1
|
Asadikorayerm M, Weber P, Surman F, Puiggalí-Jou A, Zenobi-Wong M. Foreign Body Immune Response to Zwitterionic and Hyaluronic Acid Granular Hydrogels Made with Mechanical Fragmentation. Adv Healthc Mater 2024:e2402890. [PMID: 39498680 DOI: 10.1002/adhm.202402890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/19/2024] [Indexed: 11/07/2024]
Abstract
Granular hydrogels have recently attracted the attention for diverse tissue engineering applications due to their versatility and modularity. Despite previous studies showing enhanced viability and metabolism of cells encapsulated in these hydrogels, the in vitro immune response and long-term fibrotic response of these scaffolds have not been well characterized. Here, bulk and granular hydrogels are studied based on synthetic zwitterionic (ZI) and natural polysaccharide hyaluronic acid (HA) made with mechanical fragmentation. In vitro, immunomodulatory studies show an increased stimulatory effect of HA granular hydrogels compared to bulk, while both bulk and granular ZI hydrogels do not induce an inflammatory response. Subcutaneous implantation in mice shows that both ZI and HA granular hydrogels resulted in less collagen capsule deposition around implants compared to bulk HA hydrogels 10 weeks after implantation. Moreover, the HA granular hydrogels are infiltrated by host cells, including macrophages and mature blood vessels, in a porosity-dependent manner. However, a large number of cells, including multinucleated giant cells as well as blood vessels, surround bulk and granular ZI hydrogels and are not able to infiltrate. Overall, this study provides new insights on the long-term stability and fibrotic response of granular hydrogels, paving the way for future studies and applications.
Collapse
Affiliation(s)
- Maryam Asadikorayerm
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Patrick Weber
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Anna Puiggalí-Jou
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| |
Collapse
|
2
|
Gómez-Mercader A, Monzón-Atienza L, Montero D, Bravo J, Acosta F. Fish Cell Spheroids, a Promising In Vitro Model to Mimic In Vivo Research: A Review. Cells 2024; 13:1818. [PMID: 39513924 PMCID: PMC11544930 DOI: 10.3390/cells13211818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
In vitro cell culture systems serve as instrumental platforms for probing biological phenomena and elucidating intricate cellular mechanisms. These systems afford researchers the opportunity to scrutinize cellular responses within a regulated environment, thereby circumventing the ethical and logistical challenges associated with in vivo experimentation. Three-dimensional (3D) cell cultures have emerged as a viable alternative to mimic in vivo environments. Within this context, spheroids are recognized as one of the most straightforward and efficacious models, presenting a promising substitute for conventional monolayer cultures. The application of 3D cultures of fish cells remains limited, focusing mainly on physiological and morphological characterization studies. However, given the capacity of spheroids to emulate in vivo conditions, researchers are exploring diverse applications of these 3D cultures. These include eco-toxicology, immunology, drug screening, endocrinology, and metabolism studies, employing a variety of cell types such as fibroblasts, hepatocytes, embryonic cells, gonadal cells, gastrointestinal cells, and pituitary cells. This review provides a succinct overview, concentrating on the most frequently employed methods for generating fish cell spheroids and their applications to date. The aim is to compile and highlight the significant contributions of these methods to the field and their potential for future research.
Collapse
|
3
|
Dortaj H, Amani AM, Tayebi L, Azarpira N, Ghasemi Toudeshkchouei M, Hassanpour-Dehnavi A, Karami N, Abbasi M, Najafian-Najafabadi A, Zarei Behjani Z, Vaez A. Droplet-based microfluidics: an efficient high-throughput portable system for cell encapsulation. J Microencapsul 2024; 41:479-501. [PMID: 39077800 DOI: 10.1080/02652048.2024.2382744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
One of the goals of tissue engineering and regenerative medicine is restoring primary living tissue function by manufacturing a 3D microenvironment. One of the main challenges is protecting implanted non-autologous cells or tissues from the host immune system. Cell encapsulation has emerged as a promising technique for this purpose. It involves entrapping cells in biocompatible and semi-permeable microcarriers made from natural or synthetic polymers that regulate the release of cellular secretions. In recent years, droplet-based microfluidic systems have emerged as powerful tools for cell encapsulation in tissue engineering and regenerative medicine. These systems offer precise control over droplet size, composition, and functionality, allowing for creating of microenvironments that closely mimic native tissue. Droplet-based microfluidic systems have extensive applications in biotechnology, medical diagnosis, and drug discovery. This review summarises the recent developments in droplet-based microfluidic systems and cell encapsulation techniques, as well as their applications, advantages, and challenges in biology and medicine. The integration of these technologies has the potential to revolutionise tissue engineering and regenerative medicine by providing a precise and controlled microenvironment for cell growth and differentiation. By overcoming the immune system's challenges and enabling the release of cellular secretions, these technologies hold great promise for the future of regenerative medicine.
