1
|
Xie H, Qiu Q, Li H, Liu P, Balla P, Qi X, Liang T, Zeng J. Directly Grown Polyimide Covalent Organic Framework Films with High Electrochromic and Energy-Storage Performance. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39698745 DOI: 10.1021/acsami.4c16702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Two dimensional covalent organic framework (2D COF) films based on triphenylamine are considered to be promising electrochromic and energy-storage materials owing to their interlayer π-π electron delocalization, one-dimensional (1D) nanopores, and stable chemical structures. Triphenylamine-based 2D COF electrochromic films, nevertheless, rarely exhibit transparency and high optical contrast, which severely limited the scope of their application. In this work, two directly grown triphenylamine-based polyimide 2D COF films, TAPA-PMDA and TAPA-NTCDA PI COF, were prepared through solvothermal technology. Their morphologies were assembled into hierarchical nanoporous structures in the form of strips and gravel-like nanograins, respectively. Both the TAPA-PMDA and TAPA-NTCDA PI COF films exhibited a transparent bleached state and high optical contrast. Their optical contrasts were 77.6% at 752 nm and 60.4% at 708 nm, respectively. Interestingly, the TAPA-NTCDA PI COF film could exhibit multicolors (transparent, red-gray, and blue-gray) through regulating the contributions of the electron transition from HOMO to SOMO and HOMO-1 to SOMO of TPA+•. In addition, the TAPA-PMDA and TAPA-NTCDA PI COF films also displayed fast switching and colored/bleached times of 7.3/2.7 and 5.3/8.1 s, respectively. Remarkably, the TAPA-PMDA PI COF film also demonstrated large specific capacitance and excellent charge-discharge rate capabilities. The directly grown polyimide 2D COF films are enormously promising for high-performance electrochromic and energy-storage materials.
Collapse
Affiliation(s)
- Haolin Xie
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Qingqing Qiu
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Huan Li
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Ping Liu
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, PR China
| | - Putrakumar Balla
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, South Korea
| | - Xiaopeng Qi
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Tongxiang Liang
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| | - Jinming Zeng
- College of Rare Earths, Jiangxi University of Science and Technology, Ganzhou 341000, PR China
| |
Collapse
|
2
|
Huang L, Luo Y, Li X, Wu J, Long Q, Zheng L, Liao W, Li H, Jia L, Liu K. Electrochemical sensor based on molecularly imprinted polypyrrole-MWCNTs-OH/covalent organic framework for the detection of ofloxacin in water. Mikrochim Acta 2024; 192:3. [PMID: 39627597 DOI: 10.1007/s00604-024-06860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
A platform was developed to accurately detect the content of ofloxacin (OFX) based on molecularly imprinted polypyrrole-MWCNTs-OH/1,3,5-Tris(4-aminophenyl) benzene (TAPB)-2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMTP)-covalent organic framework (MIP-MWCNTs-OH/COF)-modified glassy carbon electrode (GCE) sensor (MIP-MWCNTs-OH/COF/GCE). The complex of MWCNTs-OH and COF synergistically enhanced the active area and electrochemical signal, based on which a molecularly imprinted membrane was polymerized on its surface to further improve the selectivity. Under optimized conditions, the prepared MIP-MWCNTs-OH/COF/GCE sensor exhibited strong detection performance to OFX in a linear range 1.969 × 10-11-9.619 × 10-9 M with the limit of detection (LOD, 3S/N) of 4.989 × 10-12 M, excellent selectivity, stability, and reproducibility. Furthermore, the MIP-MWCNTs-OH/COF/GCE sensor can be successfully applied to the detection of OFX in lake water and eye drops with a relative standard deviation (RSD) of less than 4.95%, indicating its high potential in practical applications.
Collapse
Affiliation(s)
- Lijuan Huang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Yuan Luo
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xulin Li
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Juan Wu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Qian Long
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Li Zheng
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China
| | - Wenlong Liao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Huiming Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Lingpu Jia
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China.
