1
|
Hu S, Chen J, Jin J, Liu Y, Xu GT, Ou Q. Construction of living-cell tissue engineered amniotic membrane for ocular surface disease. BMC Ophthalmol 2024; 24:409. [PMID: 39300402 DOI: 10.1186/s12886-024-03680-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Human amniotic membrane (AM) transplantation has been applied to treat ocular surface diseases, including corneal trauma. The focus of much deliberation is to balance the mechanical strength of the amniotic membrane, its resistance to biodegradation, and its therapeutic efficacy. It is commonly observed that the crosslinked human decellularized amniotic membranes lose the functional human amniotic epithelial cells (hAECs), which play a key role in curing the injured tissues. METHODS AND RESULTS In this study, we crosslinked human decellularized amniotic membranes (dAM) with genipin and re-planted the hAECs onto the genipin crosslinked AM. The properties of the AM were evaluated based on optical clarity, biodegradation, cytotoxicity, and ultrastructure. The crosslinked AM maintained its transparency. The color of crosslinked AM deepened with increasing concentrations of genipin. And the extracts from low concentrations of genipin crosslinked AM had no toxic effect on human corneal epithelial cells (HCECs), while high concentrations of genipin exhibited cytotoxicity. The microscopic observation and H&E staining revealed that 2 mg/mL genipin-crosslinked dAM (2 mg/mL cl-dAM) was more favorable for the attachment, migration, and proliferation of hAECs. Moreover, the results of the CCK-8 assay and the transwell assay further indicated that the living hAECs' tissue-engineered amniotic membranes could facilitate the proliferation and migration of human corneal stromal cells (HCSCs) in vitro. CONCLUSIONS In conclusion, the cl-dAM with living hAECs demonstrates superior biostability and holds significant promise as a material for ocular surface tissue repair in clinical applications.
Collapse
Affiliation(s)
- Shuqin Hu
- Department of Ophthalmology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Ophthalmology and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Chen
- Department of Ophthalmology and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiahui Jin
- Department of Ophthalmology and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yifan Liu
- Department of Ophthalmology and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Qingjian Ou
- Department of Ophthalmology and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Berasain J, Ávila-Fernández P, Cárdenas-Pérez R, Cànaves-Llabrés AI, Etayo-Escanilla M, Alaminos M, Carriel V, García-García ÓD, Chato-Astrain J, Campos F. Genipin crosslinking promotes biomechanical reinforcement and pro-regenerative macrophage polarization in bioartificial tubular substitutes. Biomed Pharmacother 2024; 174:116449. [PMID: 38518607 DOI: 10.1016/j.biopha.2024.116449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Traumatic nerve injuries are nowadays a significant clinical challenge and new substitutes with adequate biological and mechanical properties are in need. In this context, fibrin-agarose hydrogels (FA) have shown the possibility to generate tubular scaffolds with promising results for nerve repair. However, to be clinically viable, these scaffolds need to possess enhanced mechanical properties. In this line, genipin (GP) crosslinking has demonstrated to improve biomechanical properties with good biological properties compared to other crosslinkers. In this study, we evaluated the impact of different GP concentrations (0.05, 0.1 and 0.2% (m/v)) and reaction times (6, 12, 24, 72 h) on bioartificial nerve substitutes (BNS) consisting of nanostructured FA scaffolds. First, crosslinked BNS were studied histologically, ultrastructurally and biomechanically and then, its biocompatibility and immunomodulatory effects were ex vivo assessed with a macrophage cell line. Results showed that GP was able to improve the biomechanical resistance of BNS, which were dependent on both the GP treatment time and concentration without altering the structure. Moreover, biocompatibility analyses on macrophages confirmed high cell viability and a minimal reduction of their metabolic activity by WST-1. In addition, GP-crosslinked BNS effectively directed macrophage polarization from a pro-inflammatory (M1) towards a pro-regenerative (M2) phenotype, which was in line with the cytokines release profile. In conclusion, this study considers time and dose-dependent effects of GP in FA substitutes which exhibited increased biomechanical properties while reducing immunogenicity and promoting pro-regenerative macrophage shift. These tubular substitutes could be useful for nerve application or even other tissue engineering applications such as urethra.
Collapse
Affiliation(s)
- Jone Berasain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Postgraduate Master Program in Tissue Engineering and Advanced Therapies, University of Granada, Spain
| | - Paula Ávila-Fernández
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| | - Rocío Cárdenas-Pérez
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Postgraduate Master Program in Tissue Engineering and Advanced Therapies, University of Granada, Spain
| | - Antoni Ignasi Cànaves-Llabrés
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Postgraduate Master Program in Tissue Engineering and Advanced Therapies, University of Granada, Spain
| | - Miguel Etayo-Escanilla
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| | - Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain.
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain.
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Spain
| |
Collapse
|
3
|
Lake SP, Snedeker JG, Wang VM, Awad H, Screen HRC, Thomopoulos S. Guidelines for ex vivo mechanical testing of tendon. J Orthop Res 2023; 41:2105-2113. [PMID: 37312619 PMCID: PMC10528429 DOI: 10.1002/jor.25647] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
Tendons are critical for the biomechanical function of joints. Tendons connect muscles to bones and allow for the transmission of muscle forces to facilitate joint motion. Therefore, characterizing the tensile mechanical properties of tendons is important for the assessment of functional tendon health and efficacy of treatments for acute and chronic injuries. In this guidelines paper, we review methodological considerations, testing protocols, and key outcome measures for mechanical testing of tendons. The goal of the paper is to present a simple set of guidelines to the nonexpert seeking to perform tendon mechanical tests. The suggested approaches provide rigorous and consistent methodologies for standardized biomechanical characterization of tendon and reporting requirements across laboratories.
Collapse
Affiliation(s)
- Spencer P. Lake
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Vincent M. Wang
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Hani Awad
- Department of Orthopaedics, Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Hazel R. C. Screen
- School of Engineering & Materials Science, Queen Mary University of London, London, UK
| | - Stavros Thomopoulos
- Department of Orthopaedic Surgery, Department of Biomedical Engineering, Columbia University, New York, New York, USA
| |
Collapse
|
4
|
Fofiu A, Tripon RG, Băţagă T, Chirilă TV. Exogenous Crosslinking of Tendons as a Strategy for Mechanical Augmentation and Repair: A Narrative Review. Orthop Res Rev 2023; 15:165-173. [PMID: 37637359 PMCID: PMC10455955 DOI: 10.2147/orr.s421106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Collagens constitute a family of triple-helical proteins with a high level of structural polymorphism and a broad diversity of structural and chemical characteristics. Collagens are designed to form supporting aggregates in the extracellular spaces of our body, but they can be isolated from animal sources and processed to become available as biomaterials with wide applications in biomedicine and bioengineering. Collagens can be conveniently modified chemically, and their propensity for participating in crosslinking reactions is an important feature. While the crosslinking promoted by a variety of agents provides a range of collagen-based products, there has been minor interest for therapies based on the crosslinking of collagen while located within living connective tissues, known as exogenous crosslinking. Currently, there is only one such treatment in ocular therapeutics (for keratoconus), and another two in development, all based on mechanical augmentation of tissues due to ultraviolet (UV)-induced crosslinking. As seen in this review, there was some interest to employ exogenous crosslinking in order to reinforce mechanically the lax tendons with an aim to arrest tear propagation, stabilize the tissue, and facilitate the healing. Here we reviewed in details both the early stages and the actual status of the experimental research dedicated to the topic. Many results have not been encouraging, however there is sufficient evidence that tendons can be mechanically reinforced by chemical or photochemical exogenous crosslinking. We also compare the exogenous crosslinking using chemical agents, which was predominant in the literature reviewed, to that promoted by UV radiation, which was rather neglected but might have some advantages.
Collapse
Affiliation(s)
- Alexandru Fofiu
- Department of Orthopedics-Traumatology, Emergency County Hospital Bistriţa, Bistriţa Năsăud, Romania
- School of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, Târgu Mureş, Romania
| | - Robert G Tripon
- Department of Ophthalmology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, Târgu Mureş, Romania
| | - Tiberiu Băţagă
- Department of Orthopedics-Traumatology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, Târgu Mureş, Romania
| | - Traian V Chirilă
- School of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, Târgu Mureş, Romania
- Department of Research, Queensland Eye Institute, South Brisbane, QLD, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
- School of Molecular Science, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
5
|
Götschi T, Scheibler AG, Jaeger P, Wieser K, Holenstein C, Snedeker JG, Camenzind RS. Improved suture pullout through genipin-coated sutures in human biceps tendons with spatially confined changes in cell viability. Clin Biomech (Bristol, Avon) 2023; 103:105907. [PMID: 36812821 DOI: 10.1016/j.clinbiomech.2023.105907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND The suture-tendon interface often constitutes the point of failure in tendon suture repair. In the present study, we investigated the mechanical benefit of coating the suture with a cross-linking agent to strengthen the nearby tissue after suture placement in human tendons and we assessed the biological implications regarding tendon cell survival in-vitro. METHODS Freshly harvested human biceps long head tendons were randomly allocated to control (n = 17) or intervention (n = 19) group. According to the assigned group, either an untreated or a genipin-coated suture was inserted into the tendon. 24 h after suturing, mechanical testing composed of cyclic and ramp-to-failure loading was performed. Additionally, 11 freshly harvested tendons were used for short-term in vitro cell viability assessment in response to genipin-loaded suture placement. These specimens were analyzed in a paired-sample setting as stained histological sections using combined fluorescent/light microscopy. FINDINGS Tendons stitched with a genipin-coated suture sustained higher forces to failure. Cyclic and ultimate displacement of the tendon-suture construct remained unaltered by the local tissue crosslinking. Tissue crosslinking resulted in significant cytotoxicity in the direct vicinity of the suture (<3 mm). At larger distances from the suture, however, no difference in cell viability between the test and the control group was discernable. INTERPRETATION The repair strength of a tendon-suture construct can be augmented by loading the suture with genipin. At this mechanically relevant dosage, crosslinking-induced cell death is confined to a radius of <3 mm from the suture in the short-term in-vitro setting. These promising results warrant further examination in-vivo.
Collapse
Affiliation(s)
- Tobias Götschi
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Anne-Gita Scheibler
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Patrick Jaeger
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Karl Wieser
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | - Claude Holenstein
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Jess G Snedeker
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Roland S Camenzind
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland; Department of Orthopedic and Trauma Surgery, Cantonal Hospital Lucerne, Lucerne, Switzerland.
| |
Collapse
|
6
|
Götschi T, Schärer Y, Gennisson JL, Snedeker JG. Investigation of the relationship between tensile viscoelasticity and unloaded ultrasound shear wave measurements in ex vivo tendon. J Biomech 2023; 146:111411. [PMID: 36509025 DOI: 10.1016/j.jbiomech.2022.111411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Mechanical properties of biological tissues are of key importance for proper function and in situ methods for mechanical characterization are sought after in the context of both medical diagnosis as well as understanding of pathophysiological processes. Shear wave elastography (SWE) and accompanying physical modelling methods provide valid estimates of stiffness in quasi-linear viscoelastic, isotropic tissue but suffer from limitations in assessing non-linear viscoelastic or anisotropic material, such as tendon. Indeed, mathematical modelling predicts the longitudinal shear wave velocity to be unaffected by the tensile but rather the shear viscoelasticity. Here, we employ a heuristic experimental testing approach to the problem to assess the most important potential confounders, namely tendon mass density and diameter, and to investigate associations between tendon tensile viscoelasticity with shear wave descriptors. Small oscillatory testing of animal flexor tendons at two baseline stress levels over a large frequency range comprehensively characterized tensile viscoelastic behavior. A broad set of shear wave descriptors was retrieved on the unloaded tendon based on high frame-rate plane wave ultrasound after applying an acoustic deformation impulse. Tensile modulus and strain energy dissipation increased logarithmically and linearly, respectively, with the frequency of the applied strain. Shear wave descriptors were mostly unaffected by tendon diameter but were highly sensitive to tendon mass density. Shear wave group and phase velocity showed no association with tensile elasticity or strain rate-stiffening but did show an association with tensile strain energy dissipation. The longitudinal shear wave velocity may not characterize tensile elasticity but rather tensile viscous properties of transversely isotropic collagenous tissues.
