1
|
Li C, An N, Song Q, Hu Y, Yin W, Wang Q, Le Y, Pan W, Yan X, Wang Y, Liu J. Enhancing organoid culture: harnessing the potential of decellularized extracellular matrix hydrogels for mimicking microenvironments. J Biomed Sci 2024; 31:96. [PMID: 39334251 PMCID: PMC11429032 DOI: 10.1186/s12929-024-01086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Over the past decade, organoids have emerged as a prevalent and promising research tool, mirroring the physiological architecture of the human body. However, as the field advances, the traditional use of animal or tumor-derived extracellular matrix (ECM) as scaffolds has become increasingly inadequate. This shift has led to a focus on developing synthetic scaffolds, particularly hydrogels, that more accurately mimic three-dimensional (3D) tissue structures and dynamics in vitro. The ECM-cell interaction is crucial for organoid growth, necessitating hydrogels that meet organoid-specific requirements through modifiable physical and compositional properties. Advanced composite hydrogels have been engineered to more effectively replicate in vivo conditions, offering a more accurate representation of human organs compared to traditional matrices. This review explores the evolution and current uses of decellularized ECM scaffolds, emphasizing the application of decellularized ECM hydrogels in organoid culture. It also explores the fabrication of composite hydrogels and the prospects for their future use in organoid systems.
Collapse
Affiliation(s)
- Chen Li
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
| | - Ni An
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Qingru Song
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Yuelei Hu
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Wenzhen Yin
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China
| | - Qi Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Yinpeng Le
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China
- School of Materials Science and Engineering, Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenting Pan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Xinlong Yan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Yunfang Wang
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China.
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Clinical Translational Science Center, Tsinghua University, Beijing, 102218, China.
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| | - Juan Liu
- School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Hepato-Pancreato-Biliary Center, Tsinghua University, Beijing, 102218, China.
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Rahmati S, Khazaei M, Abpeikar Z, Soleimanizadeh A, Rezakhani L. Exosome-loaded decellularized tissue: Opening a new window for regenerative medicine. J Tissue Viability 2024; 33:332-344. [PMID: 38594147 DOI: 10.1016/j.jtv.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSCs-EXO) have received a lot of interest recently as a potential therapeutic tool in regenerative medicine. Extracellular vesicles (EVs) known as exosomes (EXOs) are crucial for cell-cell communication throughout a variety of activities including stress response, aging, angiogenesis, and cell differentiation. Exploration of the potential use of EXOs as essential therapeutic effectors of MSCs to encourage tissue regeneration was motivated by success in the field of regenerative medicine. EXOs have been administered to target tissues using a variety of methods, including direct, intravenous, intraperitoneal injection, oral delivery, and hydrogel-based encapsulation, in various disease models. Despite the significant advances in EXO therapy, various methods are still being researched to optimize the therapeutic applications of these nanoparticles, and it is not completely clear which approach to EXO administration will have the greatest effects. Here, we will review emerging developments in the applications of EXOs loaded into decellularized tissues as therapeutic agents for use in regenerative medicine in various tissues.
Collapse
Affiliation(s)
- Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Arghavan Soleimanizadeh
- Faculty of Medicine, Graduate School 'Molecular Medicine, University of Ulm, 89081, Ulm, Germany
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Yu Y, Jin H, Li L, Zhang X, Zheng C, Gao X, Yang Y, Sun B. An injectable, activated neutrophil-derived exosome mimetics/extracellular matrix hybrid hydrogel with antibacterial activity and wound healing promotion effect for diabetic wound therapy. J Nanobiotechnology 2023; 21:308. [PMID: 37649022 PMCID: PMC10466714 DOI: 10.1186/s12951-023-02073-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Chronic diabetic wounds are primarily caused by infection, inflammation, and angiogenesis-related disorders. An ideal approach for treating chronic diabetic wounds is by combining anti-infection strategies, immune microenvironment regulation, and angiogenesis promotion. Vascular endothelial growth factor (VEGF) can promote the proliferation and migration of vascular endothelial cells, thereby promoting angiogenesis. However, the low stability and inability to target lesions limit its application. Polymorphonuclear neutrophil-derived exosomes (PMNExo) exhibit good delivery properties and can be used for the therapeutic delivery of VEGF. Furthermore, they retain the antibacterial ability of polymorphonuclear neutrophils (PMNs). Nonetheless, low PMNExo generation impedes its therapeutic applications. In this study, we prepared exosome mimetics (EM) from PMNs using the extrusion process; as a result, exosome yield significantly improved. To increase the residence of exosomes, an extracellular matrix (ECM) hydrogel, a thermosensitive material that can function as an in situ gel in vivo, was used as an exosome carrier. The active peptides in the ECM regulated the immune microenvironment of the wound. In summary, we loaded ECM with VEGF-encapsulated activated neutrophil exosome mimetics (aPMNEM) to develop VEGF-aPMNEM-ECM hybrid hydrogel for treating chronic wounds. The hydrogel accelerates the regeneration of chronic diabetic wounds. Our study provides a prospective therapy platform involving cytokines for treating different diseases.
Collapse
Affiliation(s)
- Yanzhen Yu
- Department of Burns and Plastic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Soochow, 215002, Jiangsu Province, China
| | - Hangfei Jin
- Department of Burns and Plastic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Soochow, 215002, Jiangsu Province, China
| | - Linbin Li
- Department of Burns and Plastic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Soochow, 215002, Jiangsu Province, China
| | - Xin Zhang
- Department of Burns and Plastic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Soochow, 215002, Jiangsu Province, China
| | - Chunfang Zheng
- Department of Burns and Plastic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Soochow, 215002, Jiangsu Province, China
| | - Xi Gao
- Department of Burns and Plastic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Soochow, 215002, Jiangsu Province, China
| | - Yunxi Yang
- Department of Burns and Plastic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Soochow, 215002, Jiangsu Province, China
| | - Bingwei Sun
- Department of Burns and Plastic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 242 Guangji Road, Soochow, 215002, Jiangsu Province, China.
- Research Center for Neutrophil Engineering Technology, Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Rd, Soochow, 215002, Jiangsu Province, China.
- Gusu School, Nanjing Medical University, Soochow, China.
| |
Collapse
|
4
|
Samanta A, Lufkin T, Kraus P. Intervertebral disc degeneration-Current therapeutic options and challenges. Front Public Health 2023; 11:1156749. [PMID: 37483952 PMCID: PMC10359191 DOI: 10.3389/fpubh.2023.1156749] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a normal part of aging. Due to the spine's declining function and the development of pain, it may affect one's physical health, mental health, and socioeconomic status. Most of the intervertebral disc degeneration (IVDD) therapies today focus on the symptoms of low back pain rather than the underlying etiology or mechanical function of the disc. The deteriorated disc is typically not restored by conservative or surgical therapies that largely focus on correcting symptoms and structural abnormalities. To enhance the clinical outcome and the quality of life of a patient, several therapeutic modalities have been created. In this review, we discuss genetic and environmental causes of IVDD and describe promising modern endogenous and exogenous therapeutic approaches including their applicability and relevance to the degeneration process.
Collapse
Affiliation(s)
| | | | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
5
|
Zhu L, Yuhan J, Yu H, Zhang B, Huang K, Zhu L. Decellularized Extracellular Matrix for Remodeling Bioengineering Organoid's Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207752. [PMID: 36929582 DOI: 10.1002/smll.202207752] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Over the past decade, stem cell- and tumor-derived organoids are the most promising models in developmental biology and disease modeling, respectively. The matrix is one of three main elements in the construction of an organoid and the most important module of its extracellular microenvironment. However, the source of the currently available commercial matrix, Matrigel, limits the application of organoids in clinical medicine. It is worth investigating whether the original decellularized extracellular matrix (dECM) can be exploited as the matrix of organoids and improving organoid construction are very important. In this review, tissue decellularization protocols and the characteristics of decellularization methods, the mechanical support and biological cues of extraccellular matrix (ECM), methods for construction of multifunctional dECM and responsive dECM hydrogel, and the potential applications of functional dECM are summarized. In addition, some expectations are provided for dECM as the matrix of organoids in clinical applications.
Collapse
Affiliation(s)
- Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
- College of Veterinary Medicine, China Agricultural University, Beijing, 100094, P. R. China
| | - Jieyu Yuhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Hao Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Boyang Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
| |
Collapse
|
6
|
Zhou X, Shen N, Tao Y, Wang J, Xia K, Ying L, Zhang Y, Huang X, Hua J, Liang C, Chen Q, Li F. Nucleus pulposus cell-derived efficient microcarrier for intervertebral disc tissue engineering. Biofabrication 2023; 15. [PMID: 36689761 DOI: 10.1088/1758-5090/acb572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/23/2023] [Indexed: 01/24/2023]
Abstract
Adipose-derived stem cells (ADSCs) show great potential for the treatment of intervertebral disc (IVD) degeneration. An ideal carrier is necessary to transplant ADSCs into degenerated IVDs without influencing cell function. Nucleus pulposus cells (NPCs) can synthesize and deposit chondroitin sulfate and type II collagen which are NP-specific extracellular matrix (ECM) and can also regulate the NP-specific differentiation of stem cells. Bioscaffolds fabricated based on the ECM synthesis functions of NPCs have possible roles in cell transplantation and differentiation induction, but it has not been studied. In this study, we first aggregated NPCs into pellets, and then, NPC-derived efficient microcarriers (NPCMs) were fabricated by pellet cultivation under specific conditions and optimized decellularization. Thirdly, we evaluated the microstructure, biochemical composition, biostability and cytotoxicity of the NPCMs. Finally, we investigated the NP-specific differentiation of ADSCs induced by the NPCMsin vitroand NP regeneration induced by the ADSC-loaded NPCMs in a rabbit model. The results indicated that the injectable NPCMs retained maximal ECM and minimal cell nucleic acid after optimized decellularization and had good biostability and no cytotoxicity. The NPCMs also promoted the NP-specific differentiation of ADSCsin vitro. In addition, the results of MRI, x-ray, and the structure and ECM content of NP showed that the ADSCs-loaded NPCMs can partly restored the degenerated NPin vivo. Our injectable NPCMs regenerated the degenerated NP and provide a simplified and efficient strategy for treating IVD degeneration.