Collapse
Affiliation(s)
- Hengameh Dortaj
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ashraf Hassanpour-Dehnavi
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Karami
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefeh Najafian-Najafabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Zarei Behjani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Tuftee C, Alsberg E, Ozbolat IT, Rizwan M. Emerging granular hydrogel bioinks to improve biological function in bioprinted constructs. Trends Biotechnol 2024; 42:339-352. [PMID: 37852853 PMCID: PMC10939978 DOI: 10.1016/j.tibtech.2023.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
Advancements in 3D bioprinting have been hindered by the trade-off between printability and biological functionality. Existing bioinks struggle to meet both requirements simultaneously. However, new types of bioinks composed of densely packed microgels promise to address this challenge. These bioinks possess intrinsic porosity, allowing for cell growth, oxygen and nutrient transport, and better immunomodulatory properties, leading to superior biological functions. In this review, we highlight key trends in the development of these granular bioinks. Using examples, we demonstrate how granular bioinks overcome the trade-off between printability and cell function. Granular bioinks show promise in 3D bioprinting, yet understanding their unique structure-property-function relationships is crucial to fully leverage the transformative capabilities of these new types of bioinks in bioprinting.
Collapse
Affiliation(s)
- Cody Tuftee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA
| | - Eben Alsberg
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, IL 60612, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Orthopedic Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Mechanical & Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown Veterans Affairs Medical Center (JBVAMC) at Chicago, Chicago, IL 60612, USA
| | - Ibrahim Tarik Ozbolat
- Biomedical Engineering Department, Penn State University, University Park, PA 16802, USA; Engineering Science and Mechanics, Penn State University, University Park, PA 16802, USA; Neurosurgery Department, Penn State University; Hershey, PA 17033, USA; Medical Oncology Department, Cukurova University, Adana 01330, Turkey
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
5
|
Hwangbo H, Chae S, Kim W, Jo S, Kim GH. Tumor-on-a-chip models combined with mini-tissues or organoids for engineering tumor tissues. Theranostics 2024; 14:33-55. [PMID: 38164155 PMCID: PMC10750204 DOI: 10.7150/thno.90093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024] Open
Abstract
The integration of tumor-on-a-chip technology with mini-tissues or organoids has emerged as a powerful approach in cancer research and drug development. This review provides an extensive examination of the diverse biofabrication methods employed to create mini-tissues, including 3D bioprinting, spheroids, microfluidic systems, and self-assembly techniques using cell-laden hydrogels. Furthermore, it explores various approaches for fabricating organ-on-a-chip platforms. This paper highlights the synergistic potential of combining these technologies to create tumor-on-a-chip models that mimic the complex tumor microenvironment and offer unique insights into cancer biology and therapeutic responses.
Collapse
Affiliation(s)
| | | | | | | | - Geun Hyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine (SKKU-SOM) Suwon 16419, Republic of Korea
| |
Collapse
|
6
|
Trossbach M, Åkerlund E, Langer K, Seashore-Ludlow B, Joensson HN. High-throughput cell spheroid production and assembly analysis by microfluidics and deep learning. SLAS Technol 2023; 28:423-432. [PMID: 36990352 DOI: 10.1016/j.slast.2023.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
3D cell culture models are important tools in translational research but have been out of reach for high-throughput screening due to complexity, requirement of large cell numbers and inadequate standardization. Microfluidics and culture model miniaturization technologies could overcome these challenges. Here, we present a high-throughput workflow to produce and characterize the formation of miniaturized spheroids using deep learning. We train a convolutional neural network (CNN) for cell ensemble morphology classification for droplet microfluidic minispheroid production, benchmark it against more conventional image analysis, and characterize minispheroid assembly determining optimal surfactant concentrations and incubation times for minispheroid production for three cell lines with different spheroid formation properties. Notably, this format is compatible with large-scale spheroid production and screening. The presented workflow and CNN offer a template for large scale minispheroid production and analysis and can be extended and re-trained to characterize morphological responses in spheroids to additives, culture conditions and large drug libraries.
Collapse
Affiliation(s)
- Martin Trossbach
- KTH Royal Institute of Technology, and Science for Life Laboratory, Sweden.
| | - Emma Åkerlund
- Karolinska Institutet, and Science for Life Laboratory, Sweden
| | - Krzysztof Langer
- KTH Royal Institute of Technology, and Science for Life Laboratory, Sweden; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, United States
| | | | - Haakan N Joensson
- KTH Royal Institute of Technology, and Science for Life Laboratory, Sweden.
