1
|
Larue L, Michely L, Grande D, Belbekhouche S. Design of Collagen and Gelatin-based Electrospun Fibers for Biomedical Purposes: An Overview. ACS Biomater Sci Eng 2024; 10:5537-5549. [PMID: 39092811 DOI: 10.1021/acsbiomaterials.4c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Collagen and gelatin are essential natural biopolymers commonly utilized in biomaterials and tissue engineering because of their excellent physicochemical and biocompatibility properties. They can be used either in combination with other biomacromolecules or particles or even exclusively for the enhancement of bone regeneration or for the development of biomimetic scaffolds. Collagen or gelatin derivatives can be transformed into nanofibrous materials with porous micro- or nanostructures and superior mechanical properties and biocompatibility using electrospinning technology. Specific attention was recently paid to electrospun mats of such biopolymers, due to their high ratio of surface area to volume, as well as their biocompatibility, biodegradability, and low immunogenicity. The fiber mats with submicro- and nanometer scale can replicate the extracellular matrix structure of human tissues and organs, making them highly suitable for use in tissue engineering due to their exceptional bioaffinity. The drawbacks may include rapid degradation and complete dissolution in aqueous media. The use of gelatin/collagen electrospun nanofibers in this form is thus greatly restricted for biomedicine. Therefore, the cross-linking of these fibers is necessary for controlling their aqueous solubility. This led to enhanced biological characteristics of the fibers, rendering them excellent options for various biomedical uses. The objective of this review is to highlight the key research related to the electrospinning of collagen and gelatin, as well as their applications in the biomedical field. The review features a detailed examination of the electrospinning fiber mats, showcasing their varying structures and performances resulting from diverse solvents, electrospinning processes, and cross-linking methods. Judiciously selected examples from literature will be presented to demonstrate major advantages of such biofibers. The current developments and difficulties in this area of research are also being addressed.
Collapse
Affiliation(s)
- Laura Larue
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Laurent Michely
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Daniel Grande
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Sabrina Belbekhouche
- Université Paris Est Creteil, CNRS, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
2
|
Jamal M, Sharif F, Shozab Mehdi M, Fakhar-e-Alam M, Asif M, Mustafa W, Bashir M, Rafiq S, Bustam MA, Saif-ur-Rehman, Dahlous KA, Shibl MF, Al-Qahtani NH. Development of Biocompatible Electrospun PHBV-PLLA Polymeric Bilayer Composite Membranes for Skin Tissue Engineering Applications. Molecules 2024; 29:2049. [PMID: 38731542 PMCID: PMC11085634 DOI: 10.3390/molecules29092049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 05/13/2024] Open
Abstract
Bilayer electrospun fibers aimed to be used for skin tissue engineering applications were fabricated for enhanced cell attachment and proliferation. Different ratios of PHBV-PLLA (70:30, 80:20, and 90:10 w/w) blends were electrospun on previously formed electrospun PHBV membranes to produce their bilayers. The fabricated electrospun membranes were characterized with FTIR, which conformed to the characteristic peaks assigned for both PHBV and PLLA. The surface morphology was evaluated using SEM analysis that showed random fibers with porous morphology. The fiber diameter and pore size were measured in the range of 0.7 ± 0.1 µm and 1.9 ± 0.2 µm, respectively. The tensile properties of the bilayers were determined using an electrodynamic testing system. Bilayers had higher elongation at break (44.45%) compared to the monolayers (28.41%) and improved ultimate tensile strength (7.940 MPa) compared to the PHBV monolayer (2.450 MPa). In vitro cytotoxicity of each of the scaffolds was determined via culturing MC3T3 (pre-osteoblastic cell line) on the membranes. Proliferation was evaluated using the Alamar Blue assay on days 3, 7, and 14, respectively. SEM images of cells cultured on membranes were taken in addition to bright field imaging to visually show cell attachment. Fluorescent nuclear staining performed with DAPI was imaged with an inverted fluorescent microscope. The fabricated bilayer shows high mechanical strength as well as biocompatibility with good cell proliferation and cell attachment, showing potential for skin substitute applications.
Collapse
Affiliation(s)
- Muddasar Jamal
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (M.J.); (W.M.); (S.-u.-R.)
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia;
| | - Faiza Sharif
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (M.J.); (W.M.); (S.-u.-R.)
| | - Muhammad Shozab Mehdi
- Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan;
| | - Muhammad Fakhar-e-Alam
- Department of Physics, Government College University Faisalabad, Allama Iqbal Road, Faisalabad 38000, Pakistan; (M.F.-e.-A.)
| | - Muhammad Asif
- Department of Physics, Government College University Faisalabad, Allama Iqbal Road, Faisalabad 38000, Pakistan; (M.F.-e.-A.)
| | - Waleed Mustafa
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (M.J.); (W.M.); (S.-u.-R.)
| | - Mustehsan Bashir
- Department of Plastic, Reconstructive Surgery and Burn Unit, King Edward Medical University, Lahore 54000, Pakistan;
| | - Sikandar Rafiq
- Department of Chemical, Polymer and Composites Materials Engineering, University of Engineering and Technology-Lahore, New Campus, Lahore 39161, Pakistan;
| | - Mohamad Azmi Bustam
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia;
| | - Saif-ur-Rehman
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (M.J.); (W.M.); (S.-u.-R.)
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
- Department of Chemical Engineering, ProcESS-Process Engineering for Sustainable System, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Kholood A. Dahlous
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohamed F. Shibl
- Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt;
| | | |
Collapse
|
3
|
Tenchurin TK, Sytina EV, Solovieva EV, Shepelev AD, Mamagulashvili VG, Krasheninnikov SV, Yastremskiy EV, Nesterenko EV, Buzin AI, Istranova EV, Istranov LP, Fatkhudinov TK, Panteleyev AA, Chvalun SN. Effect of collagen denaturation degree on mechanical properties and biological activity of nanofibrous scaffolds. J Biomed Mater Res A 2024; 112:144-154. [PMID: 37921091 DOI: 10.1002/jbm.a.37598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 11/04/2023]
Abstract
Further progress in regenerative medicine and bioengineering highly depends on the development of 3D polymeric scaffolds with active biological properties. The most attention is paid to natural extracellular matrix components, primarily collagen. Herein, nonwoven nanofiber materials with various degrees of collagen denaturation and fiber diameters 250-500 nm were produced by electrospinning, stabilized by genipin, and characterized in detail. Collagen denaturation has been confirmed using DSC and FTIR analysis. The comparative study of collagen and gelatin nonwoven materials (NWM) revealed only minor differences in their biocompatibility with skin fibroblasts and keratinocytes in vitro. In long-term subcutaneous implantation study, the inflammation was less evident on collagen than on gelatin NWM. Remarkably, the pronounced calcification was revealed in the collagen NWM only. The results obtained can be useful in terms of improving the electrospinning technology of collagen from aqueous solutions, as well as emphasize the importance of long-term study to ensure proper implementation of the material, taking into account the ability of collagen to provoke calcification.
Collapse
Affiliation(s)
- Timur Kh Tenchurin
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Elena V Sytina
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Elena V Solovieva
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Aleksey D Shepelev
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Vissarion G Mamagulashvili
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Sergey V Krasheninnikov
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Evgeniy V Yastremskiy
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Elizaveta V Nesterenko
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Aleksandr I Buzin
- Enikolopov Institute of Synthetic Polymer Materials RAS, Moscow, Russian Federation
| | - Elena V Istranova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Leonid P Istranov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Panteleyev
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Sergey N Chvalun
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| |
Collapse
|
4
|
Xu J, Zhu X, Zhao J, Ling G, Zhang P. Biomedical applications of supramolecular hydrogels with enhanced mechanical properties. Adv Colloid Interface Sci 2023; 321:103000. [PMID: 37839280 DOI: 10.1016/j.cis.2023.103000] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/02/2023] [Accepted: 09/16/2023] [Indexed: 10/17/2023]
Abstract
Supramolecular hydrogels bound by hydrogen bonding, host-guest, hydrophobic, and other non-covalent interactions are among the most attractive biomaterials available. Supramolecular hydrogels have attracted extensive attention due to their inherent dynamic reversibility, self-healing, stimuli-response, excellent biocompatibility, and near-physiological environment. However, the inherent contradiction between non-covalent interactions and mechanical strength makes the practical application of supramolecular hydrogels a great challenge. This review describes the mechanical strength of hydrogels mediated by supramolecular interactions, and focuses on the potential strategies for enhancing the mechanical strength of supramolecular hydrogels and illustrates their applications in related fields, such as flexible electronic sensors, wound dressings, and three-dimensional (3D) scaffolds. Finally, the current problems and future research prospects of supramolecular hydrogels are discussed. This review is expected to provide insights that will motivate more advanced research on supramolecular hydrogels.
Collapse
Affiliation(s)
- Jiaqi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Jiuhong Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China..
