1
|
Zhao Y, Olin RB, Hansen ESS, Laustsen C, Hanson LG, Ardenkjær-Larsen JH. 3D quantitative myocardial perfusion imaging with hyperpolarized HP001(bis-1,1-(hydroxymethyl)-[1- 13C]cyclopropane-d8): Application of gradient echo and balanced SSFP sequences. Magn Reson Med 2024. [PMID: 39344297 DOI: 10.1002/mrm.30320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
PURPOSE This study aims to show the viability of conducting three-dimensional (3D) myocardial perfusion quantification covering the entire heart using both GRE and bSSFP sequences with hyperpolarized HP001. METHODS A GRE sequence and a bSSFP sequence, both with a stack-of-spirals readout, were designed and applied to three pigs. The images were reconstructed using 13 $$ {}^{13} $$ C coil sensitivity maps measured in a phantom experiment. Perfusion was quantified using a constrained decomposition method, and the estimated rest/stress perfusion values from 13 $$ {}^{13} $$ C GRE/bSSFP and Dynamic contrast-enhanced MRI (DCE-MRI) were individually analyzed through histograms and the mean perfusion values were compared with reference values obtained from PET( 15 $$ {}^{15} $$ O-water). The Myocardial Perfusion Reserve Index (MPRI) was estimated for 13 $$ {}^{13} $$ C GRE/bSSFP and DCE-MRI and compared with the reference values. RESULTS Perfusion values, estimated by both DCE and 13 $$ {}^{13} $$ C MRI, were found to be lower than reference values. However, DCE-MRI's estimated perfusion values were closer to the reference values than those obtained from 13 $$ {}^{13} $$ C MRI. In the case of MPRI estimation, the 13 $$ {}^{13} $$ C estimated MPRI values (GRE/bSSFP: 2.3/2.0) more closely align with the literature value (around 3) than the DCE estimated MPRI value (1.6). CONCLUSION This study demonstrated the feasibility of 3D whole-heart myocardial perfusion quantification using hyperpolarized HP001 with both GRE and bSSFP sequences. The 13 $$ {}^{13} $$ C perfusion measurements underestimated perfusion values compared to the 15 $$ {}^{15} $$ O PET literature value, while the 13 $$ {}^{13} $$ C estimated MPRI value aligned better with the literature. This preliminary result indicates 13 $$ {}^{13} $$ C imaging may more accurately estimate MPRI values compared to DCE-MRI.
Collapse
Affiliation(s)
- Yupeng Zhao
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Rie Beck Olin
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | - Lars G Hanson
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | |
Collapse
|
2
|
Mei R, Fries LM, Hune TLK, Santi MD, Rodriguez GG, Sternkopf S, Glöggler S. Hyperpolarization of 15N-Pyridinium by Using Parahydrogen Enables Access to Reactive Oxygen Sensors and Pilot In Vivo Studies. Angew Chem Int Ed Engl 2024; 63:e202403144. [PMID: 38773847 DOI: 10.1002/anie.202403144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024]
Abstract
Magnetic resonance with hyperpolarized contrast agents is one of the most powerful and noninvasive imaging platforms capable for investigating in vivo metabolism. While most of the utilized hyperpolarized agents are based on 13C nuclei, a milestone advance in this area is the emergence of 15N hyperpolarized contrast agents. Currently, the reported 15N hyperpolarized agents mainly utilize the dissolution dynamic nuclear polarization (d-DNP) protocol. The parahydrogen enhanced 15N probes have proven to be elusive and have been tested almost exclusively in organic solvents. Herein, we designed a reaction based reactive oxygen sensor 15N-boronobenzyl-2-styrylpyridinium (15N-BBSP) which can be hyperpolarized with para-hydrogen. Reactive oxygen species plays a vital role as one of the essential intracellular signalling molecules. Disturbance of the H2O2 level usually represents a hallmark of pathophysiological conditions. This H2O2 probe exhibited rapid responsiveness toward H2O2 and offered spectrally resolvable chemical shifts. We also provide strategies to bring the newly developed probe from the organic reaction solution into a biocompatible injection buffer and demonstrate the feasibility of in vivo 15N signal detection. The present work manifests its great potential not only for reaction based reactive sensing probes but also promises to serve as a platform to develop other contrast agents.
Collapse
Affiliation(s)
- Ruhuai Mei
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Lisa M Fries
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Theresa L K Hune
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Maria Daniela Santi
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Gonzalo Gabriel Rodriguez
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Sonja Sternkopf
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold-Str. 3 A, 37075, Göttigen, Germany
| |
Collapse
|
3
|
Dagys L, Korzeczek MC, Parker AJ, Eills J, Blanchard JW, Bengs C, Levitt MH, Knecht S, Schwartz I, Plenio MB. Robust parahydrogen-induced polarization at high concentrations. SCIENCE ADVANCES 2024; 10:eado0373. [PMID: 39047103 PMCID: PMC11268409 DOI: 10.1126/sciadv.ado0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Parahydrogen-induced polarization (PHIP) is a potent technique for generating target molecules with high nuclear spin polarization. The PHIP process involves a chemical reaction between parahydrogen and a target molecule, followed by the transformation of nuclear singlet spin order into magnetization of a designated target nucleus through magnetic field manipulations. Although the singlet-to-magnetization polarization transfer process works effectively at moderate concentrations, it is observed to become much less efficient at high molar polarization, defined as the product of polarization and concentration. This strong dependence on the molar polarization is attributed to interference due to the field produced by the sample magnetization during polarization transfer, which leads to complex dynamics and can severely affect the scalability of the technique. We address this challenge with a pulse sequence that suppresses the influence of the distant dipolar field, while simultaneously achieving singlet-to-magnetization polarization transfer to the desired target spins, free from restrictions on the molar polarization.
Collapse
Affiliation(s)
- Laurynas Dagys
- NVision Imaging Technologies GmbH, Wolfgang-Paul Straße 2, 89081 Ulm, Germany
- Institute of Chemical Physics, Vilnius University, Saulėtekio av. 3, Vilnius LT10257, Lithuania
| | - Martin C. Korzeczek
- Institut für Theoretische Physik and IQST, Albert-Einstein Allee 11, Universität Ulm, 89081 Ulm, Germany
| | - Anna J. Parker
- NVision Imaging Technologies GmbH, Wolfgang-Paul Straße 2, 89081 Ulm, Germany
| | - James Eills
- NVision Imaging Technologies GmbH, Wolfgang-Paul Straße 2, 89081 Ulm, Germany
- Institute of Bioengineering of Catalonia, 08028 Barcelona, Spain
| | - John W. Blanchard
- Quantum Technology Center, University of Maryland, College Park, MD 20742, USA
| | - Christian Bengs
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Malcolm H. Levitt
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Stephan Knecht
- NVision Imaging Technologies GmbH, Wolfgang-Paul Straße 2, 89081 Ulm, Germany
| | - Ilai Schwartz
- NVision Imaging Technologies GmbH, Wolfgang-Paul Straße 2, 89081 Ulm, Germany
| | - Martin B. Plenio
- Institut für Theoretische Physik and IQST, Albert-Einstein Allee 11, Universität Ulm, 89081 Ulm, Germany
| |
Collapse
|
4
|
Nantogma S, de Maissin H, Adelabu I, Abdurraheem A, Nelson C, Chukanov NV, Salnikov OG, Koptyug IV, Lehmkuhl S, Schmidt AB, Appelt S, Theis T, Chekmenev EY. Carbon-13 Radiofrequency Amplification by Stimulated Emission of Radiation of the Hyperpolarized Ketone and Hemiketal Forms of Allyl [1- 13C]Pyruvate. ACS Sens 2024; 9:770-780. [PMID: 38198709 PMCID: PMC10922715 DOI: 10.1021/acssensors.3c02075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
13C hyperpolarized pyruvate is an emerging MRI contrast agent for sensing molecular events in cancer and other diseases with aberrant metabolic pathways. This metabolic contrast agent can be produced via several hyperpolarization techniques. Despite remarkable success in research settings, widespread clinical adoption faces substantial roadblocks because the current sensing technology utilized to sense this contrast agent requires the excitation of 13C nuclear spins that also need to be synchronized with MRI field gradient pulses. Here, we demonstrate sensing of hyperpolarized allyl [1-13C]pyruvate via the stimulated emission of radiation that mitigates the requirements currently blocking broader adoption. Specifically, 13C Radiofrequency Amplification by Stimulated Emission of Radiation (13C RASER) was obtained after pairwise addition of parahydrogen to a pyruvate precursor, detected in a commercial inductive detector with a quality factor (Q) of 32 for sample concentrations as low as 0.125 M with 13C polarization of 4%. Moreover, parahydrogen-induced polarization allowed for the preparation of a mixture of ketone and hemiketal forms of hyperpolarized allyl [1-13C]pyruvate, which are separated by 10 ppm in 13C NMR spectra. This is a good model system to study the simultaneous 13C RASER signals of multiple 13C species. This system models the metabolic production of hyperpolarized [1-13C]lactate from hyperpolarized [1-13C]pyruvate, which has a similar chemical shift difference. Our results show that 13C RASER signals can be obtained from both species simultaneously when the emission threshold is exceeded for both species. On the other hand, when the emission threshold is exceeded only for one of the hyperpolarized species, 13C stimulated emission is confined to this species only, therefore enabling the background-free detection of individual hyperpolarized 13C signals. The reported results pave the way to novel sensing approaches of 13C hyperpolarized pyruvate, potentially unlocking hyperpolarized 13C MRI on virtually any MRI system─an attractive vision for the future molecular imaging and diagnostics.
Collapse
Affiliation(s)
- Shiraz Nantogma
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Henri de Maissin
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Freiburg 79106, Germany
- Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Isaiah Adelabu
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Abubakar Abdurraheem
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Christopher Nelson
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | | | - Oleg G Salnikov
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 630090 Novosibirsk, Russia
| | - Sören Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Karlsruhe 76344, Germany
| | - Andreas B Schmidt
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Freiburg 79106, Germany
- Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Stephan Appelt
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52056, Germany
- Central Institute for Engineering, Electronics and Analytics - Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Thomas Theis
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27606, United States
- Joint UNC & NC State Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
5
|
Guarin DO, Joshi SM, Samoilenko A, Kabir MSH, Hardy EE, Takahashi AM, Ardenkjaer-Larsen JH, Chekmenev EY, Yen YF. Development of Dissolution Dynamic Nuclear Polarization of [ 15 N 3 ]Metronidazole: A Clinically Approved Antibiotic. Angew Chem Int Ed Engl 2023; 62:e202219181. [PMID: 37247411 PMCID: PMC10524734 DOI: 10.1002/anie.202219181] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
We report dissolution Dynamic Nuclear Polarization (d-DNP) of [15 N3 ]metronidazole ([15 N3 ]MNZ) for the first time. Metronidazole is a clinically approved antibiotic, which can be potentially employed as a hypoxia-sensing molecular probe using 15 N hyperpolarized (HP) nucleus. The DNP process is very efficient for [15 N3 ]MNZ with an exponential build-up constant of 13.8 min using trityl radical. After dissolution and sample transfer to a nearby 4.7 T Magnetic Resonance Imaging scanner, HP [15 N3 ]MNZ lasted remarkably long with T1 values up to 343 s and 15 N polarizations up to 6.4 %. A time series of HP [15 N3 ]MNZ images was acquired in vitro using a steady state free precession sequence on the 15 NO2 peak. The signal lasted over 13 min with notably long T2 of 20.5 s. HP [15 N3 ]MNZ was injected in the tail vein of a healthy rat, and dynamic spectroscopy was performed over the rat brain. The in vivo HP 15 N signals persisted over 70 s, demonstrating an unprecedented opportunity for in vivo studies.