Collapse
Affiliation(s)
- Tobias Götschi
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland.
| | | | - Jean-Luc Gennisson
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401 ORSAY, France
| | - Jess G Snedeker
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Switzerland; Institute for Biomechanics, ETH Zurich, Switzerland
| |
Collapse
|
7
|
Jayachandran B, Parvin TN, Alam MM, Chanda K, MM B. Insights on Chemical Crosslinking Strategies for Proteins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238124. [PMID: 36500216 PMCID: PMC9738610 DOI: 10.3390/molecules27238124] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022]
Abstract
Crosslinking of proteins has gained immense significance in the fabrication of biomaterials for various health care applications. Various novel chemical-based strategies are being continuously developed for intra-/inter-molecular crosslinking of proteins to create a network/matrix with desired mechanical/functional properties without imparting toxicity to the host system. Many materials that are used in biomedical and food packaging industries are prepared by chemical means of crosslinking the proteins, besides the physical or enzymatic means of crosslinking. Such chemical methods utilize the chemical compounds or crosslinkers available from natural sources or synthetically generated with the ability to form covalent/non-covalent bonds with proteins. Such linkages are possible with chemicals like carbodiimides/epoxides, while photo-induced novel chemical crosslinkers are also available. In this review, we have discussed different protein crosslinking strategies under chemical methods, along with the corresponding crosslinking reactions/conditions, material properties and significant applications.
Collapse
Affiliation(s)
- Brindha Jayachandran
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai 600127, India
| | - Thansila N Parvin
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai 600127, India
| | - M Mujahid Alam
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India
- Correspondence: (K.C.); (B.M.)
| | - Balamurali MM
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Vandalur-Kelambakkam Road, Chennai 600127, India
- Correspondence: (K.C.); (B.M.)
| |
Collapse
|
8
|
Joo SB, Gulfam M, Jo SH, Jo YJ, Vu TT, Park SH, Gal YS, Lim KT. Fast Absorbent and Highly Bioorthogonal Hydrogels Developed by IEDDA Click Reaction for Drug Delivery Application. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7128. [PMID: 36295196 PMCID: PMC9608709 DOI: 10.3390/ma15207128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In this work, we engineered highly biocompatible and fast absorbent injectable hydrogels derived from norbornene (Nb)-functionalized hyaluronic acid (HA-Nb) and a water-soluble cross-linker possessing tetrazine (Tz) functional groups on both ends of polyethylene glycol (PEG-DTz). The by-product (nitrogen gas) of the inverse electron demand Diels−Alder (IEDDA) cross-linking reaction carved porosity in the resulting hydrogels. By varying the molar ratio of HA-Nb and PEG-DTz (Nb:Tz = 10:10, 10:5, 10:2.5), we were able to formulate hydrogels with tunable porosity, gelation time, mechanical strength, and swelling ratios. The hydrogels formed quickly (gelation time < 100 s), offering a possibility to use them as an injectable drug delivery system. The experimental data showed rapid swelling and a high swelling ratio thanks to the existence of PEG chains and highly porous architectures of the hydrogels. The hydrogels were able to encapsulate a high amount of curcumin (~99%) and released the encapsulated curcumin in a temporal pattern. The PEG-DTz cross-linker, HA-Nb, and the resulting hydrogels showed no cytotoxicity in HEK-293 cells. These fast absorbent hydrogels with excellent biocompatibility fabricated from HA-Nb and the IEDDA click-able cross-linker could be promising drug carriers for injectable drug delivery applications.
Collapse
Affiliation(s)
- Soo-Bin Joo
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Korea
| | - Muhammad Gulfam
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Korea
| | - Sung-Han Jo
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Yi-Jun Jo
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Korea
| | - Trung Thang Vu
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Korea
| | - Sang-Hyug Park
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Yeong-Soon Gal
- Department of Fire Safety, Kyungil University, Gyeongsan 38428, Korea
| | - Kwon Taek Lim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
9
|
Nguyen PK, Jana A, Huang C, Grafton A, Holt I, Giacomelli M, Kuo CK. Tendon mechanical properties are enhanced via recombinant lysyl oxidase treatment. Front Bioeng Biotechnol 2022; 10:945639. [PMID: 35992359 PMCID: PMC9389157 DOI: 10.3389/fbioe.2022.945639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Tendon mechanical properties are significantly compromised in adult tendon injuries, tendon-related birth defects, and connective tissue disorders. Unfortunately, there currently is no effective treatment to restore native tendon mechanical properties after postnatal tendon injury or abnormal fetal development. Approaches to promote crosslinking of extracellular matrix components in tendon have been proposed to enhance insufficient mechanical properties of fibrotic tendon after healing. However, these crosslinking agents, which are not naturally present in the body, are associated with toxicity and significant reductions in metabolic activity at concentrations that enhance tendon mechanical properties. In contrast, we propose that an effective method to restore tendon mechanical properties would be to promote lysyl oxidase (LOX)-mediated collagen crosslinking in tendon during adult tissue healing or fetal tissue development. LOX is naturally occurring in the body, and we previously demonstrated LOX-mediated collagen crosslinking to be a critical regulator of tendon mechanical properties during new tissue formation. In this study, we examined the effects of recombinant LOX treatment on tendon at different stages of development. We found that recombinant LOX treatment significantly enhanced tensile and nanoscale tendon mechanical properties without affecting cell viability or collagen content, density, and maturity. Interestingly, both tendon elastic modulus and LOX-mediated collagen crosslink density plateaued at higher recombinant LOX concentrations, which may have been due to limited availability of adjacent lysine residues that are near enough to be crosslinked together. The plateau in crosslink density at higher concentrations of recombinant LOX treatments may have implications for preventing over-stiffening of tendon, though this requires further investigation. These findings demonstrate the exciting potential for a LOX-based therapeutic to enhance tendon mechanical properties via a naturally occurring crosslinking mechanism, which could have tremendous implications for an estimated 32 million acute and chronic tendon and ligament injuries each year in the U.S.
Collapse
Affiliation(s)
- Phong K. Nguyen
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Aniket Jana
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Chi Huang
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Alison Grafton
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Iverson Holt
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Michael Giacomelli
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Catherine K. Kuo
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Maeda E, Kawamura R, Suzuki T, Matsumoto T. Rapid fabrication of tendon-like collagen tissue via simultaneous fibre alignment and intermolecular cross-linking under mechanical loading. Biomed Mater 2022; 17. [PMID: 35609612 DOI: 10.1088/1748-605x/ac7305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/24/2022] [Indexed: 11/12/2022]
Abstract
Artificial tissue replacement is a promising strategy for better healing outcomes for tendon and ligament injuries, due to the very limited self-regeneration capacity of these tissues in mammals, including humans. Because clinically available synthetic and biological scaffolds for tendon repair have performed more poorly than autografts, both biological and mechanical compatibility need to be improved. Here we propose a rapid fabrication method for tendon-like structure from collagen hydrogel, simultaneously achieving collagen fibre alignment and intermolecular cross-linking. Collagen gel, 24 h after polymerization, was subjected to mechanical loading in the presence of the chemical cross-linker, genipin, for 24 or 48 h. Mechanical loading during gel incubation oriented collagen fibres in the loading direction and made chemical cross-linking highly effective in a loading magnitude-dependent manner. Gel incubated with 4-g loading in the presence of genipin for 48 h possessed tensile strength of 4 MPa and tangent modulus of 60 MPa, respectively, which could fulfill the minimum biomechanical requirement for artificial tendon. Although mechanical properties of gels fabricated using the present method can be improved by using a larger amount of collagen in the starting material and through optimisation of mechanical loading and cross-linking, the method is a simple and effective for producing highly aligned collagen fibrils with excellent mechanical properties.
Collapse
Affiliation(s)
- Eijiro Maeda
- Graduate School of Engineering, Department of Mechanical Systems Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, JAPAN
| | - Ryota Kawamura
- Graduate School of Engineering, Department of Mechanical Systems Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8603, JAPAN
| | - Takashi Suzuki
- Graduate School of Engineering, Department of Mechanical Systems Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8603, JAPAN
| | - Takeo Matsumoto
- Biomechanics Laboratory, Dept of Mechanical Systems Engineering, Nagoya University Graduate School of Engineering School of Engineering, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, JAPAN
| |
Collapse
|
11
|
Calejo I, Labrador‐Rached CJ, Gomez‐Florit M, Docheva D, Reis RL, Domingues RMA, Gomes ME. Bioengineered 3D Living Fibers as In Vitro Human Tissue Models of Tendon Physiology and Pathology. Adv Healthc Mater 2022; 11:e2102863. [PMID: 35596614 DOI: 10.1002/adhm.202102863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Clinically relevant in vitro models of human tissue's health and disease are urgently needed for a better understanding of biological mechanisms essential for the development of novel therapies. Herein, physiological (healthy) and pathological (disease) tendon states are bioengineered by coupling the biological signaling of platelet lysate components with controlled 3D architectures of electrospun microfibers to drive the fate of human tendon cells in different composite living fibers (CLFs). In the CLFs-healthy model, tendon cells adopt a high cytoskeleton alignment and elongation, express tendon-related markers (scleraxis, tenomodulin, and mohawk) and deposit a dense tenogenic matrix. In contrast, cell crowding with low preferential orientation, high matrix deposition, and phenotypic drift leading to increased expression of nontendon related and fibrotic markers, are characteristics of the CLFs-diseased model. This diseased-like profile, also reflected in the increase of COL3/COL1 ratio, is further evident by the imbalance between matrix remodeling and degradation effectors, characteristic of tendinopathy. In summary, microengineered 3D in vitro models of human tendon healthy and diseased states are successfully fabricated. Most importantly, these innovative and versatile microphysiological models offer major advantages over currently used systems, holding promise for drugs screening and development of new therapies.