| |
Collapse
|
7
|
Jiang Z, Jiang K, Si H, McBride R, Kisiday J, Oakey J. One Step Encapsulation of Mesenchymal Stromal Cells in PEG Norbornene Microgels for Therapeutic Actions. ACS Biomater Sci Eng 2023; 9:6322-6332. [PMID: 37831923 DOI: 10.1021/acsbiomaterials.3c01057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Cell therapies require control over the cellular response under standardized conditions to ensure continuous delivery of therapeutic agents. Cell encapsulation in biomaterials can be particularly effective at providing cells with a uniformly supportive and permissive cell microenvironment. In this study, two microfluidic droplet device designs were used to successfully encapsulate equine mesenchymal stromal cells (MSCs) into photopolymerized polyethylene glycol norbornene (PEGNB) microscale (∼100-200 μm) hydrogel particles (microgels) in a single on-chip step. To overcome the slow cross-linking kinetics of thiol-ene reactions, long dithiol linkers were used in combination with a polymerization chamber customized to achieve precise retention time for microgels while maintaining cytocompatibility. Thus, homogeneous cell-laden microgels could be continuously fabricated in a high-throughput fashion. Varying linker length mediated both the gel formation rate and material physical properties (stiffness, mass transport, and mesh size) of fabricated microgels. Postencapsulation cell viability and therapeutic indicators of MSCs were evaluated over 14 days, during which the viability remained at least 90%. Gene expression of selected cytokines was not adversely affected by microencapsulation compared to monolayer MSCs. Notably, PEGNB-3.5k microgels rendered significant elevation in FGF-2 and TGF-β on the transcription level, and conditioned media collected from these cultures showed robust promotion in the migration and proliferation of fibroblasts. Collectively, standardized MSC on-chip encapsulation will lead to informed and precise translation to clinical studies, ultimately advancing a variety of tissue engineering and regenerative medicine practices.
Collapse
Affiliation(s)
- Zhongliang Jiang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Kun Jiang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Hangjun Si
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Ralph McBride
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - John Kisiday
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
8
|
Han X, Zhang Q, He H, Zhao Q, Li G. Reflow-molded deep concave microwell arrays for robust and large-scale production of embryoid bodies. LAB ON A CHIP 2023; 23:4378-4389. [PMID: 37695312 DOI: 10.1039/d3lc00504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Embryonic stem cell (ESC)-derived aggregates, called embryoid bodies (EBs), are powerful in vitro models used to study human development and disease. However, the cost-effective and large-scale production of homogeneous EBs still remains a challenge. Here, we report a rapid, straightforward method for fabricating closely arrayed deep concave microwells, enabling the mass production of uniform EBs from single cell suspensions. By simply combining micromilling, caramel replica molding, and thermal reflow, we generate convex micromolds with high aspect ratios and excellent surface smoothness. Benefitting from the nature of reflow, this method can produce rounded bottom polydimethylsiloxane (PDMS) microwells, which are not easily achieved with standard soft lithography techniques but critical to producing spherical EBs. To achieve optimal concave microwells, we investigated the effect of thermal reflow temperature and time on the surface smoothness and roundness of the finished microwells. In addition, to further improve the utility of this method, we also investigated the effect of microwell aspect ratio (AR) on the loss of EBs during medium manipulation. The capability of this deep concave microwell system was validated by rapidly generating a large number of human embryonic stem cell (hESC)-derived EBs and then efficiently differentiating them into a cardiac lineage. The proposed fabrication method and deep concave microwell platform are highly practical, and thus will benefit the mass production of EBs for potential tissue regeneration and cell therapy applications.
Collapse
Affiliation(s)
- Xue Han
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China.
| | - Qi Zhang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China.
| | - Hui He
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiang Zhao
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China.
| | - Gang Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
9
|
Wang Y, Liu M, Zhang Y, Liu H, Han L. Recent methods of droplet microfluidics and their applications in spheroids and organoids. LAB ON A CHIP 2023; 23:1080-1096. [PMID: 36628972 DOI: 10.1039/d2lc00493c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Droplet microfluidic techniques have long been known as a high-throughput approach for cell manipulation. The capacity to compartmentalize cells into picolitre droplets in microfluidic devices has opened up a range of new ways to extract information from cells. Spheroids and organoids are crucial in vitro three-dimensional cell culture models that physiologically mimic natural tissues and organs. With the aid of developments in cell biology and materials science, droplet microfluidics has been applied to construct spheroids and organoids in numerous formats. In this article, we divide droplet microfluidic approaches for managing spheroids and organoids into three categories based on the droplet module format: liquid droplet, microparticle, and microcapsule. We discuss current advances in the use of droplet microfluidics for the generation of tumour spheroids, stem cell spheroids, and organoids, as well as the downstream applications of these methods in high-throughput screening and tissue engineering.
Collapse
Affiliation(s)
- Yihe Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
| | - Mengqi Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 P. R. China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 P. R. China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100 P. R. China
| |
Collapse
|
10
|
Farooqi ZH, Vladisavljević GT, Pamme N, Fatima A, Begum R, Irfan A, Chen M. Microfluidic Fabrication and Applications of Microgels and Hybrid Microgels. Crit Rev Anal Chem 2023; 54:2435-2449. [PMID: 36757081 DOI: 10.1080/10408347.2023.2177097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Smart microgels have gained much attention because of their wide range of applications in the field of biomedical, environmental, nanotechnological and catalysis sciences. Most of the applications of microgels are strongly affected by their morphology, size and size distribution. Various methodologies have been adopted to obtain polymer microgel particles. Droplet microfluidic techniques have been widely reported for the fabrication of highly monodisperse microgel particles to be used for various applications. Monodisperse microgel particles of required size and morphology can be achieved via droplet microfluidic techniques by simple polymerization of monomers in the presence of suitable crosslinker or by gelation of high molecular weight polymers. This report gives recent research progress in fabrication, characterization, properties and applications of microgel particles synthesized by microfluidic methods.