Collapse
Affiliation(s)
- David O Guarin
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., MA 02129, Charlestown, USA
- Polarize ApS., Asmussens Alle 1, 1808, Frederiksberg, Denmak
| | - Sameer M Joshi
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, MI 48202, Detroit, USA
| | - Anna Samoilenko
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, MI 48202, Detroit, USA
| | - Mohammad S H Kabir
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, MI 48202, Detroit, USA
| | - Erin E Hardy
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., MA 02129, Charlestown, USA
| | - Atsush M Takahashi
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, MA 02139, Cambridge, USA
| | - Jan H Ardenkjaer-Larsen
- Polarize ApS., Asmussens Alle 1, 1808, Frederiksberg, Denmak
- Department of Health Technology, Technical University of Denmark, 348, Ørsteds Pl., 2800, Kongens Lyngby, Denmark
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, MI 48202, Detroit, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, 119991, Moscow, Russia
| | - Yi-Fen Yen
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., MA 02129, Charlestown, USA
| |
Collapse
|
6
|
Traechtler J, Fuetterer M, Albannay MM, Hoh T, Kozerke S. Considerations for hyperpolarized 13 C MR at reduced field: Comparing 1.5T versus 3T. Magn Reson Med 2023; 89:1945-1960. [PMID: 36598063 DOI: 10.1002/mrm.29579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE In contrast to conventional MR, signal-to-noise ratio (SNR) is not linearly dependent on field strength in hyperpolarized MR, as polarization is generated outside the MR system. Moreover, field inhomogeneity-induced artifacts and other practical limitations associated with field strengths ≥ $$ \ge $$ 3T are alleviated at lower fields. The potential of hyperpolarized 13 $$ {}^{13} $$ C spectroscopy and imaging at 1.5T versus 3T is demonstrated in silico, in vitro, and in vivo for applications on clinical MR systems. THEORY AND METHODS Theoretical noise and SNR behavior at different field strengths are investigated based on simulations. A thorough field comparison between 1.5T and 3T is performed using thermal and hyperpolarized 13 $$ {}^{13} $$ C spectroscopy and imaging. Cardiac in vivo data is obtained in pigs using hyperpolarized [1- 13 $$ {}^{13} $$ C]pyruvate spectroscopy and imaging at 1.5T and 3T. RESULTS Based on theoretical considerations and simulations, the SNR of hyperpolarized MR at identical acquisition bandwidths is independent of the field strength for typical coil setups, while adaptively changing the acquisition bandwidth proportional to the static magnetic field allows for net SNR gains of up to 40% at 1.5T compared to 3T. In vitro 13 $$ {}^{13} $$ C data verified these considerations with less than 7% deviation. In vivo feasibility of hyperpolarized [1- 13 $$ {}^{13} $$ C]pyruvate dynamic metabolic spectroscopy and imaging at 1.5T is demonstrated in the pig heart with comparable SNR between 1.5T and 3T while B 0 $$ {}_0 $$ artifacts are noticeably reduced at 1.5T. CONCLUSION Hyperpolarized 13 $$ {}^{13} $$ C MR at lower field strengths is favorable in terms of SNR and off-resonance effects, which makes 1.5T a promising alternative to 3T, especially for clinical cardiac metabolic imaging.
Collapse
Affiliation(s)
- Julia Traechtler
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Fuetterer
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Mohammed M Albannay
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Tobias Hoh
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
DeBerardinis RJ, Keshari KR. Metabolic analysis as a driver for discovery, diagnosis, and therapy. Cell 2022; 185:2678-2689. [PMID: 35839759 PMCID: PMC9469798 DOI: 10.1016/j.cell.2022.06.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022]
Abstract
Metabolic anomalies contribute to tissue dysfunction. Current metabolism research spans from organelles to populations, and new technologies can accommodate investigation across these scales. Here, we review recent advancements in metabolic analysis, including small-scale metabolomics techniques amenable to organelles and rare cell types, functional screening to explore how cells respond to metabolic stress, and imaging approaches to non-invasively assess metabolic perturbations in diseases. We discuss how metabolomics provides an informative phenotypic dimension that complements genomic analysis in Mendelian and non-Mendelian disorders. We also outline pressing challenges and how addressing them may further clarify the biochemical basis of human disease.
Collapse
Affiliation(s)
- Ralph J DeBerardinis
- Howard Hughes Medical Institute and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Kayvan R Keshari
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
8
|
Capozzi A, Kilund J, Karlsson M, Patel S, Pinon AC, Vibert F, Ouari O, Lerche MH, Ardenkjær-Larsen JH. Metabolic contrast agents produced from transported solid 13C-glucose hyperpolarized via dynamic nuclear polarization. Commun Chem 2021; 4:95. [PMID: 36697707 PMCID: PMC9814755 DOI: 10.1038/s42004-021-00536-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/08/2021] [Indexed: 01/28/2023] Open
Abstract
Magnetic Resonance Imaging combined with hyperpolarized 13C-labelled metabolic contrast agents produced via dissolution Dynamic Nuclear Polarization can, non-invasively and in real-time, report on tissue specific aberrant metabolism. However, hyperpolarization equipment is expensive, technically demanding and needs to be installed on-site for the end-user. In this work, we provide a robust methodology that allows remote production of the hyperpolarized 13C-labelled metabolic contrast agents. The methodology, built on photo-induced thermally labile radicals, allows solid sample extraction from the hyperpolarization equipment and several hours' lifetime of the 13C-labelled metabolic contrast agents at appropriate storage/transport conditions. Exemplified with [U-13C, d7]-D-glucose, we remotely produce hyperpolarized 13C-labelled metabolic contrast agents and generate above 10,000-fold liquid-state Magnetic Resonance signal enhancement at 9.4 T, keeping on-site only a simple dissolution device.
Collapse
Affiliation(s)
- Andrea Capozzi
- LIFMET, Department of Physics, EPFL, Station 6 (Batiment CH), Lausanne, Switzerland.
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| | - Jan Kilund
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Magnus Karlsson
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Saket Patel
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Arthur Cesar Pinon
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - François Vibert
- Institut de Chimie Radicalire Aix-Marseille Université, CNRS, ICR UMR 7273, Marseille, Cedex 20, France
| | - Olivier Ouari
- Institut de Chimie Radicalire Aix-Marseille Université, CNRS, ICR UMR 7273, Marseille, Cedex 20, France
| | - Mathilde H Lerche
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
9
|
Vaeggemose M, F. Schulte R, Laustsen C. Comprehensive Literature Review of Hyperpolarized Carbon-13 MRI: The Road to Clinical Application. Metabolites 2021; 11:metabo11040219. [PMID: 33916803 PMCID: PMC8067176 DOI: 10.3390/metabo11040219] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/02/2023] Open
Abstract
This review provides a comprehensive assessment of the development of hyperpolarized (HP) carbon-13 metabolic MRI from the early days to the present with a focus on clinical applications. The status and upcoming challenges of translating HP carbon-13 into clinical application are reviewed, along with the complexity, technical advancements, and future directions. The road to clinical application is discussed regarding clinical needs and technological advancements, highlighting the most recent successes of metabolic imaging with hyperpolarized carbon-13 MRI. Given the current state of hyperpolarized carbon-13 MRI, the conclusion of this review is that the workflow for hyperpolarized carbon-13 MRI is the limiting factor.
Collapse
Affiliation(s)
- Michael Vaeggemose
- GE Healthcare, 2605 Brondby, Denmark;
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Correspondence:
| |
Collapse
|
10
|
Rapid hyperpolarization and purification of the metabolite fumarate in aqueous solution. Proc Natl Acad Sci U S A 2021; 118:2025383118. [PMID: 33753510 PMCID: PMC8020773 DOI: 10.1073/pnas.2025383118] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Magnetic resonance imaging is hindered by inherently low sensitivity, which limits the method for the most part to observing water molecules in the body. Hyperpolarized molecules exhibit strongly enhanced MRI signals which opens the door for imaging low-concentration species in vivo. Biomolecules can be hyperpolarized and injected into a patient allowing for metabolism to be tracked in real time, greatly expanding the information available to the radiologist. Parahydrogen-induced polarization (PHIP) is a hyperpolarization method renowned for its low cost and accessibility, but is generally limited by low polarization levels, modest molecular concentrations, and contamination by polarization reagents. In this work we overcome these drawbacks in the production of PHIP-polarized [1-13C]fumarate, a biomarker of cell necrosis in metabolic 13C MRI. Hyperpolarized fumarate is a promising biosensor for carbon-13 magnetic resonance metabolic imaging. Such molecular imaging applications require nuclear hyperpolarization to attain sufficient signal strength. Dissolution dynamic nuclear polarization is the current state-of-the-art methodology for hyperpolarizing fumarate, but this is expensive and relatively slow. Alternatively, this important biomolecule can be hyperpolarized in a cheap and convenient manner using parahydrogen-induced polarization. However, this process requires a chemical reaction, and the resulting solutions are contaminated with the catalyst, unreacted reagents, and reaction side-product molecules, and are hence unsuitable for use in vivo. In this work we show that the hyperpolarized fumarate can be purified from these contaminants by acid precipitation as a pure solid, and later redissolved to a desired concentration in a clean aqueous solvent. Significant advances in the reaction conditions and reactor equipment allow for formation of hyperpolarized fumarate at 13C polarization levels of 30–45%.
Collapse
|
11
|
Chemistry of Molecular Imaging: An Overview. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Tyler A, Lau JYC, Ball V, Timm KN, Zhou T, Tyler DJ, Miller JJ. A 3D hybrid-shot spiral sequence for hyperpolarized 13 C imaging. Magn Reson Med 2020; 85:790-801. [PMID: 32894618 PMCID: PMC7611357 DOI: 10.1002/mrm.28462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 01/30/2023]
Abstract
Purpose Hyperpolarized imaging experiments have conflicting requirements of high spatial, temporal, and spectral resolution. Spectral-spatial RF excitation has been shown to form an attractive magnetization-efficient method for hyperpolarized imaging, but the optimum readout strategy is not yet known. Methods In this work, we propose a novel 3D hybrid-shot spiral sequence which features two constant density regions that permit the retrospective reconstruction of either high spatial or high temporal resolution images post hoc, (adaptive spatiotemporal imaging) allowing greater flexibility in acquisition and reconstruction. Results We have implemented this sequence, both via simulation and on a preclinical scanner, to demonstrate its feasibility, in both a 1H phantom and with hyperpolarized 13C pyruvate in vivo. Conclusions This sequence forms an attractive method for acquiring hyperpolarized imaging datasets, providing adaptive spatiotemporal imaging to ameliorate the conflict of spatial and temporal resolution, with significant potential for clinical translation.