Collapse
Affiliation(s)
- Isabel Calejo
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Claudia J. Labrador‐Rached
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Manuel Gomez‐Florit
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Denitsa Docheva
- Experimental Trauma Surgery Department of Trauma Surgery University Hospital Regensburg Franz‐Josef Strauss‐Allee 11 93053 Regensburg Germany
| | - Rui L. Reis
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Rui M. A. Domingues
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| | - Manuela E. Gomes
- 3B's Research Group i3Bs—Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
12
|
Karimi F, Biazar E, Heidari-Keshel S, Pourjabbar B, Khataminezhad MR, Shirinbakhsh S, Zolfaghari-Moghaddam SY. Platelet-rich fibrin (PRF) gel modified by a carbodiimide crosslinker for tissue regeneration. RSC Adv 2022; 12:13472-13479. [PMID: 35527730 PMCID: PMC9069288 DOI: 10.1039/d2ra00985d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/14/2022] [Indexed: 11/21/2022] Open
Abstract
Platelet-rich fibrin (PRF) as a rich source of effective growth factors has been used as a scaffold in tissue regeneration. It is known that PRF exhibits rapid degradability against enzymes, which should be decreased using crosslinking agents to reduce the release rate of growth factors and increase the effectiveness of tissue regeneration. In this study, a carbodiimide crosslinker with different concentrations (0.01%, 0.05%, 1%, and 2%) was used to modify and improve the properties of PRF gel. The crosslinked gels were evaluated with analyses such as SEM, swelling, degradability, mechanical strength, release test, cytotoxicity, and cell adhesion. The results showed that with increasing crosslinker concentration, the morphology of the fiber structure changes drastically, the swelling rate decreases from 300% (control) to 160% for the crosslinked gel, the degradation time for the control sample increases from 8 days to more than two weeks for the crosslinked gel, and the Young's modulus increases from 0.15 MPa (control) to 0.61 MPa for the crosslinked samples. Growth factors also showed lower release with increasing crosslinking ratio. Cytotoxicity assays demonstrated that by increasing the crosslinker concentration to 1% w/v, no cytotoxicity was observed. Cellular studies with DAPI staining showed that the cells penetrated well into the gels and were well distributed, especially in gels with lower crosslinker concentrations. In addition, the modified PRF gel can be used as a scaffold for tissue regeneration.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Tissue Engineering Group, Department of Biomedical Engineering, Islamic Azad University Tonekabon Branch Tonekabon Iran +00981154271105
| | - Esmaeil Biazar
- Tissue Engineering Group, Department of Biomedical Engineering, Islamic Azad University Tonekabon Branch Tonekabon Iran +00981154271105
| | - Saeed Heidari-Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | | | - Shervin Shirinbakhsh
- Tissue Engineering Group, Department of Biomedical Engineering, Islamic Azad University Tonekabon Branch Tonekabon Iran +00981154271105
| | | |
Collapse
|
13
|
Sarvari R, Keyhanvar P, Agbolaghi S, Roshangar L, Bahremani E, Keyhanvar N, Haghdoost M, Keshel SH, Taghikhani A, Firouzi N, Valizadeh A, Hamedi E, Nouri M. A comprehensive review on methods for promotion of mechanical features and biodegradation rate in amniotic membrane scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:32. [PMID: 35267104 PMCID: PMC8913518 DOI: 10.1007/s10856-021-06570-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/07/2021] [Indexed: 06/14/2023]
Abstract
Amniotic membrane (AM) is a biological tissue that surrounds the fetus in the mother's womb. It has pluripotent cells, immune modulators, collagen, cytokines with anti-fibrotic and anti-inflammatory effect, matrix proteins, and growth factors. In spite of the biological characteristics, some results have been released in preventing the adhesion on traumatized surfaces. Application of the AM as a scaffold is limited due to its low biomechanical resistance and rapid biodegradation. Therefore, for using the AM during surgery, its modification by different methods such as cross-linking of the membrane collagen is necessary, because the cross-linking is an effective way to reduce the rate of biodegradation of the biological materials. In addition, their cross-linking is likely an efficient way to increase the tensile properties of the material, so that they can be easily handled or sutured. In this regard, various methods related to cross-linking of the AM subsuming the composite materials, physical cross-linking, and chemical cross-linking with the glutraldehyde, carbodiimide, genipin, aluminum sulfate, etc. are reviewed along with its advantages and disadvantages in the current work.
Collapse
Affiliation(s)
- Raana Sarvari
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Peyman Keyhanvar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Convergence of Knowledge, Technology and Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
- ARTAN1100 Startup Accelerator, Tabriz, Iran.
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, P.O. BOX: 5375171379, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Bahremani
- Alavi Ophthalmological Treatment and Educational Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Keyhanvar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Gene Yakhteh Keyhan (Genik) Company (Ltd), Pharmaceutical Biotechnology Incubator, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Haghdoost
- Department of Infectious Diseases, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Taghikhani
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nima Firouzi
- Stem Cell and Tissue Engineering Research Laboratory, Chemical Engineering Faculty, Sahand University of Technology, P.O.BOX:51335-1996, Tabriz, Iran
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene, OR, 97403, USA
| | - Amir Valizadeh
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Hamedi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Scialla S, Gullotta F, Izzo D, Palazzo B, Scalera F, Martin I, Sannino A, Gervaso F. Genipin-crosslinked collagen scaffolds inducing chondrogenesis: a mechanical and biological characterization. J Biomed Mater Res A 2022; 110:1372-1385. [PMID: 35262240 DOI: 10.1002/jbm.a.37379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/14/2022]
Abstract
Articular cartilage degeneration is still an unsolved issue owing to its weak repairing capabilities, which usually result in fibrocartilage tissue formation. This fibrous tissue lacks of structural and bio-mechanical properties, degrading over time. Currently, arthroscopic techniques and autologous transplantation are the most used clinical procedures. However, rather than restoring cartilage integrity, these methods only postpone further cartilage deterioration. Therefore, tissue engineering strategies aimed at selecting scaffolds that remarkably support the chondrogenic differentiation of human mesenchymal stem cells (hMSCs) could represent a promising solution, but they are still challenging for researchers. In this study, the influence of two different genipin (Gp) crosslinking routes on collagen (Coll)-based scaffolds in terms of hMSCs chondrogenic differentiation and biomechanical performances was investigated. Three-dimensional (3D) porous Coll scaffolds were fabricated by freeze-drying techniques and were crosslinked with Gp following a "two-step" and an in "bulk" procedure, in order to increase the physico-mechanical stability of the structure. Chondrogenic differentiation efficacy of hMSCs and biomechanical behavior under compression forces through unconfined stress-strain tests were assessed. Coll/Gp scaffolds revealed an isotropic and highly homogeneous pore distribution along with an increase in the stiffness, also supported by the increase in the Coll denaturation temperature (Td = 57-63°C) and a significant amount of Coll and GAG deposition during the 3 weeks of chondrogenic culture. In particular, the presence of Gp in "bulk" led to a more uniform and homogenous chondral-like matrix deposition by hMSCs if compared to the results obtained from the Gp "two-step" functionalization procedure.
Collapse
Affiliation(s)
- Stefania Scialla
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,Institute of Polymers, Composites and Biomaterials - National Research Council, Naples, Italy
| | - Fabiana Gullotta
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniela Izzo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Barbara Palazzo
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,ENEA, Division for Sustainable Materials - Research Centre of Brindisi, Brindisi, Italy
| | - Francesca Scalera
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,CNR Nanotec - Institute of Nanotechnology, Lecce, Italy
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Lecce, Italy
| | - Francesca Gervaso
- Department of Engineering for Innovation, University of Salento, Lecce, Italy.,CNR Nanotec - Institute of Nanotechnology, Lecce, Italy
| |
Collapse
|
15
|
Mechanically Tunable Extracellular Matrix of Genipin Crosslinked Collagen and Its Effect on Endothelial Function. APPLIED SCIENCES-BASEL 2022; 12:2401. [PMID: 36713025 PMCID: PMC9881191 DOI: 10.3390/app12052401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mechanical rigidity of a matrix, to which cells adhere, plays a significant role in regulating phenotypic cellular behaviors such as spreading and junction formation because vascular cells sense and respond to changes in their mechanical environment. Controlling mechanical properties of extracellular matrix by using a crosslinker is important for cell and tissue mechanobiology. In this paper, we explored genipin, a natural plant extract, to crosslink collagen-I in order to enhance mechanical properties with low cytotoxicity. We characterized the effects of genipin concentration on the mechanical properties, color change, degradation, structure, cell viability, and endothelial function such as transendothelial electrical resistance (TEER). Through the analysis of both material properties and endothelial response, it was found that genipin-based glycation caused an increase in viscoelastic moduli in collagen hydrogels, as well as increased fiber density in their structural morphology. Endothelial cells were found to form better barriers, express higher levels of tight junction proteins, and exhibit better adhesion on stiffer matrices.
Collapse
|
16
|
Furlani F, Montanari M, Sangiorgi N, Saracino E, Campodoni E, Sanson A, Benfenati V, Tampieri A, Panseri S, Sandri M. Electroconductive and injectable hydrogels based on gelatin and PEDOT:PSS for mini-invasive approaches in nervous tissue regeneration. Biomater Sci 2022; 10:2040-2053. [DOI: 10.1039/d2bm00116k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work describes the development of electroconductive hydrogels as injectable matrices for neural tissue regeneration by exploiting a biocompatible conductive polymer – i.e. poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) – combined with a biomimetic...
Collapse
|
17
|
Wei SY, Chen TH, Kao FS, Hsu YJ, Chen YC. Strategy for improving cell-mediated vascularized soft tissue formation in a hydrogen peroxide-triggered chemically-crosslinked hydrogel. J Tissue Eng 2022; 13:20417314221084096. [PMID: 35296029 PMCID: PMC8918759 DOI: 10.1177/20417314221084096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/13/2022] [Indexed: 12/03/2022] Open
Abstract
The physically-crosslinked collagen hydrogels can provide suitable microenvironments for cell-based functional vascular network formation due to their biodegradability, biocompatibility, and good diffusion properties. However, encapsulation of cells into collagen hydrogels results in extensive contraction and rapid degradation of hydrogels, an effect known from their utilization as a pre-vascularized graft in vivo. Various types of chemically-crosslinked collagen-based hydrogels have been successfully synthesized to decrease volume contraction, retard the degradation rate, and increase mechanical tunability. However, these hydrogels failed to form vascularized tissues with uniformly distributed microvessels in vivo. Here, the enzymatically chemically-crosslinked collagen-Phenolic hydrogel was used as a model to determine and overcome the difficulties in engineering vascular networks. Results showed that a longer duration of inflammation and excessive levels of hydrogen peroxide limited the capability for blood vessel forming cells-mediated vasculature formation in vivo. Lowering the unreacted amount of crosslinkers reduced the densities of infiltrating host myeloid cells by half on days 2-4 after implantation, but blood vessels remained at low density and were mainly located on the edge of the implanted constructs. Co-implantation of a designed spacer with cell-laden hydrogel maintained the structural integrity of the hydrogel and increased the degree of hypoxia in embedded cells. These effects resulted in a two-fold increase in the density of perfused blood vessels in the hydrogel. Results agreed with computer-based simulations. Collectively, our findings suggest that simultaneous reduction of the crosslinker-induced host immune response and increase in hypoxia in hydrogen peroxide-triggered chemically-crosslinked hydrogels can effectively improve the formation of cell-mediated functional vascular networks.
Collapse
Affiliation(s)
- Shih-Yen Wei
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Tzu-Hsuan Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Feng-Sheng Kao
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Jung Hsu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
18
|
Condi Mainardi J, Rezwan K, Maas M. Genipin-crosslinked chitosan/alginate/alumina nanocomposite gels for 3D bioprinting. Bioprocess Biosyst Eng 2022; 45:171-185. [PMID: 34664115 PMCID: PMC8732963 DOI: 10.1007/s00449-021-02650-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/30/2021] [Indexed: 01/15/2023]
Abstract
Immobilizing microorganisms inside 3D printed semi-permeable substrates can be desirable for biotechnological processes since it simplifies product separation and purification, reducing costs, and processing time. To this end, we developed a strategy for synthesizing a feedstock suitable for 3D bioprinting of mechanically rigid and insoluble materials with embedded living bacteria. The processing route is based on a highly particle-filled alumina/chitosan nanocomposite gel which is reinforced by (a) electrostatic interactions with alginate and (b) covalent binding between the chitosan molecules with the mild gelation agent genipin. To analyze network formation and material properties, we characterized the rheological properties and printability of the feedstock gel. Stability measurements showed that the genipin-crosslinked chitosan/alginate/alumina gels did not dissolve in PBS, NaOH, or HCl after 60 days of incubation. Alginate-containing gels also showed less swelling in water than gels without alginate. Furthermore, E. coli bacteria were embedded in the nanocomposites and we analyzed the influence of the individual bioink components as well as of the printing process on bacterial viability. Here, the addition of alginate was necessary to maintain the effective viability of the embedded bacteria, while samples without alginate showed no bacterial viability. The experimental results demonstrate the potential of this approach for producing macroscopic bioactive materials with complex 3D geometries as a platform for novel applications in bioprocessing.