Collapse
Affiliation(s)
- Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | | | - Nicole Pamme
- Department for Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Department of Chemistry and Biochemistry, University of Hull, Hull, United Kingdom
| | - Arooj Fatima
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Ahmad Irfan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Minjun Chen
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
11
|
Rojek K, Ćwiklińska M, Kuczak J, Guzowski J. Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering. Chem Rev 2022; 122:16839-16909. [PMID: 36108106 PMCID: PMC9706502 DOI: 10.1021/acs.chemrev.1c00798] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small "dimensionalities": "0D" (particles), "1D" (fibers), "2D" (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core-shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled "initial conditions" for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications.
Collapse
Affiliation(s)
- Katarzyna
O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Monika Ćwiklińska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Julia Kuczak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
12
|
Arkenberg MR, Koehler K, Lin CC. Heparinized Gelatin-Based Hydrogels for Differentiation of Induced Pluripotent Stem Cells. Biomacromolecules 2022; 23:4141-4152. [PMID: 36074748 PMCID: PMC9554908 DOI: 10.1021/acs.biomac.2c00585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Chemically defined
hydrogels are increasingly utilized to define
the effects of extracellular matrix (ECM) components on cellular fate
determination of human embryonic and induced pluripotent stem cell
(hESC and hiPSCs). In particular, hydrogels cross-linked by orthogonal
click chemistry, including thiol-norbornene photopolymerization and
inverse electron demand Diels–Alder (iEDDA) reactions, are
explored for 3D culture of hESC/hiPSCs owing to the specificity, efficiency,
cytocompatibility, and modularity of the cross-linking reactions.
In this work, we exploited the modularity of thiol-norbornene photopolymerization
to create a biomimetic hydrogel platform for 3D culture and differentiation
of hiPSCs. A cell-adhesive, protease-labile, and cross-linkable gelatin
derivative, gelatin-norbornene (GelNB), was used as the backbone polymer
for constructing hiPSC-laden biomimetic hydrogels. GelNB was further
heparinized via the iEDDA click reaction using tetrazine-modified
heparin (HepTz), creating GelNB-Hep. GelNB or GelNB-Hep was modularly
cross-linked with either inert macromer poly(ethylene glycol)-tetra-thiol
(PEG4SH) or another bioactive macromer-thiolated hyaluronic acid (THA).
The formulations of these hydrogels were modularly tuned to afford
biomimetic matrices with similar elastic moduli but varying bioactive
components, enabling the understanding of each bioactive component
on supporting hiPSC growth and ectodermal, mesodermal, and endodermal
fate commitment under identical soluble differentiation cues.
Collapse
Affiliation(s)
- Matthew R Arkenberg
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Karl Koehler
- Departments of Otolaryngology and Plastic and Oral Surgery, F.M. Kirby Neurobiology Center, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
13
|
Shao C, Zhang Q, Kuang G, Fan Q, Ye F. Construction and application of liver cancer models in vitro. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
14
|
Badali E, Hosseini M, Varaa N, Mahmoodi N, Goodarzi A, Taghdiri Nooshabadi V, Hassanzadeh S, Arabpour Z, Khanmohammadi M. Production of uniform size cell-enclosing silk derivative vehicles through coaxial microfluidic device and horseradish crosslinking reaction. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Stengelin E, Thiele J, Seiffert S. Multiparametric Material Functionality of Microtissue-Based In Vitro Models as Alternatives to Animal Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105319. [PMID: 35043598 PMCID: PMC8981905 DOI: 10.1002/advs.202105319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 05/12/2023]
Abstract
With the definition of the 3R principle by Russel and Burch in 1959, the search for an adequate substitute for animal testing has become one of the most important tasks and challenges of this time, not only from an ethical, but also from a scientific, economic, and legal point of view. Microtissue-based in vitro model systems offer a valuable approach to address this issue by accounting for the complexity of natural tissues in a simplified manner. To increase the functionality of these model systems and thus make their use as a substitute for animal testing more likely in the future, the fundamentals need to be continuously improved. Corresponding requirements exist in the development of multifunctional, hydrogel-based materials, whose properties are considered in this review under the aspects of processability, adaptivity, biocompatibility, and stability/degradability.
Collapse
Affiliation(s)
- Elena Stengelin
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| | - Julian Thiele
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Sebastian Seiffert
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| |
Collapse
|
16
|
Abstract
Cell manipulation in droplets has emerged as one of the great successes of microfluidic technologies, with the development of single-cell screening. However, the droplet format has also served to go beyond single-cell studies, namely by considering the interactions between different cells or between cells and their physical or chemical environment. These studies pose specific challenges linked to the need for long-term culture of adherent cells or the diverse types of measurements associated with complex biological phenomena. Here we review the emergence of droplet microfluidic methods for culturing cells and studying their interactions. We begin by characterizing the quantitative aspects that determine the ability to encapsulate cells, transport molecules, and provide sufficient nutrients within the droplets. This is followed by an evaluation of the biological constraints such as the control of the biochemical environment and promoting the anchorage of adherent cells. This first part ends with a description of measurement methods that have been developed. The second part of the manuscript focuses on applications of these technologies for cancer studies, immunology, and stem cells while paying special attention to the biological relevance of the cellular assays and providing guidelines on improving this relevance.