| | - Kunping Liu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
3
|
Su X, Wu L, Chen G, Zheng C, Shan B, Tian Y, Ma J, Gu C. Organic conjugated polymer nanoparticles enhanced tyrosinase electrochemical biosensor for selective, sensitive and rapid detection of bisphenol A. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175765. [PMID: 39209166 DOI: 10.1016/j.scitotenv.2024.175765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Bisphenol A (BPA) has been widely used in the production of polycarbonate (PC) plastics, flame retardants and epoxy resins, which is one of the most important endocrine disrupting chemicals and can cause damage to the estrogen system of human. In this work, organic conjugated polymer nanoparticles (CPNPs) were synthesized through nanoprecipitation method using liposome 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-mPEG2000) coated poly[(4,4'-bis(2-ethylhexyl)-dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-4,7-di(4-hexyl-2-thienyl)-5,6-difluoro-2,1,3-benzothiadiazole] (PDTS-hDTBT) and poly[(4,4'-bis(2-ethylhexyl)-dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-4,7-di(4-(2-ethylhexyl)-2-thienyl)-5,6-difluoro-2,1,3-benzothiadiazole] (PDTS-ehDTBT). These two polymers have different side chains, which can affect the configuration of the polymers, thereby affecting the π-π interaction between BPA and CPNPs. The resultant two CPNPs were explored as extremely attractive matrix for tyrosinase immobilization to construct electrochemical biosensing platforms for sensitive and rapid detection of BPA in water environments. The electrochemical performance of these two biosensors was significantly enhanced, benefiting from the large specific surface area and excellent biocompatibility of CPNPs, as well as the strong π-π interaction between CPNPs and BPA. The current response of PDTS-ehDTBT-Tyr-Chi/GCE exhibited a good linear relationship with BPA concentration ranging from 0.02 to 3.0 μM with a low detection limit of 11.83 nM and a high sensitivity of 0.9724 μA μM-1 cm-2. The fabricated biosensor was further used for BPA detection in actual samples with a recovery rate of 92.0 %-99.4 %. With the remarkable advantages, CPNPs-based biosensor provides a highly sensitive detection tool for rapid detection of BPA in actual samples, which has broad application prospects.
Collapse
Affiliation(s)
- Xinze Su
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Lingxia Wu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Guangshuai Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Chunying Zheng
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Bin Shan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Yong Tian
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Jiping Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Chuantao Gu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University), Qingdao 266071, China.
| |
Collapse
|
4
|
Wang Y, Wang X, Chu M, Xin J, Jin Z, Ma H, O'Halloran KP, Wang Y, Pang H, Yang G. Development of CuFe 2O 4 microspheres/carbon sheets composite materials as a sensitive electrochemical sensor for determination of bisphenol A. Mikrochim Acta 2024; 191:743. [PMID: 39541028 DOI: 10.1007/s00604-024-06806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
A composite material based on CuFe-ZIF-derived CuFe2O4 nano-microspheres grown in situ and well-ordered on carbon sheets (CS) was prepared and applied for highly effective determination of bisphenol A (BPA). The composite material possessed inherently high redox activity due to the presence of both Cu and Fe ions with various oxidation states (Cu²⁺/Cu⁺ and Fe³⁺/Fe²⁺), high specific surface area, uniform distribution of Cu and Fe ions, and a robust framework imparted by its precursor CuFe-ZIF. This led to increased active sites for electrochemical reactions, improved electron transfer efficiency, and structural integrity during electrochemical cycling. Furthermore, combining CS with CuFe2O4 not only provided a large surface area to support well-ordered CuFe₂O₄ nano-microspheres without aggregation, but also enhanced the conductivity and mechanical stability of the CuFe₂O₄/CS composite. This results in synergistic effects that enhanced the overall performance of the composite material. In addition, both copper and iron are relatively non-toxic and abundant, making CuFe₂O₄/CS safe and cost-effective for large-scale applications. Consequently, the CuFe2O4/CS-modified electrode shows highly efficient electrochemical sensing properties with a wider detection range of 0.009-168 µM and lower detection limit of 0.0027 µM (S/N = 3) compared with most reported BPA sensors. It also has an optimized current at pH 7 which is convenient for real world applications. This CuFe2O4/CS modified electrode as a highly sensitive electrochemical platform can be applied to monitor BPA concentrations in bottled water with good recovery (97.2-102.2%).
Collapse
Affiliation(s)
- Ying Wang
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Xinming Wang
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China.
| | - Mingyue Chu
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Jianjiao Xin
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Zhongxin Jin
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Huiyuan Ma
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China.