Collapse
Affiliation(s)
- Jessica Condi Mainardi
- Keramische Werkstoffe und Bauteile/Advanced Ceramics, Universität Bremen, Am Biologischen Garten 2, IW 3, Raum 2140, 28359 Bremen, Germany
| | - Kurosch Rezwan
- Keramische Werkstoffe und Bauteile/Advanced Ceramics, Universität Bremen, Am Biologischen Garten 2, IW 3, Raum 2140, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Am Fallturm 1, 28359 Bremen, Germany
| | - Michael Maas
- Keramische Werkstoffe und Bauteile/Advanced Ceramics, Universität Bremen, Am Biologischen Garten 2, IW 3, Raum 2140, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, Am Fallturm 1, 28359 Bremen, Germany
| |
Collapse
|
19
|
Melo P, Montalbano G, Fiorilli S, Vitale-Brovarone C. 3D Printing in Alginic Acid Bath of In-Situ Crosslinked Collagen Composite Scaffolds. MATERIALS 2021; 14:ma14216720. [PMID: 34772251 PMCID: PMC8588345 DOI: 10.3390/ma14216720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
Abstract
Bone-tissue regeneration is a growing field, where nanostructured-bioactive materials are designed to replicate the natural properties of the target tissue, and then are processed with technologies such as 3D printing, into constructs that mimic its natural architecture. Type I bovine collagen formulations, containing functional nanoparticles (enriched with therapeutic ions or biomolecules) or nanohydroxyapatite, are considered highly promising, and can be printed using support baths. These baths ensure an accurate deposition of the material, nonetheless their full removal post-printing can be difficult, in addition to undesired reactions with the crosslinking agents often used to improve the final structural integrity of the scaffolds. Such issues lead to partial collapse of the printed constructs and loss of geometrical definition. To overcome these limitations, this work presents a new alternative approach, which consists of adding a suitable concentration of crosslinking agent to the printing formulations to promote the in-situ crosslinking of the constructs prior to the removal of the support bath. To this aim, genipin, chosen as crosslinking agent, was added (0.1 wt.%) to collagen-based biomaterial inks (containing either 38 wt.% mesoporous bioactive glasses or 65 wt.% nanohydroxyapatite), to trigger the crosslinking of collagen and improve the stability of the 3D printed scaffolds in the post-processing step. Moreover, to support the material deposition, a 15 wt.% alginic acid solution was used as a bath, which proved to sustain the printed structures and was also easily removable, allowing for the stable processing of high-resolution geometries.
Collapse
Affiliation(s)
- Priscila Melo
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (P.M.); (G.M.); (C.V.-B.)
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Giorgia Montalbano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (P.M.); (G.M.); (C.V.-B.)
| | - Sonia Fiorilli
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (P.M.); (G.M.); (C.V.-B.)
- Correspondence:
| | - Chiara Vitale-Brovarone
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy; (P.M.); (G.M.); (C.V.-B.)
| |
Collapse
|
20
|
Cerqueni G, Scalzone A, Licini C, Gentile P, Mattioli-Belmonte M. Insights into oxidative stress in bone tissue and novel challenges for biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112433. [PMID: 34702518 DOI: 10.1016/j.msec.2021.112433] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/28/2022]
Abstract
The presence of Reactive Oxygen Species (ROS) in bone can influence resident cells behaviour as well as the extra-cellular matrix composition and the tissue architecture. Aging, in addition to excessive overloads, unbalanced diet, smoking, predisposing genetic factors, lead to an increase of ROS and, if it is accompanied with an inappropriate production of scavengers, promotes the generation of oxidative stress that encourages bone catabolism. Furthermore, bone injuries can be triggered by numerous events such as road and sports accidents or tumour resection. Although bone tissue possesses a well-known repair and regeneration capacity, these mechanisms are inefficient in repairing large size defects and bone grafts are often necessary. ROS play a fundamental role in response after the implant introduction and can influence its success. This review provides insights on the mechanisms of oxidative stress generated by an implant in vivo and suitable ways for its modulation. The local delivery of active molecules, such as polyphenols, enhanced bone biomaterial integration evidencing that the management of the oxidative stress is a target for the effectiveness of an implant. Polyphenols have been widely used in medicine for cardiovascular, neurodegenerative, bone disorders and cancer, thanks to their antioxidant and anti-inflammatory properties. In addition, the perspective of new smart biomaterials and molecular medicine for the oxidative stress modulation in a programmable way, by the use of ROS responsive materials or by the targeting of selective molecular pathways involved in ROS generation, will be analysed and discussed critically.
Collapse
Affiliation(s)
- Giorgia Cerqueni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, Ancona 60126, Italy
| | - Annachiara Scalzone
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Caterina Licini
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, Ancona 60126, Italy; Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 204, 10129 Torino, Italy
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Via Tronto 10/a, Ancona 60126, Italy.
| |
Collapse
|
21
|
Divya Nataraj, Saripalla DD, Kamath A, Aramwit P, Reddy N. Extraction and Characterization of Proteins from Castor Oil Meal for Medical Applications. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21040064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Taskin MB, Tylek T, Blum C, Böhm C, Wiesbeck C, Groll J. Inducing Immunomodulatory Effects on Human Macrophages by Multifunctional NCO-sP(EO- stat-PO)/Gelatin Hydrogel Nanofibers. ACS Biomater Sci Eng 2021; 7:3166-3178. [PMID: 34114792 DOI: 10.1021/acsbiomaterials.1c00232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endowing materials and scaffolds with immunomodulatory properties has evolved into a very active field of research. However, combining such effects with multifunctionality regarding cell adhesion and manipulation is still challenging due to the intricate nature of cell-substrate interactions that require fine-tuning of scaffold properties. Here, we reported electrospinning of a well-known biopolymer, gelatin, together with six-arm star-shaped poly(ethylene oxide-stat-propylene oxide) prepolymer with isocyanate end groups (NCO-sP(EO-stat-PO)) as a reactive prepolymer cross-linker. Covalent coupling of two components during and after processing yielded a network of hydrogel fibers that was remarkably stable under aqueous and also proteolytic conditions without the need for extra cross-linking, with a significant increase in stability with increasing NCO-sP(EO-stat-PO) content. When seeded with human macrophages, cells adhered and spread on the fibers and were found highly viable after 7 days of culture across all scaffolds. Furthermore, hybrid fibrous meshes upregulated the expression of a prohealing gene, CD206, while downregulating proinflammatory genes, IL-1β and IL-8. Markedly, NCO-sP(EO-stat-PO)-rich samples induced a significantly reduced release of proinflammatory cytokines, IL-1β, IL-6, and IL-8. Finally, we successfully conjugated IL-4 to NCO-sP(EO-stat-PO) that effectively steered macrophages into a prohealing M2 type, demonstrating additional and robust control over the immunomodulatory feature of the scaffolds.
Collapse
Affiliation(s)
- Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry at the Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, 97070 Würzburg, Germany
| | - Tina Tylek
- Department of Functional Materials in Medicine and Dentistry at the Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, 97070 Würzburg, Germany
| | - Carina Blum
- Department of Functional Materials in Medicine and Dentistry at the Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, 97070 Würzburg, Germany
| | - Christoph Böhm
- Department of Functional Materials in Medicine and Dentistry at the Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, 97070 Würzburg, Germany
| | - Christina Wiesbeck
- Department of Functional Materials in Medicine and Dentistry at the Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, 97070 Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry at the Institute of Biofabrication and Functional Materials, University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
23
|
Luo Y, Gao F, Chang R, Zhang X, Zhong J, Wen J, Wu J, Zhou T. Metabolomics based comprehensive investigation of Gardeniae Fructus induced hepatotoxicity. Food Chem Toxicol 2021; 153:112250. [PMID: 33964367 DOI: 10.1016/j.fct.2021.112250] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/14/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Gardeniae Fructus (Zhizi in Chinese, ZZ in brief), a commonly used herbal medicine, has aroused wide concern for hepatotoxicity, but the mechanism remains to be investigated. This study was aimed at investigating the mechanism of ZZ-induced liver injury in vivo and in vitro based on metabolomics and evaluating the hepatotoxicity prediction ability of the in vitro model. SD rats were administered with extracted ZZ and HepG2 cells were treated with genipin, the major hepatotoxic metabolite of ZZ. Liver, plasma, intracellular and extracellular samples were obtained for metabolomics analysis. As a result, ZZ caused plasma biochemical and liver histopathological alterations in rats, and induced purine and amino acid metabolism disorder in the liver and pyrimidine, primary bile acids, amino acid metabolism and pantothenate and CoA biosynthesis disorder in the plasma. Pyrimidine, purine, amino acid metabolism and pantothenate and CoA biosynthesis were also found to be disturbed in the genipin-treated HepG2 cells, which exhibited similarity with the result in vivo. This study comprehensively illustrates the underlying mechanism involved in ZZ-related hepatotoxicity from the aspect of metabolome, and provides evidence that identifying hepatotoxicity can be achieved in cells, representing a non-animal alternative for systemic toxicology.
Collapse
Affiliation(s)
- Yusha Luo
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Fangyuan Gao
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Ruirui Chang
- Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Xingjie Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jie Zhong
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Jun Wen
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Jianlin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao.
| | - Tingting Zhou
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
24
|
Meeremans M, Van de Walle GR, Van Vlierberghe S, De Schauwer C. The Lack of a Representative Tendinopathy Model Hampers Fundamental Mesenchymal Stem Cell Research. Front Cell Dev Biol 2021; 9:651164. [PMID: 34012963 PMCID: PMC8126669 DOI: 10.3389/fcell.2021.651164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Overuse tendon injuries are a major cause of musculoskeletal morbidity in both human and equine athletes, due to the cumulative degenerative damage. These injuries present significant challenges as the healing process often results in the formation of inferior scar tissue. The poor success with conventional therapy supports the need to search for novel treatments to restore functionality and regenerate tissue as close to native tendon as possible. Mesenchymal stem cell (MSC)-based strategies represent promising therapeutic tools for tendon repair in both human and veterinary medicine. The translation of tissue engineering strategies from basic research findings, however, into clinical use has been hampered by the limited understanding of the multifaceted MSC mechanisms of action. In vitro models serve as important biological tools to study cell behavior, bypassing the confounding factors associated with in vivo experiments. Controllable and reproducible in vitro conditions should be provided to study the MSC healing mechanisms in tendon injuries. Unfortunately, no physiologically representative tendinopathy models exist to date. A major shortcoming of most currently available in vitro tendon models is the lack of extracellular tendon matrix and vascular supply. These models often make use of synthetic biomaterials, which do not reflect the natural tendon composition. Alternatively, decellularized tendon has been applied, but it is challenging to obtain reproducible results due to its variable composition, less efficient cell seeding approaches and lack of cell encapsulation and vascularization. The current review will overview pros and cons associated with the use of different biomaterials and technologies enabling scaffold production. In addition, the characteristics of the ideal, state-of-the-art tendinopathy model will be discussed. Briefly, a representative in vitro tendinopathy model should be vascularized and mimic the hierarchical structure of the tendon matrix with elongated cells being organized in a parallel fashion and subjected to uniaxial stretching. Incorporation of mechanical stimulation, preferably uniaxial stretching may be a key element in order to obtain appropriate matrix alignment and create a pathophysiological model. Together, a thorough discussion on the current status and future directions for tendon models will enhance fundamental MSC research, accelerating translation of MSC therapies for tendon injuries from bench to bedside.
Collapse
Affiliation(s)
- Marguerite Meeremans
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Catharina De Schauwer
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
25
|
Merk M, Chirikian O, Adlhart C. 3D PCL/Gelatin/Genipin Nanofiber Sponge as Scaffold for Regenerative Medicine. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2006. [PMID: 33923751 PMCID: PMC8072632 DOI: 10.3390/ma14082006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 01/30/2023]
Abstract
Recent advancements in tissue engineering and material science have radically improved in vitro culturing platforms to more accurately replicate human tissue. However, the transition to clinical relevance has been slow in part due to the lack of biologically compatible/relevant materials. In the present study, we marry the commonly used two-dimensional (2D) technique of electrospinning and a self-assembly process to construct easily reproducible, highly porous, three-dimensional (3D) nanofiber scaffolds for various tissue engineering applications. Specimens from biologically relevant polymers polycaprolactone (PCL) and gelatin were chemically cross-linked using the naturally occurring cross-linker genipin. Potential cytotoxic effects of the scaffolds were analyzed by culturing human dermal fibroblasts (HDF) up to 23 days. The 3D PCL/gelatin/genipin scaffolds produced here resemble the complex nanofibrous architecture found in naturally occurring extracellular matrix (ECM) and exhibit physiologically relevant mechanical properties as well as excellent cell cytocompatibility. Samples cross-linked with 0.5% genipin demonstrated the highest metabolic activity and proliferation rates for HDF. Scanning electron microscopy (SEM) images indicated excellent cell adhesion and the characteristic morphological features of fibroblasts in all tested samples. The three-dimensional (3D) PCL/gelatin/genipin scaffolds produced here show great potential for various 3D tissue-engineering applications such as ex vivo cell culturing platforms, wound healing, or tissue replacement.