Collapse
Affiliation(s)
- Andrew Tyler
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom.,Oxford Centre for Clinical Cardiac Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Headington, United Kingdom
| | - Justin Y C Lau
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom.,Oxford Centre for Clinical Cardiac Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Headington, United Kingdom
| | - Vicky Ball
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Kerstin N Timm
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Tony Zhou
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom.,Oxford Centre for Clinical Cardiac Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Headington, United Kingdom
| | - Damian J Tyler
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom.,Oxford Centre for Clinical Cardiac Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Headington, United Kingdom
| | - Jack J Miller
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom.,Oxford Centre for Clinical Cardiac Magnetic Resonance Research (OCMR), Level 0, John Radcliffe Hospital, Headington, United Kingdom.,Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Lee CY, Lau JYC, Geraghty BJ, Chen AP, Gu YP, Cunningham CH. Correlation of hyperpolarized 13 C-MRI data with tissue extract measurements. NMR IN BIOMEDICINE 2020; 33:e4269. [PMID: 32133713 DOI: 10.1002/nbm.4269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 05/26/2023]
Abstract
Hyperpolarized (HP) 13C MRI provides the means to monitor lactate metabolism noninvasively in tumours. Since 13C -lactate signal levels obtained from HP 13C imaging depend on multiple factors, such as the rate of 13C substrate delivery via the vasculature, the expression level of monocarboxylate transporters (MCTs) and lactate dehydrogenase (LDH), and the local lactate pool size, the interpretation of HP 13C metabolic images remains challenging. In this study, ex vivo tissue extract measurements (i.e., NMR isotopomer analysis, western blot analysis) derived from an MDA-MB-231 xenograft model in nude rats were used to test for correlations between the in vivo 13C data and the ex vivo measures. The lactate-to-pyruvate ratio from HP 13C MRI was strongly correlated with [1- 13C ]lactate concentration measured from the extracts using NMR (R = 0.69, p < 0.05), as well as negatively correlated with tumour wet weight (R = - 0.60, p < 0.05). In this tumour model, both MCT1 and MCT4 expressions were positively correlated with wet weight ( ρ = 0.78 and 0.93, respectively, p < 0.01). Lactate pool size and the lactate-to-pyruvate ratio were not significantly correlated.
Collapse
Affiliation(s)
- Casey Y Lee
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Justin Y C Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Benjamin J Geraghty
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Yi-Ping Gu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Charles H Cunningham
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Milshteyn E, Reed GD, Gordon JW, von Morze C, Cao P, Tang S, Leynes AP, Larson PEZ, Vigneron DB. Simultaneous T 1 and T 2 mapping of hyperpolarized 13C compounds using the bSSFP sequence. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 312:106691. [PMID: 32058912 PMCID: PMC7227792 DOI: 10.1016/j.jmr.2020.106691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
As in conventional 1H MRI, T1 and T2 relaxation times of hyperpolarized (HP) 13C nuclei can provide important biomedical information. Two new approaches were developed for simultaneous T1 and T2 mapping of HP 13C probes based on balanced steady state free precession (bSSFP) acquisitions: a method based on sequential T1 and T2 mapping modules, and a model-based joint T1/T2 approach analogous to MR fingerprinting. These new methods were tested in simulations, HP 13C phantoms, and in vivo in normal Sprague-Dawley rats. Non-localized T1 values, low flip angle EPI T1 maps, bSSFP T2 maps, and Bloch-Siegert B1 maps were also acquired for comparison. T1 and T2 maps acquired using both approaches were in good agreement with both literature values and data from comparative acquisitions. Multiple HP 13C compounds were successfully mapped, with their relaxation time parameters measured within heart, liver, kidneys, and vasculature in one acquisition for the first time.
Collapse
Affiliation(s)
- Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | | | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Peng Cao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Shuyu Tang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Andrew P Leynes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
15
|
Pedersen M, Ursprung S, Jensen JD, Jespersen B, Gallagher F, Laustsen C. Hyperpolarised 13C-MRI metabolic and functional imaging: an emerging renal MR diagnostic modality. MAGMA (NEW YORK, N.Y.) 2020; 33:23-32. [PMID: 31782036 DOI: 10.1007/s10334-019-00801-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/21/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI) is a well-established modality for assessing renal morphology and function, as well as changes that occur during disease. However, the significant metabolic changes associated with renal disease are more challenging to assess with MRI. Hyperpolarized carbon-13 MRI is an emerging technique which provides an opportunity to probe metabolic alterations at high sensitivity by providing an increase in the signal-to-noise ratio of 20,000-fold or more. This review will highlight the current status of hyperpolarised 13C-MRI and its translation into the clinic and how it compares to metabolic measurements provided by competing technologies such as positron emission tomography (PET).
Collapse
Affiliation(s)
| | - Stephan Ursprung
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Jens Dam Jensen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ferdia Gallagher
- Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University Hospital, Palle Juul Jensens Boulevard, 8200, Aarhus N, Denmark.
| |
Collapse
|
16
|
Zadra G, Loda M. Metabolic Vulnerabilities of Prostate Cancer: Diagnostic and Therapeutic Opportunities. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a030569. [PMID: 29229664 DOI: 10.1101/cshperspect.a030569] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cancer cells hijack metabolic pathways to support bioenergetics and biosynthetic requirements for their uncontrolled growth. Thus, cancer can be considered as a metabolic disease. In this review, we discuss the main metabolic features of prostate cancer with a particular focus on the link between oncogene-directed cancer metabolic regulation, metabolism rewiring, and epigenetic regulation. The potential of using metabolic profiling as a means to predict disease behavior and to identify novel therapeutic targets and new diagnostic markers will be addressed as well as the current challenges in metabolomics analyses. Finally, diagnostic and prognostic metabolic imaging approaches, including positron emission tomography, mass spectrometry, nuclear magnetic resonance, and their translational applications, will be discussed. Here, we emphasize how targeting metabolic vulnerabilities in prostate cancer may pave the way for novel personalized diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Giorgia Zadra
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Massimo Loda
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215.,The Broad Institute, Cambridge, Massachusetts 02142
| |
Collapse
|
17
|
Parish C, Niedbalski P, Kiswandhi A, Lumata L. Dynamic nuclear polarization of carbonyl and methyl 13C spins of acetate using 4-oxo-TEMPO free radical. J Chem Phys 2018; 149:054302. [PMID: 30089385 DOI: 10.1063/1.5043378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hyperpolarization of 13C-enriched biomolecules via dissolution dynamic nuclear polarization (DNP) has enabled real-time metabolic imaging of a variety of diseases with superb specificity and sensitivity. The source of the unprecedented liquid-state nuclear magnetic resonance spectroscopic or imaging signal enhancements of >10 000-fold is the microwave-driven DNP process that occurs at a relatively high magnetic field and cryogenic temperature. Herein, we have methodically investigated the relative efficiencies of 13C DNP of single or double 13C-labeled sodium acetate with or without 2H-enrichment of the methyl group and using a 4-oxo-TEMPO free radical as the polarizing agent at 3.35 T and 1.4 K. The main finding of this work is that not all 13C spins in acetate are polarized with equal DNP efficiency using this relatively wide electron spin resonance linewidth free radical. In fact, the carbonyl 13C spins have about twice the solid-state 13C polarization level of methyl 13C spins. Deuteration of the methyl group provides a DNP signal improvement of methyl 13C spins on a par with that of carbonyl 13C spins. On the other hand, both the double 13C-labeled [1,2-13C2] acetate and [1,2-13C2, 2H3] acetate have a relative solid-state 13C polarization at the level of [2-13C] acetate. Meanwhile, the solid-state 13C T1 relaxation times at 3.35 T and 1.4 K were essentially the same for all six isotopomers of 13C acetate. These results suggest that the intramolecular environment of 13C spins plays a prominent role in determining the 13C DNP efficiency, while the solid phase 13C T1 relaxation of these samples is dominated by the paramagnetic effect due to the relatively high concentration of free radicals.
Collapse
Affiliation(s)
- Christopher Parish
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Peter Niedbalski
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Andhika Kiswandhi
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Lloyd Lumata
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| |
Collapse
|
18
|
Affiliation(s)
- Craig R Malloy
- From the Advanced Imaging Research Center and Departments of Internal Medicine (Division of Cardiology) and Radiology, University of Texas Southwestern Medical Center and VA North Texas Healthcare System, Dallas (C.R.M.); and Advanced Imaging Research Center and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, and Department of Chemistry, University of Texas at Dallas, Richardson (A.D.S.).
| | - A Dean Sherry
- From the Advanced Imaging Research Center and Departments of Internal Medicine (Division of Cardiology) and Radiology, University of Texas Southwestern Medical Center and VA North Texas Healthcare System, Dallas (C.R.M.); and Advanced Imaging Research Center and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, and Department of Chemistry, University of Texas at Dallas, Richardson (A.D.S.)
| |
Collapse
|
19
|
Chukanov N, Salnikov OG, Shchepin RV, Kovtunov KV, Koptyug IV, Chekmenev EY. Synthesis of Unsaturated Precursors for Parahydrogen-Induced Polarization and Molecular Imaging of 1- 13C-Acetates and 1- 13C-Pyruvates via Side Arm Hydrogenation. ACS OMEGA 2018; 3:6673-6682. [PMID: 29978146 PMCID: PMC6026840 DOI: 10.1021/acsomega.8b00983] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 06/08/2018] [Indexed: 05/05/2023]
Abstract
Hyperpolarized forms of 1-13C-acetates and 1-13C-pyruvates are used as diagnostic contrast agents for molecular imaging of many diseases and disorders. Here, we report the synthetic preparation of 1-13C isotopically enriched and pure from solvent acetates and pyruvates derivatized with unsaturated ester moiety. The reported unsaturated precursors can be employed for NMR hyperpolarization of 1-13C-acetates and 1-13C-pyruvates via parahydrogen-induced polarization (PHIP). In this PHIP variant, Side arm hydrogenation (SAH) of unsaturated ester moiety is followed by the polarization transfer from nascent parahydrogen protons to 13C nucleus via magnetic field cycling procedure to achieve hyperpolarization of 13C nuclear spins. This work reports the synthesis of PHIP-SAH precursors: vinyl 1-13C-acetate (55% yield), allyl 1-13C-acetate (70% yield), propargyl 1-13C-acetate (45% yield), allyl 1-13C-pyruvate (60% yield), and propargyl 1-13C-pyruvate (35% yield). Feasibility of PHIP-SAH 13C hyperpolarization was verified by 13C NMR spectroscopy: hyperpolarized allyl 1-13C-pyruvate was produced from propargyl 1-13C-pyruvate with 13C polarization of ∼3.2% in CD3OD and ∼0.7% in D2O. 13C magnetic resonance imaging is demonstrated with hyperpolarized 1-13C-pyruvate in aqueous medium.