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China..
| |
Collapse
|
5
|
Visser D, Rogg K, Fuhrmann E, Marzi J, Schenke-Layland K, Hartmann H. Electrospinning of collagen: enzymatic and spectroscopic analyses reveal solvent-independent disruption of the triple-helical structure. J Mater Chem B 2023; 11:2207-2218. [PMID: 36786208 DOI: 10.1039/d2tb02602c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Electrospinning has become a well-established method for creating nanofibrous meshes for tissue-engineering applications. The incorporation of natural extracellular components, such as electrospun pure collagen nanofibers, has proven to be particularly challenging, as electrospun collagen nanofibers do not constitute native collagen fibers anymore. In this study, we show that this detrimental effect is not only limited to fluorinated solvents, as previously thought. Rat tail collagen was dissolved in acetic acid and ethanol and electrospun at various temperatures. Electrospun collagen mats were analyzed using circular dichroism, enzymatic digestion, SDS-PAGE, western blotting, and Raman spectroscopy and compared to heat-denaturated and electrospun collagen in HFIP. Our data suggest that even non-fluorinated electrospinning solvents, such as acid-based solvents, do not yield structurally intact fibers. Interestingly, neither epithelial cells nor fibroblasts displayed a different cellular response to electrospun collagen compared to collagen-coated polyurethane scaffolds in F-actin staining and metabolic analysis using fluorescent lifetime imaging. The disruption of the structural integrity of collagen might therefore be underestimated based on the cell-material interactions alone. These observations expose the larger than anticipated vulnerability of collagen in the electrospinning process. Based on these findings, the influence of the electrospinning process on the distinct biochemical properties of collagen should always be considered, when ECM-mimicking fibrous constructs are manufactured.
Collapse
Affiliation(s)
- Dmitri Visser
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany.
| | - Katharina Rogg
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany.
| | - Ellena Fuhrmann
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany.
| | - Julia Marzi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany. .,Institute of Biomedical Engineering, Department for Medical Technologies & Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Katja Schenke-Layland
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany. .,Institute of Biomedical Engineering, Department for Medical Technologies & Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Hanna Hartmann
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany.
| |
Collapse
|
6
|
Biomimetic nanofiber-enabled rapid creation of skin grafts. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
7
|
Liu YX, Chaparro FJ, Tian Z, Jia Y, Gosser J, Gaumer J, Ross L, Tafreshi H, Lannutti JJ. Visualization of porosity and pore size gradients in electrospun scaffolds using laser metrology. PLoS One 2023; 18:e0282903. [PMID: 36893193 PMCID: PMC9997878 DOI: 10.1371/journal.pone.0282903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/24/2023] [Indexed: 03/10/2023] Open
Abstract
We applied a recently developed method, laser metrology, to characterize the influence of collector rotation on porosity gradients of electrospun polycaprolactone (PCL) widely investigated for use in tissue engineering. The prior- and post-sintering dimensions of PCL scaffolds were compared to derive quantitative, spatially-resolved porosity 'maps' from net shrinkage. Deposited on a rotating mandrel (200 RPM), the central region of deposition reaches the highest porosity, ~92%, surrounded by approximately symmetrical decreases to ~89% at the edges. At 1100 RPM, a uniform porosity of ~88-89% is observed. At 2000 RPM, the lowest porosity, ~87%, is found in the middle of the deposition, rebounding to ~89% at the edges. Using a statistical model of random fiber network, we demonstrated that these relatively small changes in porosity values produce disproportionately large variations in pore size. The model predicts an exponential dependence of pore size on porosity when the scaffold is highly porous (e.g., >80%) and, accordingly, the observed porosity variation is associated with dramatic changes in pore size and ability to accommodate cell infiltration. Within the thickest regions most likely to 'bottleneck' cell infiltration, pore size decreases from ~37 to 23 μm (38%) when rotational speeds increased from 200 to 2000 RPM. This trend is corroborated by electron microscopy. While faster rotational speeds ultimately overcome axial alignment induced by cylindrical electric fields associated with the collector geometry, it does so at the cost of eliminating larger pores favoring cell infiltration. This puts the bio-mechanical advantages associated with collector rotation-induced alignment at odds with biological goals. A more significant decrease in pore size from ~54 to ~19 μm (65%), well below the minimum associated with cellular infiltration, is observed from enhanced collector biases. Finally, similar predictions show that sacrificial fiber approaches are inefficient in achieving cell-permissive pore sizes.
Collapse
Affiliation(s)
- Yi-xiao Liu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
- * E-mail:
| | | | - Ziting Tian
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Yizhen Jia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
| | - John Gosser
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Jeremy Gaumer
- Tosoh SMD, Inc., Grove City, OH, United States of America
| | - Liam Ross
- Columbus Academy, Gahanna, OH, United States of America
| | - Hooman Tafreshi
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, United States of America
| | - John J. Lannutti
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, United States of America
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States of America
- Center for Chronic Brain Injury Program, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
8
|
Trifanova EM, Khvorostina MA, Mariyanats AO, Sochilina AV, Nikolaeva ME, Khaydukov EV, Akasov RA, Popov VK. Natural and Synthetic Polymer Scaffolds Comprising Upconversion Nanoparticles as a Bioimaging Platform for Tissue Engineering. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196547. [PMID: 36235084 PMCID: PMC9573624 DOI: 10.3390/molecules27196547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022]
Abstract
Modern biocompatible materials of both natural and synthetic origin, in combination with advanced techniques for their processing and functionalization, provide the basis for tissue engineering constructs (TECs) for the effective replacement of specific body defects and guided tissue regeneration. Here we describe TECs fabricated using electrospinning and 3D printing techniques on a base of synthetic (polylactic-co-glycolic acids, PLGA) and natural (collagen, COL, and hyaluronic acid, HA) polymers impregnated with core/shell β-NaYF4:Yb3+,Er3+/NaYF4 upconversion nanoparticles (UCNPs) for in vitro control of the tissue/scaffold interaction. Polymeric structures impregnated with core/shell β-NaYF4:Yb3+,Er3+/NaYF4 nanoparticles were visualized with high optical contrast using laser irradiation at 976 nm. We found that the photoluminescence spectra of impregnated scaffolds differ from the spectrum of free UCNPs that could be used to control the scaffold microenvironment, polymer biodegradation, and cargo release. We proved the absence of UCNP-impregnated scaffold cytotoxicity and demonstrated their high efficiency for cell attachment, proliferation, and colonization. We also modified the COL-based scaffold fabrication technology to increase their tensile strength and structural stability within the living body. The proposed approach is a technological platform for "smart scaffold" development and fabrication based on bioresorbable polymer structures impregnated with UCNPs, providing the desired photoluminescent, biochemical, and mechanical properties for intravital visualization and monitoring of their behavior and tissue/scaffold interaction in real time.
Collapse
Affiliation(s)
- Ekaterina M. Trifanova
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
| | - Maria A. Khvorostina
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
| | - Aleksandra O. Mariyanats
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
| | - Anastasia V. Sochilina
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
| | | | - Evgeny V. Khaydukov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
- Correspondence: (E.V.K.); (R.A.A.); (V.K.P.)
| | - Roman A. Akasov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
- Correspondence: (E.V.K.); (R.A.A.); (V.K.P.)
| | - Vladimir K. Popov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 108840 Moscow, Russia
- Correspondence: (E.V.K.); (R.A.A.); (V.K.P.)
| |
Collapse
|
9
|
Possible Treatment of Myocardial Infarct Based on Tissue Engineering Using a Cellularized Solid Collagen Scaffold Functionalized with Arg-Glyc-Asp (RGD) Peptide. Int J Mol Sci 2021; 22:ijms222212563. [PMID: 34830447 PMCID: PMC8620820 DOI: 10.3390/ijms222212563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/23/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Currently, the clinical impact of cell therapy after a myocardial infarction (MI) is limited by low cell engraftment due to low cell retention, cell death in inflammatory and poor angiogenic infarcted areas, secondary migration. Cells interact with their microenvironment through integrin mechanoreceptors that control their survival/apoptosis/differentiation/migration and proliferation. The association of cells with a three-dimensional material may be a way to improve interactions with their integrins, and thus outcomes, especially if preparations are epicardially applied. In this review, we will focus on the rationale for using collagen as a polymer backbone for tissue engineering of a contractile tissue. Contractilities are reported for natural but not synthetic polymers and for naturals only for: collagen/gelatin/decellularized-tissue/fibrin/Matrigel™ and for different material states: hydrogels/gels/solids. To achieve a thick/long-term contractile tissue and for cell transfer, solid porous compliant scaffolds are superior to hydrogels or gels. Classical methods to produce solid scaffolds: electrospinning/freeze-drying/3D-printing/solvent-casting and methods to reinforce and/or maintain scaffold properties by reticulations are reported. We also highlight the possibility of improving integrin interaction between cells and their associated collagen by its functionalizing with the RGD-peptide. Using a contractile patch that can be applied epicardially may be a way of improving ventricular remodeling and limiting secondary cell migration.