Collapse
Affiliation(s)
- Xiaopeng Zhou
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, People's Republic of China
| | - Ning Shen
- Department of Rheumatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, Zhejiang, People's Republic of China
| | - Yiqing Tao
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, People's Republic of China
| | - Jingkai Wang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, People's Republic of China
| | - Kaishun Xia
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Liwei Ying
- Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Department of Orthopedics, Taizhou Hospital, Wenzhou Medical University, 150 Ximen Road, Linhai 317000, Zhejiang, People's Republic of China
| | - Yuang Zhang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianming Hua
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, People's Republic of China
| | - Qixin Chen
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, People's Republic of China
| | - Fangcai Li
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China.,Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou 310009, Zhejiang, People's Republic of China
| |
Collapse
|
7
|
Lin M, Hu Y, An H, Guo T, Gao Y, Peng K, Zhao M, Zhang X, Zhou H. Silk fibroin-based biomaterials for disc tissue engineering. Biomater Sci 2023; 11:749-776. [PMID: 36537344 DOI: 10.1039/d2bm01343f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Low back pain is the major cause of disability worldwide, and intervertebral disc degeneration (IVDD) is one of the most important causes of low back pain. Currently, there is no method to treat IVDD that can reverse or regenerate intervertebral disc (IVD) tissue, but the recent development of disc tissue engineering (DTE) offers a new means of addressing these disadvantages. Among numerous biomaterials for tissue engineering, silk fibroin (SF) is widely used due to its easy availability and excellent physical/chemical properties. SF is usually used in combination with other materials to construct biological scaffolds or bioactive substance delivery systems, or it can be used alone. The present article first briefly outlines the anatomical and physiological features of IVD, the associated etiology and current treatment modalities of IVDD, and the current status of DTE. Then, it highlights the characteristics of SF biomaterials and their latest research advances in DTE and discusses the prospects and challenges in the application of SF in DTE, with a view to facilitating the clinical process of developing interventions related to IVD-derived low back pain caused by IVDD.
Collapse
Affiliation(s)
- Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yicun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Haiying An
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430000, Hubei, China
| | - Taowen Guo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Kaichen Peng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Meiling Zhao
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China.
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| |
Collapse
|
8
|
Qian H, He L, Ye Z, Wei Z, Ao J. Decellularized matrix for repairing intervertebral disc degeneration: Fabrication methods, applications and animal models. Mater Today Bio 2022; 18:100523. [PMID: 36590980 PMCID: PMC9800636 DOI: 10.1016/j.mtbio.2022.100523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Intervertebral disc degeneration (IDD)-induced low back pain significantly influences the quality of life, placing a burden on public health systems worldwide. Currently available therapeutic strategies, such as conservative or operative treatment, cannot effectively restore intervertebral disc (IVD) function. Decellularized matrix (DCM) is a tissue-engineered biomaterial fabricated using physical, chemical, and enzymatic technologies to eliminate cells and antigens. By contrast, the extracellular matrix (ECM), including collagen and glycosaminoglycans, which are well retained, have been extensively studied in IVD regeneration. DCM inherits the native architecture and specific-differentiation induction ability of IVD and has demonstrated effectiveness in IVD regeneration in vitro and in vivo. Moreover, significant improvements have been achieved in the preparation process, mechanistic insights, and application of DCM for IDD repair. Herein, we comprehensively summarize and provide an overview of the roles and applications of DCM for IDD repair based on the existing evidence to shed a novel light on the clinical treatment of IDD.
Collapse
Key Words
- (3D), three-dimensional
- (AF), annular fibers
- (AFSC), AF stem cells
- (APNP), acellular hydrogel descendent from porcine NP
- (DAF-G), decellularized AF hydrogel
- (DAPI), 4,6-diamidino-2-phenylindole
- (DCM), decellularized matrix
- (DET), detergent-enzymatic treatment
- (DWJM), Wharton's jelly matrix
- (ECM), extracellular matrix
- (EVs), extracellular vesicles
- (Exos), exosome
- (IDD), intervertebral disc degeneration
- (IVD), intervertebral disc
- (LBP), Low back pain
- (NP), nucleus pulposus
- (NPCS), NP-based cell delivery system
- (PEGDA/DAFM), polyethylene glycol diacrylate/decellularized AF matrix
- (SD), sodium deoxycholate
- (SDS), sodium dodecyl sulfate
- (SIS), small intestinal submucosa
- (TGF), transforming growth factor
- (bFGF), basic fibroblast growth factor
- (hADSCs), human adipose-derived stem cells
- (hDF), human dermal fibroblast
- (iAF), inner annular fibers
- (oAF), outer annular fibers
- (sGAG), sulfated glycosaminoglycan
- Decellularized matrix
- Intervertebral disc degeneration
- Regenerative medicine
- Tissue engineering
Collapse
Affiliation(s)
- Hu Qian
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Li He
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhimin Ye
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
- Corresponding author. Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, 410000, China.
| | - Zairong Wei
- Department of Burns and Plastic Surgery, The Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | - Jun Ao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Corresponding author. Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, China.
| |
Collapse
|
9
|
Lu H, Ying K, Shi Y, Liu D, Chen Q. Bioprocessing by Decellularized Scaffold Biomaterials in Cultured Meat: A Review. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120787. [PMID: 36550993 PMCID: PMC9774511 DOI: 10.3390/bioengineering9120787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 12/14/2022]
Abstract
As novel carrier biomaterials, decellularized scaffolds have promising potential in the development of cellular agriculture and edible cell-cultured meat applications. Decellularized scaffold biomaterials have characteristics of high biocompatibility, bio-degradation, biological safety and various bioactivities, which could potentially compensate for the shortcomings of synthetic bio-scaffold materials. They can provide suitable microstructure and mechanical support for cell adhesion, differentiation and proliferation. To our best knowledge, the preparation and application of plant and animal decellularized scaffolds have not been summarized. Herein, a comprehensive presentation of the principles, preparation methods and application progress of animal-derived and plant-derived decellularized scaffolds has been reported in detail. Additionally, their application in the culture of skeletal muscle, fat and connective tissue, which constitute the main components of edible cultured meat, have also been generally discussed. We also illustrate the potential applications and prospects of decellularized scaffold materials in future foods. This review of cultured meat and decellularized scaffold biomaterials provides new insight and great potential research prospects in food application and cellular agriculture.
Collapse
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Keqin Ying
- College of Food Science and Technology, Nanjing University, Nanjing 210095, China
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Correspondence: (Y.S.); (D.L.); (Q.C.)
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 310000, China
- Correspondence: (Y.S.); (D.L.); (Q.C.)
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 310000, China
- Correspondence: (Y.S.); (D.L.); (Q.C.)
| |
Collapse
|
10
|
Herrera Quijano MA, Sharma N, Morissette Martin P, Séguin CA, Flynn LE. Development of 2-D and 3-D culture platforms derived from decellularized nucleus pulposus. Front Bioeng Biotechnol 2022; 10:937239. [PMID: 36237211 PMCID: PMC9551564 DOI: 10.3389/fbioe.2022.937239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Bioscaffolds derived from the extracellular matrix (ECM) have shown the capacity to promote regeneration by providing tissue-specific biological instructive cues that can enhance cell survival and direct lineage-specific differentiation. This study focused on the development and characterization of two-dimensional (2-D) and three-dimensional (3-D) cell culture platforms incorporating decellularized nucleus pulposus (DNP). First, a detergent-free protocol was developed for decellularizing bovine nucleus pulposus (NP) tissues that was effective at removing cellular content while preserving key ECM constituents including collagens, glycosaminoglycans, and the cell-adhesive glycoproteins laminin and fibronectin. Next, novel 2-D coatings were generated using the DNP or commercially-sourced bovine collagen type I (COL) as a non-tissue-specific control. In addition, cryo-milled DNP or COL particles were incorporated within methacrylated chondroitin sulphate (MCS) hydrogels as a 3-D cell culture platform for exploring the effects of ECM particle composition. Culture studies showed that the 2-D coatings derived from the DNP could support cell attachment and growth, but did not maintain or rescue the phenotype of primary bovine NP cells, which de-differentiated when serially passaged in monolayer culture. Similarly, while bovine NP cells remained highly viable following encapsulation and 14 days of culture within the hydrogel composites, the incorporation of DNP particles within the MCS hydrogels was insufficient to maintain or rescue changes in NP phenotype associated with extended in vitro culture based on gene expression patterns. Overall, DNP produced with our new decellularization protocol was successfully applied to generate both 2-D and 3-D bioscaffolds; however, further studies are required to assess if these platforms can be combined with additional components of the endogenous NP microenvironment to stimulate regeneration or lineage-specific cell differentiation.
Collapse
Affiliation(s)
- Marco A. Herrera Quijano
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
| | - Nadia Sharma
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, Canada
| | - Pascal Morissette Martin
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Cheryle A. Séguin
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn, ; Cheryle A. Séguin,
| | - Lauren E. Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON, Canada
- Department of Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON, Canada
- *Correspondence: Lauren E. Flynn, ; Cheryle A. Séguin,
| |
Collapse
|
11
|
Cyril D, Giugni A, Bangar SS, Mirzaeipoueinak M, Shrivastav D, Sharabi M, Tipper JL, Tavakoli J. Elastic Fibers in the Intervertebral Disc: From Form to Function and toward Regeneration. Int J Mol Sci 2022; 23:8931. [PMID: 36012198 PMCID: PMC9408956 DOI: 10.3390/ijms23168931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Despite extensive efforts over the past 40 years, there is still a significant gap in knowledge of the characteristics of elastic fibers in the intervertebral disc (IVD). More studies are required to clarify the potential contribution of elastic fibers to the IVD (healthy and diseased) function and recommend critical areas for future investigations. On the other hand, current IVD in-vitro models are not true reflections of the complex biological IVD tissue and the role of elastic fibers has often been ignored in developing relevant tissue-engineered scaffolds and realistic computational models. This has affected the progress of IVD studies (tissue engineering solutions, biomechanics, fundamental biology) and translation into clinical practice. Motivated by the current gap, the current review paper presents a comprehensive study (from the early 1980s to 2022) that explores the current understanding of structural (multi-scale hierarchy), biological (development and aging, elastin content, and cell-fiber interaction), and biomechanical properties of the IVD elastic fibers, and provides new insights into future investigations in this domain.
Collapse
Affiliation(s)
- Divya Cyril
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Amelia Giugni
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Saie Sunil Bangar
- Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Melika Mirzaeipoueinak
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dipika Shrivastav
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mirit Sharabi
- Department of Mechanical Engineering and Mechatronics, Ariel University, Ariel 407000, Israel
| | - Joanne L. Tipper
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Javad Tavakoli
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
12
|
Zhang S, Liu W, Chen S, Wang B, Wang P, Hu B, Lv X, Shao Z. Extracellular matrix in intervertebral disc: basic and translational implications. Cell Tissue Res 2022; 390:1-22. [DOI: 10.1007/s00441-022-03662-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023]
|
13
|
Piening LM, Lillyman DJ, Lee FS, Lozano AM, Miles JR, Wachs RA. Injectable decellularized nucleus pulposus tissue exhibits neuroinhibitory properties. JOR Spine 2022; 5:e1187. [PMID: 35386760 PMCID: PMC8966883 DOI: 10.1002/jsp2.1187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/04/2021] [Accepted: 12/08/2021] [Indexed: 12/31/2022] Open
Abstract
Background Chronic low back pain (LBP) is a leading cause of disability, but treatments for LBP are limited. Degeneration of the intervertebral disc due to loss of neuroinhibitory sulfated glycosaminoglycans (sGAGs) allows nerves from dorsal root ganglia to grow into the core of the disc. Treatment with a decellularized tissue hydrogel that contains sGAGs may inhibit nerve growth and prevent disc-associated LBP. Methods A protocol to decellularize porcine nucleus pulposus (NP) was adapted from previous methods. DNA, sGAG, α-gal antigen, and collagen content were analyzed before and after decellularization. The decellularized tissue was then enzymatically modified to be injectable and form a gel at 37°C. Following this, the mechanical properties, microstructure, cytotoxicity, and neuroinhibitory properties were analyzed. Results The decellularization process removed 99% of DNA and maintained 74% of sGAGs and 154% of collagen compared to the controls NPs. Rheology demonstrated that regelled NP exhibited properties similar to but slightly lower than collagen-matched controls. Culture of NP cells in the regelled NP demonstrated an increase in metabolic activity and DNA content over 7 days. The collagen content of the regelled NP stayed relatively constant over 7 days. Analysis of the neuroinhibitory properties demonstrated regelled NP significantly inhibited neuronal growth compared to collagen controls. Conclusions The decellularization process developed here for porcine NP tissue was able to remove the antigenic material while maintaining the sGAG and collagen. This decellularized tissue was then able to be modified into a thermally forming gel that maintained the viability of cells and demonstrated robust neuroinhibitory properties in vitro. This biomaterial holds promise as an NP supplement to prevent nerve growth into the native disc and NP in vivo.
