1
|
Rajendran K, Krishnan UM. Biomarkers in Alzheimer's disease. Clin Chim Acta 2024; 562:119857. [PMID: 38986861 DOI: 10.1016/j.cca.2024.119857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is among the most common neurodegenerative disorders. AD is characterized by deposition of neurofibrillary tangles and amyloid plaques, leading to associated secondary pathologies, progressive neurodegeneration, and eventually death. Currently used diagnostics are largely image-based, lack accuracy and do not detect early disease, ie, prior to onset of symptoms, thus limiting treatment options and outcomes. Although biomarkers such as amyloid-β and tau protein in cerebrospinal fluid have gained much attention, these are generally limited to disease progression. Unfortunately, identification of biomarkers for early and accurate diagnosis remains a challenge. As such, body fluids such as sweat, serum, saliva, mucosa, tears, and urine are under investigation as alternative sources for biomarkers that can aid in early disease detection. This review focuses on biomarkers identified through proteomics in various biofluids and their potential for early and accurate diagnosis of AD.
Collapse
Affiliation(s)
- Kayalvizhi Rajendran
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Arts, Sciences, Humanities, & Education, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
2
|
Ranasinghe JC, Wang Z, Huang S. Unveiling brain disorders using liquid biopsy and Raman spectroscopy. NANOSCALE 2024; 16:11879-11913. [PMID: 38845582 PMCID: PMC11290551 DOI: 10.1039/d4nr01413h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Brain disorders, including neurodegenerative diseases (NDs) and traumatic brain injury (TBI), present significant challenges in early diagnosis and intervention. Conventional imaging modalities, while valuable, lack the molecular specificity necessary for precise disease characterization. Compared to the study of conventional brain tissues, liquid biopsy, which focuses on blood, tear, saliva, and cerebrospinal fluid (CSF), also unveils a myriad of underlying molecular processes, providing abundant predictive clinical information. In addition, liquid biopsy is minimally- to non-invasive, and highly repeatable, offering the potential for continuous monitoring. Raman spectroscopy (RS), with its ability to provide rich molecular information and cost-effectiveness, holds great potential for transformative advancements in early detection and understanding the biochemical changes associated with NDs and TBI. Recent developments in Raman enhancement technologies and advanced data analysis methods have enhanced the applicability of RS in probing the intricate molecular signatures within biological fluids, offering new insights into disease pathology. This review explores the growing role of RS as a promising and emerging tool for disease diagnosis in brain disorders, particularly through the analysis of liquid biopsy. It discusses the current landscape and future prospects of RS in the diagnosis of brain disorders, highlighting its potential as a non-invasive and molecularly specific diagnostic tool.
Collapse
Affiliation(s)
- Jeewan C Ranasinghe
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| | - Ziyang Wang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| | - Shengxi Huang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
3
|
Lee S, Dang H, Moon JI, Kim K, Joung Y, Park S, Yu Q, Chen J, Lu M, Chen L, Joo SW, Choo J. SERS-based microdevices for use as in vitro diagnostic biosensors. Chem Soc Rev 2024; 53:5394-5427. [PMID: 38597213 DOI: 10.1039/d3cs01055d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Advances in surface-enhanced Raman scattering (SERS) detection have helped to overcome the limitations of traditional in vitro diagnostic methods, such as fluorescence and chemiluminescence, owing to its high sensitivity and multiplex detection capability. However, for the implementation of SERS detection technology in disease diagnosis, a SERS-based assay platform capable of analyzing clinical samples is essential. Moreover, infectious diseases like COVID-19 require the development of point-of-care (POC) diagnostic technologies that can rapidly and accurately determine infection status. As an effective assay platform, SERS-based bioassays utilize SERS nanotags labeled with protein or DNA receptors on Au or Ag nanoparticles, serving as highly sensitive optical probes. Additionally, a microdevice is necessary as an interface between the target biomolecules and SERS nanotags. This review aims to introduce various microdevices developed for SERS detection, available for POC diagnostics, including LFA strips, microfluidic chips, and microarray chips. Furthermore, the article presents research findings reported in the last 20 years for the SERS-based bioassay of various diseases, such as cancer, cardiovascular diseases, and infectious diseases. Finally, the prospects of SERS bioassays are discussed concerning the integration of SERS-based microdevices and portable Raman readers into POC systems, along with the utilization of artificial intelligence technology.
Collapse
Affiliation(s)
- Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Hajun Dang
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Joung-Il Moon
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Kihyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Sohyun Park
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Jiadong Chen
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Mengdan Lu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China.