| | - Kevin P O'Halloran
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, 30043, USA
| | - Yingji Wang
- College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| | - Haijun Pang
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Guixin Yang
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| |
Collapse
|
5
|
Govindharaj K, Govindasamy M, Gokila N, Huang CH, Rajaji U, Albaqami MD, Kumar RTR. Green sonochemical synthesis of ZnCo 2O 4 decorated with carbon nanofibers for enhanced electrochemical detection of bisphenol A in food products. Mikrochim Acta 2024; 191:460. [PMID: 38987355 DOI: 10.1007/s00604-024-06511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
The facile sonochemical synthesis is reported of zinc cobalt oxide (ZnCo2O4) composited with carbon nanofiber (CNF). Structural, chemical, and morphological were characterized by X-ray diffraction (XRD), X-ray photoluminescent spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and transmittance electron microscopy (TEM), respectively. ZnCo2O4/CNF-modified GCE was applied to the detection of bisphenol A (BPA). The modified GCE shows enhanced sensing performance towards BPA, which includes a linear range (0.2 to 120 μM L-1) alongside a low limit of detection (38.2 nM L-1), low interference, and good stability. Detection of lower concentrations of BPA enables real sample analysis in the food industries (milk, orange juice, yogurt, tap water, and baby feeding bottles). Surprisingly, the BPA was detected in milk 510 nM L-1, orange juice 340 nM L-1, yogurt 1050 nM L-1, and tap water 140 nM L-1. Moreover, an interaction mechanism between the BPA analyte and ZnCo2O4 was discussed.
Collapse
Affiliation(s)
- Kamaraj Govindharaj
- Advanced Materials and Devices Laboratory (AMDL), Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
- Department of Materials Engineering, Ming Chi University of Technology, Taishan District, New Taipei City, 24301, Taiwan
| | - Mani Govindasamy
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, New Taipei City, 243303, Taiwan.
| | - N Gokila
- Advanced Materials and Devices Laboratory (AMDL), Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, Taishan District, New Taipei City, 24301, Taiwan.
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan City, 33305, Taiwan.
- College of Engineering, Chang Gung University, Taoyuan City, 33302, Taiwan.
| | - Umamaheswari Rajaji
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), 602105, Chennai, Tamil Nadu, India
| | - Munirah D Albaqami
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ramasamy Thangavelu Rajendra Kumar
- Advanced Materials and Devices Laboratory (AMDL), Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India.
| |
Collapse
|
6
|
Algethami FK, Marwani HM, Raza N, Asiri AM, Rahman MM. Non-enzymatic electrochemical detection of melamine in dairy products by using CuO decorated carbon nanotubes nanocomposites. Food Chem 2024; 445:138792. [PMID: 38387321 DOI: 10.1016/j.foodchem.2024.138792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Melamine, a typical nitrogen enriched organic compound exhibiting great potential in the industrial sector, is exploited as an adulterant to inflate protein levels in dairy products, can pose serious threats to humans and therefore necessitates its swift detection and precise quantification at its first exposure. In this investigation, sensitive and reliable sensor probes were fabricated using CuO nanoparticles and its nanocomposites (NCs) with carbon nanotubes (CNTs), carbon black (CB), and graphene oxide (GO) to promptly quantify melamine in dairy products. The optical, morphological, and structural characteristics of the CuO-CNT NCs were achieved using diverse instrumental techniques including UV-visible spectroscopy, transmission electron microscopy, X- ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy and etc. The fabrication of glassy carbon electrodes (GCE) was accomplished by coating CuO-CNT NCs through a binder (5 % nafion). These sensor probes demonstrated outstanding electrochemical sensor performance with CuO-CNT NCs/Nafion/GCE sensor probe in terms of very low limit of detection (0.27 nM), good linearity range (0.05-0.5 nM), and relatively high sensitivity (93.924 µA µM-1 m-2) for melamine under optimized experimental conditions. Furthermore, the performance of CuO-CNT NCs/Nafion/GCE coated sensor probes was practically validated for the selective melamine detection in the real sample analysis of commercially available milk brands, which revealed significant figures of merit in a very short response time of 10 s. From the results, it was concluded that the current study might be helpful in the development of an efficient commercial sensor based on ultra-sensitive transition metal oxides in the field of health care monitoring, food stuffs in a broader scale as well as food applications.
Collapse
Affiliation(s)
- Faisal K Algethami
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia.
| | - Hadi M Marwani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Nadeem Raza
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; Department of Chemistry, Government Alamdar Hussain Islamia Degree College Multan, Pakistan
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohammed M Rahman
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
7
|
Guo H, Yang Z, Sun L, Lu Z, Wei X, Wang M, Yu Z, Yang W. Imine-linked covalent organic framework with high crystallinity for constructing sensitive purine bases electrochemical sensor. J Colloid Interface Sci 2024; 659:639-649. [PMID: 38198941 DOI: 10.1016/j.jcis.2023.12.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
In this work, a covalent organic framework (TADM-COF) with high crystallinity and large specific surface area (2597 m2 g-1) has been successfully synthesized using 1,3,5-(4-aminophenyl) benzene (TAPB) and 2,5-dimethoxy-p-phenyldiformaldehyde (DMTP). The COF was grown in situ on oxide particles to form core-shell nanocomposites (SiO2@TADM COF, Fe3O4@TADM COF and Co3O4@TADM COF) to realize its function as a shell material. Among them, the Co3O4@TADM COF with the highest electrochemical response to purine bases was further cross-linked with multi-walled carbon nanotubes (MWCNT) to construct a novel electrochemical sensor (Co3O4@TADM COF/MWCNT/GCE) for detection of purine bases. In this nanocomposite, Co3O4 possesses rich catalytic active sites, MWCNT ensures superior electrical conductivity and COF provides a stable environment for electrocatalytic reactions as the shell. At the same time, regular pore structure of the COFs also offers smooth channels for the transfer of analytes to the catalytic site. The synergistic effect among the three components showed remarkable sensing performance for the simultaneous detection of guanine (G) and adenine (A) with a wide linear range of 0.6-180 μM and low limits of detection (LODs) of 0.020 μM for G and 0.024 μM for A (S/N = 3), respectively. The developed sensor platform was also successfully applied in the detection of purine bases in thermally denatured herring DNA extract. The work provided a general strategy for amplifying signal of COF and its composite in the electrochemical sensing.