Collapse
Affiliation(s)
- Sébastien Sart
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gustave Ronteix
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Shreyansh Jain
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Gabriel Amselem
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| | - Charles N Baroud
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France.,Physical Microfluidics and Bioengineering, Institut Pasteur, 25-28 Rue du Dr. Roux, 75015 Paris, France
| |
Collapse
|
17
|
Zhang T, Zhang H, Zhou W, Jiang K, Liu C, Wang R, Zhou Y, Zhang Z, Mei Q, Dong WF, Sun M, Li H. One-Step Generation and Purification of Cell-Encapsulated Hydrogel Microsphere With an Easily Assembled Microfluidic Device. Front Bioeng Biotechnol 2022; 9:816089. [PMID: 35155414 PMCID: PMC8831896 DOI: 10.3389/fbioe.2021.816089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Cell-laden hydrogel microspheres with uniform size show great potential for tissue repair and drug screening applications. Droplet microfluidic systems have been widely used for the generation of cell-laden hydrogel microspheres. However, existing droplet microfluidic systems are mostly based on complex chips and are not compatible with well culture plates. Moreover, microspheres produced by droplet microfluidics need demulsification and purification from oil, which requires time and effort and may compromise cell viability. Herein, we present a simple one-step approach for producing and purifying hydrogel microspheres with an easily assembled microfluidic device. Droplets were generated and solidified in the device tubing. The obtained hydrogel microspheres were then transferred to a tissue culture plate filled with cell culture media and demulsified through evaporation of the oil at 37°C. The removal of oil caused the gelled microspheres to be released into the cell culture media. The encapsulated cells demonstrated good viability and grew into tumor spheroids in 12–14 days. Single cell-laden hydrogel microspheres were also obtained and grown into spheroid in 14 days. This one-step microsphere generation method shows good potential for applications in automated spheroid and organoid cultures as well as drug screening, and could potentially offer benefits for translation of cell/microgel technologies.
Collapse
Affiliation(s)
- Tao Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- *Correspondence: Wen-Fei Dong, ; Minxuan Sun, ; Haiwen Li, ; Tao Zhang,
| | - Hong Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wuping Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
| | - Keming Jiang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
| | - Cong Liu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
| | - Ru Wang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yuanshuai Zhou
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Zhiqiang Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
| | - Qian Mei
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- *Correspondence: Wen-Fei Dong, ; Minxuan Sun, ; Haiwen Li, ; Tao Zhang,
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
- *Correspondence: Wen-Fei Dong, ; Minxuan Sun, ; Haiwen Li, ; Tao Zhang,
| | - Haiwen Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
- *Correspondence: Wen-Fei Dong, ; Minxuan Sun, ; Haiwen Li, ; Tao Zhang,
| |
Collapse
|
18
|
Carvalho BG, Vit FF, Carvalho HF, Han SW, de la Torre LG. Layer-by-Layer Biomimetic Microgels for 3D Cell Culture and Nonviral Gene Delivery. Biomacromolecules 2021; 23:1545-1556. [PMID: 34890507 DOI: 10.1021/acs.biomac.1c01130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Localized release of nucleic acid therapeutics is essential for many biomedical applications, including gene therapy, tissue engineering, and medical implant coatings. We applied the substrate-mediated transfection and layer-by-layer (LbL) technique to achieve an efficient local gene delivery. In the experiments presented herein, we embeded lipoplexes containing plasmid DNA encoding for enhanced green fluorescent protein (pEGFP) within polyelectrolyte alginate-based microgels composed of poly(allylamine hydrochloride) (PAH), chondroitin sulfate (CS), and poly-l-lysine (PLL) with diameters between 70 and 90 μm. Droplet-based microfluidics was used as the main process to produce the alginate (ALG)-based microgels with discrete size, shape, and low coefficient of variation. The physicochemical and morphological properties of the polyelectrolyte microgels were characterized via optical microscopy, scanning electron microscopy (SEM), and zeta potential analysis. We found that polyelectrolyte microgels provide low cytotoxicity and cell-material interactions (adhesion, spreading, and proliferation). In addition, the microsystem showed the ability to load lipoplexes and a loading efficiency equal to 83%, and it enabled in vitro surface-based transfection of MCF-7 cells. This approach provides a new suitable route for cell adhesion and local gene delivery.