Collapse
|
10
|
Engineering the Composition of Microfibers to Enhance the Remodeling of a Cell-Free Vascular Graft. NANOMATERIALS 2021; 11:nano11061613. [PMID: 34202961 PMCID: PMC8235366 DOI: 10.3390/nano11061613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
The remodeling of vascular grafts is critical for blood vessel regeneration. However, most scaffold materials have limited cell infiltration. In this study, we designed and fabricated a scaffold that incorporates a fast-degrading polymer polydioxanone (PDO) into the microfibrous structure by means of electrospinning technology. Blending PDO with base polymer decreases the density of electrospun microfibers yet did not compromise the mechanical and structural properties of the scaffold, and effectively enhanced cell infiltration. We then used this technique to fabricate a tubular scaffold with heparin conjugated to the surface to suppress thrombosis, and the construct was implanted into the carotid artery as a vascular graft in animal studies. This graft significantly promoted cell infiltration, and the biochemical cues such as immobilized stromal cell-derived factor-1α further enhanced cell recruitment and the long-term patency of the grafts. This work provides an approach to optimize the microfeatures of vascular grafts, and will have broad applications in scaffold design and fabrication for regenerative engineering.
Collapse
|
11
|
Collagen-Based Electrospun Materials for Tissue Engineering: A Systematic Review. Bioengineering (Basel) 2021; 8:bioengineering8030039. [PMID: 33803598 PMCID: PMC8003061 DOI: 10.3390/bioengineering8030039] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Collagen is a key component of the extracellular matrix (ECM) in organs and tissues throughout the body and is used for many tissue engineering applications. Electrospinning of collagen can produce scaffolds in a wide variety of shapes, fiber diameters and porosities to match that of the native ECM. This systematic review aims to pool data from available manuscripts on electrospun collagen and tissue engineering to provide insight into the connection between source material, solvent, crosslinking method and functional outcomes. D-banding was most often observed in electrospun collagen formed using collagen type I isolated from calfskin, often isolated within the laboratory, with short solution solubilization times. All physical and chemical methods of crosslinking utilized imparted resistance to degradation and increased strength. Cytotoxicity was observed at high concentrations of crosslinking agents and when abbreviated rinsing protocols were utilized. Collagen and collagen-based scaffolds were capable of forming engineered tissues in vitro and in vivo with high similarity to the native structures.
Collapse
|
12
|
Morphological and Mechanical Properties of Electrospun Polycaprolactone Scaffolds: Effect of Applied Voltage. Polymers (Basel) 2021; 13:polym13040662. [PMID: 33672211 PMCID: PMC7926916 DOI: 10.3390/polym13040662] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of this work is to investigate the effect of the applied voltage on the morphological and mechanical properties of electrospun polycaprolactone (PCL) scaffolds for potential use in tissue engineering. The morphology of the scaffolds was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and the BET techniques for measuring the surface area and pore volume. Stress-strain curves from tensile tests were obtained for estimating the mechanical properties. Additional studies for detecting changes in the chemical structure of the electrospun PCL scaffolds by Fourier transform infrared were performed, while contact angle and X-ray diffraction analysis were realized for determining the wettability and crystallinity, respectively. The SEM, AFM and BET results demonstrate that the electrospun PCL fibers exhibit morphological changes with the applied voltage. By increasing the applied voltage (10 to 25 kV) a significate influence was observed on the fiber diameter, surface roughness, and pore volume. In addition, tensile strength, elongation, and elastic modulus increase with the applied voltage, the crystalline structure of the fibers remains constant, and the surface area and wetting of the scaffolds diminish. The morphological and mechanical properties show a clear correlation with the applied voltage and can be of great relevance for tissue engineering.
Collapse
|
13
|
Nazarnezhad S, Baino F, Kim HW, Webster TJ, Kargozar S. Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1609. [PMID: 32824491 PMCID: PMC7466668 DOI: 10.3390/nano10081609] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
Angiogenesis (or the development of new blood vessels) is a key event in tissue engineering and regenerative medicine; thus, a number of biomaterials have been developed and combined with stem cells and/or bioactive molecules to produce three-dimensional (3D) pro-angiogenic constructs. Among the various biomaterials, electrospun nanofibrous scaffolds offer great opportunities for pro-angiogenic approaches in tissue repair and regeneration. Nanofibers made of natural and synthetic polymers are often used to incorporate bioactive components (e.g., bioactive glasses (BGs)) and load biomolecules (e.g., vascular endothelial growth factor (VEGF)) that exert pro-angiogenic activity. Furthermore, seeding of specific types of stem cells (e.g., endothelial progenitor cells) onto nanofibrous scaffolds is considered as a valuable alternative for inducing angiogenesis. The effectiveness of these strategies has been extensively examined both in vitro and in vivo and the outcomes have shown promise in the reconstruction of hard and soft tissues (mainly bone and skin, respectively). However, the translational of electrospun scaffolds with pro-angiogenic molecules or cells is only at its beginning, requiring more research to prove their usefulness in the repair and regeneration of other highly-vascularized vital tissues and organs. This review will cover the latest progress in designing and developing pro-angiogenic electrospun nanofibers and evaluate their usefulness in a tissue engineering and regenerative medicine setting.
Collapse
Affiliation(s)
- Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Hae-Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Korea;
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan 31116, Korea
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA;
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| |
Collapse
|
14
|
Wang Z, Cui W. Two Sides of Electrospun Fiber in Promoting and Inhibiting Biomedical Processes. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhen Wang
- Shanghai Institute of Traumatology and Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| |
Collapse
|
15
|
Rak Kwon D, Jung S, Jang J, Park GY, Suk Moon Y, Lee SC. A 3-Dimensional Bioprinted Scaffold With Human Umbilical Cord Blood-Mesenchymal Stem Cells Improves Regeneration of Chronic Full-Thickness Rotator Cuff Tear in a Rabbit Model. Am J Sports Med 2020; 48:947-958. [PMID: 32167836 DOI: 10.1177/0363546520904022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Chronic full-thickness rotator cuff tears (FTRCTs) represent a major clinical concern because they show highly compromised healing capacity. PURPOSE To evaluate the efficacy of using a 3-dimensional (3D) bioprinted scaffold with human umbilical cord blood (hUCB)-mesenchymal stem cells (MSCs) for regeneration of chronic FTRCTs in a rabbit model. STUDY DESIGN Controlled laboratory study. METHODS A total of 32 rabbits were randomly assigned to 4 treatment groups (n = 8 per group) at 6 weeks after a 5-mm FTRCT was created on the supraspinatus tendon. Group 1 (G1-SAL) was transplanted with normal saline. Group 2 (G2-MSC) was transplanted with hUCB-MSCs (0.2 mL, 1 × 106) into FTRCTs. Group 3 (G3-3D) was transplanted with a 3D bioprinted construct without MSCs, and group 4 (G4-3D+MSC) was transplanted with a 3D bioprinted construct containing hUCB-MSCs (0.2 mL, 1 × 106 cells) into FTRCTs. All 32 rabbits were euthanized at 4 weeks after treatment. Examination of gross morphologic changes and histologic results was performed on all rabbits after sacrifice. Motion analysis was also performed before and after treatment. RESULTS In G4-3D+MSC, newly regenerated collagen type 1 fibers, walking distance, fast walking time, and mean walking speed were greater than those in G2-MSC based on histochemical and motion analyses. In addition, when compared with G3-3D, G4-3D+MSC showed more prominent regenerated tendon fibers and better parameters of motion analysis. However, there was no significant difference in gross tear size among G2-MSC, G3-3D, and G4-3D+MSC, although these groups showed significant decreases in tear size as compared with the control group (G1-SAL). CONCLUSION Findings of this study show that a tissue engineering strategy based on a 3D bioprinted scaffold filled with hUCB-MSCs can improve the microenvironment for regenerative processes of FTRCT without any surgical repair. CLINICAL RELEVANCE In the case of rotator cuff tear, the cell loss of the external MSCs can be increased by exposure to synovial fluid. Therefore, a 3D bioprinted scaffold in combination with MSCs without surgical repair may be effective in increasing cell retention in FTRCT.
Collapse
Affiliation(s)
- Dong Rak Kwon
- Department of Rehabilitation Medicine, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Seungman Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea.,Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Gi-Young Park
- Department of Rehabilitation Medicine, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Yong Suk Moon
- Department of Anatomy, School of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Sang Chul Lee
- Department and Research Institute of Rehabilitation Medicine, College of Medicine, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Liu H, Chen W, Zhao B, Quan W, Zhang Y, Zhou Y, Wan Z, Zhang X, Xue G, Li J, Luo S, Wang J, Liu Y, Zhen M, Zhao Y. Autologous bionic tissue for inguinal hernia repair. J Biomed Mater Res A 2020; 108:1351-1368. [PMID: 32090432 DOI: 10.1002/jbm.a.36907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/07/2022]
Abstract
The prosthetic mesh, which is widely used in tension-free hernioplasty, often result in avascular stiff fibrotic scar or mesh shrinkage, causing chronic pain and infection. Here, we developed an autologous bionic tissue (ABT), which was composed of autologous bone marrow-derived mesenchymal stem cells (MSCs), poly (lactic-co-glycolic acid) (PLGA) porous scaffolds, and extracellular matrix (ECM) produced by MSCs for inguinal hernioplasty. In ABT, MSCs produced a variety of ECM composites, such as structural proteins (insoluble collagen, elastin) that provided mechanical properties, macromolecules (hyaluronic acid, glycosaminoglycan) as water and cytokines reservoir, and cell-engaging proteins (fibronectin, laminin). The above ECM composites reached the highest level in 21 days. ECM degradation related cytokines (MMP-9 and its inhibitor TIMP-1) reached the highest level on the 14th day. ECM increased the mechanical properties, elasticity, and flexibility of PLGA. Compared with the PLGA, ABT greatly inhibited inflammatory factors and promoted anti-inflammatory factors (p < 0.05), and gradually reduced the M1/M2 ratio in vivo (p < 0.05). After implantation, the thickness of tissue regeneration (p < 0.05), the number of capillaries or mature vessels (p < 0.05), the mechanical properties of ABT (p < 0.05) were greater than PLGA. MSCs and ECM could reduce the inflammation caused by PLGA, and prevent PLGA from earlier degradation and facilitate host cellular infiltration, thus ABT could greatly promote tissue regeneration in hernia repairs.
