1
|
Sodhi H, Panitch A. A Tunable Glycosaminoglycan-Peptide Nanoparticle Platform for the Protection of Therapeutic Peptides. Pharmaceutics 2024; 16:173. [PMID: 38399234 PMCID: PMC10892384 DOI: 10.3390/pharmaceutics16020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The popularity of Glycosaminoglycans (GAGs) in drug delivery systems has grown as their innate ability to sequester and release charged molecules makes them adept in the controlled release of therapeutics. However, peptide therapeutics have been relegated to synthetic, polymeric systems, despite their high specificity and efficacy as therapeutics because they are rapidly degraded in vivo when not encapsulated. We present a GAG-based nanoparticle system for the easy encapsulation of cationic peptides, which offers control over particle diameter, peptide release behavior, and swelling behavior, as well as protection from proteolytic degradation, using a singular, organic polymer and no covalent linkages. These nanoparticles can encapsulate cargo with a particle diameter range spanning 130-220 nm and can be tuned to release cargo over a pH range of 4.5 to neutral through the modulation of the degree of sulfation and the molecular weight of the GAG. This particle system also confers better in vitro performance than the unencapsulated peptide via protection from enzymatic degradation. This method provides a facile way to protect therapeutic peptides via the inclusion of the presented binding sequence and can likely be expanded to larger, more diverse cargo as well, abrogating the complexity of previously demonstrated systems while offering broader tunability.
Collapse
Affiliation(s)
- Harkanwalpreet Sodhi
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA;
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA;
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Zeng K, Doberenz F, Lu YT, Nong JP, Fischer S, Groth T, Zhang K. Synthesis of Thermoresponsive PNIPAM-Grafted Cellulose Sulfates for Bioactive Multilayers via Layer-by-Layer Technique. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48384-48396. [PMID: 36264178 DOI: 10.1021/acsami.2c12803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The robust thermoresponsive and bioactive surfaces for tissue engineering by combining poly-N-isopropylacrylamide (PNIPAM) and cellulose sulfate (CS) remain highly in demand but not yet realized. Herein, PNIPAM-grafted cellulose sulfates (PCSs) with diverse degrees of substitution ascribed to sulfate groups (DSS) are synthesized for the first time. Higher sulfated PCS2 generally forms larger aggregates than lower sulfated PCS1 at their cloud point temperatures (TCP) of around 33 °C, whereas PCS1 leads to larger aggregates at body temperature (37 °C). Via the layer-by-layer (LbL) technique, biocompatible polyelectrolyte multilayers (PEMs) composed of PCSs as polyanions in combination with poly-l-lysine (PLL) or quaternized chitosan (QCHI) as polycations were fabricated. The resulting surfaces contained a more intermingled structure of polyanions with both polycations, while higher sulfated cellulose derivatives (CS2 and PCS2) displayed greater stability. Studies on toxicity and biocompatibility of PEM using 3T3 mouse fibroblasts showed a lower cytotoxicity of PEM with PCS2 and CS2 than PCS1 and CS1. Furthermore, the PEM using PCS2 particularly in combination with QCHI demonstrated excellent biocompatibility that is promising for new bioactive, thermoresponsive coatings on biomaterials and substrata for culturing adhesion-dependent cells.
Collapse
Affiliation(s)
- Kui Zeng
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, Göttingen D-37077, Germany
| | - Falko Doberenz
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, Halle (Saale) 06120, Germany
| | - Yi-Tung Lu
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, Halle (Saale) 06120, Germany
| | - Johanna Phuong Nong
- Institute of Plant and Wood Chemistry (IPWC), Technische Universität Dresden, Pienner Straße 19, Tharandt 01737, Germany
| | - Steffen Fischer
- Institute of Plant and Wood Chemistry (IPWC), Technische Universität Dresden, Pienner Straße 19, Tharandt 01737, Germany
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, Halle (Saale) 06120, Germany
- Interdisciplinary Center of Material Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, Göttingen D-37077, Germany
| |
Collapse
|
3
|
Abbasi-Ravasjani S, Seddiqi H, Moghaddaszadeh A, Ghiasvand ME, Jin J, Oliaei E, Bacabac RG, Klein-Nulend J. Sulfated carboxymethyl cellulose and carboxymethyl κ-carrageenan immobilization on 3D-printed poly-ε-caprolactone scaffolds differentially promote pre-osteoblast proliferation and osteogenic activity. Front Bioeng Biotechnol 2022; 10:957263. [PMID: 36213076 PMCID: PMC9542643 DOI: 10.3389/fbioe.2022.957263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The lack of bioactivity in three-dimensional (3D)-printing of poly-є-caprolactone (PCL) scaffolds limits cell-material interactions in bone tissue engineering. This constraint can be overcome by surface-functionalization using glycosaminoglycan-like anionic polysaccharides, e.g., carboxymethyl cellulose (CMC), a plant-based carboxymethylated, unsulfated polysaccharide, and κ-carrageenan, a seaweed-derived sulfated, non-carboxymethylated polysaccharide. The sulfation of CMC and carboxymethylation of κ-carrageenan critically improve their bioactivity. However, whether sulfated carboxymethyl cellulose (SCMC) and carboxymethyl κ-carrageenan (CM-κ-Car) affect the osteogenic differentiation potential of pre-osteoblasts on 3D-scaffolds is still unknown. Here, we aimed to assess the effects of surface-functionalization by SCMC or CM-κ-Car on the physicochemical and mechanical properties of 3D-printed PCL scaffolds, as well as the osteogenic response of pre-osteoblasts. MC3T3-E1 pre-osteoblasts were seeded on 3D-printed PCL scaffolds that were functionalized by CM-κ-Car (PCL/CM-κ-Car) or SCMC (PCL/SCMC), cultured up to 28 days. The scaffolds’ physicochemical and mechanical properties and pre-osteoblast function were assessed experimentally and by finite element (FE) modeling. We found that the surface-functionalization by SCMC and CM-κ-Car did not change the scaffold geometry and structure but decreased the elastic modulus. Furthermore, the scaffold surface roughness and hardness increased and the scaffold became more hydrophilic. The FE modeling results implied resilience up to 2% compression strain, which was below the yield stress for all scaffolds. Surface-functionalization by SCMC decreased Runx2 and Dmp1 expression, while surface-functionalization by CM-κ-Car increased Cox2 expression at day 1. Surface-functionalization by SCMC most strongly enhanced pre-osteoblast proliferation and collagen production, while CM-κ-Car most significantly increased alkaline phosphatase activity and mineralization after 28 days. In conclusion, surface-functionalization by SCMC or CM-κ-Car of 3D-printed PCL-scaffolds enhanced pre-osteoblast proliferation and osteogenic activity, likely due to increased surface roughness and hydrophilicity. Surface-functionalization by SCMC most strongly enhanced cell proliferation, while CM-κ-Car most significantly promoted osteogenic activity, suggesting that surface-functionalization by CM-κ-Car may be more promising, especially in the short-term, for in vivo bone formation.
Collapse
Affiliation(s)
- Sonia Abbasi-Ravasjani
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Hadi Seddiqi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ali Moghaddaszadeh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Jianfeng Jin
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Erfan Oliaei
- Fiber and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rommel Gaud Bacabac
- Medical Biophysics Group, Department of Physics, University of San Carlos, Cebu City, Philippines
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Sciences, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Jenneke Klein-Nulend,
| |
Collapse
|
4
|
Ji M, Li J, Wang Y, Li F, Man J, Li J, Zhang C, Peng S, Wang S. Advances in chitosan-based wound dressings: Modifications, fabrications, applications and prospects. Carbohydr Polym 2022; 297:120058. [DOI: 10.1016/j.carbpol.2022.120058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 12/15/2022]
|
5
|
Chitosan chemistry review for living organisms encapsulation. Carbohydr Polym 2022; 295:119877. [DOI: 10.1016/j.carbpol.2022.119877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/20/2022]
|
6
|
Man K, Brunet MY, Federici AS, Hoey DA, Cox SC. An ECM-Mimetic Hydrogel to Promote the Therapeutic Efficacy of Osteoblast-Derived Extracellular Vesicles for Bone Regeneration. Front Bioeng Biotechnol 2022; 10:829969. [PMID: 35433655 PMCID: PMC9005798 DOI: 10.3389/fbioe.2022.829969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The use of extracellular vesicles (EVs) is emerging as a promising acellular approach for bone regeneration, overcoming translational hurdles associated with cell-based therapies. Despite their potential, EVs short half-life following systemic administration hinders their therapeutic efficacy. EVs have been reported to bind to extracellular matrix (ECM) proteins and play an essential role in matrix mineralisation. Chitosan and collagen type I are naturally-derived pro-osteogenic biomaterials, which have been demonstrated to control EV release kinetics. Therefore, this study aimed to develop an injectable ECM-mimetic hydrogel capable of controlling the release of osteoblast-derived EVs to promote bone repair. Pure chitosan hydrogels significantly enhanced compressive modulus (2.48-fold) and osteogenic differentiation (3.07-fold), whilst reducing gelation times (2.09-fold) and proliferation (2.7-fold) compared to pure collagen gels (p ≤ 0.001). EV release was strongly associated with collagen concentration (R2 > 0.94), where a significantly increased EV release profile was observed from chitosan containing gels using the CD63 ELISA (p ≤ 0.001). Hydrogel-released EVs enhanced human bone marrow stromal cells (hBMSCs) proliferation (1.12-fold), migration (2.55-fold), and mineralisation (3.25-fold) compared to untreated cells (p ≤ 0.001). Importantly, EV-functionalised chitosan-collagen composites significantly promoted hBMSCs extracellular matrix mineralisation when compared to the EV-free gels in a dose-dependent manner (p ≤ 0.001). Taken together, these findings demonstrate the development of a pro-osteogenic thermosensitive chitosan-collagen hydrogel capable of enhancing the therapeutic efficacy of osteoblast-derived EVs as a novel acellular tool for bone augmentation strategy.