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, South Korea.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
4
|
Tapia-Arellano A, Cabrera P, Cortés-Adasme E, Riveros A, Hassan N, Kogan MJ. Tau- and α-synuclein-targeted gold nanoparticles: applications, opportunities, and future outlooks in the diagnosis and therapy of neurodegenerative diseases. J Nanobiotechnology 2024; 22:248. [PMID: 38741193 DOI: 10.1186/s12951-024-02526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The use of nanomaterials in medicine offers multiple opportunities to address neurodegenerative disorders such as Alzheimer's and Parkinson's disease. These diseases are a significant burden for society and the health system, affecting millions of people worldwide without sensitive and selective diagnostic methodologies or effective treatments to stop their progression. In this sense, the use of gold nanoparticles is a promising tool due to their unique properties at the nanometric level. They can be functionalized with specific molecules to selectively target pathological proteins such as Tau and α-synuclein for Alzheimer's and Parkinson's disease, respectively. Additionally, these proteins are used as diagnostic biomarkers, wherein gold nanoparticles play a key role in enhancing their signal, even at the low concentrations present in biological samples such as blood or cerebrospinal fluid, thus enabling an early and accurate diagnosis. On the other hand, gold nanoparticles act as drug delivery platforms, bringing therapeutic agents directly into the brain, improving treatment efficiency and precision, and reducing side effects in healthy tissues. However, despite the exciting potential of gold nanoparticles, it is crucial to address the challenges and issues associated with their use in the medical field before they can be widely applied in clinical settings. It is critical to ensure the safety and biocompatibility of these nanomaterials in the context of the central nervous system. Therefore, rigorous preclinical and clinical studies are needed to assess the efficacy and feasibility of these strategies in patients. Since there is scarce and sometimes contradictory literature about their use in this context, the main aim of this review is to discuss and analyze the current state-of-the-art of gold nanoparticles in relation to delivery, diagnosis, and therapy for Alzheimer's and Parkinson's disease, as well as recent research about their use in preclinical, clinical, and emerging research areas.
Collapse
Affiliation(s)
- Andreas Tapia-Arellano
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Santiago, Chile.
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
- Millenium Nucleus in NanoBioPhysics, Valparaíso, Chile.
| | - Pablo Cabrera
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Elizabeth Cortés-Adasme
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Ana Riveros
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile
| | - Natalia Hassan
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
- Millenium Nucleus in NanoBioPhysics, Valparaíso, Chile.
| | - Marcelo J Kogan
- Facultad de Cs. Qcas. y Farmacéuticas, Universidad de Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDis), Santiago, Chile.
| |
Collapse
|
5
|
Kim YJ, Rho WY, Park SM, Jun BH. Optical nanomaterial-based detection of biomarkers in liquid biopsy. J Hematol Oncol 2024; 17:10. [PMID: 38486294 PMCID: PMC10938695 DOI: 10.1186/s13045-024-01531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
Liquid biopsy, which is a minimally invasive procedure as an alternative to tissue biopsy, has been introduced as a new diagnostic/prognostic measure. By screening disease-related markers from the blood or other biofluids, it promises early diagnosis, timely prognostication, and effective treatment of the diseases. However, there will be a long way until its realization due to its conceptual and practical challenges. The biomarkers detected by liquid biopsy, such as circulating tumor cell (CTC) and circulating tumor DNA (ctDNA), are extraordinarily rare and often obscured by an abundance of normal cellular components, necessitating ultra-sensitive and accurate detection methods for the advancement of liquid biopsy techniques. Optical biosensors based on nanomaterials open an important opportunity in liquid biopsy because of their enhanced sensing performance with simple and practical properties. In this review article, we summarized recent innovations in optical nanomaterials to demonstrate the sensitive detection of protein, peptide, ctDNA, miRNA, exosome, and CTCs. Each study prepares the optical nanomaterials with a tailored design to enhance the sensing performance and to meet the requirements of each biomarker. The unique optical characteristics of metallic nanoparticles (NPs), quantum dots, upconversion NPs, silica NPs, polymeric NPs, and carbon nanomaterials are exploited for sensitive detection mechanisms. These recent advances in liquid biopsy using optical nanomaterials give us an opportunity to overcome challenging issues and provide a resource for understanding the unknown characteristics of the biomarkers as well as the mechanism of the disease.
Collapse
Affiliation(s)
- Young Jun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Chonju, 54896, Republic of Korea
| | - Seung-Min Park
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
6
|
Chen C, Qi J, Li Y, Li D, Wu L, Li R, Chen Q, Sun N. Applications of Raman spectroscopy in the diagnosis and monitoring of neurodegenerative diseases. Front Neurosci 2024; 18:1301107. [PMID: 38370434 PMCID: PMC10869569 DOI: 10.3389/fnins.2024.1301107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Raman scattering is an inelastic light scattering that occurs in a manner reflective of the molecular vibrations of molecular structures and chemical conditions in a given sample of interest. Energy changes in the scattered light can be assessed to determine the vibration mode and associated molecular and chemical conditions within the sample, providing a molecular fingerprint suitable for sample identification and characterization. Raman spectroscopy represents a particularly promising approach to the molecular analysis of many diseases owing to clinical advantages including its instantaneous nature and associated high degree of stability, as well as its ability to yield signal outputs corresponding to a single molecule type without any interference from other molecules as a result of its narrow peak width. This technology is thus ideally suited to the simultaneous assessment of multiple analytes. Neurodegenerative diseases represent an increasingly significant threat to global public health owing to progressive population aging, imposing a severe physical and social burden on affected patients who tend to develop cognitive and/or motor deficits beginning between the ages of 50 and 70. Owing to a relatively limited understanding of the etiological basis for these diseases, treatments are lacking for the most common neurodegenerative diseases, which include Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. The present review was formulated with the goal of briefly explaining the principle of Raman spectroscopy and discussing its potential applications in the diagnosis and evaluation of neurodegenerative diseases, with a particular emphasis on the research prospects of this novel technological platform.
