1
|
Zhu Y, Ye C, Xiao X, Sun Z, Li X, Fu L, Karimi-Maleh H, Chen J, Lin CT. Graphene-based electrochemical sensors for antibiotics: sensing theories, synthetic methods, and on-site monitoring applications. MATERIALS HORIZONS 2024. [PMID: 39431856 DOI: 10.1039/d4mh00776j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Owing to the extensive use of antibiotics for treating infectious diseases in livestock and humans, the resulting residual antibiotics are a burden to the ecosystem and human health. Hence, for human health and ecological safety, it is critical to determine the residual antibiotics with accuracy and convenience. Graphene-based electrochemical sensors are an effective tool to detect residual antibiotics owing to their advantages, such as, high sensitivity, simplicity, and time efficiency. In this work, we comprehensively summarize the recent advances in graphene-based electrochemical sensors used for detecting antibiotics, including modifiers for electrode fabrication, theoretical elaboration of electrochemical sensing mechanisms, and practical applications of portable electrochemical platforms for the on-site monitoring of antibiotics. It is anticipated that the current review will be a valuable reference for comprehensively comprehending graphene-based electrochemical sensors and further promoting their applications in the fields of healthcare, environmental protection, and food safety.
Collapse
Affiliation(s)
- Yangguang Zhu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Chen Ye
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zhuang Sun
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
- School of Engineering, Lebanese American University, Byblos 1102-2801, Lebanon
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Cheng-Te Lin
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, P. R. China
| |
Collapse
|
2
|
Frigoli M, Krupa MP, Hooyberghs G, Lowdon JW, Cleij TJ, Diliën H, Eersels K, van Grinsven B. Electrochemical Sensors for Antibiotic Detection: A Focused Review with a Brief Overview of Commercial Technologies. SENSORS (BASEL, SWITZERLAND) 2024; 24:5576. [PMID: 39275486 PMCID: PMC11398233 DOI: 10.3390/s24175576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
Antimicrobial resistance (AMR) poses a significant threat to global health, powered by pathogens that become increasingly proficient at withstanding antibiotic treatments. This review introduces the factors contributing to antimicrobial resistance (AMR), highlighting the presence of antibiotics in different environmental and biological matrices as a significant contributor to the resistance. It emphasizes the urgent need for robust and effective detection methods to identify these substances and mitigate their impact on AMR. Traditional techniques, such as liquid chromatography-mass spectrometry (LC-MS) and immunoassays, are discussed alongside their limitations. The review underscores the emerging role of biosensors as promising alternatives for antibiotic detection, with a particular focus on electrochemical biosensors. Therefore, the manuscript extensively explores the principles and various types of electrochemical biosensors, elucidating their advantages, including high sensitivity, rapid response, and potential for point-of-care applications. Moreover, the manuscript investigates recent advances in materials used to fabricate electrochemical platforms for antibiotic detection, such as aptamers and molecularly imprinted polymers, highlighting their role in enhancing sensor performance and selectivity. This review culminates with an evaluation and summary of commercially available and spin-off sensors for antibiotic detection, emphasizing their versatility and portability. By explaining the landscape, role, and future outlook of electrochemical biosensors in antibiotic detection, this review provides insights into the ongoing efforts to combat the escalating threat of AMR effectively.
Collapse
Affiliation(s)
- Margaux Frigoli
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Mikolaj P Krupa
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Geert Hooyberghs
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Joseph W Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Thomas J Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
3
|
Liu R, Zhang C, Wu T, Liu R, Sun Y, Ma J. Fabrication of a novel HKUST-1/CoFe 2O 4/g-C 3N 4 electrode for the electrochemical detection of ciprofloxacin in physiological samples. Talanta 2024; 273:125882. [PMID: 38513472 DOI: 10.1016/j.talanta.2024.125882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
In this work, a novel HKUST-1/CoFe2O4/g-C3N4 electrode was successfully prepared via the hydrothermal method and the high-temperature calcination method, which can be applied as an electrochemical sensor for the precise detection of ciprofloxacin (CIP) in physiological samples. The novel electrode was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR), and its electrochemical performance was further evaluated via the cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The results demonstrated that the HKUST-1/CoFe2O4/g-C3N4 electrode exhibited an optimal linear range of 0.05-180 μmol L-1 for the CIP detection, which demonstrated a low limit of detection (LOD) of 0.0026 μmol L-1 and a low limit of quantitation (LOQ) of 0.0087 μmol L-1, respectively. Additionally, the novel semiconductor sensors exhibited exceptional selectivity, stability and repeatability in the determination of CIP. The recovery rate of CIP was found to range from 98.00% to 104.00% in serum, with the relative standard deviations (RSD) below 2.62% (n = 5), while the recovery rate of CIP was found to range from 96.00% to 105.00%, with the RSD less than 3.23% (n = 5) in urine. The current study extends to the application of the semiconductor-based electrochemical sensors and offers a new approach for the clinical pharmaceutical analysis to ensure medication safety, which could provide valuable insights into the potential of semiconductor sensors for future clinical applications.