Collapse
Affiliation(s)
- Kenny Man
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Mathieu Y. Brunet
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Angelica S. Federici
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland,Dept. of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland,Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and RCSI, Dublin, Ireland
| | - David A. Hoey
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland,Dept. of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland,Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and RCSI, Dublin, Ireland
| | - Sophie C. Cox
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom,*Correspondence: Sophie C. Cox,
| |
Collapse
|
7
|
Kazachenko AS, Akman F, Malyar YN, ISSAOUI N, Vasilieva NY, Karacharov AA. Synthesis optimization, DFT and physicochemical study of chitosan sulfates. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131083] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Yang Y, Lu Y, Zeng K, Heinze T, Groth T, Zhang K. Recent Progress on Cellulose-Based Ionic Compounds for Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000717. [PMID: 32270900 PMCID: PMC11469321 DOI: 10.1002/adma.202000717] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 05/06/2023]
Abstract
Glycans play important roles in all major kingdoms of organisms, such as archea, bacteria, fungi, plants, and animals. Cellulose, the most abundant polysaccharide on the Earth, plays a predominant role for mechanical stability in plants, and finds a plethora of applications by humans. Beyond traditional use, biomedical application of cellulose becomes feasible with advances of soluble cellulose derivatives with diverse functional moieties along the backbone and modified nanocellulose with versatile functional groups on the surface due to the native features of cellulose as both cellulose chains and supramolecular ordered domains as extractable nanocellulose. With the focus on ionic cellulose-based compounds involving both these groups primarily for biomedical applications, a brief introduction about glycoscience and especially native biologically active glycosaminoglycans with specific biomedical application areas on humans is given, which inspires further development of bioactive compounds from glycans. Then, both polymeric cellulose derivatives and nanocellulose-based compounds synthesized as versatile biomaterials for a large variety of biomedical applications, such as for wound dressings, controlled release, encapsulation of cells and enzymes, and tissue engineering, are separately described, regarding the diverse routes of synthesis and the established and suggested applications for these highly interesting materials.
Collapse
Affiliation(s)
- Yang Yang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Road 381Guangzhou510640P. R. China
| | - Yi‐Tung Lu
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
| | - Kui Zeng
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| | - Thomas Heinze
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of JenaCentre of Excellence for Polysaccharide ResearchHumboldt Straße 10JenaD‐07743Germany
| | - Thomas Groth
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
- Interdisciplinary Center of Materials ScienceMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
- Laboratory of Biomedical NanotechnologiesInstitute of Bionic Technologies and EngineeringI. M. Sechenov First Moscow State UniversityTrubetskaya Street 8119991MoscowRussian Federation
| | - Kai Zhang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| |
Collapse
|
9
|
Kim S, Fan J, Lee CS, Chen C, Lee M. Sulfonate Hydrogel-siRNA Conjugate Facilitates Osteogenic Differentiation of Mesenchymal Stem Cells by Controlled Gene Silencing and Activation of BMP Signaling. ACS APPLIED BIO MATERIALS 2021; 4:5189-5200. [PMID: 34661086 DOI: 10.1021/acsabm.1c00369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels have been widely used in bone tissue engineering due to their tunable characteristics that allow facile modifications with various biochemical properties to support cell growth and guide proper cell functions. Herein, we report a design of hydrogel-siRNA conjugate that facilitates osteogenesis via gene silencing and activation of bone morphogenetic protein (BMP) signaling. A sulfonate hydrogel is prepared by modifying chitosan with sulfoacetic acid to mimic a natural sulfated polysaccharide and to provide a hydrogel surface that enables BMP binding. Then, siRNA targeting noggin, an endogenous extracellular antagonist of BMP signaling, is covalently conjugated to the sulfonate hydrogel by visible blue light crosslinking. The sulfonate hydrogel-siRNA conjugate is efficient to bind BMPs and also successfully prolongs the release of siRNA for sustained noggin suppression, thereby resulting in significantly increased osteogenic differentiation. Lastly, demineralized bone matrix (DBM) is incorporated into the sulfonate hydrogel-siRNA conjugate, wherein the DBM incorporation induces noggin expression via a negative feedback mechanism that regulates BMP signaling in DBM. However, simultaneous delivery of siRNA downregulates noggin thus facilitating endogenous BMP activity and enhancing the osteogenic efficacy of DBM. These findings support a promising hydrogel RNA silencing platform for bone tissue engineering applications.
Collapse
Affiliation(s)
- Soyon Kim
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
| | - Jiabing Fan
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
| | - Chung-Sung Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
| | - Chen Chen
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA.,Department of Bioengineering, University of California, Los Angeles, USA
| |
Collapse
|
10
|
Willems C, Trutschel ML, Mazaikina V, Strätz J, Mäder K, Fischer S, Groth T. Hydrogels Based on Oxidized Cellulose Sulfates and Carboxymethyl Chitosan: Studies on Intrinsic Gel Properties, Stability, and Biocompatibility. Macromol Biosci 2021; 21:e2100098. [PMID: 34124844 DOI: 10.1002/mabi.202100098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/06/2021] [Indexed: 11/07/2022]
Abstract
Cellulose and chitosan are excellent components for the fabrication of bioactive scaffolds, as they are biocompatible and abundantly available. Their derivatives Ocarboxymethyl chitosan (CMChi) and oxidized cellulose sulfate (oxCS) can form in situ gelling, bioactive hydrogels, due to the formation of imine bonds for crosslinking. Here the influence of the degrees of sulfation (DS), oxidation (DO), and the molecular weight of oxCS on intrinsic and rheological properties of such hydrogels and their ability to support the survival and growth of human-adipose-derived stem cells (hADSC) is investigated. It is found that the pH of the hydrogels is generally slightly acidic, while their network density and E-modulus are found to be dependent on the DS and DO, which makes the properties of hydrogels tunable. Extensive studies show that hydrogels can be stable for up to 14 days and that their stability is largely dependent on the DO, molecular weight, and the components mixing ratio. Cytotoxicity studies of the hydrogel with hADSCs show biocompatible gels in dependence on the molecular weight and degree of oxidation with viable cells up to 14 days. These findings can help to develop specifically tailored hydrogels for tissue engineering applications to replace different types of connective tissue.
Collapse
Affiliation(s)
- Christian Willems
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120, Halle (Saale), Germany
| | - Marie-Luise Trutschel
- Department of Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes Strasse 3, 06120, Halle (Saale), Germany
| | - Vera Mazaikina
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120, Halle (Saale), Germany
| | - Juliane Strätz
- Institute of Plant and Wood Chemistry, Technische Universität Dresden, Pienner Strasse 19, 01737, Tharandt, Germany
| | - Karsten Mäder
- Department of Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes Strasse 3, 06120, Halle (Saale), Germany
| | - Steffen Fischer
- Institute of Plant and Wood Chemistry, Technische Universität Dresden, Pienner Strasse 19, 01737, Tharandt, Germany
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120, Halle (Saale), Germany.,Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, 06099, Halle (Saale), Germany
| |
Collapse
|
11
|
ELISA- and Activity Assay-Based Quantification of BMP-2 Released In Vitro Can Be Biased by Solubility in "Physiological" Buffers and an Interfering Effect of Chitosan. Pharmaceutics 2021; 13:pharmaceutics13040582. [PMID: 33921903 PMCID: PMC8073737 DOI: 10.3390/pharmaceutics13040582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022] Open
Abstract
Chitosan nanogel-coated polycaprolactone (PCL) fiber mat-based implant prototypes with tailored release of bone morphogenic protein 2 (BMP-2) are a promising approach to achieve implant-mediated bone regeneration. In order to ensure reliable in vitro release results, the robustness of a commercially available ELISA for E. coli-derived BMP-2 and the parallel determination of BMP-2 recovery using a quantitative biological activity assay were investigated within a common release setup, with special reference to solubility and matrix effects. Without bovine serum albumin and Tween 20 as solubilizing additives to release media buffed at physiological pH, BMP-2 recoveries after release were notably reduced. In contrast, the addition of chitosan to release samples caused an excessive recovery. A possible explanation for these effects is the reversible aggregation tendency of BMP-2, which might be influenced by an interaction with chitosan. The interfering effects highlighted in this study are of great importance for bio-assay-based BMP-2 quantification, especially in the context of pharmaceutical release experiments.