Collapse
Affiliation(s)
- Chao Chen
- Central Laboratory, Liaocheng People’s Hospital and Liaocheng School of Clinical Medicine, Shandong First Medical University, Liaocheng, China
| | - Jinfeng Qi
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Ying Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Ding Li
- Department of Clinical Laboratory, Liaocheng People’s Hospital and Liaocheng School of Clinical Medicine, Shandong First Medical University, Liaocheng, China
| | - Lihong Wu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Ruihua Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Qingfa Chen
- Institute of Tissue Engineering and Regenerative Medicine, Liaocheng People’s Hospital and Liaocheng School of Clinical Medicine, Shandong First Medical University, Liaocheng, China
- Research Center of Basic Medicine, Jinan Central Hospital, Jinan, China
| | - Ning Sun
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| |
Collapse
|
7
|
Rahman MM, Bhuiyan NH, Park M, Uddin MJ, Jin GJ, Shim JS. Lithography-free interdigitated electrodes by trench-filling patterning on polymer substrate for Alzheimer's disease detection. Biosens Bioelectron 2024; 244:115803. [PMID: 37956638 DOI: 10.1016/j.bios.2023.115803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023]
Abstract
Microelectrodes have played a crucial role in electrochemistry for the last few decades. However, the conventional lithographic processes, the key players in fabrication, are nonetheless technologically challenging, pricey, and lack reproducibility. In this work has developed a novel and low-cost patterned-replication fabrication technology for interdigitated electrode array (IDA) electrodes on the polymer substrate. Conventional UV-lithography has been utilized to fabricate the nickel IDA electrode pattern as a master mold on the stainless-steel substrate, which was replicated onto the polymer substrate by the hot-emboss technique. Then, gold was deposited on the replicated wafer by electron beam evaporation, and finally adhesive tape lift-off was used to obtain the gold IDA electrode. The fabricated IDA electrode was applied for electrochemical detection of various p-aminophenol (PAP) concentrations as a representative biomarker with a detection limit of 0.01 nM. Finally, different levels of amyloid beta 42 (Aß42) and amyloid beta aggregated (Aß Agg.), two Alzheimer's disease (AD) biomarkers, were measured using the developed IDA electrode via e-ELISA using enzyme by-products PAP. While quantified, the proposed IDA electrode successfully detects Aß42 and Aß Agg. with the lower detection limit (LOD) of 3.9 and 7.81 pg/ml, respectively.
Collapse
Affiliation(s)
- M Mahabubur Rahman
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea
| | - Nabil H Bhuiyan
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea
| | - MinJun Park
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea
| | - M Jalal Uddin
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea; NanoGenesis Inc., 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897, Republic of Korea
| | - Gyeong J Jin
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea
| | - Joon S Shim
- Bio IT Convergence Laboratory, Department of Electronic Convergence Engineering, KwangWoon University, Seoul, 01897, Republic of Korea; NanoGenesis Inc., 20 Kwangwoon-ro, Nowon-gu, Seoul, 01897, Republic of Korea.
| |
Collapse
|
8
|
Elsheikh S, Coles NP, Achadu OJ, Filippou PS, Khundakar AA. Advancing Brain Research through Surface-Enhanced Raman Spectroscopy (SERS): Current Applications and Future Prospects. BIOSENSORS 2024; 14:33. [PMID: 38248410 PMCID: PMC10813143 DOI: 10.3390/bios14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has recently emerged as a potent analytical technique with significant potential in the field of brain research. This review explores the applications and innovations of SERS in understanding the pathophysiological basis and diagnosis of brain disorders. SERS holds significant advantages over conventional Raman spectroscopy, particularly in terms of sensitivity and stability. The integration of label-free SERS presents promising opportunities for the rapid, reliable, and non-invasive diagnosis of brain-associated diseases, particularly when combined with advanced computational methods such as machine learning. SERS has potential to deepen our understanding of brain diseases, enhancing diagnosis, monitoring, and therapeutic interventions. Such advancements could significantly enhance the accuracy of clinical diagnosis and further our understanding of brain-related processes and diseases. This review assesses the utility of SERS in diagnosing and understanding the pathophysiological basis of brain disorders such as Alzheimer's and Parkinson's diseases, stroke, and brain cancer. Recent technological advances in SERS instrumentation and techniques are discussed, including innovations in nanoparticle design, substrate materials, and imaging technologies. We also explore prospects and emerging trends, offering insights into new technologies, while also addressing various challenges and limitations associated with SERS in brain research.