Collapse
Affiliation(s)
- Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China.
| | - Chaojun Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China
| | - Tianheng Wu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China
| | - Rijia Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, 150076, China.
| | - Jing Ma
- Department of Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
4
|
Pengsomjit U, Alabdo F, Karuwan C, Kraiya C, Alahmad W, Ozkan SA. Innovative Graphene-Based Nanocomposites for Improvement of Electrochemical Sensors: Synthesis, Characterization, and Applications. Crit Rev Anal Chem 2024:1-19. [PMID: 38656227 DOI: 10.1080/10408347.2024.2343854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Graphene, renowned for its exceptional physicochemical attributes, has emerged as a favored substrate for integrating a wide array of inorganic and organic materials in scientific endeavors and innovations. Electrochemical graphene-based nanocomposite sensors have been developed by incorporating diverse nanoparticles into graphene, effectively immobilized onto electrodes through various techniques. These graphene-based nanocomposite sensors have effectively detected and quantified various electroactive species in samples. This review delves into using graphene nanocomposites to fabricate electrochemical sensors, leveraging the exceptional electrical, mechanical, and thermal properties inherent to graphene derivatives. These nanocomposites showcase electrocatalytic activity, substantial surface area, superior electrical conductivity, adsorption capabilities, and notable porosity, which are highly advantageous for sensing applications. A myriad of characterization techniques, including Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET surface area analysis, and X-ray diffraction (XRD), have proven effective in exploring the properties of graphene nanocomposites and validating the adjustable formation of these nanomaterials with graphene. The applicability of these sensors across various matrices, encompassing environmental, food, and biological domains, has been evaluated through electrochemical measurements, such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). This review provides a comprehensive overview of synthesis methods, characterization techniques, and sensor applications pertinent to graphene-based nanocomposites. Furthermore, it deliberates on the challenges and future prospects within this burgeoning field.
Collapse
Affiliation(s)
- Untika Pengsomjit
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Chemistry, Faculty of Science, Electrochemistry and Optical Spectroscopy Center of Excellence, Chulalongkorn University, Bangkok, Thailand
| | - Fatima Alabdo
- Department of Chemistry and Physics, Faculty of Science, Idlib University, Idlib, Syria
| | - Chanpen Karuwan
- Graphene Research Team (GRP), National Nanotechnology Center (NANOTEC), National Science and Technology Development (NSTDA), Pathum Thani, Thailand
| | - Charoenkwan Kraiya
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Chemistry, Faculty of Science, Electrochemistry and Optical Spectroscopy Center of Excellence, Chulalongkorn University, Bangkok, Thailand
| | - Waleed Alahmad
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkiye
| |
Collapse
|
5
|
Shi M, Shi P, Yang X, Zhao N, Wu M, Li J, Ye C, Li H, Jiang N, Li X, Lai G, Xie WF, Fu L, Wang G, Zhu Y, Tsai HS, Lin CT. A promising electrochemical sensor based on PVP-induced shape control of a hydrothermally synthesized layered structured vanadium disulfide for the sensitive detection of a sulfamethoxazole antibiotic. Analyst 2024; 149:386-394. [PMID: 38050732 DOI: 10.1039/d3an01355c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The presence of sulfamethoxazole (SMX) in natural waters has become a significant concern recently because of its detrimental effects on human health and the ecological environment. To address this issue, it is of utmost urgency to develop a reliable method that can determine SMX at ultra-low levels. In our research, we utilized PVP-induced shape control of a hydrothermal synthesis method to fabricate layer-like structured VS2, and employed it as an electrode modification material to prepare an electrochemical sensor for the sensitive determination of SMX. Thus, our prepared VS2 electrodes exhibited a linear range of 0.06-10.0 μM and a limit of detection (LOD) as low as 47.0 nM (S/N = 3) towards SMX detection. Additionally, the electrochemical sensor presented good agreement with the HPLC method, and afforded perfect recovery results (97.4-106.8%) in the practical analysis. The results validated the detection accuracy of VS2 electrodes, and demonstrated their successful applicability toward the sensitive determination of SMX in natural waters. In conclusion, this research provides a promising approach for the development of electrochemical sensors based on VS2 composite materials.
Collapse
Affiliation(s)
- Mingjiao Shi
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, P.R. China
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Peizheng Shi
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Xinxin Yang
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, P.R. China
| | - Ningbin Zhao
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Mengfan Wu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
| | - Jing Li
- School of Physics, Harbin Institute of Technology, 150001, Harbin, China.
| | - Chen Ye
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
| | - He Li
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
| | - Nan Jiang
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
| | - Xiufen Li
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Wan-Feng Xie
- College of Electronics and Information, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao, 266071, China
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Yangguang Zhu
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Laboratory of Environmental Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Hsu-Sheng Tsai
- School of Physics, Harbin Institute of Technology, 150001, Harbin, China.
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, 150001, Harbin, China
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.
| |
Collapse
|