Collapse
|
12
|
Teng K, An Q, Chen Y, Zhang Y, Zhao Y. Recent Development of Alginate-Based Materials and Their Versatile Functions in Biomedicine, Flexible Electronics, and Environmental Uses. ACS Biomater Sci Eng 2021; 7:1302-1337. [PMID: 33764038 DOI: 10.1021/acsbiomaterials.1c00116] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alginate is a natural polysaccharide that is easily chemically modified or compounded with other components for various types of functionalities. The alginate derivatives are appealing not only because they are biocompatible so that they can be used in biomedicine or tissue engineering but also because of the prospering bioelectronics that require various biomaterials to interface between human tissues and electronics or to serve as electronic components themselves. The study of alginate-based materials, especially hydrogels, have repeatedly found new frontiers over recent years. In this Review, we document the basic properties of alginate, their chemical modification strategies, and the recent development of alginate-based functional composite materials. The newly thrived functions such as ionically conductive hydrogel or 3D or 4D cell culturing matrix are emphasized among other appealing potential applications. We expect that the documentation of relevant information will stimulate scientific efforts to further develop biocompatible electronics or smart materials and to help the research domain better address the medicine, energy, and environmental challenges faced by human societies.
Collapse
Affiliation(s)
- Kaixuan Teng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yao Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yantao Zhao
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, Beijing 100048, China.,Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, China
| |
Collapse
|
13
|
Nishinari K, Fang Y. Molar mass effect in food and health. Food Hydrocoll 2021; 112:106110. [PMID: 32895590 PMCID: PMC7467918 DOI: 10.1016/j.foodhyd.2020.106110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022]
Abstract
It is demanded to supply foods with good quality for all the humans. With the advent of aging society, palatable and healthy foods are required to improve the quality of life and reduce the burden of finance for medical expenditure. Food hydrocolloids can contribute to this demand by versatile functions such as thickening, gelling, stabilising, and emulsifying, controlling texture and flavour release in food processing. Molar mass effects on viscosity and diffusion in liquid foods, and on mechanical and other physical properties of solid and semi-solid foods and films are overviewed. In these functions, the molar mass is one of the key factors, and therefore, the effects of molar mass on various health problems related to noncommunicable diseases or symptoms such as cancer, hyperlipidemia, hyperglycemia, constipation, high blood pressure, knee pain, osteoporosis, cystic fibrosis and dysphagia are described. Understanding these problems only from the viewpoint of molar mass is limited since other structural characteristics, conformation, branching, blockiness in copolymers such as pectin and alginate, degree of substitution as well as the position of the substituents are sometimes the determining factor rather than the molar mass. Nevertheless, comparison of different behaviours and functions in different polymers from the viewpoint of molar mass is expected to be useful to find a common characteristics, which may be helpful to understand the mechanism in other problems.
Collapse
Affiliation(s)
- Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloids Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, PR China
- Department of Food and Nutrition, Graduate School of Human Life Science, Osaka City University, Osaka, 558-6565, Japan
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
14
|
Habli Z, Deen NNA, Malaeb W, Mahfouz N, Mermerian A, Talhouk R, Mhanna R. Biomimetic sulfated glycosaminoglycans maintain differentiation markers of breast epithelial cells and preferentially inhibit proliferation of cancer cells. Acta Biomater 2021; 122:186-198. [PMID: 33444795 DOI: 10.1016/j.actbio.2020.12.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Glycosaminoglycans (GAG) are key elements involved in various physiological and pathological processes including cancer. Several GAG-based drugs have been developed showing significant results and potential use as cancer therapeutics. We previously reported that alginate sulfate (AlgSulf), a GAG-mimetic, reduces the proliferation of lung adenocarcinoma cells. In this study, we evaluated the preferential effect of AlgSulf on tumorigenic and nontumorigenic mammary epithelial cells in 2D, 3D, and coculture conditions. AlgSulf were synthesized with different degrees of sulfation (DSs) varying from 0 to 2.7 and used at 100 µg/mL on HMT-3522 S1 (S1) nontumorigenic mammary epithelial cells and their tumorigenic counterparts HMT-3522 T4-2 (T4-2) cells. The anti-tumor properties of AlgSulf were assessed using trypan blue and bromodeoxyuridine proliferation (BrdU) assays, immunofluorescence staining and transwell invasion assay. Binding of insulin and epidermal growth factor (EGF) to sulfated substrates was measured using QCM-D and ELISA. In 2D, the cell growth rate of cells treated with AlgSulf was consistently lower compared to untreated controls (p<0.001) and surpassed the effect of the native GAG heparin (positive control). In 3D, AlgSulf preferentially hindered the growth rate and the invasion potential of tumorigenic T4-2 nodules while maintaining the formation of differentiated polarized nontumorigenic S1 acini. The preferential growth inhibition of tumorigenic cells by AlgSulf was confirmed in a coculture system (p<0.001). In the ELISA assay, a trend of EGF binding was detected for sulfated polysaccharides while QCM-D analysis showed negligible binding of insulin and EGF to sulfated substrates. The preferential effect mediated by the mimetic sulfated GAGs on cancer cells may in part be growth factor dependent. Our findings suggest a potential anticancer therapeutic role of AlgSulf for the development of anticancer drugs.
Collapse
|
15
|
Terauchi M, Tamura A, Arisaka Y, Masuda H, Yoda T, Yui N. Cyclodextrin-Based Supramolecular Complexes of Osteoinductive Agents for Dental Tissue Regeneration. Pharmaceutics 2021; 13:136. [PMID: 33494320 PMCID: PMC7911178 DOI: 10.3390/pharmaceutics13020136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Oral tissue regeneration has received growing attention for improving the quality of life of patients. Regeneration of oral tissues such as alveolar bone and widely defected bone has been extensively investigated, including regenerative treatment of oral tissues using therapeutic cells and growth factors. Additionally, small-molecule drugs that promote bone formation have been identified and tested as new regenerative treatment. However, treatments need to progress to realize successful regeneration of oral functions. In this review, we describe recent progress in development of regenerative treatment of oral tissues. In particular, we focus on cyclodextrin (CD)-based pharmaceutics and polyelectrolyte complexation of growth factors to enhance their solubility, stability, and bioactivity. CDs can encapsulate hydrophobic small-molecule drugs into their cavities, resulting in inclusion complexes. The inclusion complexation of osteoinductive small-molecule drugs improves solubility of the drugs in aqueous solutions and increases in vitro osteogenic differentiation efficiency. Additionally, various anionic polymers such as heparin and its mimetic polymers have been developed to improve stability and bioactivity of growth factors. These polymers protect growth factors from deactivation and degradation by complex formation through electrostatic interaction, leading to potentiation of bone formation ability. These approaches using an inclusion complex and polyelectrolyte complexes have great potential in the regeneration of oral tissues.
Collapse
Affiliation(s)
- Masahiko Terauchi
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.T.); (H.M.); (T.Y.)
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (N.Y.)
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (N.Y.)
| | - Hiroki Masuda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.T.); (H.M.); (T.Y.)
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan; (M.T.); (H.M.); (T.Y.)
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan; (Y.A.); (N.Y.)
| |
Collapse
|
16
|
|
17
|
Li Z, Mei S, Dong Y, She F, Li Y, Li P, Kong L. Functional Nanofibrous Biomaterials of Tailored Structures for Drug Delivery-A Critical Review. Pharmaceutics 2020; 12:pharmaceutics12060522. [PMID: 32521627 PMCID: PMC7355603 DOI: 10.3390/pharmaceutics12060522] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 01/07/2023] Open
Abstract
Nanofibrous biomaterials have huge potential for drug delivery, due to their structural features and functions that are similar to the native extracellular matrix (ECM). A wide range of natural and polymeric materials can be employed to produce nanofibrous biomaterials. This review introduces the major natural and synthetic biomaterials for production of nanofibers that are biocompatible and biodegradable. Different technologies and their corresponding advantages and disadvantages for manufacturing nanofibrous biomaterials for drug delivery were also reported. The morphologies and structures of nanofibers can be tailor-designed and processed by carefully selecting suitable biomaterials and fabrication methods, while the functionality of nanofibrous biomaterials can be improved by modifying the surface. The loading and releasing of drug molecules, which play a significant role in the effectiveness of drug delivery, are also surveyed. This review provides insight into the fabrication of functional polymeric nanofibers for drug delivery.
Collapse
Affiliation(s)
- Zhen Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia; (Z.L.); (Y.D.); (F.S.)
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073, China
- Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430073, China
| | - Shunqi Mei
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073, China
- Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430073, China
- Correspondence: (S.M.); (L.K.)
| | - Yajie Dong
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia; (Z.L.); (Y.D.); (F.S.)
- School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073, China
- Hubei Key Laboratory of Digital Textile Equipment, Wuhan Textile University, Wuhan 430073, China
| | - Fenghua She
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia; (Z.L.); (Y.D.); (F.S.)
| | - Yongzhen Li
- Key laboratory of Tropical Crop Products Processing, Ministry of Agriculture and Rural Affairs, Agriculture Products Processing Research Institute, CATAS, Zhanjiang 524001, China; (Y.L.); (P.L.)
| | - Puwang Li
- Key laboratory of Tropical Crop Products Processing, Ministry of Agriculture and Rural Affairs, Agriculture Products Processing Research Institute, CATAS, Zhanjiang 524001, China; (Y.L.); (P.L.)