Collapse
Affiliation(s)
- Logan M. Piening
- Biological Systems Engineering DepartmentUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - David J. Lillyman
- Biological Systems Engineering DepartmentUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Fei San Lee
- Biological Systems Engineering DepartmentUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Alvaro Moreno Lozano
- Biological Systems Engineering DepartmentUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Jeremy R. Miles
- USDA, ARS, US Meat Animal Research CenterClay CenterNebraskaUSA
| | - Rebecca A. Wachs
- Biological Systems Engineering DepartmentUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| |
Collapse
|
14
|
Williams RJ, Tryfonidou MA, Snuggs JW, Le Maitre CL. Cell sources proposed for nucleus pulposus regeneration. JOR Spine 2021; 4:e1175. [PMID: 35005441 PMCID: PMC8717099 DOI: 10.1002/jsp2.1175] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Lower back pain (LBP) occurs in 80% of adults in their lifetime; resulting in LBP being one of the biggest causes of disability worldwide. Chronic LBP has been linked to the degeneration of the intervertebral disc (IVD). The current treatments for chronic back pain only provide alleviation of symptoms through pain relief, tissue removal, or spinal fusion; none of which target regenerating the degenerate IVD. As nucleus pulposus (NP) degeneration is thought to represent a key initiation site of IVD degeneration, cell therapy that specifically targets the restoration of the NP has been reviewed here. A literature search to quantitatively assess all cell types used in NP regeneration was undertaken. With key cell sources: NP cells; annulus fibrosus cells; notochordal cells; chondrocytes; bone marrow mesenchymal stromal cells; adipose-derived stromal cells; and induced pluripotent stem cells extensively analyzed for their regenerative potential of the NP. This review highlights: accessibility; expansion capability in vitro; cell survival in an IVD environment; regenerative potential; and safety for these key potential cell sources. In conclusion, while several potential cell sources have been proposed, iPSC may provide the most promising regenerative potential.
Collapse
Affiliation(s)
- Rebecca J. Williams
- Biomedical Research Centre, BiosciencesSheffield Hallam UniversitySheffieldUK
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | |
Collapse
|
15
|
Xing H, Zhang Z, Mao Q, Wang C, Zhou Y, Zhou X, Ying L, Xu H, Hu S, Zhang N. Injectable exosome-functionalized extracellular matrix hydrogel for metabolism balance and pyroptosis regulation in intervertebral disc degeneration. J Nanobiotechnology 2021; 19:264. [PMID: 34488795 PMCID: PMC8419940 DOI: 10.1186/s12951-021-00991-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Exosome therapy is a promising therapeutic approach for intervertebral disc degeneration (IVDD) and achieves its therapeutic effects by regulating metabolic disorders, the microenvironment and cell homeostasis with the sustained release of microRNAs, proteins, and transcription factors. However, the rapid clearance and disruption of exosomes are the two major challenges for the application of exosome therapy in IVDD. Herein, a thermosensitive acellular extracellular matrix (ECM) hydrogel coupled with adipose-derived mesenchymal stem cell (ADSC) exosomes (dECM@exo) that inherits the superior properties of nucleus pulposus tissue and ADSCs was fabricated to ameliorate IVDD. This thermosensitive dECM@exo hydrogel system can provide not only in situ gelation to replenish ECM leakage in nucleus pulposus cells (NPCs) but also an environment for the growth of NPCs. In addition, sustained release of ADSC-derived exosomes from this system regulates matrix synthesis and degradation by regulating matrix metalloproteinases (MMPs) and inhibits pyroptosis by mitigating the inflammatory response in vitro. Animal results demonstrated that the dECM@exo hydrogel system maintained early IVD microenvironment homeostasis and ameliorated IVDD. This functional system can serve as a powerful platform for IVD drug delivery and biotherapy and an alternative therapy for IVDD. ![]()
Collapse
Affiliation(s)
- Hongyuan Xing
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Zengjie Zhang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Qijiang Mao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Chenggui Wang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Youlong Zhou
- Department of Orthopedics, Changxing People's Hospital, Changxing, China
| | - Xiaopeng Zhou
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Liwei Ying
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Haibin Xu
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Shaojun Hu
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Ning Zhang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, People's Republic of China.
| |
Collapse
|
16
|
Jin X, Kang R, Deng R, Zhao X, Wang Z, Rong W, Xie L. Fabrication and characterization of an acellular annulus fibrosus scaffold with aligned porous construct for tissue engineering. J Biomater Appl 2021; 36:985-995. [PMID: 34463560 DOI: 10.1177/08853282211041956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Scaffolds mimicking the native annulus fibrosus (AF) extracellular matrix (ECM) structure are crucial to guide the seeding cells to regenerate aligned tissue, while fabricating such a scaffold by synthetic material is challengeable. Native acellular scaffolds derived from AF tissue certainly possess the advantages of natural structure and composition. Based on previous studies, we modified decellularization procedure and especially compared two drying methods, including gradient dehydration and freeze-drying. The decellularization process can effectively remove the host cells and antigens such as α-Gal, while maintaining the original ECM including GAG and collagen I. Compared with gradient dehydration, freeze-drying not only rendered the decellularized scaffold in dry state for storage but also gave the scaffold more aligned porous structure and hydrophilicity. And, the acellular porous scaffold manifested better capacity of supporting cell ingrowth when seeded human bone marrow mesenchymal stem cells (hBMSCs) or implanted in vivo. Furthermore, this optimized freeze-dried scaffold showed similar mechanical elastic modulus as native AF and demonstrated rare inflammatory granuloma and immune rejection as observed in HE staining and immunohistochemistry staining (IHC) of CD8 and MAC387 epitopes when implanted subcutaneously in vivo. To sum up, through our decellularization and freeze-drying procedure, an aligned porous three-dimensional scaffold derived from the natural AF ECM was successfully fabricated with good retention of ECM components and benign biocompatibility. It will be a promising scaffold for AF tissue engineering.
Collapse
Affiliation(s)
- Xiaoyu Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, 4919Nanjing University of Chinese Medicine, Nanjing, China.,Department of Orthopedics, 4919Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, 4919Nanjing University of Chinese Medicine, Nanjing, China.,Department of Orthopedics, 4919Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China.,Department of Orthopedics, 4919Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, 4919Nanjing University of Chinese Medicine, Nanjing, China.,Department of Orthopedics, 4919Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Xu Zhao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, 4919Nanjing University of Chinese Medicine, Nanjing, China.,Department of Orthopedics, 4919Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Zihan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, 4919Nanjing University of Chinese Medicine, Nanjing, China.,Department of Orthopedics, 4919Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Weihao Rong
- Department of Orthopedics, 4919Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Lin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, 4919Nanjing University of Chinese Medicine, Nanjing, China.,Department of Orthopedics, 4919Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Capella-Monsonís H, Zeugolis DI. Decellularized xenografts in regenerative medicine: From processing to clinical application. Xenotransplantation 2021; 28:e12683. [PMID: 33709410 DOI: 10.1111/xen.12683] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/28/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Decellularized xenografts are an inherent component of regenerative medicine. Their preserved structure, mechanical integrity and biofunctional composition have well established them in reparative medicine for a diverse range of clinical indications. Nonetheless, their performance is highly influenced by their source (ie species, age, tissue) and processing (ie decellularization, crosslinking, sterilization and preservation), which govern their final characteristics and determine their success or failure for a specific clinical target. In this review, we provide an overview of the different sources and processing methods used in decellularized xenografts fabrication and discuss their effect on the clinical performance of commercially available decellularized xenografts.
Collapse
Affiliation(s)
- Héctor Capella-Monsonís
- 1Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- 1Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
| |
Collapse
|
18
|
Abstract
Intervertebral disc (IVD) degeneration is a leading cause of chronic low back pain (LBP) that results in serious disability and significant economic burden. IVD degeneration alters the disc structure and spine biomechanics, resulting in subsequent structural changes throughout the spine. Currently, treatments of chronic LBP due to IVD degeneration include conservative treatments, such as pain medication and physiotherapy, and surgical treatments, such as removal of herniated disc without or with spinal fusion. However, none of these treatments can completely restore a degenerated disc and its function. Thus, although the exact pathogenesis of disc degeneration remains unclear, there are studies examining the effectiveness of biological approaches, such as growth factor injection, gene therapy, and cell transplantation, in promoting IVD regeneration. Furthermore, tissue engineering using a combination of cell transplantation and biomaterials has emerged as a promising new approach for repair or restoration of degenerated discs. The main purpose of this review was to provide an overview of the current status of tissue engineering applications for IVD regenerative therapy by performing literature searches using PubMed. Significant advances in tissue engineering have opened the door to a new generation of regenerative therapies for the treatment of chronic discogenic LBP.
Collapse
|
19
|
Norbertczak HT, Ingham E, Fermor HL, Wilcox RK. Decellularized Intervertebral Discs: A Potential Replacement for Degenerate Human Discs. Tissue Eng Part C Methods 2020; 26:565-576. [PMID: 33050844 PMCID: PMC7698987 DOI: 10.1089/ten.tec.2020.0104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major cause of back pain. Current surgical interventions have limitations. An alternative approach is to replace degenerated IVDs with a natural biological scaffold. The removal of cellular components from human IVDs should render them nonimmunogenic upon implantation. The aim of this initial proof of technical feasibility study was to develop a decellularization protocol on bovine IVDs with endplates (EPs) and assess protocol performance before application of the protocol to human IVDs with attached EP and vertebral bone (VB). A decellularization protocol based on hypotonic low concentration sodium dodecyl sulfate (0.1% w/v) with proteinase inhibitors, freeze/thaw cycles, and nuclease and sonication treatments was applied to IVDs. Histological, biochemical, and biomechanical comparisons were made between cellular and decellularized tissue. Cell removal from bovine IVDs was demonstrated and total DNA levels of the decellularized inner annulus fibrosus (iAF), outer annulus fibrosus (oAF), and EP were 40.7 (±11.4), 25.9 (±3.8), and 29.3 (±3.1) ng.mg−1 dry tissue weight, respectively (n = 6, ±95% confidence level [CL]). These values were significantly lower than in cellular tissue. No significant difference in DNA levels between bovine cellular and decellularized nucleus pulposus (NP) was found. Glycosaminoglycans (GAGs) were largely retained in the NP, iAF, and oAF. Cyclic compression testing showed sufficient sensitivity to detect an increase in stiffness of bovine IVD postdecellularization (2957.2 ± 340.8 N.mm−1) (predecellularization: 2685.4 ± 263.1 N.mm−1; n = 5, 95% CL), but the difference was within natural tissue variation. Total DNA levels for all decellularized tissue regions of human IVDs (NP, iAF, oAF, EP, and VB) were below 50 ng.mg−1 dry tissue weight (range: 2 ng.mg−1, iAF to 29 ng.mg−1, VB) and the tissue retained high levels of GAGs. Further studies to assess the biocompatibility and regenerative potential of decellularized human IVDs in vitro and in vivo are now required; however, proof of technical feasibility has been demonstrated and the retention of bone in the IVD samples would allow incorporation of the tissue into the recipient spine.
