (Basel) 2020; 5:biomimetics5020020. [PMID: 32408710 PMCID: PMC7345028 DOI: 10.3390/biomimetics5020020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding the fundamentals of natural design, structure, and function has pushed the limits of current knowledge and has enabled us to transfer knowledge from the bench to the market as a product. In particular, biomimicry―one of the crucial strategies in this respect―has allowed researchers to tackle major challenges in the disciplines of engineering, biology, physics, materials science, and medicine. It has an enormous impact on these fields with pivotal applications, which are not limited to the applications of biocompatible tooth implants, programmable drug delivery systems, biocompatible tissue scaffolds, organ-on-a-chip systems, wearable platforms, molecularly imprinted polymers (MIPs), and smart biosensors. Among them, MIPs provide a versatile strategy to imitate the procedure of molecular recognition precisely, creating structural fingerprint replicas of molecules for biorecognition studies. Owing to their affordability, easy-to-fabricate/use features, stability, specificity, and multiplexing capabilities, host-guest recognition systems have largely benefitted from the MIP strategy. This review article is structured with four major points: (i) determining the requirement of biomimetic systems and denoting multiple examples in this manner; (ii) introducing the molecular imprinting method and reviewing recent literature to elaborate the power and impact of MIPs on a variety of scientific and industrial fields; (iii) exemplifying the MIP-integrated systems, i.e., chromatographic systems, lab-on-a-chip systems, and sensor systems; and (iv) closing remarks.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey;
| | - Özgecan Erdem
- Department of Biology, Hacettepe University, 06800 Ankara, Turkey;
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey;
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey;
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey;
- Correspondence:
| |
Collapse
|
35
|
Affiliation(s)
- Valérie Pichon
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France.,Sorbonne Université , 75005 Paris , France
| | - Nathalie Delaunay
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France
| | - Audrey Combès
- Laboratoire des Sciences Analytiques, Bioanalytiques et Miniaturisation-UMR Chimie Biologie Innovation 8231, ESPCI Paris, CNRS , PSL* Research University , 10 rue Vauquelin , 75005 Paris , France
| |
Collapse
|