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia; (Z.L.); (Y.D.); (F.S.)
- Correspondence: (S.M.); (L.K.)
| |
Collapse
|
18
|
Al Matari N, Deeb G, Mshiek H, Sinjab A, Kadara H, Abou-Kheir W, Mhanna R. Anti-Tumor Effects of Biomimetic Sulfated Glycosaminoglycans on Lung Adenocarcinoma Cells in 2D and 3D In Vitro Models. Molecules 2020; 25:E2595. [PMID: 32503108 PMCID: PMC7321182 DOI: 10.3390/molecules25112595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022] Open
Abstract
Lung cancer development relies on cell proliferation and migration, which in turn requires interaction with extracellular matrix (ECM) components such as glycosaminoglycans (GAGs). The mechanisms through which GAGs regulate cancer cell functions are not fully understood but they are, in part, mediated by controlled interactions with cytokines and growth factors (GFs). In order to mechanistically understand the effect of the degree of sulfation (DS) of GAGs on lung adenocarcinoma (LUAD) cells, we synthesized sulfated alginate (AlgSulf) as sulfated GAG mimics with DS = 0.0, 0.8, 2.0, and 2.7. Human (H1792) and mouse (MDA-F471) LUAD cell lines were treated with AlgSulf of various DSs at two concentrations 10 and 100 µg/mL and their anti-tumor properties were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), trypan blue exclusion, and wound healing assays for 2D models and sphere formation assay for the 3D model. The proliferation and number of live MDA-F471 cells at the concentration of 100 µg/mL decreased significantly with the increase in the DS of biomimetic GAGs. In addition, the increase in the DS of biomimetic GAGs decreased cell migration (p < 0.001 for DS = 2.0 and 2.7 compared to control) and decreased the diameter and number of spheres formed (p < 0.001). The increased DS of biomimetic GAGs attenuated the expression of cancer stem cell (CSC)/progenitor markers in the 3D cultures. In conclusion, GAG-mimetic AlgSulf with increased DS exhibit enhanced anti-proliferative and migratory properties while also reducing growth of KRAS-mutant LUAD spheres in vitro. We suggest that these anti-tumor effects by GAG-mimetic AlgSulf are possibly due to differential binding to GFs and consequential decreased cell stemness. AlgSulf may be suitable for applications in cancer therapy after further in vivo validation.
Collapse
Affiliation(s)
- Nada Al Matari
- Department of Biomedical Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (N.A.M.); (G.D.)
| | - George Deeb
- Department of Biomedical Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (N.A.M.); (G.D.)
| | - Hiba Mshiek
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (H.K.)
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (H.K.)
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Rami Mhanna
- Department of Biomedical Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon; (N.A.M.); (G.D.)
| |
Collapse
|
19
|
Alginate Sulfate Substrates Control Growth Factor Binding and Growth of Primary Neurons: Toward Engineered 3D Neural Networks. ACTA ACUST UNITED AC 2020; 4:e2000047. [DOI: 10.1002/adbi.202000047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/29/2020] [Indexed: 12/27/2022]
|
20
|
Malchesky PS. Thomas Groth, PhD to serve as Co-Editor, Europe, ESAO Representative. Artif Organs 2020; 44:351-354. [PMID: 32185810 DOI: 10.1111/aor.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Husteden C, Doberenz F, Goergen N, Pinnapireddy SR, Janich C, Langner A, Syrowatka F, Repanas A, Erdmann F, Jedelská J, Bakowsky U, Groth T, Wölk C. Contact-Triggered Lipofection from Multilayer Films Designed as Surfaces for in Situ Transfection Strategies in Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8963-8977. [PMID: 32003972 DOI: 10.1021/acsami.9b18968] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomaterials, which release active compounds after implantation, are an essential tool for targeted regenerative medicine. In this study, thin multilayer films loaded with lipid/DNA complexes (lipoplexes) were designed as surface coatings for in situ transfection applicable in tissue engineering and regenerative medicine. The film production and embedding of lipoplexes were based on the layer-by-layer (LbL) deposition technique. Hyaluronic acid (HA) and chitosan (CHI) were used as the polyelectrolyte components. The embedded plasmid DNA was complexed using a new designed cationic lipid formulation, namely, OH4/DOPE 1/1, the advantageous characteristics of which have been proven already. Three different methods were tested regarding its efficiency of lipid and DNA deposition. Therefore, several surface specific analytics were used to characterize the LbL formation, the lipid DNA embedding, and the surface characteristics of the multilayer films, such as fluorescence microscopy, surface plasmon resonance spectroscopy, ellipsometry, zeta potential measurements, atomic force microscopy, and scanning electron microscopy. Interaction studies were conducted for optimized lipoplex-loaded polyelectrolyte multilayers (PEMs) that showed an efficient attachment of C2C12 cells on the surface. Furthermore, no acute toxic effects were found in cell culture studies, demonstrating biocompatibility. Cell culture experiments with C2C12 cells, a cell line which is hard to transfect, demonstrated efficient transfection of the reporter gene encoding for green fluorescent protein. In vivo experiments using the chicken embryo chorion allantois membrane animal replacement model showed efficient gene-transferring rates in living complex tissues, although the DNA-loaded films were stored over 6 days under wet and dried conditions. Based on these findings, it can be concluded that OH4/DOPE 1/1 lipoplex-loaded PEMs composed of HA and CHI can be an efficient tool for in situ transfection in regenerative medicine.
Collapse
Affiliation(s)
- Catharina Husteden
- Institute of Pharmacy, Department of Medicinal Chemistry , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle (Saale) , Germany
| | - Falko Doberenz
- Institute of Pharmacy, Department Biomedical Materials , Martin Luther University Halle-Wittenberg , Heinrich-Damerow-Str. 4 , 06120 Halle (Saale) , Germany
| | - Nathalie Goergen
- Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Robert-Koch-Str. 4 , 35037 Marburg , Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Robert-Koch-Str. 4 , 35037 Marburg , Germany
| | - Christopher Janich
- Institute of Pharmacy, Department of Medicinal Chemistry , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle (Saale) , Germany
| | - Andreas Langner
- Institute of Pharmacy, Department of Medicinal Chemistry , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle (Saale) , Germany
| | - Frank Syrowatka
- Interdisciplinary Center of Materials Science , Martin-Luther-University Halle-Wittenberg , Heinrich-Damerow-Str. 4 , 06120 Halle (Saale) , Germany
| | - Alexandros Repanas
- Institute of Pharmacy, Department Biomedical Materials , Martin Luther University Halle-Wittenberg , Heinrich-Damerow-Str. 4 , 06120 Halle (Saale) , Germany
| | - Frank Erdmann
- Institute of Pharmacy, Department of Pharmacology , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle (Saale) , Germany
| | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Robert-Koch-Str. 4 , 35037 Marburg , Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics , University of Marburg , Robert-Koch-Str. 4 , 35037 Marburg , Germany
| | - Thomas Groth
- Institute of Pharmacy, Department Biomedical Materials , Martin Luther University Halle-Wittenberg , Heinrich-Damerow-Str. 4 , 06120 Halle (Saale) , Germany
- Interdisciplinary Center of Materials Science , Martin-Luther-University Halle-Wittenberg , Heinrich-Damerow-Str. 4 , 06120 Halle (Saale) , Germany
- Laboratory of Biomedical Nanotechnologies, Institute of Bionic Technologies and Engineering , I.M. Sechenov First Moscow State University , Trubetskaya Street 8 , 119991 Moscow , Russian Federation
| | - Christian Wölk
- Institute of Pharmacy, Department of Medicinal Chemistry , Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4 , 06120 Halle (Saale) , Germany
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine , Leipzig University , 04317 Leipzig , Germany
| |
Collapse
|
22
|
Neves MI, Araújo M, Moroni L, da Silva RM, Barrias CC. Glycosaminoglycan-Inspired Biomaterials for the Development of Bioactive Hydrogel Networks. Molecules 2020; 25:E978. [PMID: 32098281 PMCID: PMC7070556 DOI: 10.3390/molecules25040978] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Glycosaminoglycans (GAG) are long, linear polysaccharides that display a wide range of relevant biological roles. Particularly, in the extracellular matrix (ECM) GAG specifically interact with other biological molecules, such as growth factors, protecting them from proteolysis or inhibiting factors. Additionally, ECM GAG are partially responsible for the mechanical stability of tissues due to their capacity to retain high amounts of water, enabling hydration of the ECM and rendering it resistant to compressive forces. In this review, the use of GAG for developing hydrogel networks with improved biological activity and/or mechanical properties is discussed. Greater focus is given to strategies involving the production of hydrogels that are composed of GAG alone or in combination with other materials. Additionally, approaches used to introduce GAG-inspired features in biomaterials of different sources will also be presented.