Collapse
Affiliation(s)
- Nikita
V. Chukanov
- International
Tomography Center, SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk
State University, Pirogova
Street 2, Novosibirsk 630090, Russia
| | - Oleg G. Salnikov
- International
Tomography Center, SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk
State University, Pirogova
Street 2, Novosibirsk 630090, Russia
| | - Roman V. Shchepin
- Vanderbilt
University Institute of Imaging Science (VUIIS), Department of Radiology,
Department of Biomedical Engineering, and Vanderbilt-Ingram Cancer
Center (VICC), Vanderbilt University, Nashville, Tennessee 37232-2310, United States
| | - Kirill V. Kovtunov
- International
Tomography Center, SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk
State University, Pirogova
Street 2, Novosibirsk 630090, Russia
| | - Igor V. Koptyug
- International
Tomography Center, SB RAS, Institutskaya Street 3A, Novosibirsk 630090, Russia
- Novosibirsk
State University, Pirogova
Street 2, Novosibirsk 630090, Russia
| | - Eduard Y. Chekmenev
- Vanderbilt
University Institute of Imaging Science (VUIIS), Department of Radiology,
Department of Biomedical Engineering, and Vanderbilt-Ingram Cancer
Center (VICC), Vanderbilt University, Nashville, Tennessee 37232-2310, United States
- Russian
Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
- Department
of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, Michigan 48202, United States
- E-mail:
| |
Collapse
|
20
|
Barskiy DA, Ke LA, Li X, Stevenson V, Widarman N, Zhang H, Truxal A, Pines A. Rapid Catalyst Capture Enables Metal-Free para-Hydrogen-Based Hyperpolarized Contrast Agents. J Phys Chem Lett 2018; 9:2721-2724. [PMID: 29739186 DOI: 10.1021/acs.jpclett.8b01007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hyperpolarization techniques based on the use of para-hydrogen provide orders of magnitude signal enhancement for magnetic resonance spectroscopy and imaging. The main drawback limiting widespread applicability of para-hydrogen-based techniques in biomedicine is the presence of organometallic compounds (the polarization transfer catalysts) in solution with hyperpolarized contrast agents. These catalysts are typically complexes of platinum-group metals, and their administration in vivo should be avoided. Herein, we show how extraction of a hyperpolarized compound from an organic phase to an aqueous phase combined with a rapid (less than 10 s) Ir-based catalyst capture by metal scavenging agents can produce pure para-hydrogen-based hyperpolarized contrast agents, as demonstrated by high-resolution nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The presented methodology enables fast and efficient means of producing pure hyperpolarized aqueous solutions for biomedical and other uses.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-3220 , United States
- Material Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720-3220 , United States
| | - Lucia A Ke
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-3220 , United States
| | - Xingyang Li
- Department of Chemical and Biomolecular Engineering , University of California at Berkeley , Berkeley , California 94720-3220 , United States
| | - Vincent Stevenson
- Department of Chemical and Biomolecular Engineering , University of California at Berkeley , Berkeley , California 94720-3220 , United States
| | - Nevin Widarman
- Department of Chemical and Biomolecular Engineering , University of California at Berkeley , Berkeley , California 94720-3220 , United States
| | - Hao Zhang
- Department of Chemical and Biomolecular Engineering , University of California at Berkeley , Berkeley , California 94720-3220 , United States
| | - Ashley Truxal
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-3220 , United States
| | - Alexander Pines
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-3220 , United States
- Material Science Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720-3220 , United States
| |
Collapse
|
21
|
Timm KN, Miller JJ, Henry JA, Tyler DJ. Cardiac applications of hyperpolarised magnetic resonance. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:66-87. [PMID: 31047602 DOI: 10.1016/j.pnmrs.2018.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 05/05/2023]
Abstract
Cardiovascular disease is the leading cause of death world-wide. It is increasingly recognised that cardiac pathologies show, or may even be caused by, changes in metabolism, leading to impaired cardiac energetics. The heart turns over 15 times its own weight in ATP every day and thus relies heavily on the availability of substrates and on efficient oxidation to generate this ATP. A number of old and emerging drugs that target different aspects of metabolism are showing promising results with regard to improved cardiac outcomes in patients. A non-invasive imaging technique that could assess the role of different aspects of metabolism in heart disease, as well as measure changes in cardiac energetics due to treatment, would be valuable in the routine clinical care of cardiac patients. Hyperpolarised magnetic resonance spectroscopy and imaging have revolutionised metabolic imaging, allowing real-time metabolic flux assessment in vivo for the first time. In this review we summarise metabolism in the healthy and diseased heart, give an introduction to the hyperpolarisation technique, 'dynamic nuclear polarisation' (DNP), and review the preclinical studies that have thus far explored healthy cardiac metabolism and different models of human heart disease. We furthermore show what advances have been made to translate this technique into the clinic, what technical challenges still remain and what unmet clinical needs and unexplored metabolic substrates still need to be assessed by researchers in this exciting and fast-moving field.
Collapse
Affiliation(s)
- Kerstin N Timm
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK; Clarendon Laboratory, Department of Physics, University of Oxford, UK.
| | - John A Henry
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK.
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
22
|
Milshteyn E, von Morze C, Reed GD, Shang H, Shin PJ, Larson PEZ, Vigneron DB. Using a local low rank plus sparse reconstruction to accelerate dynamic hyperpolarized 13C imaging using the bSSFP sequence. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 290:46-59. [PMID: 29567434 PMCID: PMC6054792 DOI: 10.1016/j.jmr.2018.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/03/2018] [Accepted: 03/09/2018] [Indexed: 05/27/2023]
Abstract
Acceleration of dynamic 2D (T2 Mapping) and 3D hyperpolarized 13C MRI acquisitions using the balanced steady-state free precession sequence was achieved with a specialized reconstruction method, based on the combination of low rank plus sparse and local low rank reconstructions. Methods were validated using both retrospectively and prospectively undersampled in vivo data from normal rats and tumor-bearing mice. Four-fold acceleration of 1-2 mm isotropic 3D dynamic acquisitions with 2-5 s temporal resolution and two-fold acceleration of 0.25-1 mm2 2D dynamic acquisitions was achieved. This enabled visualization of the biodistribution of [2-13C]pyruvate, [1-13C]lactate, [13C, 15N2]urea, and HP001 within heart, kidneys, vasculature, and tumor, as well as calculation of high resolution T2 maps.
Collapse
Affiliation(s)
- Eugene Milshteyn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, Berkeley, CA, USA
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | | | | | - Peter J Shin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, Berkeley, CA, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, Berkeley, CA, USA.
| |
Collapse
|
23
|
Coffey AM, Shchepin RV, Feng B, Colon RD, Wilkens K, Waddell KW, Chekmenev EY. A pulse programmable parahydrogen polarizer using a tunable electromagnet and dual channel NMR spectrometer. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 284:115-124. [PMID: 29028543 PMCID: PMC5708540 DOI: 10.1016/j.jmr.2017.09.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 05/12/2023]
Abstract
Applications of parahydrogen induced polarization (PHIP) often warrant conversion of the chemically-synthesized singlet-state spin order into net heteronuclear magnetization. In order to obtain optimal yields from the overall hyperpolarization process, catalytic hydrogenation must be tightly synchronized to subsequent radiofrequency (RF) transformations of spin order. Commercial NMR consoles are designed to synchronize applied waves on multiple channels and consequently are well-suited as controllers for these types of hyperpolarization experiments that require tight coordination of RF and non-RF events. Described here is a PHIP instrument interfaced to a portable NMR console operating with a static field electromagnet in the milliTesla regime. In addition to providing comprehensive control over chemistry and RF events, this setup condenses the PHIP protocol into a pulse-program that in turn can be readily shared in the manner of traditional pulse sequences. In this device, a TTL multiplexer was constructed to convert spectrometer TTL outputs into 24 VDC signals. These signals then activated solenoid valves to control chemical shuttling and reactivity in PHIP experiments. Consolidating these steps in a pulse-programming environment speeded calibration and improved quality assurance by enabling the B0/B1 fields to be tuned based on the direct acquisition of thermally polarized and hyperpolarized NMR signals. Performance was tested on the parahydrogen addition product of 2-hydroxyethyl propionate-1-13C-d3, where the 13C polarization was estimated to be P13C=20±2.5% corresponding to 13C signal enhancement approximately 25 million-fold at 9.1 mT or approximately 77,000-fold 13C enhancement at 3 T with respect to thermally induced polarization at room temperature.
Collapse
Affiliation(s)
- Aaron M Coffey
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Roman V Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Bibo Feng
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Raul D Colon
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Ken Wilkens
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Kevin W Waddell
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States
| | - Eduard Y Chekmenev
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232-2310, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232-2310, United States; Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University, Nashville, TN 37232-2310, United States; Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia.
| |
Collapse
|
24
|
Stovell MG, Yan JL, Sleigh A, Mada MO, Carpenter TA, Hutchinson PJA, Carpenter KLH. Assessing Metabolism and Injury in Acute Human Traumatic Brain Injury with Magnetic Resonance Spectroscopy: Current and Future Applications. Front Neurol 2017; 8:426. [PMID: 28955291 PMCID: PMC5600917 DOI: 10.3389/fneur.2017.00426] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/07/2017] [Indexed: 11/25/2022] Open
Abstract
Traumatic brain injury (TBI) triggers a series of complex pathophysiological processes. These include abnormalities in brain energy metabolism; consequent to reduced tissue pO2 arising from ischemia or abnormal tissue oxygen diffusion, or due to a failure of mitochondrial function. In vivo magnetic resonance spectroscopy (MRS) allows non-invasive interrogation of brain tissue metabolism in patients with acute brain injury. Nuclei with “spin,” e.g., 1H, 31P, and 13C, are detectable using MRS and are found in metabolites at various stages of energy metabolism, possessing unique signatures due to their chemical shift or spin–spin interactions (J-coupling). The most commonly used clinical MRS technique, 1H MRS, uses the great abundance of hydrogen atoms within molecules in brain tissue. Spectra acquired with longer echo-times include N-acetylaspartate (NAA), creatine, and choline. NAA, a marker of neuronal mitochondrial activity related to adenosine triphosphate (ATP), is reported to be lower in patients with TBI than healthy controls, and the ratio of NAA/creatine at early time points may correlate with clinical outcome. 1H MRS acquired with shorter echo times produces a more complex spectrum, allowing detection of a wider range of metabolites.31 P MRS detects high-energy phosphate species, which are the end products of cellular respiration: ATP and phosphocreatine (PCr). ATP is the principal form of chemical energy in living organisms, and PCr is regarded as a readily mobilized reserve for its replenishment during periods of high utilization. The ratios of high-energy phosphates are thought to represent a balance between energy generation, reserve and use in the brain. In addition, the chemical shift difference between inorganic phosphate and PCr enables calculation of intracellular pH.13 C MRS detects the 13C isotope of carbon in brain metabolites. As the natural abundance of 13C is low (1.1%), 13C MRS is typically performed following administration of 13C-enriched substrates, which permits tracking of the metabolic fate of the infused 13C in the brain over time, and calculation of metabolic rates in a range of biochemical pathways, including glycolysis, the tricarboxylic acid cycle, and glutamate–glutamine cycling. The advent of new hyperpolarization techniques to transiently boost signal in 13C-enriched MRS in vivo studies shows promise in this field, and further developments are expected.
Collapse
Affiliation(s)
- Matthew G Stovell
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Jiun-Lin Yan
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Alison Sleigh
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,National Institute for Health Research/Wellcome Trust Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Marius O Mada
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - T Adrian Carpenter
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter J A Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Keri L H Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Kiswandhi A, Niedbalski P, Parish C, Wang Q, Lumata L. Assembly and performance of a 6.4 T cryogen-free dynamic nuclear polarization system. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:846-852. [PMID: 28593642 DOI: 10.1002/mrc.4624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
We report on the assembly and performance evaluation of a 180-GHz/6.4 T dynamic nuclear polarization (DNP) system based on a cryogen-free superconducting magnet. The DNP system utilizes a variable-field superconducting magnet that can be ramped up to 9 T and equipped with cryocoolers that can cool the sample space with the DNP assembly down to 1.8 K via the Joule-Thomson effect. A homebuilt DNP probe insert with top-tuned nuclear magnetic resonance coil and microwave port was incorporated into the sample space in which the effective sample temperature is approximately 1.9 K when a 180-GHz microwave source is on during DNP operation. 13 C DNP of [1-13 C] acetate samples doped with trityl OX063 and 4-oxo-TEMPO in this system have resulted in solid-state 13 C polarization levels of 58 ± 3% and 18 ± 2%, respectively. The relatively high 13 C polarization levels achieved in this work have demonstrated that the use of a cryogen-free superconducting magnet for 13 C DNP is feasible and in fact, relatively efficient-a major leap to offset the high cost of liquid helium consumption in DNP experiments.