Collapse
Affiliation(s)
- Suzan Elsheikh
- National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington DL1 1HG, UK (N.P.C.); (O.J.A.); (P.S.F.)
| | - Nathan P. Coles
- National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington DL1 1HG, UK (N.P.C.); (O.J.A.); (P.S.F.)
| | - Ojodomo J. Achadu
- National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington DL1 1HG, UK (N.P.C.); (O.J.A.); (P.S.F.)
- School of Health and Life Science, Teesside University, Campus Heart, Southfield Rd, Middlesbrough TS1 3BX, UK
| | - Panagiota S. Filippou
- National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington DL1 1HG, UK (N.P.C.); (O.J.A.); (P.S.F.)
- School of Health and Life Science, Teesside University, Campus Heart, Southfield Rd, Middlesbrough TS1 3BX, UK
| | - Ahmad A. Khundakar
- National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington DL1 1HG, UK (N.P.C.); (O.J.A.); (P.S.F.)
- School of Health and Life Science, Teesside University, Campus Heart, Southfield Rd, Middlesbrough TS1 3BX, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
9
|
Kralova K, Kral M, Vrtelka O, Setnicka V. Comparative study of Raman spectroscopy techniques in blood plasma-based clinical diagnostics: A demonstration on Alzheimer's disease. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123392. [PMID: 37716043 DOI: 10.1016/j.saa.2023.123392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Nowadays, there are still many diseases with limited or no reliable methods of early diagnosis. A popular approach in clinical diagnostic research is Raman spectroscopy, as a relatively simple, cost-effective, and high-throughput method for searching for disease-specific alterations in the composition of blood plasma. However, the high variability of the experimental designs, targeted diseases, or statistical processing in the individual studies makes it challenging to compare and compile the results to critically assess the applicability of Raman spectroscopy in real clinical practice. This study aimed to compare data from a single series of blood plasma samples of patients with Alzheimer's disease and non-demented elderly controls obtained by four different techniques/experimental setups - Raman spectroscopy with excitation at 532 and 785 nm, Raman optical activity, and surface-enhanced Raman scattering spectroscopy. The obtained results showed that the spectra from each Raman spectroscopy technique contain different information about biomolecules of blood plasma or their conformation and may, therefore, offer diverse points of view on underlying biochemical processes of the disease. The classification models based on the datasets generated by the three non-chiroptical variants of Raman spectroscopy exhibited comparable diagnostic performance, all reaching an accuracy close to or equal to 80%. Raman optical activity achieved only 60% classification accuracy, suggesting its limited applicability in the specific case of Alzheimer's disease diagnostics. The described differences in the outputs of the four utilized techniques/setups of Raman spectroscopy imply that their choice may crucially affect the acquired results and thus should be approached carefully concerning the specific purpose.
Collapse
Affiliation(s)
- Katerina Kralova
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Martin Kral
- Department of Physical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Ondrej Vrtelka
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vladimir Setnicka
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
10
|
Wang L, Chang M, Ma P, Chen H, Ma S, Chen N, Zhang X. Self-assembly of Au nanocubes for ultrasensitive detection of Alzheimer's disease biomarkers by SERS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6385-6393. [PMID: 37968999 DOI: 10.1039/d3ay01667f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Since presently Alzheimer's disease (AD) is incurable, early diagnosis of AD is crucial. Aβ 1-42 and tau-441 proteins are promising core biomarkers for early diagnosis and early therapeutic intervention in AD. Here we constructed a surface-enhanced Raman spectroscopy (SERS) biosensor for highly sensitive quantitative detection of Aβ 1-42 and tau proteins by preparing gold nanocube (AuNC) superlattices through evaporation self-assembly. The results showed that the method has a wide response range (0.1-10 000 ng mL-1 and 0.01-1000 ng mL-1, respectively) and high sensitivity. The detection limits of Aβ1-42 and tau protein were 0.0416 ng mL-1 and 0.0087 ng mL-1, respectively. In addition, the method was able to rapidly and simultaneously detect the two biomarkers in serum, which showed the feasibility of the method in complex biological environments. The detection of Aβ 1-42 and tau protein has great potential for the accurate prediction and early diagnosis of Alzheimer's disease.