Collapse
Affiliation(s)
- Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Zeyun Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Lei Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Zongyan Lu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Xiaoqin Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Mingyue Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Zhiguo Yu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| |
Collapse
|
8
|
Zhao Y, Zhang S, Yao W, Zhu Y, Qian J, Yang J, Yang N. Design and synthesis of hierarchical MnO-Fe 3O 4@C/expanded graphite composite for sensitive electrochemical detection of bisphenol A. Talanta 2024; 269:125453. [PMID: 38006729 DOI: 10.1016/j.talanta.2023.125453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/30/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Hierarchically nanostructured binary transition metal oxide-based materials with high conductivity and catalytic activity are quite attractive for the electrochemical quantitative detection of environmental pollutants due to their natural abundance, variable oxidation state, and excellent synergies between metal sites. Herein, a new hierarchical MnO-Fe3O4@C/expanded graphite (EG) composite is designed and synthesized through a simple and in situ annealing method with the utilization of bimetallic organic framework (FeMn-MOF)/EG precursor. The synthesized MnO-Fe3O4@C/EG composite possesses a unique hierarchical nanoarchitecture that small-sized bimetallic oxide nanoparticles of 10-40 nm completely encapsulated by amorphous carbon layers of 2-4 nm are uniformly distributed on the EG platform. This distinctive structure combines the advantages of high conductivity, excellent catalytic activity, and strong stability. Resultantly, when it is applied to monitor environmental endocrine disruptors, the sensor exhibits a significant catalytic effect on the electrochemical oxidation of bisphenol A (BPA), inducing an amplified response current. In addition, the sensor shows a wide linear range of 1-50 μM and 50-400 μM for the BPA monitor, giving a sensitivity of 5208.8 and 1641.9 μA mM-1 cm-2, respectively. This study offers a new approach to design hierarchical binary metal oxide-based sensing materials as well as to explore their electrochemical properties and applications for the determination of emerging contaminants.
Collapse
Affiliation(s)
- Yao Zhao
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Shu Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Wang Yao
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Yuxuan Zhu
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Jing Qian
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Juan Yang
- School of Chemistry and Environmental Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China.
| | - Nianjun Yang
- Department of Chemistry, Hasselt University, 3590, Diepenbeek, Belgium; IMO-IMOMEC, Hasselt University, 3590, Diepenbeek, Belgium
| |
Collapse
|
9
|
Turan K, Üğe A, Zeybek B, Aydoğdu Tiğ G. Development of a facile electrochemical sensor based on GCE modified with one-step prepared PNMA-CeO 2-fMWCNTs composite for simultaneous detection of UA and 5-FU. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:40-50. [PMID: 38054482 DOI: 10.1039/d3ay02099a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In this study, a poly(N-methyl aniline)-cerium oxide-functionalized MWCNTs (PNMA-CeO2-fMWCNTs) composite was synthesized in a one-step preparation technique. As a highly efficient modifier, the composite was used to modify the glassy carbon electrode surface for simultaneous detection of uric acid (UA) and 5-fluorouracil (5-FU). Morphological characterization of the GCE/PNMA-CeO2-fMWCNTs was studied using scanning electron microscopy. Structural characterization of the composite was performed using X-ray diffraction and Fourier-transformed infrared spectroscopy. Electron transfer properties of the prepared electrodes were carried out with electrochemical impedance spectroscopy and cyclic voltammetry. The linear working range for UA and 5-FU was found to be 0.25-50 μM and 0.5-750 μM, respectively. The limit of detection values for UA and 5-FU were 0.04 μM and 0.19 μM, respectively. The effects of various interfering substances on the electrochemical response of UA and 5-FU were investigated. The GCE/PNMA-CeO2-fMWCNTs sensor has excellent stability, reproducibility, anti-interference ability, and reproducibility. To demonstrate the practical application of the sensing platform, fetal bovine serum was selected and tested in the spiked samples, and satisfactory results were obtained. The prepared composite proved to be a promising platform for simple, rapid, and simultaneous analysis of UA and 5-FU.