Collapse
Affiliation(s)
- Halina T Norbertczak
- Institute of Medical and Biological Engineering, School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, United Kingdom
| | - Eileen Ingham
- Institute of Medical and Biological Engineering, School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, United Kingdom
| | - Hazel L Fermor
- Institute of Medical and Biological Engineering, School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, United Kingdom
| | - Ruth K Wilcox
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, Faculty of Engineering and Physical Sciences, The University of Leeds, Leeds, United Kingdom
| |
Collapse
|
20
|
Vellachi R, Kumar N, Shrivastava S, Saxena S, Maiti SK, Kutty M, Singh K, Gopinathan A, Mondal DB, Singh KP. Selection of biological prosthesis for abdominal wall repair on the basis of in vitro biocompatibility determination. J Tissue Eng Regen Med 2020; 14:955-963. [PMID: 32392634 DOI: 10.1002/term.3055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 11/11/2022]
Abstract
Research on prostheses for repairing abdominal wall defects has progressed through past decades for developing an ideal prosthesis. The study was designed to compare different extracellular matrix (ECM) derived biological prostheses as alternate to conventional synthetic polymeric prostheses for the repair of full thickness abdominal wall defects. Five biological scaffolds derived from bovine diaphragm, bovine aorta, bovine gall bladder, porcine gall bladder, and rabbit skin were prepared and screened for their in vitro biocompatibility. Decellularized ECMs were subjected to various biocompatibility analyses, namely, water absorption potential, matrix degradation analysis, biomechanical testing, and cytocompatibility analysis. Though the rabbit skin displayed maximum biomechanical strength, due to its rapid degradation, it failed to fulfill the criteria of an ideal prosthesis. ECMs derived from bovine diaphragm and aorta were found to be superior than others based upon hydration and matrix degradation analysis, with best scores for bovine diaphragm followed by bovine aorta. The bovine diaphragm and aorta also displayed sufficient biomechanical strength, with diaphragm being the second highest (next to rabbit skin), in biomechanical strength followed by aorta. None of the biological prosthesis revealed any cytotoxicity. Thus, bovine diaphragm and aorta derived ECM fulfill the necessary criteria for their use as biological prosthesis. Because these prostheses are biocompatible, apart from their low cost, ease of availability, and simple preparation, they present a potential alternative to synthetic prosthesis for repair of abdominal wall defects, especially in veterinary patients.
Collapse
Affiliation(s)
- Remya Vellachi
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Naveen Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Sameer Shrivastava
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Sonal Saxena
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Swapan Kumar Maiti
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Muhammed Kutty
- Biochemistry Section, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Kiranjeet Singh
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Aswathy Gopinathan
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Deba Brata Mondal
- Division of Medicine, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Karam Pal Singh
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| |
Collapse
|
21
|
Fiordalisi M, Silva AJ, Barbosa M, Gonçalves R, Caldeira J. Decellularized Scaffolds for Intervertebral Disc Regeneration. Trends Biotechnol 2020; 38:947-951. [PMID: 32466967 DOI: 10.1016/j.tibtech.2020.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023]
Abstract
In the last decade, intervertebral disc (IVD) decellularization has gained significant attention for tissue regenerative purposes as a successful therapeutic alternative for low back pain (LBP). We discuss the recent advances in IVD decellularization, repopulation, and sterilization procedures, highlighting the major challenges that need to be addressed for clinical translation.
Collapse
Affiliation(s)
- Morena Fiordalisi
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana João Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Mário Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Raquel Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Joana Caldeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
22
|
Yu L, Sun ZJ, Tan QC, Wang S, Wang WH, Yang XQ, Ye XJ. Thermosensitive injectable decellularized nucleus pulposus hydrogel as an ideal biomaterial for nucleus pulposus regeneration. J Biomater Appl 2020; 35:182-192. [PMID: 32338168 DOI: 10.1177/0885328220921328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Extracellular matrix loss is one of the early manifestations of intervertebral disc degeneration. Stem cell-based tissue engineering creates an appropriate microenvironment for long term cell survival, promising for NP regeneration. We created a decellularized nucleus pulposus hydrogel (DNPH) from fresh bovine nucleus pulposus. Decellularization removed NP cells effectively, while highly preserving their structures and major biochemical components, such as glycosaminoglycan and collagen II. DNPH could be gelled as a uniform grid structure in situ at 37°C for 30 min. Adding adipose marrow-derived mesenchymal stem cells into the hydrogel for three-dimensional culture resulted in good bioactivity and biocompatibility in vitro. Meanwhile, NP-related gene expression significantly increased without the addition of exogenous biological factors. In summary, the thermosensitive and injectable hydrogel, which has low toxicity and inducible differentiation, could serve as a bio-scaffold, bio-carrier, and three-dimensional culture system. Therefore, DNPH has an outstanding potential for intervertebral disc regeneration.
Collapse
Affiliation(s)
- Lei Yu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zi-Jie Sun
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Quan-Chang Tan
- Air Force Hospital of PLA Eastern Theater Command, Nanjing, Jiangsu, China
| | - Shuang Wang
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei-Heng Wang
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiang-Qun Yang
- Department of Anatomy, Institute of Biomedical Engineering, Second Military Medical University, Shanghai, China
| | - Xiao-Jian Ye
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
23
|
Barakat AH, Elwell VA, Lam KS. Stem cell therapy in discogenic back pain. JOURNAL OF SPINE SURGERY (HONG KONG) 2019; 5:561-583. [PMID: 32043007 PMCID: PMC6989932 DOI: 10.21037/jss.2019.09.22] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Chronic low back pain has both substantial social and economic impacts on patients and healthcare budgets. Adding to the magnitude of the problem is the difficulty in identifying the exact causes of disc degeneration with modern day diagnostic and imaging techniques. With that said, current non-operative and surgical treatment modalities for discogenic low back pain fails to meet the expectations in many patients and hence the challenge. The objective for newly emerging stem cell regenerative therapy is to treat degenerative disc disease (DDD) by restoring the disc's cellularity and modulating the inflammatory response. Appropriate patient selection is crucial for the success of stem cell therapy. Regenerative modalities for discogenic pain currently focus on the use of either primary cells harvested from the intervertebral discs or stem cells from other sources whether autogenic or allogenic. The microenvironment in which stem cells are being cultured has been recognized to play a crucial role in directing or maintaining the production of the desired phenotypes and may enhance their regenerative potential. This has led to a more specific focus on innovating more effective culturing techniques, delivery vehicles and scaffolds for stem cell application. Although stem cell therapy might offer an attractive alternative treatment option, more clinical studies are still needed to establish on the safety and feasibility of such therapy. In this literature review, we aim to present the most recent in vivo and in vitro studies related to the use of stem cell therapy in the treatment of discogenic low back pain.
Collapse
Affiliation(s)
- Ahmed H. Barakat
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | - Vivian A. Elwell
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | | |
Collapse
|
24
|
Walters JD, Gill SS, Mercuri JJ. Ethanol-mediated compaction and cross-linking enhance mechanical properties and degradation resistance while maintaining cytocompatibility of a nucleus pulposus scaffold. J Biomed Mater Res B Appl Biomater 2019; 107:2488-2499. [PMID: 30767383 PMCID: PMC6697250 DOI: 10.1002/jbm.b.34339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/11/2018] [Accepted: 01/26/2019] [Indexed: 01/01/2023]
Abstract
Intervertebral disc degeneration is a complex, cell-mediated process originating in the nucleus pulposus (NP) and is associated with extracellular matrix catabolism leading to disc height loss and impaired spine kinematics. Previously, we developed an acellular bovine NP (ABNP) for NP replacement that emulated human NP matrix composition and supported cell seeding; however, its mechanical properties were lower than those reported for human NP. To address this, we investigated ethanol-mediated compaction and cross-linking to enhance the ABNP's dynamic mechanical properties and degradation resistance while maintaining its cytocompatibility. First, volumetric and mechanical effects of compaction only were confirmed by evaluating scaffolds after various immersion times in buffered 28% ethanol. It was found that compaction reached equilibrium at ~30% compaction after 45 min, and dynamic mechanical properties significantly increased 2-6× after 120 min of submersion. This was incorporated into a cross-linking treatment, through which scaffolds were subjected to 120 min precompaction in buffered 28% ethanol prior to carbodiimide cross-linking. Their dynamic mechanical properties were evaluated before and after accelerated degradation by ADAMTS-5 or MMP-13. Cytocompatibility was determined by seeding stem cells onto scaffolds and evaluating viability through metabolic activity and fluorescent staining. Compacted and cross-linked scaffolds showed significant increases in DMA properties without detrimentally altering their cytocompatibility, and these mechanical gains were maintained following enzymatic exposure. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2488-2499, 2019.
Collapse
Affiliation(s)
- Joshua D. Walters
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Sanjitpal S. Gill
- Department of Orthopaedic Surgery, Medical Group of the Carolinas-Pelham, Spartanburg Regional Healthcare System, Greer, SC, USA
| | - Jeremy J. Mercuri
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
25
|
Zhao R, Liu W, Xia T, Yang L. Disordered Mechanical Stress and Tissue Engineering Therapies in Intervertebral Disc Degeneration. Polymers (Basel) 2019; 11:polym11071151. [PMID: 31284436 PMCID: PMC6680713 DOI: 10.3390/polym11071151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
Low back pain (LBP), commonly induced by intervertebral disc degeneration, is a lumbar disease with worldwide prevalence. However, the mechanism of degeneration remains unclear. The intervertebral disc is a nonvascular organ consisting of three components: Nucleus pulposus, annulus fibrosus, and endplate cartilages. The disc is structured to support our body motion and endure persistent external mechanical pressure. Thus, there is a close connection between force and intervertebral discs in LBP. It is well established that with aging, disordered mechanical stress profoundly influences the fate of nucleus pulposus and the alignment of collagen fibers in the annulus fibrosus. These support a new understanding that disordered mechanical stress plays an important role in the degeneration of the intervertebral discs. Tissue-engineered regenerative and reparative therapies are being developed for relieving disc degeneration and symptoms of lower back pain. In this paper, we will review the current literature available on the role of disordered mechanical stress in intervertebral disc degeneration, and evaluate the existing tissue engineering treatment strategies of the current therapies.