Collapse
Affiliation(s)
- Hongyi Liu
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Weibin Chen
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Bin Zhao
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Wei Quan
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Yinlong Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Yuanyuan Zhou
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Zheng Wan
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Xiaohong Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Gang Xue
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Jietao Li
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Shuting Luo
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Jinling Wang
- Emergency, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Yun Liu
- Hepatology Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Maochuan Zhen
- Hepatology Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Yilin Zhao
- Oncology and Vascular Interventional Radiology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| |
Collapse
|
17
|
Surface modified electrospun poly(lactic acid) fibrous scaffold with cellulose nanofibrils and Ag nanoparticles for ocular cell proliferation and antimicrobial application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110767. [PMID: 32279789 DOI: 10.1016/j.msec.2020.110767] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Corneal and conjunctival infections are common ocular diseases, sometimes, causing severe and refractory drug-resistant bacteria infections. Fungal keratitis is a leading cause for blindness and traditional medical treatment is unsatisfactory. Thus, there is an urge to develop a new therapy to deal with these cases. In this study, we developed surface modified poly(lactic acid) (PLA) electrospun nanofibrous membranes (EFMs) with silver nanoparticles (AgNPs) and cellulose nanofibrils (CNF) as scaffolds for cell proliferation and antimicrobial application. The AgNPs with a very low content (below 0.1%) were easily anchored on the surface of PLA EFMs by CNF, which endowed the scaffold with hydrophilicity and antibacterial ability. The in-vitro cell co-culture experiments showed that the scaffold had great biocompatibility to ocular epithelial cells, especially the scaffolds coated by CNF, which significantly proliferated cells. Furthermore, the antibacterial activity could reach >95% inhibiting Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) due to the implantation of AgNPs, and the antifungal activity was also outstanding with most of the Fusarium spp. inhibited. Hence, the developed PLA EFMs with CNF and AgNPs are promising ocular bandages to promote cell proliferation and kill infectious pathogens, exhibiting potential applications in ocular wound healing in the future.
Collapse
|
18
|
Gholobova D, Terrie L, Gerard M, Declercq H, Thorrez L. Vascularization of tissue-engineered skeletal muscle constructs. Biomaterials 2019; 235:119708. [PMID: 31999964 DOI: 10.1016/j.biomaterials.2019.119708] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022]
Abstract
Skeletal muscle tissue can be created in vitro by tissue engineering approaches, based on differentiation of muscle stem cells. Several approaches exist and generally result in three dimensional constructs composed of multinucleated myofibers to which we refer as myooids. Engineering methods date back to 3 decades ago and meanwhile a wide range of cell types and scaffold types have been evaluated. Nevertheless, in most approaches, myooids remain very small to allow for diffusion-mediated nutrient supply and waste product removal, typically less than 1 mm thick. One of the shortcomings of current in vitro skeletal muscle organoid development is the lack of a functional vascular structure, thus limiting the size of myooids. This is a challenge which is nowadays applicable to almost all organoid systems. Several approaches to obtain a vascular structure within myooids have been proposed. The purpose of this review is to give a concise overview of these approaches.
Collapse
Affiliation(s)
- D Gholobova
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - L Terrie
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - M Gerard
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - H Declercq
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium
| | - L Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, E. Sabbelaan 53, 8500, Kortrijk, Belgium.
| |
Collapse
|
19
|
Chantre CO, Gonzalez GM, Ahn S, Cera L, Campbell PH, Hoerstrup SP, Parker KK. Porous Biomimetic Hyaluronic Acid and Extracellular Matrix Protein Nanofiber Scaffolds for Accelerated Cutaneous Tissue Repair. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45498-45510. [PMID: 31755704 DOI: 10.1021/acsami.9b17322] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent reports suggest the utility of extracellular matrix (ECM) molecules as raw components in scaffolding of engineered materials. However, rapid and tunable manufacturing of ECM molecules into fibrous structures remains poorly developed. Here we report on an immersion rotary jet-spinning (iRJS) method to show high-throughput manufacturing (up to ∼1 g/min) of hyaluronic acid (HA) and other ECM fiber scaffolds using different spinning conditions and postprocessing modifications. This system allowed control over a variety of scaffold material properties, which enabled the fabrication of highly porous (70-95%) and water-absorbent (swelling ratio ∼2000-6000%) HA scaffolds with soft-tissue mimetic mechanical properties (∼0.5-1.5 kPa). Tuning these scaffolds' properties enabled the identification of porosity (∼95%) as a key facilitator for rapid and in-depth cellular ingress in vitro. We then demonstrated that porous HA scaffolds accelerated granulation tissue formation, neovascularization, and reepithelialization in vivo, altogether potentiating faster wound closure and tissue repair. Collectively, this scalable and versatile manufacturing approach enabled the fabrication of tunable ECM-mimetic nanofiber scaffolds that may provide an ideal first building block for the design of all-in-one healing materials.
Collapse
Affiliation(s)
- Christophe O Chantre
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
- Institute for Regenerative Medicine , University of Zurich , Zurich 8044 ZH , Switzerland
| | - Grant M Gonzalez
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Seungkuk Ahn
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Luca Cera
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Patrick H Campbell
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine , University of Zurich , Zurich 8044 ZH , Switzerland
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
20
|
Olvera D, Schipani R, Sathy BN, Kelly DJ. Electrospinning of highly porous yet mechanically functional microfibrillar scaffolds at the human scale for ligament and tendon tissue engineering. Biomed Mater 2019; 14:035016. [DOI: 10.1088/1748-605x/ab0de1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Purushothaman AE, Thakur K, Kandasubramanian B. Development of highly porous, Electrostatic force assisted nanofiber fabrication for biological applications. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1581197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Kirti Thakur
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, DIAT(DU), Ministry of Defence, Rapid Prototyping Lab, Girinagar, Pune, India
| |
Collapse
|
22
|
Song WK, Liu D, Sun LL, Li BF, Hou H. Physicochemical and Biocompatibility Properties of Type I Collagen from the Skin of Nile Tilapia ( Oreochromis niloticus) for Biomedical Applications. Mar Drugs 2019; 17:E137. [PMID: 30813606 PMCID: PMC6471296 DOI: 10.3390/md17030137] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 12/17/2022] Open
Abstract
The aim of this study is to investigate the physicochemical properties, biosafety, and biocompatibility of the collagen extract from the skin of Nile tilapia, and evaluate its use as a potential material for biomedical applications. Two extraction methods were used to obtain acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from tilapia skin. Amino acid composition, FTIR, and SDS-PAGE results showed that ASC and PSC were type I collagen. The molecular form of ASC and PSC is (α₁)₂α₂. The FTIR spectra of ASC and PSC were similar, and the characteristic peaks corresponding to amide A, amide B, amide I, amide II, and amide III were 3323 cm-1, 2931 cm-1, 1677 cm-1, 1546 cm-1, and 1242 cm-1, respectively. Denaturation temperatures (Td) were 36.1 °C and 34.4 °C, respectively. SEM images showed the loose and porous structure of collagen, indicting its physical foundation for use in applications of biomedical materials. Negative results were obtained in an endotoxin test. Proliferation rates of osteoblastic (MC3T3E1) cells and fibroblast (L929) cells from mouse and human umbilical vein endothelial cells (HUVEC) were increased in the collagen-treated group compared with the controls. Furthermore, the acute systemic toxicity test showed no acute systemic toxicity of the ASC and PSC collagen sponges. These findings indicated that the collagen from Nile tilapia skin is highly biocompatible in nature and could be used as a suitable biomedical material.
Collapse
Affiliation(s)
- Wen-Kui Song
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao 266003, China.
| | - Dan Liu
- College of Chemistry and Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266003, China.
| | - Lei-Lei Sun
- College of Life Science, Yantai University, Yantai 264005, China.
| | - Ba-Fang Li
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao 266003, China.