Collapse
Affiliation(s)
- Markus Merk
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, 8820 Wädenswil, Switzerland;
- Biomolecular Science and Engineering, University of California Santa Barbara UCSB, Santa Barbara, CA 93106, USA;
| | - Orlando Chirikian
- Biomolecular Science and Engineering, University of California Santa Barbara UCSB, Santa Barbara, CA 93106, USA;
| | - Christian Adlhart
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, 8820 Wädenswil, Switzerland;
| |
Collapse
|
26
|
Giannopoulos A, Svensson RB, Yeung CYC, Kjaer M, Magnusson SP. Effects of genipin crosslinking on mechanical cell-matrix interaction in 3D engineered tendon constructs. J Mech Behav Biomed Mater 2021; 119:104508. [PMID: 33857874 DOI: 10.1016/j.jmbbm.2021.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/18/2022]
Abstract
It is well known that cells can generate endogenous forces onto the extracellular matrix, but to what extent the mechanical properties of the matrix influences these endogenous cellular forces remains unclear. We therefore sought to quantify the influence of matrix rigidity on cell-matrix interactions by inducing cross-links using increasing concentrations of genipin (0.01-1 mM) or by blocking cross-link formation using beta-aminopropionitrile (BAPN) in engineered human tendon tissue constructs. The cell-matrix mechanics of the tendon constructs were evaluated as cell-generated tissue re-tensioning and stress-relaxation responses using a novel custom-made force monitor, which can apply and detect tensional forces in real-time in addition to mechanical failure testing. Genipin treatment had no influence on the biochemical profile (hydroxyproline, glycosaminoglycan and DNA content) of the constructs and cell viability was comparable between genipin-treated and control constructs, except at the highest genipin concentration. Endogenous re-tension after unloading was significantly decreased with increasing genipin concentrations compared to controls. Mechanical failure testing of tendon constructs showed increased (56%) peak stress at the highest genipin concentration but decreased (72%) with BAPN treatment when compared to controls. Tendon construct stiffness increased with high genipin concentrations (0.1 and 1 mM) and decreased by 70% in BAPN-treated constructs, relative to the controls. These data demonstrate that human tendon fibroblasts regulate their force exertion inversely proportional to increased cross-link capacity but did so independently of matrix stiffness. Overall, these findings support the notion of an interaction between cell force generation and cross-linking, and thus a role for this interplay in mechanical homeostasis of the tissue.
Collapse
Affiliation(s)
- A Giannopoulos
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg-Frederiksberg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark.
| | - R B Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg-Frederiksberg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - C Y C Yeung
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg-Frederiksberg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - M Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg-Frederiksberg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - S P Magnusson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg-Frederiksberg Hospital and Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Denmark; Department of Physical and Occupational Therapy, Bispebjerg-Frederiksberg Hospital, Copenhagen, Denmark
| |
Collapse
|
27
|
Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct Target Ther 2021; 6:122. [PMID: 33737507 PMCID: PMC7973744 DOI: 10.1038/s41392-021-00512-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Biomaterials have had an increasingly important role in recent decades, in biomedical device design and the development of tissue engineering solutions for cell delivery, drug delivery, device integration, tissue replacement, and more. There is an increasing trend in tissue engineering to use natural substrates, such as macromolecules native to plants and animals to improve the biocompatibility and biodegradability of delivered materials. At the same time, these materials have favourable mechanical properties and often considered to be biologically inert. More importantly, these macromolecules possess innate functions and properties due to their unique chemical composition and structure, which increase their bioactivity and therapeutic potential in a wide range of applications. While much focus has been on integrating these materials into these devices via a spectrum of cross-linking mechanisms, little attention is drawn to residual bioactivity that is often hampered during isolation, purification, and production processes. Herein, we discuss methods of initial material characterisation to determine innate bioactivity, means of material processing including cross-linking, decellularisation, and purification techniques and finally, a biological assessment of retained bioactivity of a final product. This review aims to address considerations for biomaterials design from natural polymers, through the optimisation and preservation of bioactive components that maximise the inherent bioactive potency of the substrate to promote tissue regeneration.
Collapse
Affiliation(s)
- Kieran Joyce
- School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Georgina Targa Fabra
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Yagmur Bozkurt
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
28
|
Furdella KJ, Higuchi S, Behrangzade A, Kim K, Wagner WR, Vande Geest JP. In-vivo assessment of a tissue engineered vascular graft computationally optimized for target vessel compliance. Acta Biomater 2021; 123:298-311. [PMID: 33482362 DOI: 10.1016/j.actbio.2020.12.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 11/24/2022]
Abstract
Tissue engineered vascular grafts (TEVGs) have the ability to be tuned to match a target vessel's compliance, diameter, wall thickness, and thereby prevent compliance mismatch. In this work, TEVG compliance was manipulated by computationally tuning its layered composition or by manipulating a crosslinking agent (genipin). In particular, these three acelluluar TEVGs were compared: a compliance matched graft (CMgel - high gelatin content); a hypocompliant PCL graft (HYPOpcl - high polycaprolactone content); and a hypocompliant genipin graft (HYPOgen - equivalent composition as CMgel but hypocompliant via increased genipin crosslinking). All constructs were implanted interpositionally into the abdominal aorta of 21 Sprague Dawley rats (n=7, males=11, females=10) for 28 days, imaged in-vivo using ultrasound, explanted, and assessed for remodeling using immunofluorescence and two photon excitation fluorescence imaging. Compliance matched grafts remained compliance-matched in-vivo compared to the hypocompliant grafts through 4 weeks (p<0.05). Construct degradation and cellular infiltration was increased in the CMgel and HYPOgen TEVGs. Contractile smooth muscle cell markers in the proximal anastomosis of the graft were increased in the CMgel group compared to the HYPOpcl (p=0.007) and HYPOgen grafts (p=0.04). Both hypocompliant grafts also had an increased pro-inflammatory response (increased ratio of CD163 to CD86 in the mid-axial location) compared to the CMgel group. Our results suggest that compliance matching using a computational optimization approach leads to the improved acute (28 day) remodeling of TEVGs. To the authors' knowledge, this is the first in-vivo rat study investigating TEVGs that have been computationally optimized for target vessel compliance.
Collapse
|
29
|
Significance of Crosslinking Approaches in the Development of Next Generation Hydrogels for Corneal Tissue Engineering. Pharmaceutics 2021; 13:pharmaceutics13030319. [PMID: 33671011 PMCID: PMC7997321 DOI: 10.3390/pharmaceutics13030319] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Medical conditions such as trachoma, keratoconus and Fuchs endothelial dystrophy can damage the cornea, leading to visual deterioration and blindness and necessitating a cornea transplant. Due to the shortage of donor corneas, hydrogels have been investigated as potential corneal replacements. A key factor that influences the physical and biochemical properties of these hydrogels is how they are crosslinked. In this paper, an overview is provided of different crosslinking techniques and crosslinking chemical additives that have been applied to hydrogels for the purposes of corneal tissue engineering, drug delivery or corneal repair. Factors that influence the success of a crosslinker are considered that include material composition, dosage, fabrication method, immunogenicity and toxicity. Different crosslinking techniques that have been used to develop injectable hydrogels for corneal regeneration are summarized. The limitations and future prospects of crosslinking strategies for use in corneal tissue engineering are discussed. It is demonstrated that the choice of crosslinking technique has a significant influence on the biocompatibility, mechanical properties and chemical structure of hydrogels that may be suitable for corneal tissue engineering and regenerative applications.
Collapse
|
30
|
Taskin MB, Ahmad T, Wistlich L, Meinel L, Schmitz M, Rossi A, Groll J. Bioactive Electrospun Fibers: Fabrication Strategies and a Critical Review of Surface-Sensitive Characterization and Quantification. Chem Rev 2021; 121:11194-11237. [DOI: 10.1021/acs.chemrev.0c00816] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Taufiq Ahmad
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Laura Wistlich
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry and Helmholtz Institute for RNA Based Infection Research, 97074 Würzburg, Germany
| | - Michael Schmitz
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Angela Rossi
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
31
|
Biazar E, Kamalvand M, Avani F. Recent advances in surface modification of biopolymeric nanofibrous scaffolds. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1857383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahshad Kamalvand
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Farzaneh Avani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
32
|
Siadat SM, Zamboulis DE, Thorpe CT, Ruberti JW, Connizzo BK. Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:45-103. [PMID: 34807415 DOI: 10.1007/978-3-030-80614-9_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In his Lissner Award medal lecture in 2000, Stephen Cowin asked the question: "How is a tissue built?" It is not a new question, but it remains as relevant today as it did when it was asked 20 years ago. In fact, research on the organization and development of tissue structure has been a primary focus of tendon and ligament research for over two centuries. The tendon extracellular matrix (ECM) is critical to overall tissue function; it gives the tissue its unique mechanical properties, exhibiting complex non-linear responses, viscoelasticity and flow mechanisms, excellent energy storage and fatigue resistance. This matrix also creates a unique microenvironment for resident cells, allowing cells to maintain their phenotype and translate mechanical and chemical signals into biological responses. Importantly, this architecture is constantly remodeled by local cell populations in response to changing biochemical (systemic and local disease or injury) and mechanical (exercise, disuse, and overuse) stimuli. Here, we review the current understanding of matrix remodeling throughout life, focusing on formation and assembly during the postnatal period, maintenance and homeostasis during adulthood, and changes to homeostasis in natural aging. We also discuss advances in model systems and novel tools for studying collagen and non-collagenous matrix remodeling throughout life, and finally conclude by identifying key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Danae E Zamboulis
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Brianne K Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
33
|
Alexeev D, Cui S, Grad S, Li Z, Ferguson SJ. Mechanical and biological characterization of a composite annulus fibrosus repair strategy in an endplate delamination model. JOR Spine 2020; 3:e1107. [PMID: 33392447 PMCID: PMC7770194 DOI: 10.1002/jsp2.1107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/08/2020] [Accepted: 06/21/2020] [Indexed: 12/23/2022] Open
Abstract
This study compares the mechanical response of the commonly used annulus fibrosus (AF) puncture injury model of the intervertebral disc (IVD) and a newly proposed AF failure at the endplate junction (delamination) on ex vivo bovine IVDs. Biocompatibility and mechanics of a newly developed repair strategy comprising of electrospun polycaprolactone (PCL) scaffold and fibrin-genipin (FibGen) adhesive was tested on the delamination model. The study found no significant difference in the mechanical response to compressive loading between the two models. Primary goals of the repair strategy to create a tight seal on the damage area and restore mechanical properties, while showing minimal cytotoxicity, were broadly achieved. Postrepair, the IVDs showed a significant restoration of mechanical properties compared to the injured samples for the delamination model. The FibGen glue showed a limited toxicity in the AF and produced a resilient and mechanically stable seal on the damaged area.
Collapse
Affiliation(s)
| | - Shangbin Cui
- AO Research Institute DavosDavosSwitzerland
- The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Sibylle Grad
- ETH Zürich, Institute for BiomechanicsZürichSwitzerland
- AO Research Institute DavosDavosSwitzerland
| | - Zhen Li
- AO Research Institute DavosDavosSwitzerland
| | | |
Collapse
|
34
|
Fauzi MB, Rashidbenam Z, Bin Saim A, Binti Hj Idrus R. Preliminary Study of In Vitro Three-Dimensional Skin Model Using an Ovine Collagen Type I Sponge Seeded with Co-Culture Skin Cells: Submerged versus Air-Liquid Interface Conditions. Polymers (Basel) 2020; 12:polym12122784. [PMID: 33255581 PMCID: PMC7760328 DOI: 10.3390/polym12122784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) in vitro skin models have been widely used for cosmeceutical and pharmaceutical applications aiming to reduce animal use in experiment. This study investigate capability of ovine tendon collagen type I (OTC-I) sponge suitable platform for a 3D in vitro skin model using co-cultured skin cells (CC) containing human epidermal keratinocytes (HEK) and human dermal fibroblasts (HDF) under submerged (SM) and air-liquid interface (ALI) conditions. Briefly, the extracted OTC-I was freeze-dried and crosslinked with genipin (OTC-I_GNP) and carbodiimide (OTC-I_EDC). The gross appearance, physico-chemical characteristics, biocompatibility and growth profile of seeded skin cells were assessed. The light brown and white appearance for the OTC-I_GNP scaffold and other groups were observed, respectively. The OTC-I_GNP scaffold demonstrated the highest swelling ratio (~1885%) and water uptake (94.96 ± 0.14%). The Fourier transformation infrared demonstrated amide A, B and I, II and III which represent collagen type I. The microstructure of all fabricated sponges presented a similar surface roughness with the presence of visible collagen fibers and a heterogenous porous structure. The OTC-I_EDC scaffold was more toxic and showed the lowest cell attachment and proliferation as compared to other groups. The micrographic evaluation revealed that CC potentially formed the epidermal- and dermal-like layers in both SM and ALI that prominently observed with OTC-I_GNP compared to others. In conclusion, these results suggest that OTC_GNP could be used as a 3D in vitro skin model under ALI microenvironment.