Collapse
Affiliation(s)
- Runze Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Tingting Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
26
|
Stergar J, Gradisnik L, Velnar T, Maver U. Intervertebral disc tissue engineering: A brief review. Bosn J Basic Med Sci 2019; 19:130-137. [PMID: 30726701 DOI: 10.17305/bjbms.2019.3778] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 07/29/2018] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is associated with low back pain and significantly affects the patient's quality of life. Degeneration of the IVD alters disk height and the mechanics of the spine, leading to chronic segmental spinal instability. The pathophysiology of IVD disease is still not well understood. Current therapies for IDD include conservative and invasive approaches, but none of those treatments are able to restore the disc structure and function. Recently, tissue engineering techniques emerged as a possible approach to treat IDD, by replacing a damaged IVD with scaffolds and appropriate cells. Advances in manufacturing techniques, material processing and development, surface functionalization, drug delivery systems and cell incorporation furthered the development of tissue engineering therapies. In this review, biomaterial scaffolds and cell-based therapies for IVD regeneration are briefly discussed.
Collapse
Affiliation(s)
- Janja Stergar
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia Laboratory of Inorganic Chemistry, Faculty of Chemistry and Chemical Technology, University of Maribor, Maribor, Slovenia.
| | | | | | | |
Collapse
|
27
|
Arslan YE, Efe B, Sezgin Arslan T. A novel method for constructing an acellular 3D biomatrix from bovine spinal cord for neural tissue engineering applications. Biotechnol Prog 2019; 35:e2814. [PMID: 30963718 DOI: 10.1002/btpr.2814] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/21/2019] [Accepted: 04/03/2019] [Indexed: 12/29/2022]
Abstract
In this study, we aimed at generating 3-dimensional (3D) decellularized bovine spinal cord extracellular matrix-based scaffolds (3D-dCBS) for neural tissue engineering applications. Within this scope, bovine spinal cord tissue pieces were homogenized in 0.1 M NaOH and this viscous mixture was molded to attain 3D bioscaffolds. After resultant bioscaffolds were chemically crosslinked, the decellularization process was conducted with detergent, buffer, and enzyme solutions. Nuclear remnants in the native tissue and 3D-dCBS were determined with DNA content analysis and agarose gel electrophoresis. Afterward, 3D-dCBS were biochemically characterized in depth via glycosaminoglycan (GAG) content, hydroxyproline (HYP) assay, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Cellular survival of human adipose-derived mesenchymal stem cells (hAMSCs) on the 3D-dCBS for 3rd, 7th, and 10th days was assessed via MTT assay. Scaffold and cell/scaffold constructs were also evaluated with scanning electron microscopy and histochemical studies. DNA contents for native and 3D-dCBS were respectively found to be 520.76 ± 18.11 and 28.80 ± 0.20 ng/mg dry weight (n = 3), indicating a successful decellularization process. GAG content, HYP assay, and SDS-PAGE results proved that the extracellular matrix was substantially preserved during the decellularization process. In conclusion, it is believed that the novel decellularization method may allow fabricating 3D bioscaffolds with desired geometry from soft nervous system tissues.
Collapse
Affiliation(s)
- Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Burcu Efe
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Tugba Sezgin Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
28
|
Xu J, Liu S, Wang S, Qiu P, Chen P, Lin X, Fang X. Decellularised nucleus pulposus as a potential biologic scaffold for disc tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1213-1225. [PMID: 30889657 DOI: 10.1016/j.msec.2019.02.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/28/2019] [Accepted: 02/14/2019] [Indexed: 11/28/2022]
Abstract
Intervertebral disc (IVD) degeneration is associated with lower back pain, with the dysfunction of nucleus pulposus (NP) cells instigating degeneration onset. Here, we developed an optimized decellularised NP scaffold that could induce mesenchymal stem cells (MSCs) into NP-like cells in vitro and rescue the degenerated IVD in vivo. We optimized a decellularisation protocol for porcine NP and evaluated the biological properties and microstructure of the NP scaffold. Through co-culture with MSCs, we analysed scaffold bioactivity and potential signalling pathways. We tested the therapeutic efficacy of the scaffold using an IVD degeneration model in vivo. The decellularisation protocol generally removed the cellular components of the NP and preserved the majority of the biological components and regular microstructure. MSCs seeded in the NP-ECM scaffold differentiated into NP-like cells in vitro; this change was attributed to activation of the TGF-β signalling pathway. The NP-ECM exhibited good cytocompatibility ex vivo and decelerated the degeneration of the IVD in vivo. These results indicate the successful establishment of a naturally-derived ECM material that could induce MSCs into NP cells and serve as a potential treatment for degenerated IVDs.
Collapse
Affiliation(s)
- Jiaqi Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Shijie Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Shengyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Pengcheng Qiu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| |
Collapse
|
29
|
Du L, Yang Q, Zhang J, Zhu M, Ma X, Zhang Y, Wang L, Xu B. Engineering a biomimetic integrated scaffold for intervertebral disc replacement. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:522-529. [PMID: 30606562 DOI: 10.1016/j.msec.2018.11.087] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 10/23/2018] [Accepted: 11/30/2018] [Indexed: 12/16/2022]
Abstract
Tissue engineering technology provides a promising alternative to restore physiological functionality of damaged intervertebral disc (IVD). Advanced tissue engineering strategies for IVD have increasingly focused on engineering IVD regions combined the inner nucleus pulposus (NP) and surrounding annulus fibrosus (AF) tissue. However, simulating the cellular and matrix structures and function of the complex structure of IVD is still a critical challenge. Toward this goal, this study engineered a biomimetic AF-NP composite with circumferentially oriented poly(ε-caprolactone) microfibers seeded with AF cells, with an alginate hydrogel encapsulating NP cells as a core. Fluorescent imaging and histological analysis showed that AF cells spread along the circumferentially oriented PCL microfibers and NP cells colonized in the alginate hydrogel similar to native IVD, without obvious migration and mixing between the AF and NP region. Engineered IVD implants showed progressive tissue formation over time after subcutaneous implantation in nude mice, which were indicated by deposition and organization of extracellular matrix and enhanced mechanical properties. In terms of form and function of IVD-like tissue, our engineered biomimetic AF-NP composites have potential application for IVD replacement.
Collapse
Affiliation(s)
- Lilong Du
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Qiang Yang
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Jiamin Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Meifeng Zhu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Xinlong Ma
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, People's Republic of China
| | - Yang Zhang
- Tianjin Orthopedic Institute, Tianjin 300211, People's Republic of China
| | - Lianyong Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China.
| | - Baoshan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin 300211, People's Republic of China.
| |
Collapse
|
30
|
Zhou X, Wang J, Huang X, Fang W, Tao Y, Zhao T, Liang C, Hua J, Chen Q, Li F. Injectable decellularized nucleus pulposus-based cell delivery system for differentiation of adipose-derived stem cells and nucleus pulposus regeneration. Acta Biomater 2018; 81:115-128. [PMID: 30267879 DOI: 10.1016/j.actbio.2018.09.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/11/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
Stem cell-based tissue engineering is a promising treatment for intervertebral disc (IVD) degeneration. A bio-scaffold that can maintain the function of transplanted cells and possesses favorable mechanical properties is needed in tissue engineering. Decellularized nucleus pulposus (dNP) has the potential to be a suitable bio-scaffold because it mimics the native nucleus pulposus (NP) composition. However, matrix loss during decellularization and difficulty in transplantation limit the clinical application of dNP scaffolds. In this study, we fabricated an injectable dNP-based cell delivery system (NPCS) and evaluated its properties by assessing the microstructure, biochemical composition, water content, biosafety, biostability, and mechanical properties. We also investigated the stimulatory effects of the bio-scaffold on the NP-like differentiation of adipose-derived stem cells (ADSCs) in vitro and the regenerative effects of the NPCS on degenerated NP in an in vivo animal model. The results showed that approximately 68% and 43% of the collagen and sGAG, respectively, remained in the NPCS after 30 days. The NPCS also showed mechanical properties similar to those of fresh NP. In addition, the NPCS was biocompatible and able to induce NP-like differentiation and extracellular matrix (ECM) synthesis in ADSCs. The disc height index (almost 81%) and the MRI index (349.05 ± 38.48) of the NPCS-treated NP were significantly higher than those of the degenerated NP after 16 weeks. The NPCS also partly restored the ECM content and the structure of degenerated NP in vivo. Our NPCS has good biological and mechanical properties and has the ability to promote the regeneration of degenerated NP. STATEMENT OF SIGNIFICANCE: Nucleus pulposus (NP) degeneration is usually the origin of intervertebral disc degeneration. Stem cell-based tissue engineering is a promising treatment for NP regeneration. Bio-scaffolds which have favorable biological and mechanical properties are needed in tissue engineering. Decellularized NP (dNP) scaffold is a potential choice for tissue engineering, but the difficulty in balancing complete decellularization and retaining ECM limits its usage. Instead of choosing different decellularization protocols, we complementing the sGAG lost during decellularization by cross-linking via genipin and fabricating an injectable dNP-based cell delivery system (NPCS) which has similar components as the native NP. We also investigated the biological and mechanical properties of the NPCS in vitro and verified its regenerative effects on degenerated IVDs in an animal model.
Collapse
Affiliation(s)
- Xiaopeng Zhou
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jingkai Wang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xianpeng Huang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Weijing Fang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yiqing Tao
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Tengfei Zhao
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chengzhen Liang
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianming Hua
- Department of Radiology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China
| | - Qixin Chen
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Fangcai Li
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, Zhejiang, People's Republic of China; Department of Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
31
|
Huang YC, Hu Y, Li Z, Luk KDK. Biomaterials for intervertebral disc regeneration: Current status and looming challenges. J Tissue Eng Regen Med 2018; 12:2188-2202. [PMID: 30095863 DOI: 10.1002/term.2750] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/21/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022]
Abstract
A biomaterial-based strategy is employed to regenerate the degenerated intervertebral disc, which is considered a major generator of neck and back pain. Although encouraging enhancements in the anatomy and kinematics of the degenerative disc have been gained by biomaterials with various formulations in animals, the number of biomaterials tested in humans is rare. At present, most studies that involve the use of newly developed biomaterials focus on regeneration of the degenerative disc, but not pain relief. In this review, we summarise the current state of the art in the field of biomaterial-based regeneration or repair for the nucleus pulposus, annulus fibrosus, and total disc transplantation in animals and humans, and we then provide essential suggestions for the development and clinical translation of biomaterials for disc regeneration. It is important for researchers to consider the commonly neglected issues instead of concentrating solely on biomaterial development and fabrication.