Collapse
Affiliation(s)
- Kübra Turan
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, 06100, Turkey.
| | - Ahmet Üğe
- Kütahya Dumlupınar University, Faculty of Science and Arts, Department of Chemistry, Kütahya, 43100, Turkey
| | - Bülent Zeybek
- Kütahya Dumlupınar University, Faculty of Science and Arts, Department of Chemistry, Kütahya, 43100, Turkey
| | - Gözde Aydoğdu Tiğ
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, 06100, Turkey.
| |
Collapse
|
10
|
Li X, Wan H, Tian Y, Wang J, Xu S, Huang K, Liang H, Chen M. Covalent organic framework-based immunosensor to detect plasma Latexin reveals novel biomarker for coronary artery diseases. Anal Chim Acta 2023; 1284:341993. [PMID: 37996165 DOI: 10.1016/j.aca.2023.341993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/27/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
It is a great challenge to develop an efficient and rapid method to detect of biomarkers of cardiovascular disease. In this research, a differential pulse voltammetry (DPV)-based ultrasensitive immunosensor for the detection of plasma Latexin (LXN) has been established. With the aim to increase the surface area of the bare glassy carbon electrode (GCE), multi-walled carbon nanotube-graphene oxide has been developed. Covalent organic frameworks (COFs) are dropped with gold nanoparticles (AuNPs), secondary antibody and thionine (Thi-Ab2-Au-COFs) act as the signal probe with high electronic conductivity. Under the ideal conditions, the immunosensor displayed a broad linear response range from 0.01 ng mL-1 to 100 ng mL-1, with a detection limit of 50 pg mL-1 (S/N = 3). The immunosensor also demonstrates outstanding sensitivity, repeatability, and stability. Finally, we utilized the designed immunosensor to detect plasma LXN in coronary artery disease (CAD) patients, and the data showed that plasma LXN was significantly increased in CAD patients with a good performance of ROCAUC (AUC 0.871, 95 % CI 0.725-1.0, p = 0.002), indicating plasma LXN is a potential biomarker of cardiovascular disease. This immunosensor is a promising strategy for screening CAD patients in clinical practice.
Collapse
Affiliation(s)
- Xiuzhen Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Huaibin Wan
- Department of Cardiology, Dongguan People's Hospital, Southern Medical University, Dongguan, China; Heyuan Research Center for Cardiovascular Diseases, Department of Cardiology, The Fifth Affiliated Hospital of Jinan University, Heyuan, Guangdong, China
| | - Yang Tian
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Jingzhu Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Shaohua Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Kebin Huang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China.
| | - Ming Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China.
| |
Collapse
|
11
|
Huang Z, Chen Z, Yan D, Jiang S, Nie L, Tu X, Jia X, Wågberg T, Chao L. Preparation of Gold Nanoparticles via Anodic Stripping of Copper Underpotential Deposition in Bulk Gold Electrodeposition for High-Performance Electrochemical Sensing of Bisphenol A. Molecules 2023; 28:8036. [PMID: 38138526 PMCID: PMC10745752 DOI: 10.3390/molecules28248036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Bisphenol A is one of the most widely used industrial compounds. Over the years, it has raised severe concern as a potential hazard to the human endocrine system and the environment. Developing robust and easy-to-use sensors for bisphenol A is important in various areas, such as controlling and monitoring water purification and sewage water systems, food safety monitoring, etc. Here, we report an electrochemical method to fabricate a bisphenol A (BPA) sensor based on a modified Au nanoparticles/multiwalled carbon nanotubes composite electrocatalyst electrode (AuCu-UPD/MWCNTs/GCE). Firstly, the Au-Cu alloy was prepared via a convenient and controllable Cu underpotential/bulk Au co-electrodeposition on a multiwalled modified carbon nanotubes glassy carbon electrode (GCE). Then, the AuCu-UPD/MWCNTs/GCE was obtained via the electrochemical anodic stripping of Cu underpotential deposition (UPD). Our novel prepared sensor enables the high-electrocatalytic and high-performance sensing of BPA. Under optimal conditions, the modified electrode showed a two-segment linear response from 0.01 to 1 µM and 1 to 20 µM with a limit of detection (LOD) of 2.43 nM based on differential pulse voltammetry (DPV). Determination of BPA in real water samples using AuCu-UPD/MWCNTs/GCE yielded satisfactory results. The proposed electrochemical sensor is promising for the development of a simple, low-cost water quality monitoring system for the detection of BPA in ambient water samples.