Collapse
Affiliation(s)
- Bruna G Carvalho
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil
| | - Franciele F Vit
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-865, Brazil
| | - Sang W Han
- Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo 04044-010, Brazil
| | - Lucimara G de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil
| |
Collapse
|
19
|
Gwon K, Hong HJ, Gonzalez-Suarez AM, Slama MQ, Choi D, Hong J, Baskaran H, Stybayeva G, Peterson QP, Revzin A. Bioactive hydrogel microcapsules for guiding stem cell fate decisions by release and reloading of growth factors. Bioact Mater 2021; 15:1-14. [PMID: 35386345 PMCID: PMC8941170 DOI: 10.1016/j.bioactmat.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/22/2021] [Accepted: 12/12/2021] [Indexed: 12/21/2022] Open
Abstract
Human pluripotent stem cells (hPSC) hold considerable promise as a source of adult cells for treatment of diseases ranging from diabetes to liver failure. Some of the challenges that limit the clinical/translational impact of hPSCs are high cost and difficulty in scaling-up of existing differentiation protocols. In this paper, we sought to address these challenges through the development of bioactive microcapsules. A co-axial flow focusing microfluidic device was used to encapsulate hPSCs in microcapsules comprised of an aqueous core and a hydrogel shell. Importantly, the shell contained heparin moieties for growth factor (GF) binding and release. The aqueous core enabled rapid aggregation of hPSCs into 3D spheroids while the bioactive hydrogel shell was used to load inductive cues driving pluripotency maintenance and endodermal differentiation. Specifically, we demonstrated that one-time, 1 h long loading of pluripotency signals, fibroblast growth factor (FGF)-2 and transforming growth factor (TGF)-β1, into bioactive microcapsules was sufficient to induce and maintain pluripotency of hPSCs over the course of 5 days at levels similar to or better than a standard protocol with soluble GFs. Furthermore, stem cell-carrying microcapsules that previously contained pluripotency signals could be reloaded with an endodermal cue, Nodal, resulting in higher levels of endodermal markers compared to stem cells differentiated in a standard protocol. Overall, bioactive heparin-containing core-shell microcapsules decreased GF usage five-fold while improving stem cell phenotype and are well suited for 3D cultivation of hPSCs. Heparin-containing microcapsules enable sustained release of inductive cues (growth factors) over the course of seven to nine days. Heparin-growth factor binding is reversible which means that different growth factors may be loaded in a sequential manner. Loading inductive cues into microcapsules results in better differentiation of pluripotent stem cells. Loading inductive cues into microcapsules allows to decrease the usage of growth factors by several fold.
Collapse
Affiliation(s)
- Kihak Gwon
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | - Hye Jin Hong
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | | | - Michael Q. Slama
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | - Daheui Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Harihara Baskaran
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | - Quinn P. Peterson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
- Corresponding author.
| |
Collapse
|
20
|
Hayaei Tehrani RS, Hajari MA, Ghorbaninejad Z, Esfandiari F. Droplet microfluidic devices for organized stem cell differentiation into germ cells: capabilities and challenges. Biophys Rev 2021; 13:1245-1271. [PMID: 35059040 PMCID: PMC8724463 DOI: 10.1007/s12551-021-00907-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022] Open
Abstract
Demystifying the mechanisms that underlie germline development and gamete production is critical for expanding advanced therapies for infertile couples who cannot benefit from current infertility treatments. However, the low number of germ cells, particularly in the early stages of development, represents a serious challenge in obtaining sufficient materials required for research purposes. In this regard, pluripotent stem cells (PSCs) have provided an opportunity for producing an unlimited source of germ cells in vitro. Achieving this ambition is highly dependent on accurate stem cell niche reconstitution which is achievable through applying advanced cell engineering approaches. Recently, hydrogel microparticles (HMPs), as either microcarriers or microcapsules, have shown promising potential in providing an excellent 3-dimensional (3D) biomimetic microenvironment alongside the systematic bioactive agent delivery. In this review, recent studies of utilizing various HMP-based cell engineering strategies for appropriate niche reconstitution and efficient in vitro differentiation are highlighted with a special focus on the capabilities of droplet-based microfluidic (DBM) technology. We believe that a deep understanding of the current limitations and potentials of the DBM systems in integration with stem cell biology provides a bright future for germ cell research. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12551-021-00907-5.
Collapse
Affiliation(s)
- Reyhaneh Sadat Hayaei Tehrani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Mohammad Amin Hajari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeynab Ghorbaninejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| |
Collapse
|
21
|
Amirifar L, Besanjideh M, Nasiri R, Shamloo A, Nasrollahi F, de Barros NR, Davoodi E, Erdem A, Mahmoodi M, Hosseini V, Montazerian H, Jahangiry J, Darabi MA, Haghniaz R, Dokmeci MR, Annabi N, Ahadian S, Khademhosseini A. Droplet-based microfluidics in biomedical applications. Biofabrication 2021; 14. [PMID: 34781274 DOI: 10.1088/1758-5090/ac39a9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Droplet-based microfluidic systems have been employed to manipulate discrete fluid volumes with immiscible phases. Creating the fluid droplets at microscale has led to a paradigm shift in mixing, sorting, encapsulation, sensing, and designing high throughput devices for biomedical applications. Droplet microfluidics has opened many opportunities in microparticle synthesis, molecular detection, diagnostics, drug delivery, and cell biology. In the present review, we first introduce standard methods for droplet generation (i.e., passive and active methods) and discuss the latest examples of emulsification and particle synthesis approaches enabled by microfluidic platforms. Then, the applications of droplet-based microfluidics in different biomedical applications are detailed. Finally, a general overview of the latest trends along with the perspectives and future potentials in the field are provided.