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, No.5, Yu Shan Road, Qingdao 266003, China.
| |
Collapse
|
23
|
Sun F, Chen J, Jin S, Wang J, Man Y, Li J, Zou Q, Li Y, Zuo Y. Development of biomimetic trilayer fibrous membranes for guided bone regeneration. J Mater Chem B 2019; 7:665-675. [PMID: 32254799 DOI: 10.1039/c8tb02435a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
in order to build fibrous bone tissue scaffolds for guided bone regeneration and to mimic the trilayer structure and the multifunctional properties of the natural periosteum, we fabricated two fibrous trilayer membranes by conjugate electrospinning technology, in which poly(ε-caprolactone) (PCL) fiber was designed as an outer layer, the mixed fibers of PCL and polyurethane (co-PUPCL) as the interlayer, and degradable polyurethane fibers with or without nano-hydroxyapatite (n-HA) as the inner layer (PUHA or PU). The microstructure and characteristics of the trilayer membranes were evaluated and different monolayer fibers were fabricated as the contrast samples. The tensile strength values of each layer increased from the inner layer to the outer layer in the designed structure, while the step-by-step electrospinning method produced good adhesion of different layers. Furthermore, the degradable properties and hydrophilicity of the layers changed with dissymmetric fibrous structures. Cell proliferation assay and cell morphology observation indicated that the PUHA inner fibrous layer exhibited better cell attachment and proliferation than PU. In addition, the osteogenicity of the PUHA fibrous layer has been attested through protein expression by the differentiation of rat mesenchymal stem cells (rMSCs) into the osteogenic lineage. Cell infiltration testing on the two sides of the trilayer membranes in vitro and in vivo showed that the inner layer had good cellular penetration deep into the scaffolds, whereas the cells were barred by the outer layer. We have developed a trilayer structured membrane with different polymer fibers to replicate the natural periosteum by improving functional outcomes, which is a promising fibrous scaffold for clinical use in the repair of destroyed bone.
Collapse
Affiliation(s)
- Fuhua Sun
- Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Saunders L, Ma PX. Self-Healing Supramolecular Hydrogels for Tissue Engineering Applications. Macromol Biosci 2019; 19:e1800313. [PMID: 30565872 PMCID: PMC6486376 DOI: 10.1002/mabi.201800313] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/03/2018] [Indexed: 12/19/2022]
Abstract
Self-healing supramolecular hydrogels have emerged as a novel class of biomaterials that combine hydrogels with supramolecular chemistry to develop highly functional biomaterials with advantages including native tissue mimicry, biocompatibility, and injectability. These properties are endowed by the reversibly cross-linked polymer network of the hydrogel. These hydrogels have great potential for realizing yet to be clinically translated tissue engineering therapies. This review presents methods of self-healing supramolecular hydrogel formation and their uses in tissue engineering as well as future perspectives.
Collapse
Affiliation(s)
- Laura Saunders
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI, USA
| | - Peter X. Ma
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI, USA, Biologic and Materials Science, University of Michigan, Ann Arbor, MI, USA, Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA, Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA,
| |
Collapse
|
25
|
Taylor B, Indano S, Yankannah Y, Patel P, Perez XI, Freeman J. Decellularized Cortical Bone Scaffold Promotes Organized Neovascularization In Vivo. Tissue Eng Part A 2018; 25:964-977. [PMID: 30421653 DOI: 10.1089/ten.tea.2018.0225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IMPACT STATEMENT Bone loss and skeletal deficiencies due to musculoskeletal diseases, traumatic injury, abnormal development, and cancer are major problems worldwide, frequently requiring surgical intervention. There has been a shift in paradigm to utilize tissue engineering applications. This novel bone technology has the potential to promote bone regeneration for large bone defects without the addition of growth factors and offers a unique architecture for cell attachment, proliferation, and differentiation. This scaffold serves as a tailored therapeutic for bone injuries and defects, leading to an increased quality of life by decreasing the risk of reoccurring surgeries and complications.
Collapse
Affiliation(s)
- Brittany Taylor
- 1Department of Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sarah Indano
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Yasonia Yankannah
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Pushpendra Patel
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Xiomara I Perez
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| | - Joseph Freeman
- 2Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
26
|
Bhattarai DP, Aguilar LE, Park CH, Kim CS. A Review on Properties of Natural and Synthetic Based Electrospun Fibrous Materials for Bone Tissue Engineering. MEMBRANES 2018; 8:E62. [PMID: 30110968 PMCID: PMC6160934 DOI: 10.3390/membranes8030062] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/27/2018] [Accepted: 08/09/2018] [Indexed: 12/17/2022]
Abstract
Bone tissue engineering is an interdisciplinary field where the principles of engineering are applied on bone-related biochemical reactions. Scaffolds, cells, growth factors, and their interrelation in microenvironment are the major concerns in bone tissue engineering. Among many alternatives, electrospinning is a promising and versatile technique that is used to fabricate polymer fibrous scaffolds for bone tissue engineering applications. Copolymerization and polymer blending is a promising strategic way in purpose of getting synergistic and additive effect achieved from either polymer. In this review, we summarize the basic chemistry of bone, principle of electrospinning, and polymers that are used in bone tissue engineering. Particular attention will be given on biomechanical properties and biological activities of these electrospun fibers. This review will cover the fundamental basis of cell adhesion, differentiation, and proliferation of the electrospun fibers in bone tissue scaffolds. In the last section, we offer the current development and future perspectives on the use of electrospun mats in bone tissue engineering.
Collapse
Affiliation(s)
- Deval Prasad Bhattarai
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Korea.
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal.
| | - Ludwig Erik Aguilar
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Korea.
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Korea.
- Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Korea.
- Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, Korea.
| |
Collapse
|
27
|
Simsek A, Bullock AJ, Roman S, Chapple CR, MacNeil S. Developing improved tissue-engineered buccal mucosa grafts for urethral reconstruction. Can Urol Assoc J 2018; 12:E234-E242. [PMID: 29405909 PMCID: PMC5966936 DOI: 10.5489/cuaj.4826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION We aimed to compare alternative synthetic scaffolds suitable for future implantation and to examine the use of an inhibitor of lysyl oxidase (beta-amino-propionitrile [β-APN]) to reduce contraction in these implants. METHODS Three synthetic scaffolds were compared to natural dermis as substrates for the production of tissue-engineered skin. For natural dermis, Euroskin was used to provide a cell-free cadaveric dermis. Synthetic scaffolds consisted of microfibrous poly-L-lactic acid (PLA), nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and a micro-/nanofibrous trilayer of PLA-PHBV-PLA. The latter were all electrospun and then all four scaffolds (three synthetic, one natural) were placed in six well plates. A culture well was formed on the scaffold using a 1 cm diameter stainless steel ring and 1.5×105 oral fibroblasts were seeded one side; after two days of culture, the ring was placed on the other side of the scaffolds and 3×105 oral keratinocytes were seeded on to the scaffolds and cultured with keratinocytes uppermost. After a further two days of culture, scaffolds were cut to 1 cm2 and raised to an air-liquid interface on stainless steel grids; some were treated with 200 μg/mL β-APN throughout the culture period (28 days). Contraction in vitro was assessed by serial digital photography of cell-seeded scaffolds and cell-free scaffolds three times a week for 28 days. All cell-seeded scaffolds were assessed for cell metabolic activity, mechanical properties, histology, and morphology by scanning electron microscopy (SEM). RESULTS The mean fibre diameters and pore sizes of PLA and PHBV scaffolds were 2.4±0.77, 0.85±0.21 μm (p<0.001), and 10.8±2.3, 4.3±1.1 μm (p<0.001), respectively. Oral fibroblasts and keratinocytes were tightly adhered and grew well on both surfaces of trilayer. The ultimate tensile strength (UTS) and Young's modulus (YM) of PLA samples were significantly lower than Euroskin (p<0.001 and p<0.05, respectively); only the UTS of the trilayer samples was slightly significantly lower (p<0.05). Metabolic activity was significantly increased for cells on all scaffolds, without significant differences between them from Day 0 to Day 28. There were no adverse effects of β-APN on cell viability. With respect to contraction, cells on trilayer and PHBV monolayers did not undergo any significant contraction; however, cells on PLA monolayer and Euroskin contracted 25.3% and 56.4%, respectively, over 28 days. The addition of 200 μg/ml β-APN significantly reduced contraction of Euroskin compared with the control (p<0.01); however, β-APN did not affect PLA contraction during this culture period (p>0.05). CONCLUSIONS This study shows that a trilayer micro-nano-3D porous synthetic scaffold is suitable for oral keratinocyte and fibroblast growth with good cell viability and minimal contraction. This material also has good mechanical properties and histological analyses showed its ability to mimic normal human oral mucosal morphology. Furthermore, synthetic trilayer scaffolds have advantages over biological scaffolds - there is no risk of disease transmission or immunological rejection and they appear resistant to contraction. We suggest they present a good alternative to allodermis for future use in urethral reconstruction.