Collapse
Affiliation(s)
- Luyao Wang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Min Chang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Pei Ma
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Chen
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shaojun Ma
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Chen
- School of Electrical Engineering, Nantong University, Nantong 226019, China
| | - Xuedian Zhang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
11
|
Al Abdullah S, Najm L, Ladouceur L, Ebrahimi F, Shakeri A, Al-Jabouri N, Didar TF, Dellinger K. Functional Nanomaterials for the Diagnosis of Alzheimer's Disease: Recent Progress and Future Perspectives. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2302673. [PMID: 39309539 PMCID: PMC11415277 DOI: 10.1002/adfm.202302673] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Indexed: 09/25/2024]
Abstract
Alzheimer's disease (AD) is one of the main causes of dementia worldwide, whereby neuronal death or malfunction leads to cognitive impairment in the elderly population. AD is highly prevalent, with increased projections over the next few decades. Yet current diagnostic methods for AD occur only after the presentation of clinical symptoms. Evidence in the literature points to potential mechanisms of AD induction beginning before clinical symptoms start to present, such as the formation of amyloid beta (Aβ) extracellular plaques and neurofibrillary tangles (NFTs). Biomarkers of AD, including Aβ 40, Aβ 42, and tau protein, amongst others, show promise for early AD diagnosis. Additional progress is made in the application of biosensing modalities to measure and detect significant changes in these AD biomarkers within patient samples, such as cerebral spinal fluid (CSF) and blood, serum, or plasma. Herein, a comprehensive review of the emerging nano-biomaterial approaches to develop biosensors for AD biomarkers' detection is provided. Advances, challenges, and potential of electrochemical, optical, and colorimetric biosensors, focusing on nanoparticle-based (metallic, magnetic, quantum dots) and nanostructure-based biomaterials are discussed. Finally, the criteria for incorporating these emerging nano-biomaterials in clinical settings are presented and assessed, as they hold great potential for enhancing early-onset AD diagnostics.
Collapse
Affiliation(s)
- Saqer Al Abdullah
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| | - Lubna Najm
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Liane Ladouceur
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Farbod Ebrahimi
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| | - Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Nadine Al-Jabouri
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
- Institute for Infectious Disease Research (IIDR), 1280 Main St W, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA
| |
Collapse
|
12
|
Gao F, Li F, Wang J, Yu H, Li X, Chen H, Wang J, Qin D, Li Y, Liu S, Zhang X, Wang ZH. SERS-Based Optical Nanobiosensors for the Detection of Alzheimer's Disease. BIOSENSORS 2023; 13:880. [PMID: 37754114 PMCID: PMC10526933 DOI: 10.3390/bios13090880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, impacting millions worldwide. However, its complex neuropathologic features and heterogeneous pathophysiology present significant challenges for diagnosis and treatment. To address the urgent need for early AD diagnosis, this review focuses on surface-enhanced Raman scattering (SERS)-based biosensors, leveraging the excellent optical properties of nanomaterials to enhance detection performance. These highly sensitive and noninvasive biosensors offer opportunities for biomarker-driven clinical diagnostics and precision medicine. The review highlights various types of SERS-based biosensors targeting AD biomarkers, discussing their potential applications and contributions to AD diagnosis. Specific details about nanomaterials and targeted AD biomarkers are provided. Furthermore, the future research directions and challenges for improving AD marker detection using SERS sensors are outlined.
Collapse
Affiliation(s)
- Feng Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hang Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xi Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
13
|
Li M, Zeng Y, Huang Z, Zhang L, Liu Y. Vertical Graphene-Based Printed Electrochemical Biosensor for Simultaneous Detection of Four Alzheimer's Disease Blood Biomarkers. BIOSENSORS 2023; 13:758. [PMID: 37622844 PMCID: PMC10452345 DOI: 10.3390/bios13080758] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023]
Abstract
Early detection and timely intervention play a vital role in the effective management of Alzheimer's disease. Currently, the diagnostic accuracy for Alzheimer's disease based on a single blood biomarker is relatively low, and the combined use of multiple blood biomarkers can greatly improve diagnostic accuracy. Herein, we report a printed electrochemical biosensor based on vertical graphene (VG) modified with gold nanoparticles (VG@nanoAu) for the simultaneous detection of four Alzheimer's disease blood biomarkers. The printed electrochemical electrode array was constructed by laser etching and inkjet printing. Then gold nanoparticles were modified onto the working electrode surface via electrodeposition to further improve the sensitivity of the sensor. In addition, the entire printed electrochemical sensing system incorporates an electrochemical micro-workstation and a smartphone. The customized electrochemical micro-workstation incorporates four electro-chemical control chips, enabling the sensor to simultaneously analyze four biomarkers. Consequently, the printed electrochemical sensing system exhibits excellent analytical performance due to the large surface area, biocompatibility, and good conductivity of VG@nanoAu. The detection limit of the sensing system for Aβ40, Aβ42, T-tau, and P-tau181 was 0.072, 0.089, 0.071, and 0.051 pg/mL, respectively, which meets the detection requirements of Alzheimer's disease blood biomarkers. The printed electrochemical sensing system also exhibits good specificity and stability. This work has great value and promising prospects for early Alzheimer's disease diagnosis using blood biomarkers.
Collapse
Affiliation(s)
| | | | | | - Lingyan Zhang
- Longgang Central Hospital of Shenzhen, Shenzhen 518116, China; (M.L.); (Y.Z.); (Z.H.)
| | - Yibiao Liu
- Longgang Central Hospital of Shenzhen, Shenzhen 518116, China; (M.L.); (Y.Z.); (Z.H.)