Collapse
Affiliation(s)
- Zhao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Zihan Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Dexuan Yan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Shuo Jiang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| | - Xinman Tu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China;
| | - Xueen Jia
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
- Department of Physics, Umeå University, SE-901 87 Umeå, Sweden;
| | - Thomas Wågberg
- Department of Physics, Umeå University, SE-901 87 Umeå, Sweden;
| | - Long Chao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; (Z.H.); (Z.C.); (D.Y.); (S.J.); (L.N.); (X.J.)
| |
Collapse
|
12
|
Cao Y, Wu R, Gao YY, Zhou Y, Zhu JJ. Advances of Electrochemical and Electrochemiluminescent Sensors Based on Covalent Organic Frameworks. NANO-MICRO LETTERS 2023; 16:37. [PMID: 38032432 PMCID: PMC10689676 DOI: 10.1007/s40820-023-01249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Covalent organic frameworks (COFs), a rapidly developing category of crystalline conjugated organic polymers, possess highly ordered structures, large specific surface areas, stable chemical properties, and tunable pore microenvironments. Since the first report of boroxine/boronate ester-linked COFs in 2005, COFs have rapidly gained popularity, showing important application prospects in various fields, such as sensing, catalysis, separation, and energy storage. Among them, COFs-based electrochemical (EC) sensors with upgraded analytical performance are arousing extensive interest. In this review, therefore, we summarize the basic properties and the general synthesis methods of COFs used in the field of electroanalytical chemistry, with special emphasis on their usages in the fabrication of chemical sensors, ions sensors, immunosensors, and aptasensors. Notably, the emerged COFs in the electrochemiluminescence (ECL) realm are thoroughly covered along with their preliminary applications. Additionally, final conclusions on state-of-the-art COFs are provided in terms of EC and ECL sensors, as well as challenges and prospects for extending and improving the research and applications of COFs in electroanalytical chemistry.
Collapse
Affiliation(s)
- Yue Cao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, People's Republic of China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Ru Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yan-Yan Gao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, People's Republic of China
| | - Yang Zhou
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, 210023, People's Republic of China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
13
|
Zahran M, El-Shabasy RM, Elrashedy A, Mousa W, Nayel M, Salama A, Zaghawa A, Elsify A. Recent progress in the genotyping of bovine tuberculosis and its rapid diagnosis via nanoparticle-based electrochemical biosensors. RSC Adv 2023; 13:31795-31810. [PMID: 37908649 PMCID: PMC10613952 DOI: 10.1039/d3ra05606f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
Bovine tuberculosis (bTB) is considered a worldwide infectious zoonotic disease. Mycobacterium bovis causes bTB disease. It is one of the Mycobacterium tuberculosis complex (MTBC) members. MTBC is a clonal complex of close relatives with approximately 99.95% similarity. M. bovis is a spillover pathogen that can transmit from animals to humans and rarely from humans to animals with contact. Genotyping techniques are important to discriminate and differentiate between MTBC species. Spoligotyping and mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) are widely used but they have some limitations. As an alternative, whole genome sequencing approaches have been utilized due to their high-resolution power. They are employed in typing M. bovis and explain the evolutionary and phylogenetic relationships between isolates. The control of bTB disease has attracted a large amount of attention. Rapid and proper diagnosis is necessary for monitoring the disease as an initial step for its control and treatment. Nanotechnology has a potential impact on the rapid diagnosis and treatment of bTB through the use of nanocarrier and metal nanoparticles (NPs). Special attention has been paid to voltammetric and impedimetric electrochemical strategies as facile, sensitive, and selective methods for the efficient detection of tuberculosis. The efficacy of these sensors is enhanced in the presence of NPs, which act as recognition and/or redox probes. Gold, silver, copper, cobalt, graphene, and magnetic NPs, as well as polypyrrole nanowires and multiwalled carbon nanotubes have been employed for detecting tuberculosis. Overall, NP-based electrochemical sensors represent a promising tool for the diagnosis of bTB.