Collapse
Affiliation(s)
- Abdulmuttalip Simsek
- Royal Hallamshire Hospital, Department of Female and Reconstructive Urology, Sheffield; United Kingdom
- University of Sheffield, Department of Materials Science & Engineering, Sheffield; United Kingdom
| | - Anthony J. Bullock
- University of Sheffield, Department of Materials Science & Engineering, Sheffield; United Kingdom
| | - Sabi Roman
- University of Sheffield, Department of Materials Science & Engineering, Sheffield; United Kingdom
| | - Chirstoper R. Chapple
- Royal Hallamshire Hospital, Department of Female and Reconstructive Urology, Sheffield; United Kingdom
| | - Sheila MacNeil
- University of Sheffield, Department of Materials Science & Engineering, Sheffield; United Kingdom
| |
Collapse
|
28
|
Xiang P, Wang SS, He M, Han YH, Zhou ZH, Chen DL, Li M, Ma LQ. The in vitro and in vivo biocompatibility evaluation of electrospun recombinant spider silk protein/PCL/gelatin for small caliber vascular tissue engineering scaffolds. Colloids Surf B Biointerfaces 2018; 163:19-28. [DOI: 10.1016/j.colsurfb.2017.12.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/25/2017] [Accepted: 12/11/2017] [Indexed: 01/29/2023]
|
29
|
Ahmad BS, Blanchy M, Mbele G, Pidial L, Vanneaux V, Menasché P, Williams GR, Kalfa D. The influence of electrospinning parameters on polydioxanone scaffold properties. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aa979f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
30
|
Weidenbacher L, Abrishamkar A, Rottmar M, Guex A, Maniura-Weber K, deMello A, Ferguson S, Rossi R, Fortunato G. Electrospraying of microfluidic encapsulated cells for the fabrication of cell-laden electrospun hybrid tissue constructs. Acta Biomater 2017; 64:137-147. [PMID: 29030306 DOI: 10.1016/j.actbio.2017.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/21/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022]
Abstract
The fabrication of functional 3D tissues is a major goal in tissue engineering. While electrospinning is a promising technique to manufacture a structure mimicking the extracellular matrix, cell infiltration into electrospun scaffolds remains challenging. The robust and in situ delivery of cells into such biomimetic scaffolds would potentially enable the design of tissue engineered constructs with spatial control over cellular distribution but often solvents employed in the spinning process are problematic due to their high cytotoxicity. Herein, microfluidic cell encapsulation is used to establish a temporary protection vehicle for the in situ delivery of cells for the development of a fibrous, cell-laden hybrid biograft. Therefore a layer-by-layer process is used by alternating fiber electrospinning and cell spraying procedures. Both encapsulation and subsequent electrospraying of capsules has no negative effect on the viability and myogenic differentiation of murine myoblast cells. Propidium iodide positive stained cells were analyzed to quantify the amount of dead cells and the presence of myosin heavy chain positive cells after the processes was shown. Furthermore, encapsulation successfully protects cells from cytotoxic solvents (such as dimethylformamide) during in situ delivery of the cells into electrospun poly(vinylidene fluoride-co-hexafluoropropylene) scaffolds. The resulting cell-populated biografts demonstrate the clear potential of this approach in the creation of viable tissue engineering constructs. STATEMENT OF SIGNIFICANCE Infiltration of cells and their controlled spatial distribution within fibrous electrospun membranes is a challenging task but allows for the development of functional highly organized 3D hybrid tissues. Combining polymer electrospinning and cell electrospraying in a layer-by-layer approach is expected to overcome current limitations of reduced cell infiltration after traditional static seeding. However, organic solvents, used during the electrospinning process, impede often major issues due to their high cytotoxicity. Utilizing microfluidic encapsulation as a mean to embed cells within a protective polymer casing enables the controlled deposition of viable cells without interfering with the cellular phenotype. The presented techniques allow for novel cell manipulation approaches being significant for enhanced 3D tissue engineering based on its versatility in terms of material and cell selection.
Collapse
|
31
|
Jang BS, Cheon JY, Kim SH, Park WH. Small diameter vascular graft with fibroblast cells and electrospun poly (L-lactide-co-ε-caprolactone) scaffolds: Cell Matrix Engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:942-959. [PMID: 28816087 DOI: 10.1080/09205063.2017.1367635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Electrospun scaffolds have been widely used in tissue engineering due to their similar structure to native extracellular matrices (ECM). However, one of the obstacles limiting the application of electrospun scaffolds for tissue engineering is the nano-sized pores, which inhibit cell infiltration into the scaffolds. To overcome this limitation, we approached to make layers which are consisted of cells onto the electrospun sheet and then tubular structure was constructed by rolling. We called this as 'Cell Matrix Engineering' because the electrospun sheets were combined with the cells to form one matrix. They maintained 3-D tubular structures well and their diameters were 4.1 mm (±0.1 mm). We compared the mechanical and biological properties of various vascular grafts with the electrospun PLCL sheets of different thickness. In these experiments, the vascular graft made with thin sheets showed a better cell proliferation and attachment than the grafts made with thick sheets because the thin layer allowed for more efficient mass transfer and better permeability than the thick layer. Culturing under physiological pulsatile flow condition was demonstrated in this work. These dynamic conditions provided the improved mass transport and aerobic cell metabolism. Therefore, the Cell Matrix Engineered vascular graft holds a great promise for clinical applications by overcoming the limitations associated with conventional scaffolds.
Collapse
Affiliation(s)
- Bong Seok Jang
- a Department of Advanced Organic Materials and Textile System Engineering , Chungnam National University , Daejeon , Korea
| | - Ja Young Cheon
- a Department of Advanced Organic Materials and Textile System Engineering , Chungnam National University , Daejeon , Korea
| | - Soo Hyun Kim
- b Biomaterials Research Center , Korea Institute of Science and Technology , Seoul , Korea.,c KU-KIST Graduate School of Converging Science and Technology , Korea University , Seoul , Korea
| | - Won Ho Park
- a Department of Advanced Organic Materials and Textile System Engineering , Chungnam National University , Daejeon , Korea
| |
Collapse
|
32
|
Law JX, Liau LL, Saim A, Yang Y, Idrus R. Electrospun Collagen Nanofibers and Their Applications in Skin Tissue Engineering. Tissue Eng Regen Med 2017; 14:699-718. [PMID: 30603521 DOI: 10.1007/s13770-017-0075-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 11/25/2022] Open
Abstract
Electrospinning is a simple and versatile technique to fabricate continuous fibers with diameter ranging from micrometers to a few nanometers. To date, the number of polymers that have been electrospun has exceeded 200. In recent years, electrospinning has become one of the most popular scaffold fabrication techniques to prepare nanofiber mesh for tissue engineering applications. Collagen, the most abundant extracellular matrix protein in the human body, has been electrospun to fabricate biomimetic scaffolds that imitate the architecture of native human tissues. As collagen nanofibers are mechanically weak in nature, it is commonly cross-linked or blended with synthetic polymers to improve the mechanical strength without compromising the biological activity. Electrospun collagen nanofiber mesh has high surface area to volume ratio, tunable diameter and porosity, and excellent biological activity to regulate cell function and tissue formation. Due to these advantages, collagen nanofibers have been tested for the regeneration of a myriad of tissues and organs. In this review, we gave an overview of electrospinning, encompassing the history, the instrument settings, the spinning process and the parameters that affect fiber formation, with emphasis given to collagen nanofibers' fabrication and application, especially the use of collagen nanofibers in skin tissue engineering.
Collapse
Affiliation(s)
- Jia Xian Law
- 1Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia
| | - Ling Ling Liau
- 2Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Aminuddin Saim
- Ear, Nose and Throat Consultant Clinic, Ampang Puteri Specialist Hospital, 68000 Ampang, Selangor Malaysia
| | - Ying Yang
- 4Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB UK
| | - Ruszymah Idrus
- 2Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Zhu B, Li W, Chi N, Lewis RV, Osamor J, Wang R. Optimization of Glutaraldehyde Vapor Treatment for Electrospun Collagen/Silk Tissue Engineering Scaffolds. ACS OMEGA 2017; 2:2439-2450. [PMID: 28691110 PMCID: PMC5494641 DOI: 10.1021/acsomega.7b00290] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/19/2017] [Indexed: 05/26/2023]
Abstract
Freestanding fibrous matrices with proper protein composition and desirable mechanical properties, stability, and biocompatibility are in high demand for tissue engineering. Electrospun (E-spun) collagen-silk composite fibers are promising tissue engineering scaffolds. However, as-spun fibers are mechanically weak and unstable. In this work, we applied glutaraldehyde (GA) vapor treatment to improve the fiber performance, and the effect on the properties of E-spun collagen-silk fibers was studied systematically. GA treatment was found to affect collagen and silk distinctively. Whereas GA chemically links collagen peptides, it induces conformational transitions to enrich β-sheets in silk. The combined effects impose a control of the mechanical properties, stability, and degradability of the composite fibers, which are dependent on the extent of GA treatment. In addition, a mild treatment of the fibers did not diminish cell proliferation and viability. However, overly treated fibers demonstrated reduced cell-matrix adhesion. The understanding of GA treatment effects on collagen, silk, and the composite fibers enables effective control and fine tuning of the fiber properties to warrant their diverse in vitro and in vivo applications.