Collapse
Affiliation(s)
- Andhika Kiswandhi
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Peter Niedbalski
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Christopher Parish
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Qing Wang
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Lloyd Lumata
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| |
Collapse
|
26
|
Kiswandhi A, Niedbalski P, Parish C, Ferguson S, Taylor D, McDonald G, Lumata L. Construction and 13 C hyperpolarization efficiency of a 180 GHz dissolution dynamic nuclear polarization system. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:828-836. [PMID: 28407455 DOI: 10.1002/mrc.4597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 06/07/2023]
Abstract
Dynamic nuclear polarization (DNP) via the dissolution method has become one of the rapidly emerging techniques to alleviate the low signal sensitivity in nuclear magnetic resonance (NMR) spectroscopy and imaging. In this paper, we report on the development and 13 C hyperpolarization efficiency of a homebuilt DNP system operating at 6.423 T and 1.4 K. The DNP hyperpolarizer system was assembled on a wide-bore superconducting magnet, equipped with a standard continuous-flow cryostat, and a 180 GHz microwave source with 120 mW power output and wide 4 GHz frequency tuning range. At 6.423 T and 1.4 K, solid-state 13 C polarization P levels of 64% and 31% were achieved for 3 M [1-13 C] sodium acetate samples in 1 : 1 v/v glycerol:water glassing matrix doped with 15 mM trityl OX063 and 40 mM 4-oxo-TEMPO, respectively. Upon dissolution, which takes about 15 s to complete, liquid-state 13 C NMR signal enhancements as high as 240 000-fold (P=21%) were recorded in a nearby high resolution 13 C NMR spectrometer at 1 T and 297 K. Considering the relatively lower cost of our homebuilt DNP system and the relative simplicity of its design, the dissolution DNP setup reported here could be feasibly adapted for in vitro or in vivo hyperpolarized 13 C NMR or magnetic resonance imaging at least in the pre-clinical setting. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andhika Kiswandhi
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Peter Niedbalski
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Christopher Parish
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Sarah Ferguson
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - David Taylor
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - George McDonald
- Department of Chemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| | - Lloyd Lumata
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080, USA
| |
Collapse
|
27
|
Niedbalski P, Parish C, Wang Q, Kiswandhi A, Hayati Z, Song L, Lumata L. 13C Dynamic Nuclear Polarization Using a Trimeric Gd 3+ Complex as an Additive. J Phys Chem A 2017. [PMID: 28631929 DOI: 10.1021/acs.jpca.7b03869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dissolution dynamic nuclear polarization (DNP) is one of the most successful techniques that resolves the insensitivity problem in liquid-state nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) by amplifying the signal by several thousand-fold. One way to further improve the DNP signal is the inclusion of trace amounts of lanthanides in DNP samples doped with trityl OX063 free radical as the polarizing agent. In practice, stable monomeric gadolinium complexes such as Gd-DOTA or Gd-HP-DO3A are used as beneficial additives in DNP samples, further boosting the DNP-enhanced solid-state 13C polarization by a factor of 2 or 3. Herein, we report on the use of a trimeric gadolinium complex as a dopant in 13C DNP samples to improve the 13C DNP signals in the solid-state at 3.35 T and 1.2 K and consequently, in the liquid-state at 9.4 T and 298 K after dissolution. Our results have shown that doping the 13C DNP sample with a complex which holds three Gd3+ ions led to an improvement of DNP-enhanced 13C polarization by a factor of 3.4 in the solid-state, on par with those achieved using monomeric Gd3+ complexes but only requires about one-fifth of the concentration. Upon dissolution, liquid-state 13C NMR signal enhancements close to 20 000-fold, approximately 3-fold the enhancement of the control samples, were recorded in the nearby 9.4 T high resolution NMR magnet at room temperature. Comparable reduction of 13C spin-lattice T1 relaxation time was observed in the liquid-state after dissolution for both the monomeric and trimeric Gd3+ complexes. Moreover, W-band electron paramagnetic resonance (EPR) data have revealed that 3-Gd doping significantly reduces the electron T1 of the trityl OX063 free radical, but produces negligible changes in the EPR spectrum, reminiscent of the results with monomeric Gd3+-complex doping. Our data suggest that the trimeric Gd3+ complex is a highly beneficial additive in 13C DNP samples and that its effect on DNP efficiency can be described in the context of the thermal mixing mechanism.
Collapse
Affiliation(s)
- Peter Niedbalski
- Department of Physics, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080 United States
| | - Christopher Parish
- Department of Physics, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080 United States
| | - Qing Wang
- Department of Physics, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080 United States
| | - Andhika Kiswandhi
- Department of Physics, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080 United States
| | - Zahra Hayati
- National High Magnetic Field Laboratory, Florida State University , 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Likai Song
- National High Magnetic Field Laboratory, Florida State University , 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Lloyd Lumata
- Department of Physics, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080 United States
| |
Collapse
|
28
|
Niedbalski P, Parish C, Kiswandhi A, Kovacs Z, Lumata L. Influence of 13C Isotopic Labeling Location on Dynamic Nuclear Polarization of Acetate. J Phys Chem A 2017; 121:3227-3233. [PMID: 28422500 DOI: 10.1021/acs.jpca.7b01844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dynamic nuclear polarization (DNP) via the dissolution method has alleviated the insensitivity problem in liquid-state nuclear magnetic resonance (NMR) spectroscopy by amplifying the signals by several thousand-fold. This NMR signal amplification process emanates from the microwave-mediated transfer of high electron spin alignment to the nuclear spins at high magnetic field and cryogenic temperature. Since the interplay between the electrons and nuclei is crucial, the chemical composition of a DNP sample such as the type of free radical used, glassing solvents, or the nature of the target nuclei can significantly affect the NMR signal enhancement levels that can be attained with DNP. Herein, we have investigated the influence of 13C isotopic labeling location on the DNP of a model 13C compound, sodium acetate, at 3.35 T and 1.4 K using the narrow electron spin resonance (ESR) line width free radical trityl OX063. Our results show that the carboxyl 13C spins yielded about twice the polarization produced in methyl 13C spins. Deuteration of the methyl 13C group, while proven beneficial in the liquid-state, did not produce an improvement in the 13C polarization level at cryogenic conditions. In fact, a slight reduction of the solid-state 13C polarization was observed when 2H spins are present in the methyl group. Furthermore, our data reveal that there is a close correlation between the solid-state 13C T1 relaxation times of these samples and the relative 13C polarization levels. The overall results suggest the achievable solid-state polarization of 13C acetate is directly affected by the location of the 13C isotopic labeling via the possible interplay of nuclear relaxation leakage factor and cross-talks between nuclear Zeeman reservoirs in DNP.
Collapse
Affiliation(s)
- Peter Niedbalski
- Department of Physics, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080 United States
| | - Christopher Parish
- Department of Physics, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080 United States
| | - Andhika Kiswandhi
- Department of Physics, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080 United States
| | - Zoltan Kovacs
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, Texas 75390 United States
| | - Lloyd Lumata
- Department of Physics, University of Texas at Dallas , 800 West Campbell Road, Richardson, Texas 75080 United States
| |
Collapse
|
29
|
Imaging oxygen metabolism with hyperpolarized magnetic resonance: a novel approach for the examination of cardiac and renal function. Biosci Rep 2017; 37:BSR20160186. [PMID: 27899435 PMCID: PMC5270319 DOI: 10.1042/bsr20160186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/24/2022] Open
Abstract
Every tissue in the body critically depends on meeting its energetic demands with sufficient oxygen supply. Oxygen supply/demand imbalances underlie the diseases that inflict the greatest socio-economic burden globally. The purpose of this review is to examine how hyperpolarized contrast media, used in combination with MR data acquisition methods, may advance our ability to assess oxygen metabolism non-invasively and thus improve management of clinical disease. We first introduce the concept of hyperpolarization and how hyperpolarized contrast media have been practically implemented to achieve translational and clinical research. We will then analyse how incorporating hyperpolarized contrast media could enable realization of unmet technical needs in clinical practice. We will focus on imaging cardiac and renal oxygen metabolism, as both organs have unique physiological demands to satisfy their requirements for tissue oxygenation, their dysfunction plays a fundamental role in society’s most prevalent diseases, and each organ presents unique imaging challenges. It is our aim that this review attracts a multi-disciplinary audience and sparks collaborations that utilize an exciting, emergent technology to advance our ability to treat patients adversely affected by an oxygen supply/demand mismatch.
Collapse
|
30
|
Niedbalski P, Parish C, Kiswandhi A, Fidelino L, Khemtong C, Hayati Z, Song L, Martins A, Sherry AD, Lumata L. Influence of Dy 3+ and Tb 3+ doping on 13C dynamic nuclear polarization. J Chem Phys 2017; 146:014303. [PMID: 28063445 PMCID: PMC5218971 DOI: 10.1063/1.4973317] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/14/2016] [Indexed: 12/28/2022] Open
Abstract
Dynamic nuclear polarization (DNP) is a technique that uses a microwave-driven transfer of high spin alignment from electrons to nuclear spins. This is most effective at low temperature and high magnetic field, and with the invention of the dissolution method, the amplified nuclear magnetic resonance (NMR) signals in the frozen state in DNP can be harnessed in the liquid-state at physiologically acceptable temperature for in vitro and in vivo metabolic studies. A current optimization practice in dissolution DNP is to dope the sample with trace amounts of lanthanides such as Gd3+ or Ho3+, which further improves the polarization. While Gd3+ and Ho3+ have been optimized for use in dissolution DNP, other lanthanides have not been exhaustively studied for use in C13 DNP applications. In this work, two additional lanthanides with relatively high magnetic moments, Dy3+ and Tb3+, were extensively optimized and tested as doping additives for C13 DNP at 3.35 T and 1.2 K. We have found that both of these lanthanides are also beneficial additives, to a varying degree, for C13 DNP. The optimal concentrations of Dy3+ (1.5 mM) and Tb3+ (0.25 mM) for C13 DNP were found to be less than that of Gd3+ (2 mM). W-band electron paramagnetic resonance shows that these enhancements due to Dy3+ and Tb3+ doping are accompanied by shortening of electron T1 of trityl OX063 free radical. Furthermore, when dissolution was employed, Tb3+-doped samples were found to have similar liquid-state C13 NMR signal enhancements compared to samples doped with Gd3+, and both Tb3+ and Dy3+ had a negligible liquid-state nuclear T1 shortening effect which contrasts with the significant reduction in T1 when using Gd3+. Our results show that Dy3+ doping and Tb3+ doping have a beneficial impact on C13 DNP both in the solid and liquid states, and that Tb3+ in particular could be used as a potential alternative to Gd3+ in C13 dissolution DNP experiments.
Collapse
Affiliation(s)
- Peter Niedbalski
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Christopher Parish
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Andhika Kiswandhi
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Leila Fidelino
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Chalermchai Khemtong
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Zahra Hayati
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Likai Song
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - André Martins
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Lloyd Lumata
- Department of Physics, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| |
Collapse
|
31
|
Olaru AM, Burns MJ, Green GGR, Duckett SB. SABRE hyperpolarisation of vitamin B3 as a function of pH. Chem Sci 2016; 8:2257-2266. [PMID: 28507682 PMCID: PMC5409243 DOI: 10.1039/c6sc04043h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022] Open
Abstract
NMR sensitivity enhanced through SABRE hyperpolarisation and pH manipulation enables the use of vitamin B3 as a pH probe.
In this work we describe how the signal enhancements obtained through the SABRE process in methanol-d4 solution are significantly affected by pH. Nicotinic acid (vitamin B3, NA) is used as the agent, and changing pH is shown to modify the level of polarisation transfer by over an order of magnitude, with significant improvements being seen in terms of the signal amplitude and relaxation rate at high pH values. These observations reveal that manipulating pH to improve SABRE enhancements levels may improve the potential of this method to quantify low concentrations of analytes in mixtures. 1H NMR spectroscopy results link this change to the form of the SABRE catalyst, which changes with pH, resulting in dramatic changes in the magnitude of the ligand exchange rates. The presented data also uses the fact that the chemical shifts of the nicotinic acids NMR resonances are affected by pH to establish that hyperpolarised 1H-based pH mapping with SABRE is possible. Moreover, the strong polarisation transfer field dependence shown in the amplitudes of the associated higher order longitudinal terms offers significant opportunities for the rapid detection of hyperpolarised NA in H2O itself without solvent suppression. 1H and 13C MRI images of hyperpolarised vitamin B3 in a series of test phantoms are presented that show pH dependent intensity and contrast. This study therefore establishes that when the pH sensitivity of NA is combined with the increase in signal gain provided for by SABRE hyperpolarisation, a versatile pH probe results.