Collapse
Affiliation(s)
- Mariana I. Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia da Universidade do Porto, Departamento de Engenharia Metalúrgica e de Materiais, Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Marco Araújo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET Maastricht, The Netherlands;
| | - Ricardo M.P. da Silva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Cristina C. Barrias
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
23
|
Mendes BB, Gómez-Florit M, Osório H, Vilaça A, Domingues RMA, Reis RL, Gomes ME. Cellulose nanocrystals of variable sulfation degrees can sequester specific platelet lysate-derived biomolecules to modulate stem cell response. Chem Commun (Camb) 2020; 56:6882-6885. [DOI: 10.1039/d0cc01850c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cellulose nanocrystals can bind different patterns of platelet lysate-derived protein in a surface sulfation dependent manner. The potential to direct stem cell fate by solid-phase presentation of defined protein coronas is demonstrated.
Collapse
Affiliation(s)
- Bárbara B. Mendes
- 3B's Research Group
- I3Bs – Research Institute on Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Manuel Gómez-Florit
- 3B's Research Group
- I3Bs – Research Institute on Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde (I3S)
- Universidade do Porto
- Porto
- Portugal
| | - Adriana Vilaça
- 3B's Research Group
- I3Bs – Research Institute on Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Rui M. A. Domingues
- 3B's Research Group
- I3Bs – Research Institute on Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Rui L. Reis
- 3B's Research Group
- I3Bs – Research Institute on Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| | - Manuela E. Gomes
- 3B's Research Group
- I3Bs – Research Institute on Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine
| |
Collapse
|
24
|
Strätz J, Liedmann A, Heinze T, Fischer S, Groth T. Effect of Sulfation Route and Subsequent Oxidation on Derivatization Degree and Biocompatibility of Cellulose Sulfates. Macromol Biosci 2019; 20:e1900403. [DOI: 10.1002/mabi.201900403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Juliane Strätz
- Institute of Plant and Wood ChemistryTechnische Universität Dresden Pienner Str. 19 01737 Tharandt Germany
| | - Andrea Liedmann
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐Wittenberg Heinrich‐Damerow‐Str. 4 06120 Halle (Saale) Germany
| | - Thomas Heinze
- Institute for Organic Chemistry and Macromolecular ChemistryCenter of Excellence for Polysaccharide ResearchFriedrich Schiller University of Jena Humboldtstr. 10 07743 Jena Germany
| | - Steffen Fischer
- Institute of Plant and Wood ChemistryTechnische Universität Dresden Pienner Str. 19 01737 Tharandt Germany
| | - Thomas Groth
- Interdisciplinary Center of Materials ScienceMartin Luther University Halle‐Wittenberg 06099 Halle (Saale) Germany
| |
Collapse
|
25
|
Treating wool fibers with chitosan-based nano-composites for enhancing the antimicrobial properties. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01203-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Gonzalez-Fernandez T, Sikorski P, Leach JK. Bio-instructive materials for musculoskeletal regeneration. Acta Biomater 2019; 96:20-34. [PMID: 31302298 PMCID: PMC6717669 DOI: 10.1016/j.actbio.2019.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
The prevalence and cost of disorders affecting the musculoskeletal system are predicted to rise significantly in the coming years due to the aging global population and the increase of associated risk factors. Despite being the second largest cause of disability, the clinical options for therapeutic intervention remain limited. The clinical translation of cell-based therapies for the treatment of musculoskeletal disorders faces many challenges including maintenance of cell survival in the harsh in vivo environment and the lack of control over regulating cell phenotype upon implantation. In order to address these challenges, the development of bio-instructive materials to modulate cell behavior has taken center stage as a strategy to increase the therapeutic potential of various cell populations. However, the determination of the necessary cues for a specific application and how these signals should be presented from a biomaterial remains elusive. This review highlights recent biochemical and physical strategies used to engineer bio-instructive materials for the repair of musculoskeletal tissues. There is a particular emphasis on emerging efforts such as the engineering of immunomodulatory and antibacterial materials, as well as the incorporation of these strategies into biofabrication and organ-on-a-chip approaches. STATEMENT OF SIGNIFICANCE: Disorders affecting the musculoskeletal system affect individuals across the lifespan and have a profound effect on mobility and quality of life. While small defects in many tissues can heal successfully, larger defects are often unable to heal or instead heal with inferior quality fibrous tissue and require clinical intervention. Cell-based therapies are a promising option for clinical translation, yet challenges related to maintaining cell survival and instructing cell phenotype upon implantation have limited the success of this approach. Bio-instructive materials provide an exciting opportunity to modulate cell behavior and enhance the efficacy of cell-based approaches for musculoskeletal repair. However, the identification of critical instructive cues and how to present these stimuli is a focus of intense investigation. This review highlights recent biochemical and physical strategies used to engineer bio-instructive materials for the repair of musculoskeletal tissues, while also considering exciting progress in the engineering of immunomodulatory and antibacterial materials.
Collapse
Affiliation(s)
| | - Pawel Sikorski
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA; Department of Physics, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA; Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA, USA.
| |
Collapse
|
27
|
Sultankulov B, Berillo D, Sultankulova K, Tokay T, Saparov A. Progress in the Development of Chitosan-Based Biomaterials for Tissue Engineering and Regenerative Medicine. Biomolecules 2019; 9:E470. [PMID: 31509976 PMCID: PMC6770583 DOI: 10.3390/biom9090470] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022] Open
Abstract
Over the last few decades, chitosan has become a good candidate for tissue engineering applications. Derived from chitin, chitosan is a unique natural polysaccharide with outstanding properties in line with excellent biodegradability, biocompatibility, and antimicrobial activity. Due to the presence of free amine groups in its backbone chain, chitosan could be further chemically modified to possess additional functional properties useful for the development of different biomaterials in regenerative medicine. In the current review, we will highlight the progress made in the development of chitosan-containing bioscaffolds, such as gels, sponges, films, and fibers, and their possible applications in tissue repair and regeneration, as well as the use of chitosan as a component for drug delivery applications.
Collapse
Affiliation(s)
- Bolat Sultankulov
- Department of Chemical Engineering, School of Engineering, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Dmitriy Berillo
- Water Technology Center (WATEC) Department of Bioscience - Microbiology, Aarhus University, Aarhus 8000, Denmark
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | | | - Tursonjan Tokay
- School of Science and Technology, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Arman Saparov
- School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan.
| |
Collapse
|
28
|
Malaeb W, Bahmad HF, Abou-Kheir W, Mhanna R. The sulfation of biomimetic glycosaminoglycan substrates controls binding of growth factors and subsequent neural and glial cell growth. Biomater Sci 2019; 7:4283-4298. [PMID: 31407727 DOI: 10.1039/c9bm00964g] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sulfated glycosaminoglycans (GAGs) are key structural and functional extracellular matrix (ECM) molecules involved in numerous signaling pathways mainly through their interaction with growth factors. Alginate sulfate mimics sulfated GAGs and binds growth factors such as basic fibroblast growth factor (FGF-2). Here, natural biomimetic substrates were engineered by immobilizing biotinylated alginate sulfates with varying degrees of sulfation (DS, from 0 to 2.7) on gold and polystyrene substrates using biotin-streptavidin binding. The build-up of films and the effect of the DS and biotinylation method on FGF-2 binding were assessed using quartz crystal microbalance with dissipation monitoring (QCM-D) and immunohistochemistry. The role of substrate sulfation and FGF-2 loading on the growth of A172 (human glioblastoma multiforme), SH-SY5Y (human neuroblastoma), and PC-12 (rat pheochromocytoma) cell lines was evaluated in vitro using proliferation and neurite outgrowth assessment. An increase in the DS of alginates resulted in augmented FGF-2 binding as evidenced by higher frequency and dissipation shifts measured with QCM-D and confirmed with immunostaining. All sulfated alginate substrates supported the attachment and growth of neural/glial cell lines better than controls with the highest increase in cell proliferation observed for the highest DS (p < 0.05 for all the cell lines). Moreover, FGF-2 loaded substrates with the highest DS induced the most significant increase in neurite-positive PC-12 cells and average neurite length. The developed biomimetic coatings can be used to functionalize substrates for biosensing applications (e.g. gold substrates) and to induce defined cellular responses via controlled growth factor delivery for basic and applied sciences.