Collapse
Affiliation(s)
- Bofan Zhu
- Department
of Chemistry, Illinois Institute of Technology, 3101 S. Dearborn Street, Chicago, Illinois 60616, United States
| | - Wen Li
- Department
of Chemistry, Illinois Institute of Technology, 3101 S. Dearborn Street, Chicago, Illinois 60616, United States
| | - Naiwei Chi
- Department
of Chemistry, Illinois Institute of Technology, 3101 S. Dearborn Street, Chicago, Illinois 60616, United States
| | - Randolph V. Lewis
- Department
of Biology, Utah State University, 5305 Old Main Hill, Logan, Utah 84322, United States
| | - Jude Osamor
- Department
of Chemistry, Illinois Institute of Technology, 3101 S. Dearborn Street, Chicago, Illinois 60616, United States
| | - Rong Wang
- Department
of Chemistry, Illinois Institute of Technology, 3101 S. Dearborn Street, Chicago, Illinois 60616, United States
| |
Collapse
|
34
|
Abstract
PURPOSE Oral soft tissue augmentation or grafting procedures are often necessary to achieve proper wound closure after deficits resulting from tumor excision, clefts, trauma, dental implants, and tooth recessions. MATERIALS AND METHODS Autologous soft tissue grafts still remain the gold standard to acquire a functionally adequate zone of keratinized attached gingiva. However, soft tissue substitutes are more commonly used because they minimize morbidity and shorten surgical time. RESULTS This review aimed to assess soft tissue grafting techniques and materials used in the oral cavity from existing literature. There are a large variety of materials and techniques, including grafts, local flaps, allogenic derived matrices such as acellular dermal allograft, xenogenic tissue matrices from animal origin, and synthetic materials. CONCLUSIONS Tissue engineering of oral mucosa represents an interesting alternative to obtain sufficient autologous tissue for reconstructing oral wounds using biodegradable scaffolds, and may improve vascularization and epithelialization, which are critical for successful outcomes.
Collapse
|
35
|
Zhu Q, Teng J, Liu X, Lan Y, Guo R. Preparation and characterization of gentamycin sulfate-impregnated gelatin microspheres/collagen–cellulose/nanocrystal scaffolds. Polym Bull (Berl) 2017. [DOI: 10.1007/s00289-017-2020-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
36
|
Negishi J, Hashimoto Y, Yamashita A, Kimura T, Kishida A, Funamoto S. Histological structure affects recellularization of decellularized arteries. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:450-455. [DOI: 10.1016/j.msec.2016.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/05/2016] [Accepted: 09/03/2016] [Indexed: 01/17/2023]
|
37
|
Cristallini C, Cibrario Rocchietti E, Gagliardi M, Mortati L, Saviozzi S, Bellotti E, Turinetto V, Sassi MP, Barbani N, Giachino C. Micro- and Macrostructured PLGA/Gelatin Scaffolds Promote Early Cardiogenic Commitment of Human Mesenchymal Stem Cells In Vitro. Stem Cells Int 2016; 2016:7176154. [PMID: 27822229 PMCID: PMC5086396 DOI: 10.1155/2016/7176154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/30/2016] [Accepted: 08/02/2016] [Indexed: 01/04/2023] Open
Abstract
The biomaterial scaffold plays a key role in most tissue engineering strategies. Its surface properties, micropatterning, degradation, and mechanical features affect not only the generation of the tissue construct in vitro, but also its in vivo functionality. The area of myocardial tissue engineering still faces significant difficulties and challenges in the design of bioactive scaffolds, which allow composition variation to accommodate divergence in the evolving myocardial structure. Here we aimed at verifying if a microstructured bioartificial scaffold alone can provoke an effect on stem cell behavior. To this purpose, we fabricated microstructured bioartificial polymeric constructs made of PLGA/gelatin mimicking anisotropic structure and mechanical properties of the myocardium. We found that PLGA/gelatin scaffolds promoted adhesion, elongation, ordered disposition, and early myocardial commitment of human mesenchymal stem cells suggesting that these constructs are able to crosstalk with stem cells in a precise and controlled manner. At the same time, the biomaterial degradation kinetics renders the PLGA/gelatin constructs very attractive for myocardial regeneration approaches.
Collapse
Affiliation(s)
- Caterina Cristallini
- Institute for Chemical-Physical Processes, IPCF C.N.R., UOS Pisa, 56122 Pisa, Italy
| | | | - Mariacristina Gagliardi
- Center for Micro-BioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Leonardo Mortati
- National Institute of Research in Metrology, INRIM, 10135 Turin, Italy
| | - Silvia Saviozzi
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Elena Bellotti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| | - Valentina Turinetto
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| | - Maria Paola Sassi
- National Institute of Research in Metrology, INRIM, 10135 Turin, Italy
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy
| |
Collapse
|
38
|
Tamimi E, Ardila DC, Haskett DG, Doetschman T, Slepian MJ, Kellar RS, Vande Geest JP. Biomechanical Comparison of Glutaraldehyde-Crosslinked Gelatin Fibrinogen Electrospun Scaffolds to Porcine Coronary Arteries. J Biomech Eng 2016; 138:2466198. [PMID: 26501189 DOI: 10.1115/1.4031847] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death for Americans. As coronary artery bypass graft surgery (CABG) remains a mainstay of therapy for CVD and native vein grafts are limited by issues of supply and lifespan, an effective readily available tissue-engineered vascular graft (TEVG) for use in CABG would provide drastic improvements in patient care. Biomechanical mismatch between vascular grafts and native vasculature has been shown to be the major cause of graft failure, and therefore, there is need for compliance-matched biocompatible TEVGs for clinical implantation. The current study investigates the biaxial mechanical characterization of acellular electrospun glutaraldehyde (GLUT) vapor-crosslinked gelatin/fibrinogen cylindrical constructs, using a custom-made microbiaxial optomechanical device (MOD). Constructs crosslinked for 2, 8, and 24 hrs are compared to mechanically characterized porcine left anterior descending coronary (LADC) artery. The mechanical response data were used for constitutive modeling using a modified Fung strain energy equation. The results showed that constructs crosslinked for 2 and 8 hrs exhibited circumferential and axial tangential moduli (ATM) similar to that of the LADC. Furthermore, the 8-hrs experimental group was the only one to compliance-match the LADC, with compliance values of 0.0006±0.00018 mm Hg-1 and 0.00071±0.00027 mm Hg-1, respectively. The results of this study show the feasibility of meeting mechanical specifications expected of native arteries through manipulating GLUT vapor crosslinking time. The comprehensive mechanical characterization of cylindrical biopolymer constructs in this study is an important first step to successfully develop a biopolymer compliance-matched TEVG.
Collapse
|
39
|
Ozaki A, Arisaka Y, Takeda N. Self-driven perfusion culture system using a paper-based double-layered scaffold. Biofabrication 2016; 8:035010. [PMID: 27550929 DOI: 10.1088/1758-5090/8/3/035010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Shear stress caused by fluid flow is known to promote tissue development from cells in vivo. Therefore, perfusion cultures have been studied to investigate the mechanisms involved and to fabricate engineered tissues in vitro, particularly those that include blood vessels. Microfluidic devices, which function with fine machinery of chambers and microsyringes for fluid flow and have small culture areas, are conventionally used for perfusion culture. In contrast, we have developed a self-driven perfusion culture system by using a paper-based double-layered scaffold as the fundamental component. Gelatin microfibers were electrospun onto a paper material to prepare the scaffold system, in which the constant perfusion of the medium and the scaffold for cell adhesion/proliferation were functionally divided into a paper and a gelatin microfiber layer, respectively. By applying both the capillary action and siphon phenomenon of the paper-based scaffold, which bridged two medium chambers at different height levels, a self-driven medium flow was achieved and the flow rate was also stable, constant, and quantitatively controllable. Moreover, the culture area was enlargeable to the cm(2) scale. The endothelial cells cultivated on this system oriented along the medium-flow direction, suggesting that the shear stress caused by medium flow was effectively applied. This perfusion culture system is expected to be useful for fabricating three-dimensional and large engineered tissues in the future.