| |
Collapse
|
14
|
Hsiao WWW, Angela S, Le TN, Ku CC, Hu PS, Chiang WH. Evolution of Detecting Early Onset of Alzheimer's Disease: From Neuroimaging to Optical Immunoassays. J Alzheimers Dis 2023:JAD221202. [PMID: 37125550 DOI: 10.3233/jad-221202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Alzheimer's disease (AD) is a pathological disorder defined by the symptoms of memory loss and deterioration of cognitive abilities over time. Although the etiology is complex, it is mainly associated with the accumulation of toxic amyloid-β peptide (Aβ) aggregates and tau protein-induced neurofibrillary tangles (NFTs). Even now, creating non-invasive, sensitive, specific, and cost-effective diagnostic methods for AD remains challenging. Over the past few decades, polymers, and nanomaterials (e.g., nanodiamonds, nanogold, quantum dots) have become attractive and practical tools in nanomedicine for diagnosis and treatment. This review focuses on current developments in sensing methods such as enzyme-linked immunosorbent assay (ELISA) and surface-enhanced Raman scattering (SERS) to boost the sensitivity in detecting related biomarkers for AD. In addition, optical analysis platforms such as ELISA and SERS have found increasing popularity among researchers due to their excellent sensitivity and specificity, which may go as low as the femtomolar range. While ELISA offers easy technological usage and high throughput, SERS has the advantages of improved mobility, simple electrical equipment integration, and lower cost. Both portable optical sensing techniques are highly superior in terms of sensitivity, specificity, human application, and practicality, enabling the early identification of AD biomarkers.
Collapse
Affiliation(s)
- Wesley Wei-Wen Hsiao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C
| | - Stefanny Angela
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C
| | - Trong-Nghia Le
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Chi Ku
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Po-Sheng Hu
- College of Photonics, National Yang Ming Chiao Tung University, Tainan City, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, R.O.C
| |
Collapse
|
15
|
Dong J, Li G, Xia L, Li H. Microtrap-assisted microfluidic magnetic separation and concentration for ultrasensitive immunoassays of biomarkers. J Chromatogr A 2023; 1699:464021. [PMID: 37126879 DOI: 10.1016/j.chroma.2023.464021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Precise and accurate quantitation of important biomarkers is significant, especially in early-stage diseases diagnosis. To realized effective biosample preparation and trace-level biomarker detection, a microtrap-assisted microfluidic magnetic immunoassays (μMI) method was developed in this work. A microtrap was fabricated inside the straight microchannel of μMI device to help magnetic separation and concentration of immunocomplexes. These immunocomplexes were enriched in microtrap of μMI device to accomplish selective and sensitive biomarker detection. Horseradish peroxidase-labeled magnetic beads were employed to evaluate assay feasibility and microtrap effect on assay sensitivity. The microtrap-assisted μMI was then applied for model biomarkers detection. The limits of detection of μMI were 0.025 pg/mL for monocyte chemoattractant protein-1 (MCP-1) and 0.021 pg/mL for matrix metalloproteinase-9 (MMP-9), which corresponded up to 2014-fold sensitivity improvement compared to their standard microwell enzyme-linked immunosorbent assay (ELISA) results. In addition, the selectivity and reproducibility of microtrap-assisted μMI were confirmed. In clinical serum sample analysis, recoveries of 91.3%-106.7% with relative standard deviations less than 6.1% were obtained for MCP-1 and MMP-9, and method accuracy was verified by commercial ELISA kit. The developed μMI can accomplish ultratrace biomarker detection offering practical tool for laboratorial and clinical research.
Collapse
Affiliation(s)
- Jianwei Dong
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China.
| | - He Li
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
16
|
Zhu A, Ali S, Jiao T, Wang Z, Ouyang Q, Chen Q. Advances in surface-enhanced Raman spectroscopy technology for detection of foodborne pathogens. Compr Rev Food Sci Food Saf 2023; 22:1466-1494. [PMID: 36856528 DOI: 10.1111/1541-4337.13118] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 03/02/2023]
Abstract
Rapid control and prevention of diseases caused by foodborne pathogens is one of the existing food safety regulatory issues faced by various countries and has received wide attention from all sectors of society. The development of rapid and reliable detection methods for foodborne pathogens remains a hot research area for food safety and public health because of the limitations of complex steps, time-consuming, low sensitivity, or poor selectivity of commonly used methods. Surface-enhanced Raman spectroscopy (SERS), as a novel spectroscopic technique, has the advantages of high sensitivity, selectivity, rapid and nondestructive detection and has exhibited broad application prospects in the determination of pathogenic bacteria. In this study, the enhancement mechanisms of SERS are briefly introduced, then the characteristics and properties of liquid-phase, rigid solid-phase, and flexible solid-phase are categorized. Furthermore, a comprehensive review of the advances in label-free or label-based SERS strategies and SERS-compatible techniques for the detection of foodborne pathogens is provided, and the advantages and disadvantages of these methods are reviewed. Finally, the current challenges of SERS technology applied in practical applications are listed, and the possible development trends of SERS in the field of foodborne pathogens detection in the future are discussed.