Collapse
Affiliation(s)
- A M Olaru
- Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , YO10 5NY , York , UK .
| | - M J Burns
- Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , YO10 5NY , York , UK .
| | - G G R Green
- York Neuroimaging Centre , University of York , YO10 5NY , York , UK
| | - S B Duckett
- Centre for Hyperpolarisation in Magnetic Resonance , Department of Chemistry , University of York , YO10 5NY , York , UK .
| |
Collapse
|
32
|
Niedbalski P, Parish C, Kiswandhi A, Lumata L. 13 C dynamic nuclear polarization using isotopically enriched 4-oxo-TEMPO free radicals. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:962-967. [PMID: 27377643 DOI: 10.1002/mrc.4480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/12/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
The nitroxide-based free radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) is a widely used polarizing agent in NMR signal amplification via dissolution dynamic nuclear polarization (DNP). In this study, we have thoroughly investigated the effects of 15 N and/or 2 H isotopic labeling of 4-oxo-TEMPO free radical on 13 C DNP of 3 M [1-13 C] sodium acetate samples in 1 : 1 v/v glycerol : water at 3.35 T and 1.2 K. Four variants of this free radical were used for 13 C DNP: 4-oxo-TEMPO, 4-oxo-TEMPO-15 N, 4-oxo-TEMPO-d16 and 4-oxo-TEMPO-15 N,d16 . Our results indicate that, despite the striking differences seen in the electron spin resonance (ESR) spectral features, the 13 C DNP efficiency of these 15 N and/or 2 H-enriched 4-oxo-TEMPO free radicals are relatively the same compared with 13 C DNP performance of the regular 4-oxo-TEMPO. Furthermore, when fully deuterated glassing solvents were used, the 13 C DNP signals of these samples all doubled in the same manner, and the 13 C polarization buildup was faster by a factor of 2 for all samples. The data here suggest that the hyperfine coupling contributions of these isotopically enriched 4-oxo-TEMPO free radicals have negligible effects on the 13 C DNP efficiency at 3.35 T and 1.2 K. These results are discussed in light of the spin temperature model of DNP. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Peter Niedbalski
- Department of Physics, University of Texas at Dallas, Richardson, TX, USA
| | - Christopher Parish
- Department of Physics, University of Texas at Dallas, Richardson, TX, USA
| | - Andhika Kiswandhi
- Department of Physics, University of Texas at Dallas, Richardson, TX, USA
| | - Lloyd Lumata
- Department of Physics, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
33
|
Chung YL, Leach MO, Eykyn TR. Magnetic Resonance Spectroscopy to Study Glycolytic Metabolism During Autophagy. Methods Enzymol 2016; 588:133-153. [PMID: 28237097 PMCID: PMC6175046 DOI: 10.1016/bs.mie.2016.09.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Cancer cells undergoing starvation- and treatment-induced autophagy were found to exhibit reduced intracellular lactate, reduced rates of steady-state lactate excretion and reduced real-time pyruvate-lactate exchange rates, indicating that glycolytic metabolism was altered in autophagic cells. In this chapter, we describe the technical details of the use of 1H-magnetic resonance spectroscopy (MRS) to measure endogenous cellular concentrations of lactate and glucose in autophagic cells and tissues, how to measure the rate of steady-state lactate excretion and glucose uptake by 1H-MRS in autophagic cells, and details of the real-time measurement of [1-13C] pyruvate to lactate exchange in autophagic cells by 13C-MRS-DNP (dynamic nuclear polarization).
Collapse
Affiliation(s)
- Y-L Chung
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, London, United Kingdom.
| | - M O Leach
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, London, United Kingdom
| | - T R Eykyn
- Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research, London, United Kingdom; The Rayne Institute, St Thomas' Hospital, King's College London, London, United Kingdom
| |
Collapse
|
34
|
Testa C, Pultrone C, Manners DN, Schiavina R, Lodi R. Metabolic Imaging in Prostate Cancer: Where We Are. Front Oncol 2016; 6:225. [PMID: 27882307 PMCID: PMC5101200 DOI: 10.3389/fonc.2016.00225] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/10/2016] [Indexed: 11/25/2022] Open
Abstract
In recent years, the development of diagnostic methods based on metabolic imaging has been aimed at improving diagnosis of prostate cancer (PCa) and perhaps at improving therapy. Molecular imaging methods can detect specific biological processes that are different when detected within cancer cells relative to those taking place in surrounding normal tissues. Many methods are sensitive to tissue metabolism; among them, positron emission tomography (PET) and magnetic resonance spectroscopic imaging (MRSI) are widely used in clinical practice and clinical research. There is a rich literature that establishes the role of these metabolic imaging techniques as valid tools for the diagnosis, staging, and monitoring of PCa. Until recently, European guidelines for PCa detection still considered both MRSI/MRI and PET/CT to be under evaluation, even though they had demonstrated their value in the staging of high risk PCa, and in the restaging of patients presenting elevated prostatic-specific antigen levels following radical treatment of PCa, respectively. Very recently, advanced methods for metabolic imaging have been proposed in the literature: multiparametric MRI (mpMRI), hyperpolarized MRSI, PET/CT with the use of new tracers and finally PET/MRI. Their detection capabilities are currently under evaluation, as is the feasibility of using such techniques in clinical studies.
Collapse
Affiliation(s)
- Claudia Testa
- Functional MR Unit, Department of Biomedical and Neuromotor Sciences, S. Orsola-Malpighi Hospital, University of Bologna , Bologna , Italy
| | - Cristian Pultrone
- Urologic Unit, Experimental, Diagnostic and Specialty Medicine, Department of Urology, S. Orsola-Malpighi Hospital, University of Bologna , Bologna , Italy
| | - David Neil Manners
- Functional MR Unit, Department of Biomedical and Neuromotor Sciences, S. Orsola-Malpighi Hospital, University of Bologna , Bologna , Italy
| | - Riccardo Schiavina
- Urologic Unit, Experimental, Diagnostic and Specialty Medicine, Department of Urology, S. Orsola-Malpighi Hospital, University of Bologna , Bologna , Italy
| | - Raffaele Lodi
- Functional MR Unit, Department of Biomedical and Neuromotor Sciences, S. Orsola-Malpighi Hospital, University of Bologna , Bologna , Italy
| |
Collapse
|
35
|
Maidens J, Gordon JW, Arcak M, Larson PEZ. Optimizing Flip Angles for Metabolic Rate Estimation in Hyperpolarized Carbon-13 MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:2403-2412. [PMID: 27249825 PMCID: PMC5134417 DOI: 10.1109/tmi.2016.2574240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hyperpolarized carbon-13 magnetic resonance imaging has enabled the real-time observation of perfusion and metabolism in vivo. These experiments typically aim to distinguish between healthy and diseased tissues based on the rate at which they metabolize an injected substrate. However, existing approaches to optimizing flip angle sequences for these experiments have focused on indirect metrics of the reliability of metabolic rate estimates, such as signal variation and signal-to-noise ratio. In this paper we present an optimization procedure that focuses on maximizing the Fisher information about the metabolic rate. We demonstrate through numerical simulation experiments that flip angles optimized based on the Fisher information lead to lower variance in metabolic rate estimates than previous flip angle sequences. In particular, we demonstrate a 20% decrease in metabolic rate uncertainty when compared with the best competing sequence. We then demonstrate appropriateness of the mathematical model used in the simulation experiments with in vivo experiments in a prostate cancer mouse model. While there is no ground truth against which to compare the parameter estimates generated in the in vivo experiments, we demonstrate that our model used can reproduce consistent parameter estimates for a number of flip angle sequences.
Collapse
Affiliation(s)
- John Maidens
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA, 94720, USA
| | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| | - Murat Arcak
- Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA, 94720, USA
| | - Peder E. Z. Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 1700 4th Street, San Francisco, CA, 94158, USA
| |
Collapse
|
36
|
Najac C, Chaumeil MM, Kohanbash G, Guglielmetti C, Gordon JW, Okada H, Ronen SM. Detection of inflammatory cell function using (13)C magnetic resonance spectroscopy of hyperpolarized [6-(13)C]-arginine. Sci Rep 2016; 6:31397. [PMID: 27507680 PMCID: PMC4979036 DOI: 10.1038/srep31397] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/19/2016] [Indexed: 01/11/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are highly prevalent inflammatory cells that play a key role in tumor development and are considered therapeutic targets. MDSCs promote tumor growth by blocking T-cell-mediated anti-tumoral immune response through depletion of arginine that is essential for T-cell proliferation. To deplete arginine, MDSCs express high levels of arginase, which catalyzes the breakdown of arginine into urea and ornithine. Here, we developed a new hyperpolarized (13)C probe, [6-(13)C]-arginine, to image arginase activity. We show that [6-(13)C]-arginine can be hyperpolarized, and hyperpolarized [(13)C]-urea production from [6-(13)C]-arginine is linearly correlated with arginase concentration in vitro. Furthermore we show that we can detect a statistically significant increase in hyperpolarized [(13)C]-urea production in MDSCs when compared to control bone marrow cells. This increase was associated with an increase in intracellular arginase concentration detected using a spectrophotometric assay. Hyperpolarized [6-(13)C]-arginine could therefore serve to image tumoral MDSC function and more broadly M2-like macrophages.
Collapse
Affiliation(s)
- Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Myriam M. Chaumeil
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
37
|
Durst M, Koellisch U, Daniele V, Steiger K, Schwaiger M, Haase A, Menzel MI, Schulte RF, Aime S, Reineri F. Probing lactate secretion in tumours with hyperpolarised NMR. NMR IN BIOMEDICINE 2016; 29:1079-1087. [PMID: 27348729 DOI: 10.1002/nbm.3574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 06/06/2023]
Abstract
Most tumours exhibit a high rate of glycolysis and predominantly produce energy by lactic acid fermentation. To maintain energy production and prevent toxicity, the lactate generated needs to be rapidly transported out of the cell. This is achieved by monocarboxylate transporters (MCTs), which therefore play an essential role in cancer metabolism and development. In vivo experiments were performed on eight male Fisher F344 rats bearing a subcutaneous mammary carcinoma after injection of hyperpolarised [1-(13) C]pyruvate. A Gd(III)DO3A complex that binds to pyruvate and its metabolites was used to efficiently destroy the extracellular magnetisation after hyperpolarised lactate had been formed. Moreover, a pulse sequence including a frequency-selective saturation pulse was designed so that the pyruvate magnetisation could be destroyed to exclude effects arising from further conversion. Given this preparation, metabolite transport out of the cell manifested as additional decay and apparent cell membrane transporter rates could thus be obtained using a reference measurement without a relaxation agent. In addition to slice-selective spectra, spatially resolved maps of apparent membrane transporter activity were acquired using a single-shot spiral gradient readout. A considerable increase in decay rate was detected for lactate, indicating rapid transport out of the cell. The alanine signal was unaltered, which corresponds to a slower efflux rate. This technique could allow for better understanding of tumour metabolism and progression, and enable treatment response measurements for MCT-targeted cancer therapies. Moreover, it provides vital insights into the signal kinetics of hyperpolarised [1-(13) C]pyruvate examinations. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Markus Durst
- IMETUM, Technische Universität München, Garching, Germany
- GE Global Research, Garching, Germany
| | - Ulrich Koellisch
- IMETUM, Technische Universität München, Garching, Germany
- GE Global Research, Garching, Germany
| | | | | | - Markus Schwaiger
- Nuklearmedizinische Klinik und Poliklinik,Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Axel Haase
- IMETUM, Technische Universität München, Garching, Germany
| | | | | | | | | |
Collapse
|
38
|
Laustsen C. Hyperpolarized Renal Magnetic Resonance Imaging: Potential and Pitfalls. Front Physiol 2016; 7:72. [PMID: 26973539 PMCID: PMC4771722 DOI: 10.3389/fphys.2016.00072] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/15/2016] [Indexed: 01/02/2023] Open
Abstract
The introduction of dissolution dynamic nuclear polarization (d-DNP) technology has enabled a new paradigm for renal imaging investigations. It allows standard magnetic resonance imaging complementary renal metabolic and functional fingerprints within seconds without the use of ionizing radiation. Increasing evidence supports its utility in preclinical research in which the real-time interrogation of metabolic turnover can aid the physiological and pathophysiological metabolic and functional effects in ex vivo and in vivo models. The method has already been translated to humans, although the clinical value of this technology is unknown. In this paper, I review the potential benefits and pitfalls associated with dissolution dynamic nuclear polarization in preclinical research and its translation to renal patients.