Collapse
Affiliation(s)
- Waddah Malaeb
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Rami Mhanna
- Biomedical Engineering Program, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut 1107 2020, Lebanon.
| |
Collapse
|
29
|
Zeng K, Groth T, Zhang K. Recent Advances in Artificially Sulfated Polysaccharides for Applications in Cell Growth and Differentiation, Drug Delivery, and Tissue Engineering. Chembiochem 2018; 20:737-746. [DOI: 10.1002/cbic.201800569] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Kui Zeng
- Wood Technology and Wood ChemistryGeorg-August-University of Goettingen Büsgenweg 4 37077 Göttingen Germany
| | - Thomas Groth
- Biomedical Materials GroupMartin Luther University Halle-Wittenberg Heinrich-Damerow-Strasse 4 06120 Halle/Saale Germany
| | - Kai Zhang
- Wood Technology and Wood ChemistryGeorg-August-University of Goettingen Büsgenweg 4 37077 Göttingen Germany
| |
Collapse
|
30
|
Mendes BB, Gómez-Florit M, Pires RA, Domingues RMA, Reis RL, Gomes ME. Human-based fibrillar nanocomposite hydrogels as bioinstructive matrices to tune stem cell behavior. NANOSCALE 2018; 10:17388-17401. [PMID: 30203823 DOI: 10.1039/c8nr04273j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The extracellular matrix (ECM)-biomimetic fibrillar structure of platelet lysate (PL) gels along with their enriched milieu of biomolecules has drawn significant interest in regenerative medicine applications. However, PL-based gels have poor structural stability, which severely limits their performance as a bioinstructive biomaterial. Here, rod-shaped cellulose nanocrystals (CNC) are used as a novel approach to modulate the physical and biochemical microenvironment of PL gels enabling their effective use as injectable human-based cell scaffolds with a level of biomimicry that is difficult to recreate with synthetic biomaterials. The incorporation of CNC (0 to 0.61 wt%) into the PL fibrillar network during the coagulation cascade leads to decreased fiber branching, increased interfiber porosity (from 66 to 83%) and modulates fiber (from 1.4 ± 0.7 to 27 ± 12 kPa) and bulk hydrogel (from 18 ± 4 to 1256 ± 82 Pa) mechanical properties. As a result of these physicochemical alterations, nanocomposite PL hydrogels resist the typical extensive clot retraction (from 76 ± 1 to 24 ± 3 at day 7) and show favored retention of PL bioactive molecules. The feedback of these cues on the fate of human adipose-derived stem cells is evaluated, showing how it can be explored to modulate the commitment of encapsulated stem cells toward different genetic phenotypes without the need for additional external biological stimuli. These fibrillar nanocomposite hydrogels allow therefore the exploration of the outstanding biological properties of human-based PL as an efficient engineered ECM which can be tailored to trigger specific regenerative pathways in minimal invasive strategies.
Collapse
Affiliation(s)
- Bárbara B Mendes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal.
| | | | | | | | | | | |
Collapse
|
31
|
Inada T, Tamura A, Terauchi M, Yamaguchi S, Yui N. A silencing-mediated enhancement of osteogenic differentiation by supramolecular ternary siRNA polyplexes comprising biocleavable cationic polyrotaxanes and anionic fusogenic peptides. Biomater Sci 2018; 6:440-450. [PMID: 29355872 DOI: 10.1039/c7bm01100h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Gene silencing of noggin by small interfering RNA (siRNA) is a promising approach for the treatment of bone defects, because noggin deactivates bone morphogenetic protein-2 (BMP-2) and suppresses osteogenic differentiation. Here, we demonstrated the silencing of the noggin gene by siRNA polyplexes composed of noggin-targeted siRNA and biocleavable cationic polyrotaxanes (DMAE-SS-PRX). To improve the endosomal escape efficiencies of the DMAE-SS-PRX/siRNA polyplexes, anionic and fusogenic GALA peptides were integrated onto the DMAE-SS-PRX/siRNA polyplexes via simple electrostatic interactions. The formation of ternary complexes was confirmed by gel electrophoresis, dynamic light scattering, and zeta-potential measurements. Although the association of GALA peptides with the DMAE-SS-PRX/siRNA polyplexes did not remarkably affect the cellular uptake efficiency of siRNA, the endosomal escape efficiency was remarkably increased for GALA/DMAE-SS-PRX/siRNA ternary polyplexes because of the endosomal and lysosomal membrane destabilization by GALA peptides. Consequently, GALA/DMAE-SS-PRX/siRNA ternary polyplexes showed significantly higher gene silencing efficiency against noggin and enhanced the BMP-2-mediated osteogenic differentiation efficiency. Therefore, we concluded that GALA/DMAE-SS-PRX/siRNA ternary polyplexes can be effective siRNA carriers for suppressing the expression of specific endogenous genes. Consequently, we believe that a more practical approach in vivo will be the combined use of BMP-2 and GALA/DMAE-SS-PRX/siRNA ternary polyplexes, because it will improve the efficacy of bone regeneration therapy.
Collapse
Affiliation(s)
- Takasuke Inada
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | | | | | | | | |
Collapse
|
32
|
Zhao D, Yu S, Sun B, Gao S, Guo S, Zhao K. Biomedical Applications of Chitosan and Its Derivative Nanoparticles. Polymers (Basel) 2018; 10:polym10040462. [PMID: 30966497 PMCID: PMC6415442 DOI: 10.3390/polym10040462] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022] Open
Abstract
Chitosan is a biodegradable natural polymer with many advantages such as nontoxicity, biocompatibility, and biodegradability. It can be applied in many fields, especially in medicine. As a delivery carrier, it has great potential and cannot be compared with other polymers. Chitosan is extremely difficult to solubilize in water, but it can be solubilized in acidic solution. Its insolubility in water is a major limitation for its use in medical applications. Chitosan derivatives can be obtained by chemical modification using such techniques as acylation, alkylation, sulfation, hydroxylation, quaternization, esterification, graft copolymerization, and etherification. Modified chitosan has chemical properties superior to unmodified chitosan. For example, nanoparticles produced from chitosan derivatives can be used to deliver drugs due to their stability and biocompatibility. This review mainly focuses on the properties of chitosan, chitosan derivatives, and the origin of chitosan-based nanoparticles. In addition, applications of chitosan-based nanoparticles in drug delivery, vaccine delivery, antimicrobial applications, and callus and tissue regeneration are also presented. In summary, nanoparticles based on chitosan have great potential for research and development of new nano vaccines and nano drugs in the future.
Collapse
Affiliation(s)
- Dongying Zhao
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China.
| | - Shuang Yu
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China.
| | - Beini Sun
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China.
| | - Shuang Gao
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China.
| | - Sihan Guo
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China.
| | - Kai Zhao
- Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
33
|
Kang ES, Kim DS, Suhito IR, Lee W, Song I, Kim TH. Two-dimensional material-based bionano platforms to control mesenchymal stem cell differentiation. Biomater Res 2018; 22:10. [PMID: 29619243 PMCID: PMC5879765 DOI: 10.1186/s40824-018-0120-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/09/2018] [Indexed: 12/20/2022] Open
Abstract
Background In the past decade, stem cells, with their ability to differentiate into various types of cells, have been proven to be resourceful in regenerative medicine and tissue engineering. Despite the ability to repair damaged parts of organs and tissues, the use of stem cells still entails several limitations, such as low differentiation efficiency and difficulties in guiding differentiation. To address these limitations, nanotechnology approaches have been recently implemented in stem cell research. It has been discovered that stem cells, in combination with carbon-based functional materials, show enhanced regenerative performances in varying biophysical conditions. In particular, several studies have reported solutions to the conventional quandaries in biomedical engineering, using synergetic effects of nanohybrid materials, as well as further development of technologies to recover from diverse health conditions such as bone fracture and strokes. Main text In this review, we discuss several prior studies regarding the application of various nanomaterials in controlling the behavior of stem cells. We focus on the potential of different types of nanomaterials, such as two-dimensional materials, gold nanoparticles, and three-dimensional nanohybrid composites, to control the differentiation of human mesenchymal stem cells (hMSCs). These materials have been found to affect stem cell functions via the adsorption of growth/differentiation factors on the surfaces of nanomaterials and the activation of signaling pathways that are mostly related to cell adhesion and differentiation (e.g., FAK, Smad, Erk, and Wnt). Conclusion Controlling stem cell differentiation using biophysical factors, especially the use of nanohybrid materials to functionalize underlying substrates wherein the cells attach and grow, is a promising strategy to achieve cells of interest in a highly efficient manner. We hope that this review will facilitate the use of other types of newly discovered and/or synthesized nanomaterials (e.g., metal transition dichalcogenides, non-toxic quantum dots, and metal oxide frameworks) for stem cell-based regenerative therapies.