Collapse
Affiliation(s)
- Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Orthopaedic Research Center, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China.,Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yong Hu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | - Keith D K Luk
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Chu G, Shi C, Wang H, Zhang W, Yang H, Li B. Strategies for Annulus Fibrosus Regeneration: From Biological Therapies to Tissue Engineering. Front Bioeng Biotechnol 2018; 6:90. [PMID: 30042942 PMCID: PMC6048238 DOI: 10.3389/fbioe.2018.00090] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) is an avascular tissue which contributes to the weight bearing, motion, and flexibility of spine. However, IVD is susceptible to damage and even failure due to injury, pathology, and aging. Annulus fibrosus (AF), the structural and functional integrity of which is critically essential to confine nucleus pulpous (NP) and maintain physiological intradiscal pressure under mechanical loading, plays a critical role in the biomechanical properties of IVD. AF degeneration commonly results in substantial deterioration of IVD. During this process, the biomechanical properties of AF and the balance between anabolism and catabolism in IVD are progressively disrupted, leading to chronic back pain, and even disability of individuals. Therefore, repairing and regenerating AF are effective treatments to degeneration-associated pains. However, they remain highly challenging due to the complexity of natural AF tissue in the aspects of cell phenotype, biochemical composition, microstructure, and mechanical properties. Tissue engineering (TE), by combining biological science and materials engineering, shed lights on AF regeneration. In this article, we review recent advances in the pro-anabolic approaches in the form of cell delivery, bioactive factors delivery, gene therapy, and TE strategies for achieving AF regeneration.
Collapse
Affiliation(s)
- Genglei Chu
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Chen Shi
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Huan Wang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Weidong Zhang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Huilin Yang
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, First Affiliated Hospital, Soochow University, Suzhou, China
| | - Bin Li
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
- Department of Orthopaedic Surgery, First Affiliated Hospital, Soochow University, Suzhou, China
- China Orthopaedic Regenerative Medicine Group, Hangzhou, China
| |
Collapse
|
33
|
Multi-length scale bioprinting towards simulating microenvironmental cues. Biodes Manuf 2018; 1:77-88. [PMID: 30546920 PMCID: PMC6267274 DOI: 10.1007/s42242-018-0014-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/02/2018] [Indexed: 02/08/2023]
Abstract
It is envisaged that the creation of cellular environments at multiple length scales, that recapitulate in vivo bioactive and structural roles, may hold the key to creating functional, complex tissues in the laboratory. This review considers recent advances in biofabrication and bioprinting techniques across different length scales. Particular focus is placed on 3D printing of hydrogels and fabrication of biomaterial fibres that could extend the feature resolution and material functionality of soft tissue constructs. The outlook from this review discusses how one might create and simulate microenvironmental cues in vitro. A fabrication platform that integrates the competencies of different biofabrication technologies is proposed. Such a multi-process, multiscale fabrication strategy may ultimately translate engineering capability into an accessible life sciences toolkit, fulfilling its potential to deliver in vitro disease models and engineered tissue implants.
Collapse
|
34
|
Abstract
Simulating natural characteristics and aesthetics in reconstructed ears has provided a complex 3-dimensional puzzle for those treating patients with microtia. Costochondral grafts remain the gold standard for autologous reconstruction. However, other options such as Medpor and prosthetics are indicated depending on patient circumstances and personal choice. Research into tissue engineering offers an alternative method to a traditional surgical approach that may reduce donor-site morbidity. However, tissue engineering for microtia reconstruction brings new challenges such as cell sourcing, promotion of chondrogenesis, scaffold vascularization, and prevention of scaffold contraction. Advancements in 3D printing, nanofiber utilization, stem cell technologies, and decellularization techniques have played significant roles in overcoming these challenges. These recent advancements and reports of a successful clinical-scale study in an immunocompetent animal suggest a promising outlook for future clinical application of tissue engineering for auricular reconstruction.
Collapse
|
35
|
Hensley A, Rames J, Casler V, Rood C, Walters J, Fernandez C, Gill S, Mercuri JJ. Decellularization and characterization of a whole intervertebral disk xenograft scaffold. J Biomed Mater Res A 2018; 106:2412-2423. [PMID: 29673061 PMCID: PMC6158084 DOI: 10.1002/jbm.a.36434] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023]
Abstract
Intervertebral disk (IVD) degeneration is a multifactor process that results in the physical destruction of the nucleus pulposus (NP) and annulus fibrosus (AF). This compromises IVD function and causes significant disability and economic burden. Strategies to replace the entire composite structure of the IVD are limited and most approaches do not recapitulate the heterogenous biochemical composition, microarchitecture or mechanical properties of the native tissue. Our central hypothesis was that donor IVDs which resemble the size and biochemistry of human lumbar IVDs could be successfully decellularized while retaining the tissue's structure and function with the long-term goal of creating a composite scaffold for tissue engineering the human IVD. Accordingly, we optimized a procedure to decellularize bovine tail IVDs using a combination of detergents, ultrasonication, freeze-thaw cycles, and nucleases. The resultant decellularized whole IVD xenografts retained distinct AF and NP regions which contained no visible intact cell nuclei and minimal residual bovine deoxyribose nucleic acid (DNA; 65.98 ± 4.07 and 47.12 ± 13.22 ng/mg, respectively). Moreover, the NP region of decellularized IVDs contained 313.40 ± 50.67 µg/mg glycosaminoglycan. The presence of collagen type II was confirmed via immunohistochemistry. Additionally, histological analysis of the AF region of decellularized IVDs demonstrated retention of the native angle-ply collagen microarchitecture. Unconfined compression testing demonstrated no significant differences in swelling pressure and toe-region modulus between fresh and decellularized IVDs. However, linear region moduli, peak stress and equilibrium moduli were all significantly reduced. Together, this research demonstrates a successful initial step in developing a biomimetic acellular whole IVD xenograft scaffold for use in IVD tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2412-2423, 2018.
Collapse
Affiliation(s)
- Austin Hensley
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina
| | - Jess Rames
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina
| | - Victor Casler
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina
| | - Christopher Rood
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina
| | - Joshua Walters
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina
| | - Christopher Fernandez
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina
| | - Sanjitpal Gill
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina.,Department of Orthopaedic Surgery, Medical Group of the Carolinas-Pelham, Spartanburg Regional Healthcare System, Greer, South Carolina
| | - Jeremy J Mercuri
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina
| |
Collapse
|
36
|
Shan Z, Lin X, Wang S, Zhang X, Pang Y, Li S, Yu T, Fan S, Zhao F. An injectable nucleus pulposus cell-modified decellularized scaffold: biocompatible material for prevention of disc degeneration. Oncotarget 2018; 8:40276-40288. [PMID: 28402966 PMCID: PMC5522320 DOI: 10.18632/oncotarget.16831] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/27/2017] [Indexed: 01/22/2023] Open
Abstract
We developed a nucleus pulposus cell (NPC)-modulated decellularized small intestinal submucosa (SIS) scaffold, and assessed the ability of this material to prevent Intervertebral disc degeneration (IVD) degeneration. Decellularized porcine SIS was squashed into particles and the biological safety and efficiency of these particles were evaluated. Next, SIS particles were seeded with rabbit NPCs, cultured for two months in vitro, decellularized again and suspended for intervertebral injection. We demonstrated that use of the decellularization protocol resulted in the removal of cellular components with maximal retention of extracellular matrix. The xenogeneic decellularized SIS did not display cytotoxicity in vitro and its application prevented NPC degradation. Furthermore, the xenogeneic SIS microparticles were effective in preventing IVD progression in vivo in a rabbit disc degeneration model. In conclusion, our study describes an optimized method for decellularized SIS preparation and demonstrated that the material is safe and effective for treating IVD degeneration.
Collapse
Affiliation(s)
- Zhi Shan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Shengyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Xuyang Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Yichuan Pang
- MOE Key Laboratory of Macromolecular synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shengyun Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Tianming Yu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310016, China
| |
Collapse
|
37
|
Proteomic Analysis of Nucleus Pulposus Cell-derived Extracellular Matrix Niche and Its Effect on Phenotypic Alteration of Dermal Fibroblasts. Sci Rep 2018; 8:1512. [PMID: 29367647 PMCID: PMC5784136 DOI: 10.1038/s41598-018-19931-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/10/2018] [Indexed: 01/01/2023] Open
Abstract
Reconstituting biomimetic matrix niche in vitro and culturing cells at the cell niche interface is necessary to understand the effect and function of the specific matrix niche. Here we attempted to reconstitute a biomimetic extracellular matrix (ECM) niche by culturing nucleus pulposus cells (NPCs) in a collagen microsphere system previously established and allowing them to remodel the template matrix. The reconstituted NPC-derived complex ECM was obtained after decellularization and the composition of such niche was evaluated by proteomic analysis. Results showed that a complex acellular matrix niche consisting of ECM proteins and cytoskeletal proteins by comparing with the template collagen matrix starting material. In order to study the significance of the NPC-derived matrix niche, dermal fibroblasts were repopulated in such niche and the phenotypes of these cells were changed, gene expression of collagen type II and CA12 increased significantly. A biomimetic NPC-derived cell niche consisting of complex ECM can be reconstituted in vitro, and repopulating such matrix niche with fibroblasts resulted in changes in phenotypic markers. This work reports a 3D in vitro model to study cell niche factors, contributing to future understanding of cellular interactions at the cell-niche interface and rationalized scaffold design for tissue engineering.
Collapse
|
38
|
Li N, Li Y, Gong D, Xia C, Liu X, Xu Z. Efficient decellularization for bovine pericardium with extracellular matrix preservation and good biocompatibility. Interact Cardiovasc Thorac Surg 2018; 26:768-776. [PMID: 29340634 DOI: 10.1093/icvts/ivx416] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/03/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ning Li
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
- Department of Cardiothoracic Surgery Lab, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yang Li
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
- Department of Cardiothoracic Surgery Lab, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dejun Gong
- Department of Cardiothoracic Surgery Lab, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Cuiping Xia
- Department of Cardiothoracic Surgery Lab, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaohong Liu
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
- Department of Cardiothoracic Surgery Lab, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhiyun Xu
- Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
- Department of Cardiothoracic Surgery Lab, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
39
|
Lin X, Fang X, Wang Q, Hu Z, Chen K, Shan Z, Chen S, Wang J, Mo J, Ma J, Xu W, Qin A, Fan S. Decellularized allogeneic intervertebral disc: natural biomaterials for regenerating disc degeneration. Oncotarget 2017; 7:12121-36. [PMID: 26933821 PMCID: PMC4914273 DOI: 10.18632/oncotarget.7735] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/18/2016] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disc degeneration is associated with back pain and disc herniation. This study established a modified protocol for intervertebral disc (IVD) decellularization and prepared its extracellular matrix (ECM). By culturing mesenchymal stem cells (MSCs)(3, 7, 14 and 21 days) and human degenerative IVD cells (7 days) in the ECM, implanting it subcutaneously in rabbit and injecting ECM microparticles into degenerative disc, the biological safety and efficacy of decellularized IVD was evaluated both in vitro and in vivo. Here, we demonstrated that cellular components can be removed completely after decellularization and maximally retain the structure and biomechanics of native IVD. We revealed that allogeneic ECM did not evoke any apparent inflammatory reaction in vivo and no cytotoxicity was found in vitro. Moreover, IVD ECM can induce differentiation of MSCs into IVD-like cells in vitro. Furthermore, allogeneic ECM microparticles are effective on the treatment of rabbit disc degeneration in vivo. In conclusion, our study developed an optimized method for IVD decellularization and we proved decellularized IVD is safe and effective for the treatment of degenerated disc diseases.