Collapse
Affiliation(s)
- Afang Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Shujat Ali
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, P. R. China
| | - Tianhui Jiao
- College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| | - Zhen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, P. R. China.,College of Food and Biological Engineering, Jimei University, Xiamen, P. R. China
| |
Collapse
|
17
|
Conklin B, Conley BM, Hou Y, Chen M, Lee KB. Advanced theragnostics for the central nervous system (CNS) and neurological disorders using functional inorganic nanomaterials. Adv Drug Deliv Rev 2023; 192:114636. [PMID: 36481291 DOI: 10.1016/j.addr.2022.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Various types of inorganic nanomaterials are capable of diagnostic biomarker detection and the therapeutic delivery of a disease or inflammatory modulating agent. Those multi-functional nanomaterials have been utilized to treat neurodegenerative diseases and central nervous system (CNS) injuries in an effective and personalized manner. Even though many nanomaterials can deliver a payload and detect a biomarker of interest, only a few studies have yet to fully utilize this combined strategy to its full potential. Combining a nanomaterial's ability to facilitate targeted delivery, promote cellular proliferation and differentiation, and carry a large amount of material with various sensing approaches makes it possible to diagnose a patient selectively and sensitively while offering preventative measures or early disease-modifying strategies. By tuning the properties of an inorganic nanomaterial, the dimensionality, hydrophilicity, size, charge, shape, surface chemistry, and many other chemical and physical parameters, different types of cells in the central nervous system can be monitored, modulated, or further studies to elucidate underlying disease mechanisms. Scientists and clinicians have better understood the underlying processes of pathologies for many neurologically related diseases and injuries by implementing multi-dimensional 0D, 1D, and 2D theragnostic nanomaterials. The incorporation of nanomaterials has allowed scientists to better understand how to detect and treat these conditions at an early stage. To this end, having the multi-modal ability to both sense and treat ailments of the central nervous system can lead to favorable outcomes for patients suffering from such injuries and diseases.
Collapse
Affiliation(s)
- Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Brian M Conley
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Meizi Chen
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
18
|
Huang Z, Li M, Zhang L, Liu Y. Electrochemical immunosensor based on superwettable microdroplet array for detecting multiple Alzheimer's disease biomarkers. Front Bioeng Biotechnol 2022; 10:1029428. [PMID: 36329700 PMCID: PMC9622762 DOI: 10.3389/fbioe.2022.1029428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease caused by neurons damage in the brain, and it poses a serious threat to human life and health. No efficient treatment is available, but early diagnosis, discovery, and intervention are still crucial, effective strategies. In this study, an electrochemical sensing platform based on a superwettable microdroplet array was developed to detect multiple AD biomarkers containing Aβ40, Aβ42, T-tau, and P-tau181 of blood. The platform integrated a superwettable substrate based on nanoAu-modified vertical graphene (VG@Au) into a working electrode, which was mainly used for droplet sample anchoring and electrochemical signal generation. In addition, an electrochemical micro-workstation was used for signals conditioning. This superwettable electrochemical sensing platform showed high sensitivity and a low detection limit due to its excellent characteristics such as large specific surface, remarkable electrical conductivity, and good biocompatibility. The detection limit for Aβ40, Aβ42, T-tau, and P-tau181 were 0.064, 0.012, 0.039, and 0.041 pg/ml, respectively. This study provides a promising method for the early diagnosis of AD.
Collapse
Affiliation(s)
- Zhen Huang
- Longgang District Central Hospital of Shenzhen, Shenzhen, China
- Office of Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Longggang District Central Hospital, Shenzhen, China
| | - Mifang Li
- Longgang District Central Hospital of Shenzhen, Shenzhen, China
| | - Lingyan Zhang
- Longgang District Central Hospital of Shenzhen, Shenzhen, China
| | - Yibiao Liu
- Longgang District Central Hospital of Shenzhen, Shenzhen, China
- Office of Shenzhen Clinical College, Guangzhou University of Chinese Medicine, Longggang District Central Hospital, Shenzhen, China
| |
Collapse
|
19
|
Song G, Shui R, Wang D, Fang R, Yuan T, Li L, Feng J, Gao F, Shen Q, Gong J, Zheng F, Zhang M. Aptamer-conjugated graphene oxide-based surface assisted laser desorption ionization mass spectrometry for selective extraction and detection of Aβ1–42 in an Alzheimer’s disease SH-SY5 cell model. Front Aging Neurosci 2022; 14:993281. [PMID: 36204557 PMCID: PMC9530460 DOI: 10.3389/fnagi.2022.993281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
The generation and accumulation of amyloid-beta peptide (Aβ1–42) in amyloid plaques are key characteristics of Alzheimer’s disease (AD); thus, specific detection of Aβ1–42 is essential for the diagnosis and treatment of AD. Herein, an aptamer-conjugated graphene oxide (Apt-GO) sensor was synthesized by π-π and hydrophobic interactions using thiol poly (ethylene glycol) amine (SH-PEG-NH2) as a spacer unit. Then, it was applied to selective capture of Aβ1–42, and the resulting complex was directly analyzed by surface-assisted laser desorption ionization mass spectrometry (SALDI-MS). The results revealed that the Apt-GO could enhance the detection specificity and reduce non-specific adsorption. This method was validated to be sensitive in detecting Aβ1–42 at a low level in human serum (ca. 0.1 μM) within a linear range from 0.1 to 10 μM. The immobilizing amount of aptamer on the GO was calculated to be 36.1 nmol/mg (RSD = 11.5%). In conclusion, this Apt-GO-based SALDI-MS method was sensitive and efficient in selective extraction and detection of Aβ1–42, which proved to be a good option for early AD diagnosis.