Collapse
Affiliation(s)
- Christoffer Laustsen
- Department of Clinical Medicine, MR Research Centre, Aarhus University Aarhus, Denmark
| |
Collapse
|
39
|
Zacharias NM, McCullough CR, Wagner S, Sailasuta N, Chan HR, Lee Y, Hu J, Perman WH, Henneberg C, Ross BD, Bhattacharya P. Towards Real-time Metabolic Profiling of Cancer with Hyperpolarized Succinate. ACTA ACUST UNITED AC 2016; 6. [PMID: 27547490 PMCID: PMC4989923 DOI: 10.4172/2155-9937.1000123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE The energy-yielding mitochondrial Krebs cycle has been shown in many cancers and other diseases to be inhibited or mutated. In most cells, the Krebs cycle with oxidative phosphorylation generates approximately 90% of the adenosine triphosphate in the cell. We designed and hyperpolarized carbon-13 labeled succinate (SUC) and its derivative diethyl succinate (DES) to interrogate the Krebs cycle in real-time in cancer animal models. PROCEDURES Using Parahydrogen Induced Polarization (PHIP), we generated hyperpolarized SUC and DES by hydrogenating their respective fumarate precursors. DES and SUC metabolism was studied in five cancer allograft animal models: breast (4T1), Renal Cell Carcinoma (RENCA), colon (CT26), lymphoma NSO, and lymphoma A20. RESULTS The extent of hyperpolarization was 8 ± 2% for SUC and 2.1 ± 0.6% for DES. The metabolism of DES and SUC in the Krebs cycle could be followed in animals 5 s after tail vein injection. The biodistribution of the compounds was observed using 13C FISP imaging. We observed significant differences in uptake and conversion of both compounds in different cell types both in vivo and in vitro. CONCLUSION With hyperpolarized DES and SUC, we are able to meet many of the requirements for a useable in vivo metabolic imaging compound - high polarization, relatively long T1 values, low toxicity and high water solubility. However, succinate and its derivative DES are metabolized robustly by RENCA but not by the other cancer models. Our results underscore the heterogeneity of cancer cells and the role cellular uptake plays in hyperpolarized metabolic spectroscopy.
Collapse
Affiliation(s)
- Niki M Zacharias
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, USA
| | - Christopher R McCullough
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, USA
| | - Shawn Wagner
- Department of Biomedical Sciences, Cedars-Sinai, Los Angeles, USA
| | - Napapon Sailasuta
- Enhanced Magnetic Resonance Laboratories, Huntington Medical Research Institutes, Pasadena, USA
| | - Henry R Chan
- Enhanced Magnetic Resonance Laboratories, Huntington Medical Research Institutes, Pasadena, USA
| | - Youngbok Lee
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, USA; Department of Applied Chemistry, Hanyang University, Ansan, Korea
| | - Jingzhe Hu
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, USA
| | - William H Perman
- Department of Radiology, School of Medicine Saint Louis University, St. Louis, USA
| | - Cameron Henneberg
- Enhanced Magnetic Resonance Laboratories, Huntington Medical Research Institutes, Pasadena, USA
| | - Brian D Ross
- Enhanced Magnetic Resonance Laboratories, Huntington Medical Research Institutes, Pasadena, USA
| | - Pratip Bhattacharya
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
40
|
Kiswandhi A, Lama B, Niedbalski P, Goderya M, Long J, Lumata L. The effect of glassing solvent deuteration and Gd3+ doping on 13C DNP at 5 T. RSC Adv 2016. [DOI: 10.1039/c6ra02864k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report the influence of glassing solvent deuteration and Gd3+ doping on 13C dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) performed on [1-13C] sodium acetate at B0 = 5 T and 1.2 K.
Collapse
Affiliation(s)
| | - Bimala Lama
- Department of Biochemistry and Molecular Biology
- University of Florida
- Gainesville
- USA
| | | | - Mudrekh Goderya
- Department of Physics
- University of Texas at Dallas
- Richardson
- USA
| | - Joanna Long
- Department of Biochemistry and Molecular Biology
- University of Florida
- Gainesville
- USA
| | - Lloyd Lumata
- Department of Physics
- University of Texas at Dallas
- Richardson
- USA
| |
Collapse
|
41
|
Lau AZ, Miller JJ, Robson MD, Tyler DJ. Cardiac perfusion imaging using hyperpolarized (13)C urea using flow sensitizing gradients. Magn Reson Med 2015; 75:1474-83. [PMID: 25991580 PMCID: PMC4556069 DOI: 10.1002/mrm.25713] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/25/2015] [Accepted: 03/05/2015] [Indexed: 01/18/2023]
Abstract
Purpose To demonstrate the feasibility of imaging the first passage of a bolus of hyperpolarized 13C urea through the rodent heart using flow‐sensitizing gradients to reduce signal from the blood pool. Methods A flow‐sensitizing bipolar gradient was optimized to reduce the bright signal within the cardiac chambers, enabling improved contrast of the agent within the tissue capillary bed. The gradient was incorporated into a dynamic golden angle spiral 13C imaging sequence. Healthy rats were scanned during rest (n = 3) and under adenosine stress‐induced hyperemia (n = 3). Results A two‐fold increase in myocardial perfusion relative to rest was detected during adenosine stress‐induced hyperemia, consistent with a myocardial perfusion reserve of two in rodents. Conclusion The new pulse sequence was used to obtain dynamic images of the first passage of hyperpolarized 13C urea in the rodent heart, without contamination from bright signal within the neighboring cardiac lumen. This probe of myocardial perfusion is expected to enable new hyperpolarized 13C studies in which the cardiac metabolism/perfusion mismatch can be identified. Magn Reson Med, 2015. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Magn Reson Med 75:1474–1483, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance.
Collapse
Affiliation(s)
- Angus Z Lau
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | - Jack J Miller
- Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom.,Department of Physics, Clarendon Laboratory, University of Oxford, United Kingdom
| | - Matthew D Robson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| | - Damian J Tyler
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| |
Collapse
|
42
|
Pinker K, Helbich TH, Magometschnigg H, Fueger B, Baltzer P. [Molecular breast imaging. An update]. Radiologe 2014; 54:241-53. [PMID: 24557495 DOI: 10.1007/s00117-013-2580-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CLINICAL/METHODICAL ISSUE The aim of molecular imaging is to visualize and quantify biological, physiological and pathological processes at cellular and molecular levels. Molecular imaging using various techniques has recently become established in breast imaging. STANDARD RADIOLOGICAL METHODS Currently molecular imaging techniques comprise multiparametric magnetic resonance imaging (MRI) using dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted imaging (DWI), proton MR spectroscopy ((1)H-MRSI), nuclear imaging by breast-specific gamma imaging (BSGI), positron emission tomography (PET) and positron emission mammography (PEM) and combinations of techniques (e.g. PET-CT and multiparametric PET-MRI). METHODICAL INNOVATIONS Recently, novel techniques for molecular imaging of breast tumors, such as sodium imaging ((23)Na-MRI), phosphorus spectroscopy ((31)P-MRSI) and hyperpolarized MRI as well as specific radiotracers have been developed and are currently under investigation. PRACTICAL RECOMMENDATIONS It can be expected that molecular imaging of breast tumors will enable a simultaneous assessment of the multiple metabolic and molecular processes involved in cancer development and thus an improved detection, characterization, staging and monitoring of response to treatment will become possible.
Collapse
Affiliation(s)
- K Pinker
- Abteilung für Molekulare Bildgebung, Universitätsklinik für Radiologie und Nuklearmedizin, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich
| | | | | | | | | |
Collapse
|
43
|
Zeng H, Xu J, McMahon MT, Lohman JAB, van Zijl PCM. Achieving 1% NMR polarization in water in less than 1min using SABRE. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 246:119-21. [PMID: 25123540 PMCID: PMC4324624 DOI: 10.1016/j.jmr.2014.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/12/2014] [Accepted: 07/13/2014] [Indexed: 05/11/2023]
Abstract
The development of biocompatible hyperpolarized media is a crucial step towards application of hyperpolarization in vivo. This article describes the achievement of 1% hyperpolarization of 3-amino-1,2,4-triazine protons in water using the parahydrogen induced polarization technique based on signal amplification by reversible exchange (SABRE). Polarization was achieved in less than 1 min.
Collapse
Affiliation(s)
- Haifeng Zeng
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA.
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | - Michael T McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| | | | - Peter C M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA.
| |
Collapse
|
44
|
Coffey AM, Kovtunov KV, Barskiy DA, Koptyug IV, Shchepin RV, Waddell KW, He P, Groome KA, Best QA, Shi F, Goodson BM, Chekmenev EY. High-resolution low-field molecular magnetic resonance imaging of hyperpolarized liquids. Anal Chem 2014; 86:9042-9. [PMID: 25162371 PMCID: PMC4165454 DOI: 10.1021/ac501638p] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We demonstrate the feasibility of microscale molecular imaging using hyperpolarized proton and carbon-13 MRI contrast media and low-field (47.5 mT) preclinical scale (38 mm i.d.) 2D magnetic resonance imaging (MRI). Hyperpolarized proton images with 94 × 94 μm(2) spatial resolution and hyperpolarized carbon-13 images with 250 × 250 μm(2) in-plane spatial resolution were recorded in 4-8 s (largely limited by the electronics response), surpassing the in-plane spatial resolution (i.e., pixel size) achievable with micro-positron emission tomography (PET). These hyperpolarized proton and (13)C images were recorded using large imaging matrices of up to 256 × 256 pixels and relatively large fields of view of up to 6.4 × 6.4 cm(2). (13)C images were recorded using hyperpolarized 1-(13)C-succinate-d2 (30 mM in water, %P(13C) = 25.8 ± 5.1% (when produced) and %P(13C) = 14.2 ± 0.7% (when imaged), T1 = 74 ± 3 s), and proton images were recorded using (1)H hyperpolarized pyridine (100 mM in methanol-d4, %P(H) = 0.1 ± 0.02% (when imaged), T1 = 11 ± 0.1 s). Both contrast agents were hyperpolarized using parahydrogen (>90% para-fraction) in an automated 5.75 mT parahydrogen induced polarization (PHIP) hyperpolarizer. A magnetized path was demonstrated for successful transportation of a (13)C hyperpolarized contrast agent (1-(13)C-succinate-d2, sensitive to fast depolarization when at the Earth's magnetic field) from the PHIP polarizer to the 47.5 mT low-field MRI. While future polarizing and low-field MRI hardware and imaging sequence developments can further improve the low-field detection sensitivity, the current results demonstrate that microscale molecular imaging in vivo is already feasible at low (<50 mT) fields and potentially at low (~1 mM) metabolite concentrations.