Collapse
Affiliation(s)
- Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China.,Institute of Micro-Invasive Surgery of Zhejiang University, Hangzhou, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China.,Institute of Micro-Invasive Surgery of Zhejiang University, Hangzhou, China
| | - Qiang Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China.,Institute of Micro-Invasive Surgery of Zhejiang University, Hangzhou, China
| | - Zhijun Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China.,Institute of Micro-Invasive Surgery of Zhejiang University, Hangzhou, China
| | - Kai Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Zhi Shan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Shuai Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China.,Institute of Micro-Invasive Surgery of Zhejiang University, Hangzhou, China
| | - Jiying Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China.,Institute of Micro-Invasive Surgery of Zhejiang University, Hangzhou, China
| | - Jian Mo
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China.,Institute of Micro-Invasive Surgery of Zhejiang University, Hangzhou, China
| | - Jianjun Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China.,Institute of Micro-Invasive Surgery of Zhejiang University, Hangzhou, China
| | - Wenbing Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China.,Institute of Micro-Invasive Surgery of Zhejiang University, Hangzhou, China
| | - An Qin
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China.,Institute of Micro-Invasive Surgery of Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
The Challenge in Using Mesenchymal Stromal Cells for Recellularization of Decellularized Cartilage. Stem Cell Rev Rep 2017; 13:50-67. [PMID: 27826794 DOI: 10.1007/s12015-016-9699-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Some decellularized musculoskeletal extracellular matrices (ECM)s derived from tissues such as bone, tendon and fibrocartilaginous meniscus have already been clinical use for tissue reconstruction. Repair of articular cartilage with its unique zonal ECM architecture and composition is still an unsolved problem, and the question is whether allogenic or xenogeneic decellularized cartilage ECM could serve as a biomimetic scaffold for this purpose.Hence, this survey outlines the present state of preparing decellularized cartilage ECM-derived scaffolds or composites for reconstruction of different cartilage types and of reseeding it particularly with mesenchymal stromal cells (MSCs).The preparation of natural decellularized cartilage ECM scaffolds hampers from the high density of the cartilage ECM and lacking interconnectivity of the rather small natural pores within it: the chondrocytes lacunae. Nevertheless, the reseeding of decellularized ECM scaffolds before implantation provided superior results compared with simply implanting cell-free constructs in several other tissues, but cartilage recellularization remains still challenging. Induced by cartilage ECM-derived scaffolds MSCs underwent chondrogenesis.Major problems to be addressed for the application of cell-free cartilage were discussed such as to maintain ECM structure, natural chemistry, biomechanics and to achieve a homogenous and stable cell recolonization, promote chondrogenic and prevent terminal differentiation (hypertrophy) and induce the deposition of a novel functional ECM. Some promising approaches were proposed including further processing of the decellularized ECM before recellularization of the ECM with MSCs, co-culturing of MSCs with chondrocytes and establishing bioreactor culture e.g. with mechanostimulation, flow perfusion pressure and lowered oxygen tension. Graphical Abstract Synopsis of tissue engineering approaches based on cartilage-derived ECM.
Collapse
|
41
|
Wachs RA, Hoogenboezem EN, Huda HI, Xin S, Porvasnik SL, Schmidt CE. Creation of an injectable in situ gelling native extracellular matrix for nucleus pulposus tissue engineering. Spine J 2017; 17:435-444. [PMID: 27989725 DOI: 10.1016/j.spinee.2016.10.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/25/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Disc degeneration is the leading cause of low back pain and is often characterized by a loss of disc height, resulting from cleavage of chondroitin sulfate proteoglycans (CSPGs) present in the nucleus pulposus. Intact CSPGs are critical to water retention and maintenance of the nucleus osmotic pressure. Decellularization of healthy nucleus pulposus tissue has the potential to serve as an ideal matrix for tissue engineering of the disc because of the presence of native disc proteins and CSPGs. Injectable in situ gelling matrices are the most viable therapeutic option to prevent damage to the anulus fibrosus and future disc degeneration. PURPOSE The purpose of this research was to create a gentle decellularization method for use on healthy nucleus pulposus tissue explants and to develop an injectable formulation of this matrix to enable therapeutic use without substantial tissue disruption. STUDY DESIGN Porcine nuclei pulposi were isolated, decellularized, and solubilized. Samples were assessed to determine the degree of cell removal, matrix maintenance, gelation ability, cytotoxic residuals, and native cell viability. METHODS Nuclei pulposi were decellularized using serial detergent, buffer, and enzyme treatments. Decellularized nuclei pulposi were solubilized, neutralized, and buffered. The efficacy of decellularization was assessed by quantifying DNA removal and matrix preservation. An elution study was performed to confirm removal of cytotoxic residuals. Gelation kinetics and injectability were quantified. Long-term in vitro experiments were performed with nucleus pulposus cells to ensure cell viability and native matrix production within the injectable decellularized nucleus pulposus matrices. RESULTS This work resulted in the creation of a robust acellular matrix (>96% DNA removal) with highly preserved sulfated glycosaminoglycans (>47%), and collagen content and microstructure similar to native nucleus pulposus, indicating preservation of disc components. Furthermore, it was possible to create an injectable formulation that gelled in situ within 45 minutes and formed fibrillar collagen with similar diameters to native nucleus pulposus. The processing did not result in any remaining cytotoxic residuals. Solubilized decellularized nucleus pulposus samples seeded with nucleus pulposus cells maintained robust viability (>89%) up to 21 days of culture in vitro, with morphology similar to native nucleus pulposus cells, and exhibited significantly enhanced sulfated glycosaminoglycans production over 21 days. CONCLUSIONS A gentle decellularization of porcine nucleus pulposus followed by solubilization enabled the creation of an injectable tissue-specific matrix that is well tolerated in vitro by nucleus pulposus cells. These matrices have the potential to be used as a minimally invasive nucleus pulposus therapeutic to restore disc height.
Collapse
Affiliation(s)
- Rebecca A Wachs
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, PO Box 116131 1275 Center Drive, JG56, Gainesville, FL 32611-6131, USA.
| | - Ella N Hoogenboezem
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, PO Box 116131 1275 Center Drive, JG56, Gainesville, FL 32611-6131, USA
| | - Hammad I Huda
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, PO Box 116131 1275 Center Drive, JG56, Gainesville, FL 32611-6131, USA
| | - Shangjing Xin
- Department of Materials Science and Engineering, University of Florida, 100 Rhines Hall, Gainesville, FL 32611-6131, USA
| | - Stacy L Porvasnik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, PO Box 116131 1275 Center Drive, JG56, Gainesville, FL 32611-6131, USA
| | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, PO Box 116131 1275 Center Drive, JG56, Gainesville, FL 32611-6131, USA
| |
Collapse
|
42
|
Rashmi, Pathak R, Amarpal, Aithal HP, Kinjavdekar P, Pawde AM, Tiwari AK, Sangeetha P, Tamilmahan P, Manzoor AB. Evaluation of tissue-engineered bone constructs using rabbit fetal osteoblasts on acellular bovine cancellous bone matrix. Vet World 2017; 10:163-169. [PMID: 28344398 PMCID: PMC5352840 DOI: 10.14202/vetworld.2017.163-169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/04/2017] [Indexed: 11/29/2022] Open
Abstract
Aim: The aim of this study was to generate composite bone graft and investigate the rabbit fetal osteoblasts adhesion, proliferation and penetration on acellular matrices of cancellous bone. Materials and Methods: Acellular cancellous bone was prepared and developed as in the previous study with little modification. These matrices were decellularized by rapid freeze and thaw cycle. To remove the cell debris, they were then treated with hydrogen peroxide (3%) and ethanol to remove antigenic cellular and nuclear materials from the scaffold. Primary osteoblast cells were harvested from 20 to 22 days old rabbit fetal long and calvarial bone. These cells were cultured and characterized using a specific marker. The third passaged fetal osteoblast cells were then seeded on the scaffold and incubated for 14 days. The growth pattern of the cells was observed. Scanning electron microscope and hematoxylin and eosin staining were used to investigate cells proliferation. Results: The cells were found to be growing well on the surface of the scaffold and were also present in good numbers with the matrix filopodial extensions upto inside of the core of the tissue. Conclusion: Thus, a viable composite scaffold of bone could be developed which has a great potential in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Rashmi
- Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| | - Rekha Pathak
- Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| | - Amarpal
- Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| | - H P Aithal
- Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| | - P Kinjavdekar
- Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| | - A M Pawde
- Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| | - A K Tiwari
- Division of Standardization, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| | - P Sangeetha
- Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| | - P Tamilmahan
- Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| | - A B Manzoor
- Division of Veterinary Surgery, Indian Veterinary Research Institute, Izatnagar, Bareilly - 243 122, Uttar Pradesh, India
| |
Collapse
|
43
|
Xu K, Kuntz LA, Foehr P, Kuempel K, Wagner A, Tuebel J, Deimling CV, Burgkart RH. Efficient decellularization for tissue engineering of the tendon-bone interface with preservation of biomechanics. PLoS One 2017; 12:e0171577. [PMID: 28170430 PMCID: PMC5295703 DOI: 10.1371/journal.pone.0171577] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/22/2017] [Indexed: 02/07/2023] Open
Abstract
Interfaces between tendon/ligament and bone (“entheses”) are highly specialized tissues that allow for stress transfer between mechanically dissimilar materials. Entheses show very low regenerative capacity resulting in high incidences of failure after surgical repair. Tissue engineering is a promising approach to recover functionality of entheses. Here, we established a protocol to decellularize porcine entheses as scaffolds for enthesis tissue engineering. Chemical detergents as well as physical treatments were investigated with regard to their efficiency to decellularize 2 mm thick porcine Achilles tendon entheses. A two-phase approach was employed: study 1 investigated the effect of various concentrations of sodium dodecyl sulfate (SDS) and t-octylphenoxypolyethoxy-ethanol (Triton X-100) as decellularization agents. The most efficient combination of SDS and Triton was then carried forward into study 2, where different physical methods, including freeze-thaw cycles, ultrasound, perfusion, and hydrostatic washing were used to enhance the decellularization effect. Cell counts, DNA quantification, and histology showed that washing with 0.5% SDS + 1% Triton X-100 for 72 h at room temperature could remove ~ 98% cells from the interface. Further investigation of physical methods proved that washing under 200 mmHg hydrostatic pressure shortened the detergent exposing time from 72 h to 48 h. Biomechanical tensile testing showed that the biomechanical features of treated samples were preserved. Washing under 200 mmHg hydrostatic pressure with 0.5% SDS + 1% Triton X-100 for 48 h efficiently decellularized entheses with preservation of matrix structure and biomechanical features. This protocol can be used to efficiently decellularize entheses as scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Kai Xu
- Department of Orthopaedics and Sportsorthopaedics, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany.,Department of Orthopedics, Tongji Hospital, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Lara A Kuntz
- Department of Orthopaedics and Sportsorthopaedics, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Peter Foehr
- Department of Orthopaedics and Sportsorthopaedics, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Katharina Kuempel
- Department of Orthopaedics and Sportsorthopaedics, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Alexandra Wagner
- Department of Orthopaedics and Sportsorthopaedics, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Jutta Tuebel
- Department of Orthopaedics and Sportsorthopaedics, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Constantin V Deimling
- Department of Orthopaedics and Sportsorthopaedics, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Rainer H Burgkart
- Department of Orthopaedics and Sportsorthopaedics, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
44
|
Yang Q, Xu HW, Hurday S, Xu BS. Construction Strategy and Progress of Whole Intervertebral Disc Tissue Engineering. Orthop Surg 2017; 8:11-8. [PMID: 27028376 DOI: 10.1111/os.12218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
Degenerative disc disease (DDD) is the major cause of low back pain, which usually leads to work absenteeism, medical visits and hospitalization. Because the current conservative procedures and surgical approaches to treatment of DDD only aim to relieve the symptoms of disease but not to regenerate the diseased disc, their long-term efficiency is limited. With the rapid developments in medical science, tissue engineering techniques have progressed markedly in recent years, providing a novel regenerative strategy for managing intervertebral disc disease. However, there are as yet no ideal methods for constructing tissue-engineered intervertebral discs. This paper reviews published reports pertaining to intervertebral disc tissue engineering and summarizes data concerning the seed cells and scaffold materials for tissue-engineered intervertebral discs, construction of tissue-engineered whole intervertebral discs, relevant animal experiments and effects of mechanics on the construction of tissue-engineered intervertebral disc and outlines the existing problems and future directions. Although the perfect regenerative strategy for treating DDD has not yet been developed, great progress has been achieved in the construction of tissue-engineered intervertebral discs. It is believed that ongoing research on intervertebral disc tissue engineering will result in revolutionary progress in the treatment of DDD.