Collapse
Affiliation(s)
- Moustafa Zahran
- Department of Chemistry, Faculty of Science, Menoufia University Shebin El-Kom 32512 Egypt
- Menoufia Company for Water and Wastewater, Holding Company for Water and Wastewater Menoufia 32514 Egypt
| | - Rehan M El-Shabasy
- Department of Chemistry, Faculty of Science, Menoufia University Shebin El-Kom 32512 Egypt
- Chemistry Department, The American University in Cairo AUC Avenue New Cairo 11835 Egypt
| | - Alyaa Elrashedy
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Walid Mousa
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Mohamed Nayel
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Akram Salama
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Ahmed Zaghawa
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| | - Ahmed Elsify
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City Egypt
| |
Collapse
|
14
|
Silva HRD, Barbosa KM, Alsaiari RA, Silva GN, Junior JLOM, Cangussu ASR, Barros SBA, Costa LSD, dos Santos Junior JR, De Moura CVR, Alsaiari M, de Oliveira VV, Pereira AKDS, Santos LSS, Rahim A. Gold Nanoparticle-Loaded Silica Nanospheres for Sensitive and Selective Electrochemical Detection of Bisphenol A. ACS OMEGA 2023; 8:39023-39034. [PMID: 37901482 PMCID: PMC10600914 DOI: 10.1021/acsomega.3c03607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023]
Abstract
In this work, silica nanospheres were used as support for gold nanoparticles and applied for bisphenol A electrochemical detection. The development of new silica-supported materials has attracted increasing attention in the scientific world. One approach of interest is using silica nanospheres as support for gold nanoparticles. These materials have a variety of applications in several areas, such as electrochemical sensors. The obtained materials were characterized by solid-state UV-vis spectroscopy, electron microscopy, X-ray diffraction, and electrochemical techniques. The electrode modified with AuSiO2700/CHI/Pt was applied as an electrochemical sensor for BPA, presenting an oxidation potential of 0.842 V and a higher peak current among the tested materials. The AuSiO2700/CHI/Pt electrode showed a logarithmic response for the detection of BPA in the range of 1-1000 nmol L-1, with a calculated detection limit of 7.75 nmol L-1 and a quantification limit of 25.8 nmol L-1. Thus, the electrode AuSiO2700/CHI/Pt was presented as a promising alternative to an electrochemical sensor in the detection of BPA.
Collapse
Affiliation(s)
| | - Keleen M. Barbosa
- Universidade
Federal do Tocantins, Campus de Gurupi, Gurupi 77001-090, Tocantins, Brazil
| | - Raiedhah A. Alsaiari
- Department
of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
| | - Gabriela Nunes Silva
- Universidade
Federal do Tocantins, Campus de Gurupi, Gurupi 77001-090, Tocantins, Brazil
| | | | | | | | - Luelc S. da Costa
- National
Nanotechnology Laboratory (LNNano), National Center for Research in
Energy and Materials (CNPEM), Campinas CEP: 13083-970, São
Paulo, Brazil
| | | | | | - Mabkhoot Alsaiari
- Department
of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
| | | | - Anna K. dos S. Pereira
- Universidade
Federal do Tocantins, Campus de Gurupi, Gurupi 77001-090, Tocantins, Brazil
| | - Lucas Samuel S. Santos
- Universidade
Federal do Tocantins, Campus de Gurupi, Gurupi 77001-090, Tocantins, Brazil
| | - Abdur Rahim
- Department
of Chemistry, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 45550, Pakistan
| |
Collapse
|
15
|
Zhang J, Li M, Fang J, Wang C, Liu L, Cao W, Wei Q. Co-amplification of luminol-based electrochemiluminescence immunosensors based on multiple enzyme catalysis of bimetallic oxides CoCeO x and NiMnO 3 for the detection of CYFRA21-1. Analyst 2023. [PMID: 37365988 DOI: 10.1039/d3an00753g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The accelerated energy supply of co-reactants is an extremely effective strategy for achieving highly sensitive electrochemiluminescence analysis, and binary metal oxides would be an excellent tool for this purpose owing to the nano-enzyme acceleration of mixed metal valence states. Herein, an electrochemiluminescent (ECL) immunosensor for monitoring the concentration of cytokeratin 19 fragment antigen 21-1 (CYFRA21-1) was developed based on a co-amplification strategy triggered by two bimetallic oxides, CoCeOx and NiMnO3, with luminol as the luminophore. CoCeOx derived from an MOF exhibits a large specific surface area and excellent loading capacity as a sensing substrate, and the peroxidase properties enable the catalysis of hydrogen peroxide to provide energy supply to the underlying radicals. The dual enzymatic properties of flower-like NiMnO3 were employed as probe carriers for luminol enrichment. The peroxidase properties built on Ni2+/Ni3+ and Mn3+/Mn4+ binary redox pairs resulted in the integration of highly oxidative hydroxyl radicals, and the oxidase properties provided additional superoxide radicals via dissolved oxygen. The practically proven multi-enzyme-catalyzed sandwich-type ECL sensor easily accomplished an accurate immunoassay of CYFRA21-1, harvesting a detection limit of 0.3 pg mL-1 in the linear range of 0.001-150 ng mL-1. In conclusion, this work explores the cyclic catalytic amplification of mixed-valence binary metal oxides with nano-enzyme activity in the field of ECL and develops an effective pathway for ECL immunoassay.