Collapse
Affiliation(s)
- Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Z.R.); (R.B.H.I.)
- Correspondence: ; Tel.: +603-91457670
| | - Zahra Rashidbenam
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Z.R.); (R.B.H.I.)
| | - Aminuddin Bin Saim
- Ear, Nose & Throat Consultant Clinic, Ampang Puteri Specialist Hospital, Taman Dato Ahmad Razali, Selangor 68000, Malaysia;
| | - Ruszymah Binti Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Z.R.); (R.B.H.I.)
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
35
|
Rivera-Delgado E, Learn GD, Kizek DJ, Kashyap T, Lai EJ, von Recum HA. A Polymeric Delivery System Enables Controlled Release of Genipin for Spatially-Confined In Situ Crosslinking of Injured Connective Tissues. J Pharm Sci 2020; 110:815-823. [PMID: 33190799 DOI: 10.1016/j.xphs.2020.09.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
An emerging approach toward repair of connective tissues applies exogenous crosslinkers to mechanically augment injured structures in vivo. One crosslinker that has been explored for this purpose is the plant-derived small molecule genipin. However, genipin's high reactivity to primary amines in proteins, small size, and high diffusion coefficient necessitate localizing and controlling its delivery to avoid off-target or adverse effects. In this study, genipin-loaded polymers were evaluated for sustained local administration. Insoluble polymers comprising subunits of α-, β-, or γ-cyclodextrin, cyclic oligosaccharides possessing increasing cavity sizes, were compared to polymers comprising subunits of the non-cyclic polysaccharide dextran. Polymers made from β-cyclodextrin showed prolonged genipin release for over ten times longer than polymers made from α- or γ-cyclodextrins or dextran, indicating that genipin possesses molecular affinity for the β-cyclodextrin cavity. Modeling of complexation between genipin and cyclodextrin hosts supported this finding. Genipin released from all polymers was confirmed to be functional by exogenous collagen crosslinking through fluorometric and mechanical readouts. Co-incubation of genipin-loaded polymers with bovine tendon explants showed genipin crosslink-mediated coloration that was confined to the sites of exposure. Altogether, results indicate that host-guest interactions within a polymeric delivery vehicle can help to control and confine genipin release.
Collapse
Affiliation(s)
| | - Greg D Learn
- Department of Biomedical Engineering, Case Western Reserve University
| | - Dominic J Kizek
- Department of Biomedical Engineering, Case Western Reserve University
| | - Tejas Kashyap
- Department of Biomedical Engineering, Case Western Reserve University
| | - Emerson J Lai
- Department of Biomedical Engineering, Case Western Reserve University
| | - Horst A von Recum
- Department of Biomedical Engineering, Case Western Reserve University.
| |
Collapse
|
36
|
González-Quevedo D, Díaz-Ramos M, Chato-Astrain J, Sánchez-Porras D, Tamimi I, Campos A, Campos F, Carriel V. Improving the regenerative microenvironment during tendon healing by using nanostructured fibrin/agarose-based hydrogels in a rat Achilles tendon injury model. Bone Joint J 2020; 102-B:1095-1106. [PMID: 32731821 DOI: 10.1302/0301-620x.102b8.bjj-2019-1143.r2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIMS Achilles tendon injuries are a frequent problem in orthopaedic surgery due to their limited healing capacity and the controversy surrounding surgical treatment. In recent years, tissue engineering research has focused on the development of biomaterials to improve this healing process. The aim of this study was to analyze the effect of tendon augmentation with a nanostructured fibrin-agarose hydrogel (NFAH) or genipin cross-linked nanostructured fibrin-agarose hydrogel (GP-NFAH), on the healing process of the Achilles tendon in rats. METHODS NFAH, GP-NFAH, and MatriDerm (control) scaffolds were generated (five in each group). A biomechanical and cell-biomaterial-interaction characterization of these biomaterials was then performed: Live/Dead Cell Viability Assay, water-soluble tetrazolium salt-1 (WST-1) assay, and DNA-released after 48 hours. Additionally, a complete section of the left Achilles tendon was made in 24 Wistar rats. Animals were separated into four treatment groups (six in each group): direct repair (Control), tendon repair with MatriDerm, or NFAH, or GP-NFAH. Animals were euthanized for further histological analyses after four or eight weeks post-surgery. The Achilles tendons were harvested and a histopathological analysis was performed. RESULTS Tensile test revealed that NFAH and GP-NFAH had significantly higher overall biomechanical properties compared with MatriDerm. Moreover, biological studies confirmed a high cell viability in all biomaterials, especially in NFAH. In addition, in vivo evaluation of repaired tendons using biomaterials (NFAH, GP-NFAH, and MatriDerm) resulted in better organization of the collagen fibres and cell alignment without clinical complications than direct repair, with a better histological score in GP-NFAH. CONCLUSION In this animal model we demonstrated that NFAH and GP-NFAH had the potential to improve tendon healing following a surgical repair. However, future studies are needed to determine the clinical usefulness of these engineered strategies. Cite this article: Bone Joint J 2020;102-B(8):1095-1106.
Collapse
Affiliation(s)
- David González-Quevedo
- Department of Orthopedic Surgery and Traumatology, Regional University Hospital of Málaga, Málaga, Spain.,University of Granada, Granada, Spain
| | - Miriam Díaz-Ramos
- Department of Histology (Tissue Engineering Group), University of Granada, Granada, Spain
| | - Jesús Chato-Astrain
- University of Granada, Granada, Spain.,Department of Histology (Tissue Engineering Group), University of Granada, Granada, Spain
| | - David Sánchez-Porras
- Department of Histology (Tissue Engineering Group), University of Granada, Granada, Spain
| | - Iskandar Tamimi
- Department of Orthopedic Surgery and Traumatology, Regional University Hospital of Málaga, Málaga, Spain
| | - Antonio Campos
- Department of Histology (Tissue Engineering Group), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs, Granada, Spain
| | - Fernando Campos
- Department of Histology (Tissue Engineering Group), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs, Granada, Spain
| | - Víctor Carriel
- Department of Histology (Tissue Engineering Group), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria Ibs, Granada, Spain
| |
Collapse
|
37
|
Nyambat B, Manga YB, Chen CH, Gankhuyag U, Pratomo WP A, Kumar Satapathy M, Chuang EY. New Insight into Natural Extracellular Matrix: Genipin Cross-Linked Adipose-Derived Stem Cell Extracellular Matrix Gel for Tissue Engineering. Int J Mol Sci 2020; 21:E4864. [PMID: 32660134 PMCID: PMC7402347 DOI: 10.3390/ijms21144864] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 01/04/2023] Open
Abstract
The cell-derived extracellular matrix (ECM) is associated with a lower risk of pathogen transfer, and it possesses an ideal niche with growth factors and complex fibrillar proteins for cell attachment and growth. However, the cell-derived ECM is found to have poor biomechanical properties, and processing of cell-derived ECM into gels is scarcely studied. The gel provides platforms for three-dimensional cell culture, as well as injectable biomaterials, which could be delivered via a minimally invasive procedure. Thus, in this study, an adipose-derived stem cell (ADSC)-derived ECM gel was developed and cross-linked by genipin to address the aforementioned issue. The genipin cross-linked ADSC ECM gel was fabricated via several steps, including rabbit ADSC culture, cell sheets, decellularization, freeze-thawing, enzymatic digestion, neutralization of pH, and cross-linking. The physicochemical characteristics and cytocompatibility of the gel were evaluated. The results demonstrated that the genipin cross-linking could significantly enhance the mechanical properties of the ADSC ECM gel. Furthermore, the ADSC ECM was found to contain collagen, fibronectin, biglycan, and transforming growth factor (TGF)-β1, which could substantially maintain ADSC, skin, and ligament fibroblast cell proliferation. This cell-derived natural material could be suitable for future regenerative medicine and tissue engineering application.
Collapse
Affiliation(s)
- Batzaya Nyambat
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Yankuba B. Manga
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Chih-Hwa Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
- International Master/Ph.D. Program in Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Research Center of Biomedical Device, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University–Shuang Ho Hospital, 291 Zhongzheng Rd., Zhonghe District, New Taipei City 11031, Taiwan
| | - Uuganbayar Gankhuyag
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Andi Pratomo WP
- International Master/Ph.D. Program in Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Mantosh Kumar Satapathy
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
- Cell Physiology and Molecular Image Research Center, Taipei Medical University–Wan Fang Hospital, 111, Sec. 3, Xinglong 11 Road, Wenshan District, Taipei 116, Taiwan
| |
Collapse
|
38
|
Dimida S, Santin M, Verri T, Barca A, Demitri C. Assessment of Cytocompatibility and Anti-Inflammatory (Inter)Actions of Genipin-Crosslinked Chitosan Powders. BIOLOGY 2020; 9:biology9070159. [PMID: 32650623 PMCID: PMC7407416 DOI: 10.3390/biology9070159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/03/2023]
Abstract
Chitosan is a polysaccharide commonly used, together with its derivatives, in the preparation of hydrogel formulations, scaffolds and films for tissue engineering applications. Chitosan can be used as such, but it is commonly stabilized by means of chemical crosslinkers. Genipin is one of the crosslinkers that has been considered that is a crystalline powder extracted from the fruit of Gardenia jasminoides and processed to obtain an aglycon compound. Genipin is gaining interest in biological applications because of its natural origin and anti-inflammatory actions. In this paper, the ability of chitosan-based materials crosslinked with genipin to exert anti-inflammation properties in applications such as bone regeneration was studied. Powders obtained from chitosan–genipin scaffolds have been tested in order to mimic the natural degradation processes occurring during biomaterials implantation in vivo. The results from osteoblast-like cells showed that specific combinations of chitosan and genipin stimulate high permissiveness towards cells, with higher performance than the pure chitosan. In parallel, evidences from monocyte-like cells showed that the crosslinker, genipin, seems to promote slowing of the monocyte-macrophage transition at morphological level. This suggests a sort of modularity of pro-inflammatory versus anti-inflammatory behavior of our chitosan-based biomaterials. Being both the cell types exposed to microscale powders, as an added value our results bring information on the cell–material interactions in the degradative dynamics of chitosan scaffold structures during the physiological resorption processes.