Collapse
Affiliation(s)
- Gongshuai Song
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Ruofan Shui
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Danli Wang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ruosi Fang
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Tinglan Yuan
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ling Li
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Junli Feng
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Feng Gao
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou, China
- *Correspondence: Feng Gao,
| | - Qing Shen
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Collaborative Innovation Center of Seafood Deep Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
- Qing Shen, ,
| | - Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fuping Zheng
- Beijing Laboratory of Food Quality and Safety/Key Laboratory of Alcoholic Beverages Quality and Safety of China Light Industry, Beijing Technology and Business University, Beijing, China
- Fuping Zheng,
| | - Manman Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Manman Zhang,
| |
Collapse
|
20
|
Zhao S, Huang J, Li D, Yang L. Aptamer-based chemiluminescent optical fiber immunosensor with enhanced signal amplification for ultrasensitive detection of tumor biomarkers. Biosens Bioelectron 2022; 214:114505. [DOI: 10.1016/j.bios.2022.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
|
21
|
Abstract
In the last decade, there has been a rapid increase in the number of surface-enhanced Raman scattering (SERS) spectroscopy applications in medical research. In this article we review some recent, and in our opinion, most interesting and promising applications of SERS spectroscopy in medical diagnostics, including those that permit multiplexing within the range important for clinical samples. We focus on the SERS-based detection of markers of various diseases (or those whose presence significantly increases the chance of developing a given disease), and on drug monitoring. We present selected examples of the SERS detection of particular fragments of DNA or RNA, or of bacteria, viruses, and disease-related proteins. We also describe a very promising and elegant ‘lab-on-chip’ approach used to carry out practical SERS measurements via a pad whose action is similar to that of a pregnancy test. The fundamental theoretical background of SERS spectroscopy, which should allow a better understanding of the operation of the sensors described, is also briefly outlined. We hope that this review article will be useful for researchers planning to enter this fascinating field.
Collapse
|
22
|
Monteiro JC, Yokomichi ALY, de Carvalho Bovolato AL, Schelp AO, Ribeiro SJL, Deffune E, Moraes MLD. Alzheimer's disease diagnosis based on detection of autoantibodies against Aβ using Aβ40 peptide in liposomes. Clin Chim Acta 2022; 531:223-229. [PMID: 35447142 DOI: 10.1016/j.cca.2022.04.235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia and affect more than 50 million people worldwide. Thus, there is a high demand by non-invasive methods for an early diagnosis. This work explores the AD diagnostic using the amyloid beta 1-40 (Aβ40) peptide encapsulated into dipalmitoyl phosphatidyl glycerol (DPPG) liposomes and immobilized on polyethylene imine previously deposited on screen-printed carbon electrodes to detect autoantibodies against Aβ40, a potential biomarker found in plasma samples. METHODS The immunosensor assembly was accompanied by atomic force microscopy (AFM) images that showed globular aggregates from 20 to 200 nm corresponding liposomes and by cyclic voltammetry (CV) through increase of the voltammogram area each material deposited. After building the immunosensor, when it was exposed to antibody anti-Aβ40, there was an increase in film roughness of approximately 9 nm, indicating the formation of the immunocomplex. RESULTS In the detection by CV, the presence of specific antibody, in the range of 0.1 to 10 μg/ml, resulted in an increase in the voltammograms area and current in 0.45 V reaching 3.2 µA.V and 5.7 μA, respectively, in comparison with the control system, which remained almost unchanged from 0.1 μg/ml. In patient samples, both cerebrospinal fluid (CSF) and plasma, was possible separated among positive and negative samples for AD using CV profile and area, with a difference of 0.1 μA.V from the upper error bar of healthy samples for CSF sample and 0.6 μA.V for plasma sample. CONCLUSIONS These results showed the feasibility of the method employed for the non-invasive diagnostic of Alzheimer's disease detecting natural autoantibodies that circulate in plasma through a simple and easy-to-interpret method.
Collapse
Affiliation(s)
- Júlio César Monteiro
- Universidade Federal de São Paulo, Instituto de Ciência e Tecnologia, São José dos Campos, SP, Brazil
| | - Anna Laura Yuri Yokomichi
- Universidade Federal de São Paulo, Instituto de Ciência e Tecnologia, São José dos Campos, SP, Brazil
| | | | - Arthur Oscar Schelp
- Universidade Estadual Paulista, Hemocentro de Botucatu, Botucatu, SP, Brazil
| | | | - Elenice Deffune
- Universidade Estadual Paulista, Hemocentro de Botucatu, Botucatu, SP, Brazil
| | - Marli Leite de Moraes
- Universidade Federal de São Paulo, Instituto de Ciência e Tecnologia, São José dos Campos, SP, Brazil.
| |
Collapse
|