Collapse
Affiliation(s)
- Jingjing Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Min Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Jinglong Fang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Caihong Wang
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou 256600, China
| | - Lei Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Wei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
16
|
Han E, Pan Y, Li L, Cai J. Bisphenol A detection based on nano gold-doped molecular imprinting electrochemical sensor with enhanced sensitivity. Food Chem 2023; 426:136608. [PMID: 37348395 DOI: 10.1016/j.foodchem.2023.136608] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
A facile electrochemical sensor based on nano gold-doped molecularly imprinted polymer (MIP) was proposed to realize the selective detection of bisphenol A (BPA) with enhanced sensitivity. Initially, gold-doped MIP (Au@MIP) film was constructed by electropolymerizing p-aminobenzoic acid (PABA) and BPA with in situ gold reduction to distribute gold nanoparticles nearby the imprinted cavities. Subsequently, the template molecules were further extracted from the polymer film, then the MIP could rebind with the template molecules to achieve specific detection of BPA. The nano gold-doped MIP increased the effective surface area and promoted conductivity when BPA was oxidized in the imprinted cavities, which improved the determination sensitivity. Under optimal conditions, the prepared sensor displayed a linear range from 0.5 to 100 μM for BPA detection with a detection limit of 52 nM. The designed sensor was further used to detect BPA in food samples, obtaining satisfactory recoveries from 96.7% to 107.6%.
Collapse
Affiliation(s)
- En Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yingying Pan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lei Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
17
|
Zhu J, Wen W, Tian Z, Zhang X, Wang S. Covalent organic framework: A state-of-the-art review of electrochemical sensing applications. Talanta 2023; 260:124613. [PMID: 37146454 DOI: 10.1016/j.talanta.2023.124613] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Covalent organic framework (COF), a kind of porous polymer with crystalline properties, is a periodic porous framework material with precise regulation at atomic level, which can be formed by the orderly connection of pre-designed organic construction units through covalent bonds. Compared with metal-organic frameworks, COFs exhibit unique performance, including tailor-made functions, stronger load ability, structural diversity, ordered porosity, intrinsic stability and excellent adsorption features, are more conducive to the expansion of electrochemical sensing applications and the universality of applications. In addition, COFs can accurately integrate organic structural units with atomic precision into ordered structures, so that the structural diversity and application of COFs can be greatly enriched by designing new construction units and adopting reasonable functional strategies. In this review, we mainly summarized state-of-the-art recent advances of the classification and synthesis strategy of COFs, the design of functionalized COF for electrochemical sensors and COFs-based electrochemical sensing. Then, an overview of the considerable recent advances made in applying outstanding COFs to establish electrochemical sensing platform, including electrochemical sensor based on voltammetry, amperometry, electrochemical impedance spectroscopy, electrochemiluminescence, photoelectrochemical sensor and others. Finally, we discussed the positive outlooks, critical challenges and bright directions of COFs-based electrochemical sensing in the field of disease diagnosis, environmental monitoring, food safety, drug analysis, etc.
Collapse
Affiliation(s)
- Junlun Zhu
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Zhengfang Tian
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, PR China.
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
18
|
Lu Z, Wang Y, Li G. Covalent Organic Frameworks-Based Electrochemical Sensors for Food Safety Analysis. BIOSENSORS 2023; 13:291. [PMID: 36832057 PMCID: PMC9954712 DOI: 10.3390/bios13020291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Food safety is a key issue in promoting human health and sustaining life. Food analysis is essential to prevent food components or contaminants causing foodborne-related illnesses to consumers. Electrochemical sensors have become a desirable method for food safety analysis due to their simple, accurate and rapid response. The low sensitivity and poor selectivity of electrochemical sensors working in complex food sample matrices can be overcome by coupling them with covalent organic frameworks (COFs). COFs are a kind of novel porous organic polymer formed by light elements, such as C, H, N and B, via covalent bonds. This review focuses on the recent progress in COF-based electrochemical sensors for food safety analysis. Firstly, the synthesis methods of COFs are summarized. Then, a discussion of the strategies is given to improve the electrochemistry performance of COFs. There follows a summary of the recently developed COF-based electrochemical sensors for the determination of food contaminants, including bisphenols, antibiotics, pesticides, heavy metal ions, fungal toxin and bacterium. Finally, the challenges and the future directions in this field are discussed.
Collapse
Affiliation(s)
- Zhenyu Lu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingying Wang
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|