Collapse
Affiliation(s)
- Ee-Seul Kang
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Da-Seul Kim
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Intan Rosalina Suhito
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Wanhee Lee
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Inbeom Song
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Tae-Hyung Kim
- 1School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Republic of Korea.,2Integrative Research Center for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul, 06974 Republic of Korea
| |
Collapse
|
34
|
Song S, Zhang B, Wu S, Huang L, Ai C, Pan J, Su YC, Wang Z, Wen C. Structural characterization and osteogenic bioactivity of a sulfated polysaccharide from pacific abalone (Haliotis discus hannai Ino). Carbohydr Polym 2018; 182:207-214. [DOI: 10.1016/j.carbpol.2017.11.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/27/2017] [Accepted: 11/05/2017] [Indexed: 01/04/2023]
|
35
|
A review of chemical methods for the selective sulfation and desulfation of polysaccharides. Carbohydr Polym 2017; 174:1224-1239. [DOI: 10.1016/j.carbpol.2017.07.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/22/2017] [Accepted: 07/06/2017] [Indexed: 11/24/2022]
|
36
|
Lei J, Yuan Y, Lyu Z, Wang M, Liu Q, Wang H, Yuan L, Chen H. Deciphering the Role of Sulfonated Unit in Heparin-Mimicking Polymer to Promote Neural Differentiation of Embryonic Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28209-28221. [PMID: 28783314 DOI: 10.1021/acsami.7b08034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Glycosaminoglycans (GAGs), especially heparin and heparan sulfate (HS), hold great potential for inducing the neural differentiation of embryonic stem cells (ESCs) and have brought new hope for the treatment of neurological diseases. However, the disadvantages of natural heparin/HS, such as difficulty in isolating them with a sufficient amount, highly heterogeneous structure, and the risk of immune responses, have limited their further therapeutic applications. Thus, there is a great demand for stable, controllable, and well-defined synthetic alternatives of heparin/HS with more effective biological functions. In this study, based upon a previously proposed unit-recombination strategy, several heparin-mimicking polymers were synthesized by integrating glucosamine-like 2-methacrylamido glucopyranose monomers (MAG) with three sulfonated units in different structural forms, and their effects on cell proliferation, the pluripotency, and the differentiation of ESCs were carefully studied. The results showed that all the copolymers had good cytocompatibility and displayed much better bioactivity in promoting the neural differentiation of ESCs as compared to natural heparin; copolymers with different sulfonated units exhibited different levels of promoting ability; among them, copolymer with 3-sulfopropyl acrylate (SPA) as a sulfonated unit was the most potent in promoting the neural differentiation of ESCs; the promoting effect is dependent on the molecular weight and concentration of P(MAG-co-SPA), with the highest levels occurring at the intermediate molecular weight and concentration. These results clearly demonstrated that the sulfonated unit in the copolymers played an important role in determining the promoting effect on ESCs' neural differentiation; SPA was identified as the most potent sulfonated unit for copolymer with the strongest promoting ability. The possible reason for sulfonated unit structure as a vital factor influencing the ability of the copolymers may be attributed to the difference in electrostatic and steric hindrance effect. The synthetic heparin-mimicking polymers obtained here can offer an effective alternative to heparin/HS and have great therapeutic potential for nervous system diseases.
Collapse
Affiliation(s)
- Jiehua Lei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Yuqi Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Zhonglin Lyu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Mengmeng Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Qi Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Hongwei Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Lin Yuan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| |
Collapse
|
37
|
Mhanna R, Becher J, Schnabelrauch M, Reis RL, Pashkuleva I. Sulfated Alginate as a Mimic of Sulfated Glycosaminoglycans: Binding of Growth Factors and Effect on Stem Cell Behavior. ACTA ACUST UNITED AC 2017; 1:e1700043. [DOI: 10.1002/adbi.201700043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/15/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Rami Mhanna
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4806-909 Taipas Guimarães Portugal
- ICVS/3B's PT Government Associate Laboratory; Braga/Guimarães Portugal
- Biomedical Engineering and Chemical Engineering Program; American University of Beirut; Beirut 1107 2020 Lebanon
| | - Jana Becher
- INNOVENT e.V.; Biomaterials Department; Prüssingstraße 27 B D-07745 Jena Germany
| | | | - Rui L. Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4806-909 Taipas Guimarães Portugal
- ICVS/3B's PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Iva Pashkuleva
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4806-909 Taipas Guimarães Portugal
- ICVS/3B's PT Government Associate Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
38
|
Guduru D, Niepel MS, Gonzalez-Garcia C, Salmeron-Sanchez M, Groth T. Comparative Study of Osteogenic Activity of Multilayers Made of Synthetic and Biogenic Polyelectrolytes. Macromol Biosci 2017; 17. [PMID: 28547877 DOI: 10.1002/mabi.201700078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/19/2017] [Indexed: 11/05/2022]
Abstract
Polyelectrolyte multilayer (PEM) coatings on biomaterials are applied to tailor adhesion, growth, and function of cells on biomedical implants. Here, biogenic and synthetic polyelectrolytes (PEL) are used for layer-by-layer assembly to study the osteogenic activity of PEM with human osteosarcoma MG-63 cells in a comparative manner. Formation of PEM is achieved with biogenic PEL fibrinogen (FBG) and poly-l-lysine (PLL) as well as biotinylated chondroitin sulfate (BCS) and avidin (AVI), while poly(allylamine hydrochloride) (PAH) and polystyrene sulfonate (PSS) represent a fully synthetic PEM used as a reference system here. Surface plasmon resonance measurements show highest layer mass for FBG/PLL and similar for PSS/PAH and BCS/AVI systems, while water contact angle and zeta potential measurements indicate larger differences for PSS/PAH and FBG/PLL but not for BCS/AVI multilayers. All PEM systems support cell adhesion and growth and promote osteogenic differentiation as well. However, FBG/PLL layers are superior regarding MG-63 cell adhesion during short-term culture, while the BCS/AVI system increases alkaline phosphatase activity in long-term culture. Particularly, a multilayer system based on affinity interaction like BCS/AVI may be useful for controlled presentation of biotinylated growth factors to promote growth and differentiation of cells for biomedical applications.
Collapse
Affiliation(s)
- Deepak Guduru
- Biomedical Materials Group, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06099, Halle (Saale), Germany
| | - Marcus S Niepel
- Biomedical Materials Group, Institute of Pharmacy &, Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, 06099, Halle (Saale), Germany
| | - Cristina Gonzalez-Garcia
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Manuel Salmeron-Sanchez
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy &, Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, 06099, Halle (Saale), Germany
| |
Collapse
|
39
|
Köwitsch A, Zhou G, Groth T. Medical application of glycosaminoglycans: a review. J Tissue Eng Regen Med 2017; 12:e23-e41. [DOI: 10.1002/term.2398] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 10/08/2016] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Alexander Köwitsch
- Biomedical Materials Group, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle Germany
| | - Guoying Zhou
- Biomedical Materials Group, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy; Martin Luther University Halle-Wittenberg; Halle Germany
| |
Collapse
|
40
|
Venkatesan J, Anil S, Kim SK, Shim MS. Chitosan as a vehicle for growth factor delivery: Various preparations and their applications in bone tissue regeneration. Int J Biol Macromol 2017; 104:1383-1397. [PMID: 28109812 DOI: 10.1016/j.ijbiomac.2017.01.072] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/05/2017] [Accepted: 01/15/2017] [Indexed: 02/04/2023]
Abstract
The replacement of conventional autografts and allografts by bone fragments constructed from alternate materials, cells, and molecules (growth factors, drugs, etc.) is an exciting prospect in the field of bone tissue engineering. Bone morphogenetic protein-2 (BMP-2) is a growth factor that has been extensively studied from this point of view. This review analyzes the relevance of chitosan and its derivatives and composites with various materials such as ceramics, heparin, silica, stem cells, titanium implants, etc., in terms of delivering BMP-2 for the purpose of bone regeneration. Chitosan offers the versatility to be modified into any shapes or sizes including conversion to nanoparticles, microspheres, nanofibers, porous scaffolds, and films. The results presented in this review clearly demonstrate that chitosan-based materials are biocompatible and have the potential to systematically and sustainably release BMP-2 where required. This release results in enhanced cell proliferation levels, enhancement of alkaline phosphatase activity, increased differentiation as well as increased mineralization under in vitro and in vivo conditions. This review also shines a spotlight on the currently developed chitosan-based products that are being used for BMP-2 delivery.
Collapse
Affiliation(s)
| | - Sukumaran Anil
- Department of Preventive Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, 153, AIkharj, 11942, Riyadh, Saudi Arabia
| | - Se-Kwon Kim
- Institute for Life Science of Seogo (ILSS), Kolmar Korea Co, Seoul 137-876, Republic of Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea.
| |
Collapse
|
41
|
Differentiation of osteoblast-like cells and ectopic bone formation induced by bone marrow stem cells transfected with chitosan nanoparticles containing plasmid-BMP2 sequences. Mol Med Rep 2017; 15:1353-1361. [PMID: 28098877 DOI: 10.3892/mmr.2017.6128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/01/2016] [Indexed: 11/05/2022] Open
|
42
|
Bui VKH, Park D, Lee YC. Chitosan Combined with ZnO, TiO₂ and Ag Nanoparticles for Antimicrobial Wound Healing Applications: A Mini Review of the Research Trends. Polymers (Basel) 2017; 9:E21. [PMID: 30970696 PMCID: PMC6432267 DOI: 10.3390/polym9010021] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/27/2016] [Accepted: 01/04/2017] [Indexed: 01/19/2023] Open
Abstract
Chitosan is a natural polymer that has been widely utilized for many purposes in the food, textile, agriculture, water treatment, cosmetic and pharmaceutical industries. Based on its characteristics, including biodegradability, non-toxicity and antimicrobial properties, it has been employed effectively in wound healing applications. Importantly, however, it is necessary to improve chitosan's capacities by combination with zinc oxide (ZnO), titanium dioxide (TiO₂) and silver (Ag) nanoparticles (NPs). In this review of many of the latest research papers, we take a closer look at the antibacterial effectiveness of chitosan combined with ZnO, TiO₂ and Ag NPs and also evaluate the specific wound healing application potentials.