Collapse
Affiliation(s)
- Simona Dimida
- Biomaterial Laboratory, Department of Innovation for Engineering, University of Salento c/o Ecotekne, 73100 Lecce, Italy;
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN24GJ, UK;
| | - Tiziano Verri
- Applied Physiology Laboratory, Department of Biological and Environmental Sciences and Technologies, University of Salento c/o Ecotekne, 73100 Lecce, Italy;
| | - Amilcare Barca
- Applied Physiology Laboratory, Department of Biological and Environmental Sciences and Technologies, University of Salento c/o Ecotekne, 73100 Lecce, Italy;
- Correspondence: (A.B.); (C.D.)
| | - Christian Demitri
- Biomaterial Laboratory, Department of Innovation for Engineering, University of Salento c/o Ecotekne, 73100 Lecce, Italy;
- Correspondence: (A.B.); (C.D.)
| |
Collapse
|
39
|
Development, characterization and evaluation of the biocompatibility of catechol crosslinked horsegram protein films. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Tondelli T, Götschi T, Camenzind RS, Snedeker JG. Assessing the effects of intratendinous genipin injections: Mechanical augmentation and spatial distribution in an ex vivo degenerative tendon model. PLoS One 2020; 15:e0231619. [PMID: 32294117 PMCID: PMC7159246 DOI: 10.1371/journal.pone.0231619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/29/2020] [Indexed: 11/25/2022] Open
Abstract
Background Tendinopathy is a common musculoskeletal disorder and current treatment options show limited success. Genipin is an effective collagen crosslinker with low cytotoxicity and a promising therapeutic strategy for stabilizing an intratendinous lesion. Purpose This study examined the mechanical effect and delivery of intratendinous genipin injection in healthy and degenerated tendons. Study design Controlled laboratory study Methods Bovine superficial digital flexor tendons were randomized into four groups: Healthy control (N = 25), healthy genipin (N = 25), degenerated control (N = 45) and degenerated genipin (N = 45). Degeneration was induced by Collagenase D injection. After 24h, degenerated tendons were subsequently injected with either 0.2ml of 80mM genipin or buffer only. 24h post-treatment, samples were cyclically loaded for 500 cycles and then ramp loaded to failure. Fluorescence and absorption assays were performed to analyze genipin crosslink distribution and estimate tissue concentration after injection. Results Compared to controls, genipin treatment increased ultimate force by 19% in degenerated tendons (median control 530 N vs. 633 N; p = 0.0078). No significant differences in mechanical properties were observed in healthy tendons, while degenerated tendons showed a significant difference in ultimate stress (+23%, p = 0.049), stiffness (+27%, p = 0.037), work to failure (+42%, p = 0.009), and relative stress relaxation (-11%, p < 0.001) after genipin injection. Fluorescence and absorption were significantly higher in genipin treated tendons compared to control groups. A higher degree of crosslinking (+45%, p < 0.001) and a more localized distribution were observed in the treated healthy compared to degenerated tendons, with higher genipin tissue concentrations in healthy (7.9 mM) than in degenerated tissue (2.3 mM). Conclusion Using an ex-vivo tendinopathy model, intratendinous genipin injections recovered mechanical strength to the level of healthy tendons. Measured by genipin tissue distribution, injection is an effective method for local delivery. Clinical relevance This study provides a proof of concept for the use of intratendinous genipin injection in the treatment of tendinopathy. The results demonstrate that a degenerated tendon can be mechanically augmented by a clinically viable method of local genipin delivery. This warrants further in vivo studies towards the development of a clinically applicable treatment based on genipin.
Collapse
Affiliation(s)
- Timo Tondelli
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Tobias Götschi
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Roland S. Camenzind
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | - Jess G. Snedeker
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
41
|
Carrillo F, Suter S, Casari FA, Sutter R, Nagy L, Snedeker JG, Fürnstahl P. Digitalization of the IOM: A comprehensive cadaveric study for obtaining three-dimensional models and morphological properties of the forearm's interosseous membrane. Sci Rep 2020; 10:6401. [PMID: 32286490 PMCID: PMC7156465 DOI: 10.1038/s41598-020-63436-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/31/2020] [Indexed: 11/15/2022] Open
Abstract
State-of-the-art of preoperative planning for forearm orthopaedic surgeries is currently limited to simple bone procedures. The increasing interest of clinicians for more comprehensive analysis of complex pathologies often requires dynamic models, able to include the soft tissue influence into the preoperative process. Previous studies have shown that the interosseous membrane (IOM) influences forearm motion and stability, but due to the lack of morphological and biomechanical data, existing simulation models of the IOM are either too simple or clinically unreliable. This work aims to address this problematic by generating 3D morphological and tensile properties of the individual IOM structures. First, micro- and standard-CT acquisitions were performed on five fresh-frozen annotated cadaveric forearms for the generation of 3D models of the radius, ulna and each of the individual ligaments of the IOM. Afterwards, novel 3D methods were developed for the measurement of common morphological features, which were validated against established optical ex-vivo measurements. Finally, we investigated the individual tensile properties of each IOM ligament. The generated 3D morphological features can provide the basis for the future development of functional planning simulation of the forearm.
Collapse
Affiliation(s)
- Fabio Carrillo
- Research in Orthopedic Computer Science, Balgrist University Hospital, CH-8008, Zurich, Switzerland. .,Laboratory for Orthopaedic Biomechanics, Institute for Biomechanics, ETH Zurich, CH-8008, Zurich, Switzerland.
| | - Simon Suter
- Research in Orthopedic Computer Science, Balgrist University Hospital, CH-8008, Zurich, Switzerland
| | - Fabio A Casari
- Research in Orthopedic Computer Science, Balgrist University Hospital, CH-8008, Zurich, Switzerland.,Department of Orthopaedics, Balgrist University Hospital, CH-8008, Zurich, Switzerland
| | - Reto Sutter
- Radiology, Balgrist University Hospital, CH-8008, Zurich, Switzerland
| | - Ladislav Nagy
- Research in Orthopedic Computer Science, Balgrist University Hospital, CH-8008, Zurich, Switzerland.,Department of Orthopaedics, Balgrist University Hospital, CH-8008, Zurich, Switzerland
| | - Jess G Snedeker
- Laboratory for Orthopaedic Biomechanics, Institute for Biomechanics, ETH Zurich, CH-8008, Zurich, Switzerland
| | - Philipp Fürnstahl
- Research in Orthopedic Computer Science, Balgrist University Hospital, CH-8008, Zurich, Switzerland
| |
Collapse
|
42
|
Kočí Z, Sridharan R, Hibbitts AJ, Kneafsey SL, Kearney CJ, O'Brien FJ. The Use of Genipin as an Effective, Biocompatible, Anti-Inflammatory Cross-Linking Method for Nerve Guidance Conduits. ACTA ACUST UNITED AC 2020; 4:e1900212. [PMID: 32293152 DOI: 10.1002/adbi.201900212] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/06/2019] [Indexed: 11/09/2022]
Abstract
A number of natural polymer biomaterial-based nerve guidance conduits (NGCs) are developed to facilitate repair of peripheral nerve injuries. Cross-linking ensures mechanical integrity and desired degradation properties of the NGCs; however, common methods such as formaldehyde are associated with cellular toxicity. Hence, there is an unmet clinical need for alternative nontoxic cross-linking agents. In this study, collagen-based NGCs with a collagen/chondroitin sulfate luminal filler are used to study the effect of cross-linking on mechanical and structural properties, degradation, biocompatibility, and immunological response. A simplified manufacturing method of genipin cross-linking is developed, by incorporating genipin into solution prior to freeze-drying the NGCs. This leads to successful cross-linking as demonstrated by higher cross-linking degree and similar tensile strength of genipin cross-linked conduits compared to formaldehyde cross-linked conduits. Genipin cross-linking also preserves NGC macro and microstructure as observed through scanning electron microscopy and spectral analysis. Most importantly, in vitro cell studies show that genipin, unlike the formaldehyde cross-linked conduits, supports the viability of Schwann cells. Moreover, genipin cross-linked conduits direct macrophages away from a pro-inflammatory and toward a pro-repair state. Overall, genipin is demonstrated to be an effective, safe, biocompatible, and anti-inflammatory alternative to formaldehyde for cross-linking clinical grade NGCs.
Collapse
Affiliation(s)
- Zuzana Kočí
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Rukmani Sridharan
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Alan J Hibbitts
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Simone L Kneafsey
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Cathal J Kearney
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02YN77, Ireland.,Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin, D02PN40, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, D02YN77, Ireland
| |
Collapse
|
43
|
Wunderli SL, Blache U, Snedeker JG. Tendon explant models for physiologically relevant invitro study of tissue biology - a perspective. Connect Tissue Res 2020; 61:262-277. [PMID: 31931633 DOI: 10.1080/03008207.2019.1700962] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background: Tendon disorders increasingly afflict our aging society but we lack the scientific understanding to clinically address them. Clinically relevant models of tendon disease are urgently needed as established small animal models of tendinopathy fail to capture essential aspects of the disease. Two-dimensional and three-dimensional cell and tissue culture models are similarly limited, lacking many physiological extracellular matrix cues required to maintain tissue homeostasis or guide matrix remodeling. These cues reflect the biochemical and biomechanical status of the tissue, and encode information regarding the mechanical and metabolic competence of the tissue. Tendon explants overcome some of these limitations and have thus emerged as a valuable tool for the discovery and study of mechanisms associated with tendon homeostasis and pathophysiology. Tendon explants retain native cell-cell and cell-matrix connections, while allowing highly reproducible experimental control over extrinsic factors like mechanical loading and nutritional availability. In this sense tendon explant models can deliver insights that are otherwise impossible to obtain from in vivo animal or in vitro cell culture models. Purpose: In this review, we aimed to provide an overview of tissue explant models used in tendon research, with a specific focus on the value of explant culture systems for the controlled study of the tendon core tissue. We discuss their advantages, limitations and potential future utility. We include suggestions and technical recommendations for the successful use of tendon explant cultures and conclude with an outlook on how explant models may be leveraged with state-of-the-art biotechnologies to propel our understanding of tendon physiology and pathology.
Collapse
Affiliation(s)
- Stefania L Wunderli
- University Hospital Balgrist, University of Zurich, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Ulrich Blache
- University Hospital Balgrist, University of Zurich, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Jess G Snedeker
- University Hospital Balgrist, University of Zurich, Zurich, Switzerland.,Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Nguyen PK, Baek K, Deng F, Criscione JD, Tuan RS, Kuo CK. Tendon Tissue-Engineering Scaffolds. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Wang Z, Liu H, Luo W, Cai T, Li Z, Liu Y, Gao W, Wan Q, Wang X, Wang J, Wang Y, Yang X. Regeneration of skeletal system with genipin crosslinked biomaterials. J Tissue Eng 2020; 11:2041731420974861. [PMID: 33294154 PMCID: PMC7705197 DOI: 10.1177/2041731420974861] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Natural biomaterials, such as collagen, gelatin, and chitosan, are considered as promising candidates for use in tissue regeneration treatment, given their similarity to natural tissues regarding components and structure. Nevertheless, only receiving a crosslinking process can these biomaterials exhibit sufficient strength to bear high tensile loads for use in skeletal system regeneration. Recently, genipin, a natural chemical compound extracted from gardenia fruits, has shown great potential as a reliable crosslinking reagent, which can reconcile the crosslinking effect and biosafety profile simultaneously. In this review, we briefly summarize the genipin extraction process, biosafety, and crosslinking mechanism. Subsequently, the applications of genipin regarding aiding skeletal system regeneration are discussed in detail, including the advances and technological strategies for reconstructing cartilage, bone, intervertebral disc, tendon, and skeletal muscle tissues. Finally, based on the specific pharmacological functions of genipin, its potential applications, such as its use in bioprinting and serving as an antioxidant and anti-tumor agent, and the challenges of genipin in the clinical applications in skeletal system regeneration are also presented.