Collapse
Affiliation(s)
- Leyla Amirifar
- Mechanical Engineering, Sharif University of Technology, Tehran, Iran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | - Mohsen Besanjideh
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | - Rohollah Nasiri
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | | | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Elham Davoodi
- Bioengineering, University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | - Ahmet Erdem
- Bioengineering, University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | | | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Hossein Montazerian
- Bioengineering, University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | - Jamileh Jahangiry
- University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Nasim Annabi
- Chemical Engineering, UCLA, Los Angeles, Los Angeles, California, 90095, UNITED STATES
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| |
Collapse
|
22
|
Three dimensional and microphysiological bone marrow models detect in vivo positive compounds. Sci Rep 2021; 11:21959. [PMID: 34754012 PMCID: PMC8578414 DOI: 10.1038/s41598-021-01400-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
Micronucleus (MN) assessment is a valuable tool in safety assessment. However, several compounds are positive in the in vivo bone marrow (BM) MN assay but negative in vitro, reflecting that BM complexity is not recapitulated in vitro. Importantly, these compounds are not genotoxic; rather, drug-driven pharmacological-effects on the BM increase MN, however, without mechanistic understanding, in vivo positives stop drug-progression. Thus, physiologically-relevant BM models are required to bridge the gap between in vitro and in vivo. The current study aimed to investigate the utility of two human 3D BM models (fluidic and static) for MN assessment. MN induction following treatment with etoposide and Poly-ADP Ribose Polymerase inhibitor (PARPi) and prednisolone (negative in vitro, positive in vivo) was determined in 2D L5178Y and human BM cells, and the 3D BM models. Etoposide (0–0.070 µM) and PARPi (0–150 µM) induced MN in both 3D BM models indicating their utility for genotoxicity testing. Interestingly, PARPi treatment induced a MN trend in 3D more comparable to in vivo. Importantly, prednisolone (0–1.7 mM) induced MN in both 3D BM models, suggesting recapitulation of the in vivo microenvironment. These models could provide a valuable tool to follow up, and eventually predict, suspected pharmacological mechanisms, thereby reducing animal studies.
Collapse
|
23
|
Ishihara K, Narita Y, Teramura Y, Fukazawa K. Preparation of Magnetic Hydrogel Microparticles with Cationic Surfaces and Their Cell-Assembling Performance. ACS Biomater Sci Eng 2021; 7:5107-5117. [PMID: 34677934 DOI: 10.1021/acsbiomaterials.1c01150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cationic magnetic hydrogel microparticles with high retention on cell surfaces were prepared using a two-step procedure. Using these magnetic hydrogel microparticles, cells were clustered with each other, and cell aggregates were prepared effectively. Cross-linked poly(vinyl alcohol) (PVA) hydrogel microparticles containing iron oxide nanoparticles were prepared. The diameter of the microparticles was in the range of 200-500 nm. Water-soluble cationic polymers containing both trimethyl ammonium (TMA) groups and phenylboronic acid (PBA) groups were synthesized for the surface modification of the microparticles. To regulate the composition, electrically neutral phosphorylcholine groups were introduced into the polymer. Covalent bonds were formed between the hydroxy groups of PVA microparticles and PBA groups in the polymer. The surface zeta potential of the microparticles reflected the composition of the TMA groups. The particles responded to an external magnetic field and clustered rapidly. Microparticles were adsorbed on the floating cell surface and induced cell aggregation quickly when a magnetic field was applied. Under the most effective conditions, the diameter of the cell aggregates increased to approximately 1 mm after 30 min. Denser cell aggregates were formed by the synergistic effects of the magnetic field and the properties of the microparticles. The formed cell aggregates continued to grow for more than 4 days under an applied magnetic field, indicating that the ability of the cells in the aggregate to proliferate was well maintained.
Collapse
Affiliation(s)
- Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yusuke Narita
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuji Teramura
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kyoko Fukazawa
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
24
|
Sheth S, Stealey S, Morgan NY, Zustiak SP. Microfluidic Chip Device for In Situ Mixing and Fabrication of Hydrogel Microspheres via Michael-Type Addition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11793-11803. [PMID: 34597052 PMCID: PMC9447845 DOI: 10.1021/acs.langmuir.1c01739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Hydrogel microspheres are sought for a variety of biomedical applications, including therapeutic and cellular delivery, sensors, and lubricants. Robust fabrication of hydrogel microspheres with uniform sizes and properties can be achieved using microfluidic systems that rely on droplet formation and subsequent gelation to form microspheres. Such systems work well when gelation is initiated after droplet formation but are not practical for timed gelation systems where gelation is initiated prior to droplet formation; premature gelation can lead to device blockage, variable microsphere diameter due to viscosity changes in the precursor solution, and limited numbers of microspheres produced in a single run. To enable microfluidic fabrication of microspheres from timed gelation hydrogel systems, an in situ mixing region is needed so that various hydrogel precursor components can be added separately. Here, we designed and evaluated three mixing devices for their effectiveness at mixing hydrogel precursor solutions prior to droplet formation and subsequent gelation. The serpentine geometry was found to be the most effective and was further improved with the inclusion of a pillar array to increase agitation. The optimized device was shown to fully mix precursor solutions and enable the fabrication of monodisperse polyethylene glycol microspheres, offering great potential for use with timed gelation hydrogel systems.