Collapse
Affiliation(s)
- Aaron M Coffey
- Vanderbilt University Institute of Imaging Science (VUIIS) and Department of Radiology, Vanderbilt University , Nashville, Tennessee 37232, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Purmal C, Kucejova B, Sherry AD, Burgess SC, Malloy CR, Merritt ME. Propionate stimulates pyruvate oxidation in the presence of acetate. Am J Physiol Heart Circ Physiol 2014; 307:H1134-41. [PMID: 25320331 DOI: 10.1152/ajpheart.00407.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Flux through pyruvate dehydrogenase (PDH) in the heart may be reduced by various forms of injury to the myocardium, or by oxidation of alternative substrates in normal heart tissue. It is important to distinguish these two mechanisms because imaging of flux through PDH based on the appearance of hyperpolarized (HP) [(13)C]bicarbonate derived from HP [1-(13)C]pyruvate has been proposed as a method for identifying viable myocardium. The efficacy of propionate for increasing PDH flux in the setting of PDH inhibition by an alternative substrate was studied using isotopomer analysis paired with exams using HP [1-(13)C]pyruvate. Hearts from C57/bl6 mice were supplied with acetate (2 mM) and glucose (8.25 mM). (13)C NMR spectra were acquired in a cryogenically cooled probe at 14.1 Tesla. After addition of hyperpolarized [1-(13)C]pyruvate, (13)C NMR signals from lactate, alanine, malate, and aspartate were easily detected, in addition to small signals from bicarbonate and CO2. The addition of propionate (2 mM) increased appearance of HP [(13)C]bicarbonate >30-fold without change in O2 consumption. Isotopomer analysis of extracts from the freeze-clamped hearts indicated that acetate was the preferred substrate for energy production, glucose contribution to energy production was minimal, and anaplerosis was stimulated in the presence of propionate. Under conditions where production of acetyl-CoA is dominated by the availability of an alternative substrate, acetate, propionate markedly stimulated PDH flux as detected by the appearance of hyperpolarized [(13)C]bicarbonate from metabolism of hyperpolarized [1-(13)C]pyruvate.
Collapse
Affiliation(s)
- Colin Purmal
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Blanka Kucejova
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Chemistry, University of Texas at Dallas, Richardson, Texas; and
| | - Shawn C Burgess
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Veterans Affairs North Texas Healthcare System, Dallas, Texas
| | - Matthew E Merritt
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Chemistry, University of Texas at Dallas, Richardson, Texas; and
| |
Collapse
|
46
|
Meßner NM, Zöllner FG, Kalayciyan R, Schad LR. Pre-clinical functional Magnetic Resonance Imaging Part II: The heart. Z Med Phys 2014; 24:307-22. [PMID: 25023418 DOI: 10.1016/j.zemedi.2014.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/09/2014] [Accepted: 06/17/2014] [Indexed: 12/21/2022]
Abstract
One third of all deaths worldwide in 2008 were caused by cardiovascular diseases (CVD), and the incidence of CVD related deaths rises ever more. Thus, improved imaging techniques and modalities are needed for the evaluation of cardiac morphology and function. Cardiac magnetic resonance imaging (CMRI) is a minimally invasive technique that is increasingly important due to its high spatial and temporal resolution, its high soft tissue contrast and its ability of functional and quantitative imaging. It is widely accepted as the gold standard of cardiac functional analysis. In the short period of small animal MRI, remarkable progress has been achieved concerning new, fast imaging schemes as well as purpose-built equipment. Dedicated small animal scanners allow for tapping the full potential of recently developed animal models of cardiac disease. In this paper, we review state-of-the-art cardiac magnetic resonance imaging techniques and applications in small animals at ultra-high fields (UHF).
Collapse
Affiliation(s)
- Nadja M Meßner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Raffi Kalayciyan
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
47
|
Truong ML, Coffey AM, Shchepin RV, Waddell KW, Chekmenev EY. Sub-second proton imaging of 13C hyperpolarized contrast agents in water. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 9:333-41. [PMID: 24753438 DOI: 10.1002/cmmi.1579] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/05/2013] [Accepted: 10/14/2013] [Indexed: 11/07/2022]
Abstract
Indirect proton detection of (13)C hyperpolarized contrast agents potentially enables greater sensitivity. Presented here is a study of sub-second projection imaging of hyperpolarized (13)C contrast agent addressing the obstacle posed by water suppression for indirect detection in vivo. Sodium acetate phantoms were used to develop and test water suppression and sub-second imaging with frequency-selective RF pulses using spectroscopic and imaging indirect proton detection. A 9.8 mm aqueous solution of (13)C PHIP hyperpolarized 2-hydroxyethyl-(13)C-propionate-d2,3,3 (HEP), <P> ~25% was used for demonstration of indirect proton sub-second imaging detection. Balanced 2D FSSFP (fast steady-state free precession) allowed the recording of proton images with a field of view of 64 × 64 mm(2) and spatial resolution 2 × 2 mm(2) with total acquisition time of less than 0.2 s. In thermally polarized sodium 1-(13)C-acetate, (13) C to (1)H polarization transfer efficiency of 45.1% of the theoretically predicted values was observed in imaging detection corresponding to an 11-fold overall sensitivity improvement compared with direct (13)C FSSFP imaging. (13)C to (1)H polarization transfer efficiency of 27% was observed in imaging detection, corresponding to a 3.25-fold sensitivity improvement compared with direct (13)C FSSFP imaging with hyperpolarized HEP. The range of potential applications and limitations of this sub-second and ultra-sensitive imaging approach are discussed.
Collapse
Affiliation(s)
- Milton L Truong
- Department of Radiology, Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, USA
| | | | | | | | | |
Collapse
|
48
|
Shchepin RV, Coffey AM, Waddell KW, Chekmenev EY. Parahydrogen induced polarization of 1-(13)C-phospholactate-d(2) for biomedical imaging with >30,000,000-fold NMR signal enhancement in water. Anal Chem 2014; 86:5601-5. [PMID: 24738968 PMCID: PMC4063326 DOI: 10.1021/ac500952z] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The synthetic protocol for preparation
of 1-13C-phosphoenolpyruvate-d2, precursor for parahydrogen-induced polarization
(PHIP) of 1-13C-phospholactate-d2, is reported. 13C nuclear spin polarization of 1-13C-phospholactate-d2 was increased
by >30,000,000-fold (5.75 mT) in water. The reported 13C polarization level approaching unity (>15.6%), long lifetime
of 13C hyperpolarized 1-13C-phospholactate-d2 (58 ± 4 s versus 36 ± 2 s for nondeuterated
form at 47.5 mT), and large production quantities (52 μmoles
in 3 mL) in aqueous medium make this compound useful as a potential
contrast agent for the molecular imaging of metabolism and other applications.
Collapse
Affiliation(s)
- Roman V Shchepin
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology, ‡Department of Biomedical Engineering and Biochemistry, §Department of Physics and Astronomy, ∥Department of Biochemistry, ¶Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University , Nashville, Tennessee 37232, United States
| | | | | | | |
Collapse
|
49
|
Bahrami N, Swisher CL, Von Morze C, Vigneron DB, Larson PEZ. Kinetic and perfusion modeling of hyperpolarized (13)C pyruvate and urea in cancer with arbitrary RF flip angles. Quant Imaging Med Surg 2014; 4:24-32. [PMID: 24649432 DOI: 10.3978/j.issn.2223-4292.2014.02.02] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/13/2014] [Indexed: 01/22/2023]
Abstract
The accurate detection and characterization of cancerous tissue is still a major problem for the clinical management of individual cancer patients and for monitoring their response to therapy. MRI with hyperpolarized agents is a promising technique for cancer characterization because it can non-invasively provide a local assessment of the tissue metabolic profile. In this work, we measured the kinetics of hyperpolarized [1-(13)C] pyruvate and (13)C-urea in prostate and liver tumor models using a compressed sensing dynamic MRSI method. A kinetic model fitting method was developed that incorporated arbitrary RF flip angle excitation and measured a pyruvate to lactate conversion rate, Kpl, of 0.050 and 0.052 (1/s) in prostate and liver tumors, respectively, which was significantly higher than Kpl in healthy tissues [Kpl =0.028 (1/s), P<0.001]. Kpl was highly correlated to the total lactate to total pyruvate signal ratio (correlation coefficient =0.95). We additionally characterized the total pyruvate and urea perfusion, as in cancerous tissue there is both existing vasculature and neovascularization as different kinds of lesions surpass the normal blood supply, including small circulation disturbance in some of the abnormal vessels. A significantly higher perfusion of pyruvate (accounting for conversion to lactate and alanine) relative to urea perfusion was seen in cancerous tissues (liver cancer and prostate cancer) compared to healthy tissues (P<0.001), presumably due to high pyruvate uptake in tumors.
Collapse
Affiliation(s)
- Naeim Bahrami
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Christine Leon Swisher
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Cornelius Von Morze
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, San Francisco, CA, USA
| |
Collapse
|
50
|
Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PEZ, Harzstark AL, Ferrone M, van Criekinge M, Chang JW, Bok R, Park I, Reed G, Carvajal L, Small EJ, Munster P, Weinberg VK, Ardenkjaer-Larsen JH, Chen AP, Hurd RE, Odegardstuen LI, Robb FJ, Tropp J, Murray JA. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-¹³C]pyruvate. Sci Transl Med 2014; 5:198ra108. [PMID: 23946197 DOI: 10.1126/scitranslmed.3006070] [Citation(s) in RCA: 963] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This first-in-man imaging study evaluated the safety and feasibility of hyperpolarized [1-¹³C]pyruvate as an agent for noninvasively characterizing alterations in tumor metabolism for patients with prostate cancer. Imaging living systems with hyperpolarized agents can result in more than 10,000-fold enhancement in signal relative to conventional magnetic resonance (MR) imaging. When combined with the rapid acquisition of in vivo ¹³C MR data, it is possible to evaluate the distribution of agents such as [1-¹³C]pyruvate and its metabolic products lactate, alanine, and bicarbonate in a matter of seconds. Preclinical studies in cancer models have detected elevated levels of hyperpolarized [1-¹³C]lactate in tumor, with the ratio of [1-¹³C]lactate/[1-¹³C]pyruvate being increased in high-grade tumors and decreased after successful treatment. Translation of this technology into humans was achieved by modifying the instrument that generates the hyperpolarized agent, constructing specialized radio frequency coils to detect ¹³C nuclei, and developing new pulse sequences to efficiently capture the signal. The study population comprised patients with biopsy-proven prostate cancer, with 31 subjects being injected with hyperpolarized [1-¹³C]pyruvate. The median time to deliver the agent was 66 s, and uptake was observed about 20 s after injection. No dose-limiting toxicities were observed, and the highest dose (0.43 ml/kg of 230 mM agent) gave the best signal-to-noise ratio for hyperpolarized [1-¹³C]pyruvate. The results were extremely promising in not only confirming the safety of the agent but also showing elevated [1-¹³C]lactate/[1-¹³C]pyruvate in regions of biopsy-proven cancer. These findings will be valuable for noninvasive cancer diagnosis and treatment monitoring in future clinical trials.
Collapse
Affiliation(s)
- Sarah J Nelson
- Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|