Collapse
Affiliation(s)
- Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Wenbin Luo
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Tianyang Cai
- College of Rehabilitation, Changchun University of Chinese Medicine, Changchun, Jilin, P.R. China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Weinan Gao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Qian Wan
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xianggang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yanbing Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
46
|
T1- and T2*-Mapping for Assessment of Tendon Tissue Biophysical Properties: A Phantom MRI Study. Invest Radiol 2019; 54:212-220. [PMID: 30444794 DOI: 10.1097/rli.0000000000000532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to quantitatively assess changes in collagen structure using MR T1- and T2*-mapping in a novel controlled ex vivo tendon model setup. MATERIALS AND METHODS Twenty-four cadaveric bovine flexor tendons underwent MRI at 3 T before and after chemical modifications, representing mechanical degeneration and augmentation. Collagen degradation (COL), augmenting collagen fiber cross-linking (CXL), and a control (phosphate-buffered saline [PBS]) were examined in experimental groups, using histopathology as standard of reference. Variable echo-time and variable-flip angle gradient-echo sequences were used for T2*- and T1-mapping, respectively. Standard T1- and T2-weighted spin-echo sequences were acquired for visual assessment of tendon texture. Tendons were assessed subsequently for their biomechanical properties and compared with quantitative MRI analysis. RESULTS T1- and T2*-mapping was feasible and repeatable for untreated (mean, 545 milliseconds, 2.0 milliseconds) and treated tendons. Mean T1 and T2* values of COL, CXL, and PBS tendons were 1459, 934, and 1017 milliseconds, and 5.5, 3.6, and 2.5 milliseconds, respectively. T2* values were significantly different between enzymatically degraded tendons, cross-linked tendons, and controls, and were significantly correlated with mechanical tendon properties (r = -0.74, P < 0.01). T1 values and visual assessment could not differentiate CXL from PBS tendons. Photo-spectroscopy showed increased autofluorescence of cross-linked tendons, whereas histopathology verified degenerative lesions of enzymatically degraded tendons. CONCLUSIONS T2*-mapping has the potential to detect and quantify subtle changes in tendon collagen structure not visible on conventional clinical MRI. Tendon T2* values might serve as a biomarker for biochemical alterations associated with tendon pathology.
Collapse
|
47
|
Anil Kumar S, Alonzo M, Allen SC, Abelseth L, Thakur V, Akimoto J, Ito Y, Willerth SM, Suggs L, Chattopadhyay M, Joddar B. A Visible Light-Cross-Linkable, Fibrin-Gelatin-Based Bioprinted Construct with Human Cardiomyocytes and Fibroblasts. ACS Biomater Sci Eng 2019; 5:4551-4563. [PMID: 32258387 PMCID: PMC7117097 DOI: 10.1021/acsbiomaterials.9b00505] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, fibrin was added to a photo-polymerizable gelatin-based bioink mixture to fabricate cardiac cell-laden constructs seeded with human induced pluripotent stem cell-derived cardiomyocytes (iPS-CM) or CM cell lines with cardiac fibroblasts (CF). The extensive use of platelet-rich fibrin, its capacity to offer patient specificity, and the similarity in composition to surgical glue prompted us to include fibrin in the existing bioink composition. The cell-laden bioprinted constructs were cross-linked to retain a herringbone pattern via a two-step procedure including the visible light cross-linking of furfuryl-gelatin followed by the chemical cross-linking of fibrinogen via thrombin and calcium chloride. The printed constructs revealed an extremely porous, networked structure that afforded long-term in vitro stability. Cardiomyocytes printed within the sheet structure showed excellent viability, proliferation, and expression of the troponin I cardiac marker. We extended the utility of this fibrin-gelatin bioink toward coculturing and coupling of CM and cardiac fibroblasts (CF), the interaction of which is extremely important for maintenance of normal physiology of the cardiac wall in vivo. This enhanced "cardiac construct" can be used for drug cytotoxicity screening or unraveling triggers for heart diseases in vitro.
Collapse
Affiliation(s)
- Shweta Anil Kumar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, M201 Metallurgy Building, United States
| | - Matthew Alonzo
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, M201 Metallurgy Building, United States
| | - Shane C. Allen
- Department of Biomedical Engineering, The University of Texas at Austin, 110 Inner Campus Drive, Austin, Texas 78712, United States
| | - Laila Abelseth
- Department of Mechanical Engineering, University of Victoria, Engineering Office Wing, Room 548, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Biomedical Engineering Program, University of Victoria, Engineering Office Wing, Room 548, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
| | - Vikram Thakur
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, Texas 79905, United States
| | - Jun Akimoto
- Nano Medical Engineering Laboratory, RIKEN Custer for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Custer for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Stephanie M. Willerth
- Department of Mechanical Engineering, University of Victoria, Engineering Office Wing, Room 548, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Biomedical Engineering Program, University of Victoria, Engineering Office Wing, Room 548, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Engineering Office Wing, Room 548, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, 818 West 10th Avenue, Vancouver, British Columbia V5Z 1M9, Canada
| | - Laura Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, 110 Inner Campus Drive, Austin, Texas 78712, United States
| | - Munmun Chattopadhyay
- Department of Molecular and Translational Medicine, Center of Emphasis in Diabetes and Metabolism, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, Texas 79905, United States
| | - Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), Department of Metallurgical, Materials and Biomedical Engineering, M201 Metallurgy Building, United States
- Border Biomedical Research Center, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
- Nano Medical Engineering Laboratory, RIKEN Custer for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
48
|
Boote C, Sigal IA, Grytz R, Hua Y, Nguyen TD, Girard MJA. Scleral structure and biomechanics. Prog Retin Eye Res 2019; 74:100773. [PMID: 31412277 DOI: 10.1016/j.preteyeres.2019.100773] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
Abstract
As the eye's main load-bearing connective tissue, the sclera is centrally important to vision. In addition to cooperatively maintaining refractive status with the cornea, the sclera must also provide stable mechanical support to vulnerable internal ocular structures such as the retina and optic nerve head. Moreover, it must achieve this under complex, dynamic loading conditions imposed by eye movements and fluid pressures. Recent years have seen significant advances in our knowledge of scleral biomechanics, its modulation with ageing and disease, and their relationship to the hierarchical structure of the collagen-rich scleral extracellular matrix (ECM) and its resident cells. This review focuses on notable recent structural and biomechanical studies, setting their findings in the context of the wider scleral literature. It reviews recent progress in the development of scattering and bioimaging methods to resolve scleral ECM structure at multiple scales. In vivo and ex vivo experimental methods to characterise scleral biomechanics are explored, along with computational techniques that combine structural and biomechanical data to simulate ocular behaviour and extract tissue material properties. Studies into alterations of scleral structure and biomechanics in myopia and glaucoma are presented, and their results reconciled with associated findings on changes in the ageing eye. Finally, new developments in scleral surgery and emerging minimally invasive therapies are highlighted that could offer new hope in the fight against escalating scleral-related vision disorder worldwide.
Collapse
Affiliation(s)
- Craig Boote
- Structural Biophysics Research Group, School of Optometry & Vision Sciences, Cardiff University, UK; Ophthalmic Engineering & Innovation Laboratory (OEIL), Department of Biomedical Engineering, National University of Singapore, Singapore; Newcastle Research & Innovation Institute Singapore (NewRIIS), Singapore.
| | - Ian A Sigal
- Laboratory of Ocular Biomechanics, Department of Ophthalmology, University of Pittsburgh, USA
| | - Rafael Grytz
- Department of Ophthalmology & Visual Sciences, University of Alabama at Birmingham, USA
| | - Yi Hua
- Laboratory of Ocular Biomechanics, Department of Ophthalmology, University of Pittsburgh, USA
| | - Thao D Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, USA
| | - Michael J A Girard
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Department of Biomedical Engineering, National University of Singapore, Singapore; Singapore Eye Research Institute (SERI), Singapore National Eye Centre, Singapore
| |
Collapse
|
49
|
Moxon SR, Corbett NJ, Fisher K, Potjewyd G, Domingos M, Hooper NM. Blended alginate/collagen hydrogels promote neurogenesis and neuronal maturation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109904. [PMID: 31499954 PMCID: PMC6873778 DOI: 10.1016/j.msec.2019.109904] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/23/2019] [Accepted: 06/17/2019] [Indexed: 12/30/2022]
Abstract
Brain extracellular matrix (ECM) is complex, heterogeneous and often poorly replicated in traditional 2D cell culture systems. The development of more physiologically relevant 3D cell models capable of emulating the native ECM is of paramount importance for the study of human induced pluripotent stem cell (iPSC)-derived neurons. Due to its structural similarity with hyaluronic acid, a primary component of brain ECM, alginate is a potential biomaterial for 3D cell culture systems. However, a lack of cell adhesion motifs within the chemical structure of alginate has limited its application in neural culture systems. This study presents a simple and accessible method of incorporating collagen fibrils into an alginate hydrogel by physical mixing and controlled gelation under physiological conditions and tests the hypothesis that such a substrate could influence the behaviour of human neurons in 3D culture. Regulation of the gelation process enabled the penetration of collagen fibrils throughout the hydrogel structure as demonstrated by transmission electron microscopy. Encapsulated human iPSC-derived neurons adhered to the blended hydrogel as evidenced by the increased expression of α1, α2 and β1 integrins. Furthermore, immunofluorescence microscopy revealed that encapsulated neurons formed complex neural networks and matured into branched neurons expressing synaptophysin, a key protein involved in neurotransmission, along the neurites. Mechanical tuning of the hydrogel stiffness by modulation of the alginate ionic crosslinker concentration also influenced neuron-specific gene expression. In conclusion, we have shown that by tuning the physicochemical properties of the alginate/collagen blend it is possible to create different ECM-like microenvironments where complex mechanisms underpinning the growth and development of human neurons can be simulated and systematically investigated. Alginate and collagen are blended to create a bespoke hydrogel that mimics aspects of brain ECM. Encapsulated human pluripotent stem cell derived neurons adhere to the hydrogel matrix and form 3D neural networks. Neuronal differentiation and maturation is promoted within the hydrogel matrix. Mechanical properties of the hydrogel can be easily tuned to optimise neurogenesis. The hydrogel presents a platform for studying neuronal function and dysfunction in health and disease.
Collapse
Affiliation(s)
- Samuel R Moxon
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Nicola J Corbett
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Kate Fisher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Geoffrey Potjewyd
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; School of Mechanical, Aerospace and Civil Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Marco Domingos
- School of Mechanical, Aerospace and Civil Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Nigel M Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| |
Collapse
|
50
|
Levy AM, Fazio MA, Grytz R. Experimental myopia increases and scleral crosslinking using genipin inhibits cyclic softening in the tree shrew sclera. Ophthalmic Physiol Opt 2019; 38:246-256. [PMID: 29691925 DOI: 10.1111/opo.12454] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/15/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE Myopia progression is thought to involve biomechanical weakening of the sclera, which leads to irreversible deformations and axial elongation of the eye. Scleral crosslinking has been proposed as a potential treatment option for myopia control by strengthening the mechanically weakened sclera. The biomechanical mechanism by which the sclera weakens during myopia and strengthens after crosslinking is not fully understood. Here, we assess the effect of lens-induced myopia and exogenous crosslinking using genipin on the inelastic mechanical properties of the tree shrew sclera measured by cyclic tensile tests. METHODS Cyclic tensile tests were performed on 2-mm wide scleral strips at physiological loading conditions (50 cycles, 0-3.3 g, 30 s cycle-1 ). Two scleral strips were obtained from each eye of juvenile tree shrews exposed to two different visual conditions: normal and 4 days of monocular -5 D lens wear to accelerate scleral remodelling and induce myopia. Scleral strips were mechanically tested at three alternative conditions: immediately after enucleation; after incubation in phosphate buffered saline (PBS) for 24 h at 37°C; and after incubation for 24 h in PBS supplemented with genipin at a low cytotoxicity concentration (0.25 mm). Cyclic softening was defined as the incremental strain increase from one cycle to the next. RESULTS -5D lens treatment significantly increased the cyclic softening response of the sclera when compared to contralateral control eyes (0.10% ± 0.029%, mean ± standard error, P = 0.037). Exogenous crosslinking of the lens treated sclera significantly decreased the cyclic softening response (-0.12% ± 0.014%, P = 2.2 × 10-5 ). Contrary to all other groups, the genipin-cross-linked tissue did not exhibit cyclic softening significantly different from zero within the 50-cycle test. CONCLUSIONS Results indicated that cyclic tensile loading leads to an inelastic, cyclic softening of the juvenile tree shrew sclera. The softening rate increased during lens-induced myopia and was diminished after genipin crosslinking. This finding suggests that axial elongation in myopia may involve a biomechanical weakening mechanism that increased the cyclic softening response of the sclera, which was inhibited by scleral crosslinking using genipin.
Collapse
Affiliation(s)
- Alexander M Levy
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, USA
| | - Massimo A Fazio
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, USA.,Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, USA
| | - Rafael Grytz
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|