Collapse
Affiliation(s)
- Vu Khac Hoang Bui
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Korea.
| | - Duckshin Park
- Korea Railroad Research Institute (KRRI), 176 Cheoldobakmulkwan-ro, Uiwang-si 16105, Gyeonggi-do, Korea.
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Korea.
| |
Collapse
|
43
|
LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr Polym 2016; 151:172-188. [DOI: 10.1016/j.carbpol.2016.05.049] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/24/2016] [Accepted: 05/15/2016] [Indexed: 10/21/2022]
|
44
|
Ma L, Cheng C, Nie C, He C, Deng J, Wang L, Xia Y, Zhao C. Anticoagulant sodium alginate sulfates and their mussel-inspired heparin-mimetic coatings. J Mater Chem B 2016; 4:3203-3215. [DOI: 10.1039/c6tb00636a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We synthesized novel sodium alginate sulfates (SASs) with different sulfation degrees. All the SASs, DA-g-SASs, and coated substrates had good anticoagulant properties and biocompatibilit.
Collapse
Affiliation(s)
- Lang Ma
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chong Cheng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chuanxiong Nie
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jie Deng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lingren Wang
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huaian 223003
- China
| | - Yi Xia
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
45
|
Zhao S, Deng C, Wang Z, Teng L, Chen J. Heparan sulfate 6-O-sulfotransferase 3 is involved in bone marrow mesenchymal stromal cell osteogenic differentiation. BIOCHEMISTRY (MOSCOW) 2015; 80:379-89. [PMID: 25761692 DOI: 10.1134/s000629791503013x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The roles of sugar chains such as heparan sulfate (HS) in stem cell self-renewal and differentiation are poorly understood. HS is a sugar chain with linear sulfated polyanionic disaccharide repeating structures that interact with many proteins, including structural proteins in the extracellular matrix and growth factors and their receptors. Thus, unraveling the role of HS in stem cell self-renewal and differentiation could provide new insights and technical routes in clinical stem cell applications. Here, we purified rat bone marrow mesenchymal stromal cells (BMMSCs) by density gradient centrifugation, analyzed mesenchymal stromal cell surface stemness marker expression by flow cytometry, and identified the sulfotransferases responsible for sulfation ester modification of HS. An osteogenic differentiation model was established by chemical induction reagents and confirmed via alkaline phosphatase (ALP) activity detection and the expression of the osteogenic differentiation markers Runx2 and Ocn. The expression profiles of HS sulfotransferases in rat BMMSCs before and after osteogenic induction were detected by RT-PCR and Western blot. Cell spheroids were formed in both control and osteogenic culture systems when BMMSCs were grown to high confluence. We determined that this type of cell spheroid was a highly calcified nodule by histochemical staining. Among all the sulfotransferases examined, heparan sulfate 6-O-sulfotransferase 3 (HS6ST3) mRNA and protein were upregulated in these calcified cell spheroids. HS6ST3 knockdown BMMSCs were established with RNA interference, and they had significantly lower ALP activity and decreased expression of the osteogenic differentiation markers Runx2 and Ocn. These findings suggest that HS6ST3 is involved in BMMSC differentiation, and new glycotherapeutic-based technologies could be developed in the future.
Collapse
Affiliation(s)
- Shancheng Zhao
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, PR China.
| | | | | | | | | |
Collapse
|
46
|
Yang J, Yi M, Pan J, Zhao J, Sun L, Lin X, Cao Y, Huang L, Zhu B, Yu C. Sea urchin (Strongylocentrotus intermedius) polysaccharide enhanced BMP-2 induced osteogenic differentiation and its structural analysis. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
47
|
Terauchi M, Ikeda G, Nishida K, Tamura A, Yamaguchi S, Harada K, Yui N. Supramolecular Polyelectrolyte Complexes of Bone Morphogenetic Protein-2 with Sulfonated Polyrotaxanes to Induce Enhanced Osteogenic Differentiation. Macromol Biosci 2015; 15:953-64. [DOI: 10.1002/mabi.201500032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/04/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Masahiko Terauchi
- Department of Maxillofacial Surgery; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima; Bunkyo Tokyo 113-8549 Japan
- Department of Organic Biomaterials; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai; Chiyoda Tokyo 101-0062 Japan
| | - Go Ikeda
- Department of Organic Biomaterials; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai; Chiyoda Tokyo 101-0062 Japan
| | - Kei Nishida
- Department of Organic Biomaterials; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai; Chiyoda Tokyo 101-0062 Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai; Chiyoda Tokyo 101-0062 Japan
| | - Satoshi Yamaguchi
- Department of Maxillofacial Surgery; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima; Bunkyo Tokyo 113-8549 Japan
| | - Kiyoshi Harada
- Department of Maxillofacial Surgery; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima; Bunkyo Tokyo 113-8549 Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials; Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai; Chiyoda Tokyo 101-0062 Japan
| |
Collapse
|
48
|
Farrugia BL, Lord MS, Melrose J, Whitelock JM. Can we produce heparin/heparan sulfate biomimetics using "mother-nature" as the gold standard? Molecules 2015; 20:4254-76. [PMID: 25751786 PMCID: PMC6272578 DOI: 10.3390/molecules20034254] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/13/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022] Open
Abstract
Heparan sulfate (HS) and heparin are glycosaminoglycans (GAGs) that are heterogeneous in nature, not only due to differing disaccharide combinations, but also their sulfate modifications. HS is well known for its interactions with various growth factors and cytokines; and heparin for its clinical use as an anticoagulant. Due to their potential use in tissue regeneration; and the recent adverse events due to contamination of heparin; there is an increased surge to produce these GAGs on a commercial scale. The production of HS from natural sources is limited so strategies are being explored to be biomimetically produced via chemical; chemoenzymatic synthesis methods and through the recombinant expression of proteoglycans. This review details the most recent advances in the field of HS/heparin synthesis for the production of low molecular weight heparin (LMWH) and as a tool further our understanding of the interactions that occur between GAGs and growth factors and cytokines involved in tissue development and repair.
Collapse
Affiliation(s)
- Brooke L Farrugia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- The Raymond Purves Research Labs, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, The Royal North Shore Hospital of Sydney, St. Leonards, NSW 2065, Australia.
| | - John M Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
49
|
Ding K, Wang Y, Wang H, Yuan L, Tan M, Shi X, Lyu Z, Liu Y, Chen H. 6-O-sulfated chitosan promoting the neural differentiation of mouse embryonic stem cells. ACS APPLIED MATERIALS & INTERFACES 2014; 6:20043-20050. [PMID: 25300532 DOI: 10.1021/am505628g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Embryonic stem cells (ESCs) can be induced to differentiate into nerve cells, endowing them with potential applications in the treatment of neurological diseases and neural repair. In this work, we report for the first time that sulfated chitosan can promote the neural differentiation of ESCs. As a type of sulfated glycosaminoglycan analog, sulfated chitosan with well-defined sulfation sites and a controlled degree of sulfation (DS) were prepared through simple procedures and the influence of sulfated glycosaminoglycan on neural differentiation of ESCs was investigated. Compared with other sulfation sites, 6-O-sulfated chitosan showed the most optimal effects. By monitoring the expression level of neural differentiation markers using immunofluorescence staining and PCR, it was found that neural differentiation was better enhanced by increasing the DS of 6-O-sulfated chitosan. However, increasing the DS by introducing another sulfation site in addition to the 6-O site to chitosan did not promote neural differentiation as much as 6-O-sulfated chitosan, indicating that compared with DS, the sulfation site is more important. Additionally, the optimal concentration and incubation time of 6-O-sulfated chitosan were investigated. Together, our results indicate that the sulfate site and the molecular structure in a sulfated polysaccharide are very important for inducing the differentiation of ESCs. Our findings may help to highlight the role of sulfated polysaccharide in inducing the neural differentiation of ESCs.
Collapse
Affiliation(s)
- Kaiguo Ding
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Uth C, Zielonka S, Hörner S, Rasche N, Plog A, Orelma H, Avrutina O, Zhang K, Kolmar H. A chemoenzymatic approach to protein immobilization onto crystalline cellulose nanoscaffolds. Angew Chem Int Ed Engl 2014; 53:12618-23. [PMID: 25070515 DOI: 10.1002/anie.201404616] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Indexed: 12/23/2022]
Abstract
The immobilization of bioactive molecules onto nanocellulose leads to constructs that combine the properties of the grafted compounds with the biocompatibility and low cytotoxicity of cellulose carriers and the advantages given by their nanometer dimensions. However, the methods commonly used for protein grafting suffer from lack of selectivity, long reaction times, nonphysiological pH ranges and solvents, and the necessity to develop a tailor-made reaction strategy for each individual case. To overcome these restrictions, a generic two-step procedure was developed that takes advantage of the highly efficient oxime ligation combined with enzyme-mediated protein coupling onto the surface of peptide-modified crystalline nanocellulose. The described method is based on efficient and orthogonal transformations, requires no organic solvents, and takes place under physiological conditions. Being site-directed and regiospecific, it could be applied to a vast number of functional proteins.
Collapse
Affiliation(s)
- Christina Uth
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|