Collapse
|
40
|
Yao R, He J, Meng G, Jiang B, Wu F. Electrospun PCL/Gelatin composite fibrous scaffolds: mechanical properties and cellular responses. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:824-38. [PMID: 27044505 DOI: 10.1080/09205063.2016.1160560] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Electrospinning of hybrid polymer has gained widespread interest by taking advantages of the biological property of the natural polymer and the mechanical property of the synthetic polymer. However, the effect of the blend ratio on the above two properties has been less reported despite the importance to balance these two properties in various tissue engineering applications. To this aim, we investigated the electrospun PCL/Gelatin composite fibrous scaffolds with different blend ratios of 4:1, 2:1, 1:1, 1:2, 1:4, respectively. The morphology of the electrospun samples was observed by SEM and the result showed that the fiber diameter distribution became more uniform with the increase of the gelatin content. The mechanical testing results indicated that the 2:1 PCL/Gelatin sample had both the highest tensile strength of 3.7 MPa and the highest elongation rate of about 90%. Surprisingly, the 2:1 PCL/Gelatin sample also showed the best mesenchymal stem cell responses in terms of attachment, spreading, and cytoskeleton organization. Such correlation might be partly due to the fact that the enhanced mechanical property, an integral part of the physical microenvironment, likely played an important role in regulating the cellular functions. Overall, our results indicated that the PCL/Gelatin sample with the blend ratio of 2:1 was a superior candidate for scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Ruijuan Yao
- a National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , P.R. China
| | - Jing He
- a National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , P.R. China
| | - Guolong Meng
- a National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , P.R. China
| | - Bo Jiang
- a National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , P.R. China
| | - Fang Wu
- a National Engineering Research Center for Biomaterials , Sichuan University , Chengdu , P.R. China
| |
Collapse
|
41
|
Heiny M, Shastri VP. Nanofibers of Elastin and Hydrophilic Segmented Polyurethane Solution Blends Show Enhanced Mechanical Properties through Intermolecular Protein–Polymer H Bonding. Biomacromolecules 2016; 17:1312-20. [DOI: 10.1021/acs.biomac.5b01681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Markus Heiny
- Institute for Macromolecular
Chemistry, Hermann Staudinger Haus, University of Freiburg, Stefan-Meier
Str. 31, 79104 Freiburg, Germany
- BIOSS Centre for Biological
Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| | - V. Prasad Shastri
- Institute for Macromolecular
Chemistry, Hermann Staudinger Haus, University of Freiburg, Stefan-Meier
Str. 31, 79104 Freiburg, Germany
- BIOSS Centre for Biological
Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
42
|
Torres-Giner S, Pérez-Masiá R, Lagaron JM. A review on electrospun polymer nanostructures as advanced bioactive platforms. POLYM ENG SCI 2016. [DOI: 10.1002/pen.24274] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Avenida Agustín Escardino 7; Paterna 46980 Spain
| | - Rocío Pérez-Masiá
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Avenida Agustín Escardino 7; Paterna 46980 Spain
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Avenida Agustín Escardino 7; Paterna 46980 Spain
| |
Collapse
|
43
|
Zhan J, Morsi Y, Ei-Hamshary H, Al-Deyab SS, Mo X. Preparation and characterization of electrospun in-situ cross-linked gelatin-graphite oxide nanofibers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:385-402. [PMID: 26733331 DOI: 10.1080/09205063.2015.1133156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrospun gelatin(Gel) nanofibers scaffold has such defects as poor mechanical property and quick degradation due to high solubility. In this study, the in situ cross-linked electrospinning technique was used for the production of gelatin nanofibers. Deionized water was chosen as the spinning solvent and graphite oxide (GO) was chosen as the enhancer. The morphological structure, porosity, thermal property, moisture absorption, and moisture retention performance, hydrolysis resistance, mechanical property, and biocompatibility of the produced nanofibers were investigated. Compared with in situ cross-linked gelatin nanofibers scaffold, in situ cross-linked Gel-GO nanofibers scaffold has the following features: (1) the hydrophilicity, moisture absorption, and moisture retention performance slightly reduce, while the hydrolysis resistance is improved; (2) the breaking strength, breaking elongation, and Young's modulus are significantly improved; (3) the porosity slightly reduces while the biocompatibility considerably increases. The in situ cross-linked Gel-GO nanofibers scaffold is likely to be applied in such fields as drug delivery and scaffold for skin tissue engineering.
Collapse
Affiliation(s)
- Jianchao Zhan
- a Chemical Engineering and Biotechnology , College of Chemistry, Donghua University , Shanghai , P.R. China.,b College of Materials and Textile Engineering , Jiaxing University , Zhejiang Province , P.R. China
| | - Yosry Morsi
- c Faculty of Engineering and Industrial Sciences , Swinburne University of Technology , Hawthorn , Australia
| | - Hany Ei-Hamshary
- d Department of Chemistry , College of Science, King Saud University , Riyadh , Kingdom of Saudi Arabia.,e Faculty of Science, Department of Chemistry , Tanta University , Tanta , Egypt
| | - Salem S Al-Deyab
- d Department of Chemistry , College of Science, King Saud University , Riyadh , Kingdom of Saudi Arabia
| | - Xiumei Mo
- a Chemical Engineering and Biotechnology , College of Chemistry, Donghua University , Shanghai , P.R. China
| |
Collapse
|
44
|
Naseri N, Poirier JM, Girandon L, Fröhlich M, Oksman K, Mathew AP. 3-Dimensional porous nanocomposite scaffolds based on cellulose nanofibers for cartilage tissue engineering: tailoring of porosity and mechanical performance. RSC Adv 2016. [DOI: 10.1039/c5ra27246g] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fully bio-based 3D porous scaffold based on cellulose nanofibers with potential use in cartilage tissue engineering was developed.
Collapse
Affiliation(s)
- Narges Naseri
- Division of Materials Science
- Luleå University of Technology
- 97187 Luleå
- Sweden
| | - Jean-Michel Poirier
- Division of Materials Science
- Luleå University of Technology
- 97187 Luleå
- Sweden
| | | | | | - Kristiina Oksman
- Division of Materials Science
- Luleå University of Technology
- 97187 Luleå
- Sweden
| | - Aji P. Mathew
- Division of Materials Science
- Luleå University of Technology
- 97187 Luleå
- Sweden
- Division of Materials and Environmental Chemistry
| |
Collapse
|
45
|
Abstract
In recent years, electrospinning has increased in popularity as a processing technique for obtaining nanometer-to-micron diameter polymer fibers collected to form a nonwoven scaffold. It possesses the ability to process collagen into nanofibrous scaffolds which have been used for a number of applications, such as artificial vascular grafts and for wound repair. This paper offers a review of some of the basic yet essential aspects of producing nanofibrous scaffolds of collagen by electrospinning. A primer to collagen structure, cross-linking techniques, and electrospinning principles is provided, along with some of the many applications of these unique materials.
Collapse
|
46
|
Padmanabhan J, Kyriakides TR. Nanomaterials, inflammation, and tissue engineering. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:355-70. [PMID: 25421333 DOI: 10.1002/wnan.1320] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/12/2014] [Accepted: 10/11/2014] [Indexed: 01/30/2023]
Abstract
Nanomaterials exhibit unique properties that are absent in the bulk material because decreasing material size leads to an exponential increase in surface area, surface area to volume ratio, and effective stiffness, resulting in altered physiochemical properties. Diverse categories of nanomaterials such as nanoparticles, nanoporous scaffolds, nanopatterned surfaces, nanofibers, and carbon nanotubes can be generated using advanced fabrication and processing techniques. These materials are being increasingly incorporated in tissue engineering scaffolds to facilitate the development of biomimetic substitutes to replace damaged tissues and organs. Long-term success of nanomaterials in tissue engineering is contingent upon the inflammatory responses they elicit in vivo. This review seeks to summarize the recent developments in our understanding of biochemical and biophysical attributes of nanomaterials and the inflammatory responses they elicit, with a focus on strategies for nanomaterial design in tissue engineering applications.
Collapse
Affiliation(s)
- Jagannath Padmanabhan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Center for Research on Interface Structures and Phenomena, Yale University, New Haven, CT, USA
| | | |
Collapse
|
47
|
Poly(vinylferrocene)/Cellulose Acetate Fibers: A New Approach for In-Situ Monitoring Process Through QCM and Electrospinning Studies. J Inorg Organomet Polym Mater 2014. [DOI: 10.1007/s10904-014-0114-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
48
|
Fiorani A, Gualandi C, Panseri S, Montesi M, Marcacci M, Focarete ML, Bigi A. Comparative performance of collagen nanofibers electrospun from different solvents and stabilized by different crosslinkers. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2313-2321. [PMID: 24664673 DOI: 10.1007/s10856-014-5196-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/12/2014] [Indexed: 06/03/2023]
Abstract
Collagen electrospun scaffolds well reproduce the structure of the extracellular matrix (ECM) of natural tissues by coupling high biomimetism of the biological material with the fibrous morphology of the protein. Structural properties of collagen electrospun fibers are still a debated subject and there are conflicting reports in the literature addressing the presence of ultrastructure of collagen in electrospun fibers. In this work collagen type I was successfully electrospun from two different solvents, trifluoroethanol (TFE) and dilute acetic acid (AcOH). Characterization of collagen fibers was performed by means of SEM, ATR-IR, Circular Dichroism and WAXD. We demonstrated that collagen fibers contained a very low amount of triple helix with respect to pristine collagen (18 and 16% in fibers electrospun from AcOH and TFE, respectively) and that triple helix denaturation occurred during polymer dissolution. Collagen scaffolds were crosslinked by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), a commonly employed crosslinker for electrospun collagen, and 1,4-butanediol diglycidyl ether (BDDGE), that was tested for the first time in this work as crosslinking agent for collagen in the form of electrospun fibers. We demonstrated that BDDGE successfully crosslinked collagen and preserved at the same time the scaffold fibrous morphology, while scaffolds crosslinked with EDC completely lost their porous structure. Mesenchymal stem cell experiments demonstrated that collagen scaffolds crosslinked with BDDGE are biocompatible and support cell attachment.
Collapse
Affiliation(s)
- Andrea Fiorani
- Department of Chemistry ''G. Ciamician'' and National Consortium of Materials Science and Technology (INSTM, Bologna RU), University of Bologna, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Sharabi M, Mandelberg Y, Benayahu D, Benayahu Y, Azem A, Haj-Ali R. A new class of bio-composite materials of unique collagen fibers. J Mech Behav Biomed Mater 2014; 36:71-81. [DOI: 10.1016/j.jmbbm.2014.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 12/25/2022]
|