Collapse
Affiliation(s)
- Qiang Yang
- Department of Minimally Invasive Spine Surgery, Tianjin, China
| | - Hai-wei Xu
- Department of Minimally Invasive Spine Surgery, Tianjin, China
| | - Sookesh Hurday
- Department of Minimally Invasive Spine Surgery, Tianjin, China.,Tianjin Medical University, Tianjin Hospital, Tianjin, China
| | - Bao-shan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin, China
| |
Collapse
|
45
|
Fernandez C, Marionneaux A, Gill S, Mercuri J. Biomimetic nucleus pulposus scaffold created from bovine caudal intervertebral disc tissue utilizing an optimal decellularization procedure. J Biomed Mater Res A 2016; 104:3093-3106. [PMID: 27507100 PMCID: PMC5832047 DOI: 10.1002/jbm.a.35858] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/14/2016] [Accepted: 08/05/2016] [Indexed: 11/07/2022]
Abstract
Intervertebral disc (IVD) degeneration (IDD) and herniation (IDH) can result in low back pain and impart significant socioeconomic burden. These pathologies involve detrimental alteration to the nucleus pulposus (NP) either via biochemical degradation or extrusion from the IVD, respectively. Thus, engineering living NP tissue utilizing biomaterial scaffolds that recapitulate native NP microarchitecture, biochemistry, mechanical properties, and which support cell viability represents an approach to aiding patients with IDD and IDH. To date, an ideal biomaterial to support NP regeneration has yet to be developed; however, one promising approach to generating biomimetic materials is to employ the decellularization (decell) of xenogeneic NP tissue to remove host DNA while maintaining critical native extracellular matrix (ECM) components. Herein, 13 different procedures were evaluated in an attempt to decell bovine caudal IVD NP tissue. An optimal method was identified which was confirmed to effectively remove bovine DNA, while maintaining physiologically relevant amounts of glycosaminoglycan (GAG) and type II collagen. Unconfined static and dynamic compressive mechanical properties of scaffolds approached values reported for human NP and viability of human amniotic stem cells (hAMSCs) was maintained on noncrosslinked and EDC/NHS treated scaffolds for up to 14 days in culture. Taken together, NP tissue obtained from bovine caudal IVDs can be successfully decelled in order to generate a biomimetic scaffold for NP tissue regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3093-3106, 2016.
Collapse
Affiliation(s)
- Christopher Fernandez
- Department of Bioengineering, The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina
| | - Alan Marionneaux
- Department of Bioengineering, The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina
| | - Sanjitpal Gill
- Department of Bioengineering, The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina
- Department of Orthopaedic Surgery, Spartanburg Regional Healthcare System, Greer, South Carolina
| | - Jeremy Mercuri
- Department of Bioengineering, The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Clemson University, Clemson, South Carolina.
| |
Collapse
|
46
|
Xiao SW, Wang PC, Fu WJ, Wang ZX, Li G, Zhang X. Novel perfusion-decellularized method to prepare decellularized ureters for ureteral tissue-engineered repair. J Biosci Bioeng 2016; 122:758-764. [DOI: 10.1016/j.jbiosc.2016.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 12/17/2022]
|
47
|
Agmon G, Christman KL. Controlling stem cell behavior with decellularized extracellular matrix scaffolds. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2016; 20:193-201. [PMID: 27524932 PMCID: PMC4979580 DOI: 10.1016/j.cossms.2016.02.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Decellularized tissues have become a common regenerative medicine platform with multiple materials being researched in academic laboratories, tested in animal studies, and used clinically. Ideally, when a tissue is decellularized the native cell niche is maintained with many of the structural and biochemical cues that naturally interact with the cells of that particular tissue. This makes decellularized tissue materials an excellent platform for providing cells with the signals needed to initiate and maintain differentiation into tissue-specific lineages. The extracellular matrix (ECM) that remains after the decellularization process contains the components of a tissue specific microenvironment that is not possible to create synthetically. The ECM of each tissue has a different composition and structure and therefore has unique properties and potential for affecting cell behavior. This review describes the common methods for preparing decellularized tissue materials and the effects that decellularized materials from different tissues have on cell phenotype.
Collapse
|
48
|
Huang Z, Kohl B, Kokozidou M, Arens S, Schulze-Tanzil G. Establishment of a Cytocompatible Cell-Free Intervertebral Disc Matrix for Chondrogenesis with Human Bone Marrow-Derived Mesenchymal Stromal Cells. Cells Tissues Organs 2016; 201:354-65. [PMID: 27160711 DOI: 10.1159/000444521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 11/19/2022] Open
Abstract
Tissue-engineered intervertebral discs (IVDs) utilizing decellularized extracellular matrix (ECM) could be an option for the reconstruction of impaired IVDs due to degeneration or injury. The objective of this study was to prepare a cell-free decellularized human IVD scaffold and to compare neotissue formation in response to recellularization with human IVD cells (hIVDCs) or human bone marrow-derived (hBM) mesenchymal stromal cells (MSCs). IVDs were decellularized via freeze-thaw cycles, detergents and trypsin. Histological staining was performed to monitor cell removal and glycosaminoglycan (GAG) removal. The decellularized IVD was preconditioned using bovine serum albumin and fetal bovine serum before its cytocompatibility for dynamically cultured hBM-MSCs (chondrogenically induced or not) and hIVDCs was compared after 14 days. In addition, DNA, total collagen and GAG contents were assessed. The decellularization protocol achieved maximal cell removal, with only few remaining cell nuclei compared with native tissue, and low toxicity. The DNA content was significantly higher in scaffolds seeded with hIVDCs compared with native IVDs, cell-free and hBM-MSC-seeded scaffolds (p < 0.01). The GAG content in the native tissue was significantly higher compared to the others groups except for the scaffolds reseeded with chondrogenically induced hBM-MSCs (p < 0.05). In addition, there was a significantly increased total collagen content in the chondrogenically induced hBM-MSCs group (p < 0.01) compared with the native IVDs, cell-free and hIVDC-seeded scaffolds (p < 0.01); both recolonizing cell types were more evenly distributed on the scaffold surface, but only few cells penetrated the scaffold. The resulting decellularized ECM was cytocompatible and allowed hBM-MSCs/hIVDCs survival and ECM production.
Collapse
Affiliation(s)
- Zhao Huang
- Institute of Anatomy, General Hospital Nuremberg, Paracelsus Medical University, Nuremberg, Germany
| | | | | | | | | |
Collapse
|
49
|
Illien-Jünger S, Sedaghatpour DD, Laudier DM, Hecht AC, Qureshi SA, Iatridis JC. Development of a bovine decellularized extracellular matrix-biomaterial for nucleus pulposus regeneration. J Orthop Res 2016; 34:876-88. [PMID: 26509556 PMCID: PMC4898647 DOI: 10.1002/jor.23088] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/22/2015] [Indexed: 02/04/2023]
Abstract
Painful intervertebral disc (IVD) degeneration is a common cause for spinal surgery. There is a clinical need to develop injectable biomaterials capable of promoting IVD regeneration, yet many available biomaterials do not mimic the native extracellular matrix (ECM) or promote matrix production. This study aimed to develop a decellularized injectable bovine ECM material that maintains structural and compositional features of native tissue and promotes nucleus pulposus (NP) cell (NPC) and mesenchymal stem cell (MSC) adaption. Injectable decellularized ECM constructs were created using 3 NP tissue decellularization methods (con.A: sodium deoxycholate, con.B: sodium deoxycholate & sodium dodecyl sulfate, con.C: sodium deoxycholate, sodium dodecyl sulfate & TritonX-100) and evaluated for protein, microstructure, and for cell adaptation in 21 day human NPC and MSC culture experiments. Con.A was most efficient at DNA depletion, preserved best collagen microstructure and content, and maintained the highest glycosaminoglycan (GAG) content. NPCs in decellularized constructs of con.A&B demonstrated newly synthesized GAG production, which was apparent from "halos" of GAG staining surrounding seeded NPCs. Con.A also promoted MSC adaption with high cell viability and ECM production. The injectable decellularized NP biomaterial that used sodium deoxycholate without additional decellularization steps maintained native NP tissue structure and composition closest to natural ECM and promoted cellular adaptation of NP cells and MSCs. This natural decellularized biomaterial warrants further investigation for its potential as an injectable cell seeded supplement to augment NP replacement biomaterials and deliver NPCs or MSCs. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:876-888, 2016.
Collapse
Affiliation(s)
- Svenja Illien-Jünger
- Leni & Peter W. May Department of Orthopaedics; Icahn School of Medicine at Mount Sinai; New York New York
| | - Dillon D. Sedaghatpour
- Leni & Peter W. May Department of Orthopaedics; Icahn School of Medicine at Mount Sinai; New York New York
| | - Damien M. Laudier
- Leni & Peter W. May Department of Orthopaedics; Icahn School of Medicine at Mount Sinai; New York New York
| | - Andrew C. Hecht
- Leni & Peter W. May Department of Orthopaedics; Icahn School of Medicine at Mount Sinai; New York New York
| | - Sheeraz A. Qureshi
- Leni & Peter W. May Department of Orthopaedics; Icahn School of Medicine at Mount Sinai; New York New York
| | - James C. Iatridis
- Leni & Peter W. May Department of Orthopaedics; Icahn School of Medicine at Mount Sinai; New York New York
| |
Collapse
|
50
|
Rameshbabu AP, Ghosh P, Subramani E, Bankoti K, Kapat K, Datta S, Maity PP, Subramanian B, Roy S, Chaudhury K, Dhara S. Investigating the potential of human placenta-derived extracellular matrix sponges coupled with amniotic membrane-derived stem cells for osteochondral tissue engineering. J Mater Chem B 2016; 4:613-625. [DOI: 10.1039/c5tb02321a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Placental extracellular matrix for osteochondral defects.
Collapse
|