Collapse
Affiliation(s)
- Saahil Sheth
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA 63103
| | - Samuel Stealey
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA 63103
| | - Nicole Y. Morgan
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA 20814
| | - Silviya P. Zustiak
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA 63103
| |
Collapse
|
25
|
Argentiere S, Siciliano PA, Blasi L. How Microgels Can Improve the Impact of Organ-on-Chip and Microfluidic Devices for 3D Culture: Compartmentalization, Single Cell Encapsulation and Control on Cell Fate. Polymers (Basel) 2021; 13:3216. [PMID: 34641032 PMCID: PMC8512905 DOI: 10.3390/polym13193216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
The Organ-on-chip (OOC) devices represent the new frontier in biomedical research to produce micro-organoids and tissues for drug testing and regenerative medicine. The development of such miniaturized models requires the 3D culture of multiple cell types in a highly controlled microenvironment, opening new challenges in reproducing the extracellular matrix (ECM) experienced by cells in vivo. In this regard, cell-laden microgels (CLMs) represent a promising tool for 3D cell culturing and on-chip generation of micro-organs. The engineering of hydrogel matrix with properly balanced biochemical and biophysical cues enables the formation of tunable 3D cellular microenvironments and long-term in vitro cultures. This focused review provides an overview of the most recent applications of CLMs in microfluidic devices for organoids formation, highlighting microgels' roles in OOC development as well as insights into future research.
Collapse
Affiliation(s)
| | | | - Laura Blasi
- Institute for Microelectronics and Microsystems IMM-CNR, Via Monteroni, University Campus, 73100 Lecce, Italy; (S.A.); (P.A.S.)
| |
Collapse
|
26
|
Park Y, Ji ST, Yong U, Das S, Jang WB, Ahn G, Kwon SM, Jang J. 3D bioprinted tissue-specific spheroidal multicellular microarchitectures for advanced cell therapy. Biofabrication 2021; 13. [PMID: 34433153 DOI: 10.1088/1758-5090/ac212e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/25/2021] [Indexed: 01/05/2023]
Abstract
Intercellular interaction is the most crucial factor in promoting cell viability and functionality in an engineered tissue system. Of the various shapes available for cell-laden constructs, spheroidal multicellular microarchitectures (SMMs) have been introduced as building blocks and injectable cell carriers with substantial cell-cell and cell-extracellular matrix (ECM) interactions. Here, we developed a precise and expeditious SMM printing method that can create a tissue-specific microenvironment and thus be potentially useful for cell therapy. This printing strategy is designed to manufacture SMMs fabricated with optimal bioink blended with decellularized ECM and alginate to enhance the functional performance of the encapsulated cells. Experimental results showed that the proposed method allowed for size controllability and mass production of SMMs with high cell viability. Moreover, SMMs co-cultured with endothelial cells promoted lineage-specific maturation and increased functionality compared to monocultured SMMs. Overall, it was concluded that SMMs have the potential for use in cell therapy due to their high cell retention and proliferation rate compared to single-cell injection, particularly for efficient tissue regeneration after myocardial infarction. This study suggests that utilizing microextrusion-based 3D bioprinting technology to encapsulate cells in cell-niche-standardized SMMs can expand the range of possible applications.
Collapse
Affiliation(s)
- Yejin Park
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Republic of Korea
| | - Seung Taek Ji
- Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan, Kyungnam 50612, Republic of Korea
| | - Uijung Yong
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Republic of Korea
| | - Sanskrita Das
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, United States of America
| | - Woong Bi Jang
- Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan, Kyungnam 50612, Republic of Korea
| | - Geunseon Ahn
- Research Institute, Sphebio Co., Ltd, Pohang, Kyungbuk 37666, Republic of Korea
| | - Sang-Mo Kwon
- Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan, Kyungnam 50612, Republic of Korea
| | - Jinah Jang
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Kyungbuk 37673, Republic of Korea.,Department of Mechanical Engineering, POSTECH, Pohang, Kyungbuk 37673, Republic of Korea
| |
Collapse
|
27
|
Integration of a fiber-based cell culture and biosensing system for monitoring of multiple protein markers secreted from stem cells. Biosens Bioelectron 2021; 193:113531. [PMID: 34333363 DOI: 10.1016/j.bios.2021.113531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022]
Abstract
We propose a new platform that can integrate three-dimensional cell culture scaffold and a surface-enhanced Raman spectroscopy (SERS)-based biosensor by stacking them to form a multilayer system, which would allow monitoring of the protein markers secreted from cultured stem cells without periodic cell and/or media collection. The cell culture scaffold supported the proliferation and osteogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs). The SERS capture substrate detected protein markers in combination with SERS tag made with Au-Ag alloy nanoboxes. Incorporating the different Raman reporters into the SERS tag allowed easy identification of target proteins for multiplex assays. The resultant SERS-based immunoassay could detect the pg/mL levels of protein markers without crosstalk and interference. When one ADSC culture scaffold and multiple SERS capture substrates were integrated and incubated in differentiation culture media, our system was sufficiently sensitive to monitor time-dependent secretion of three different osteogenic protein markers from ADSCs during their osteogenic differentiation. Since the sensor and cell culture scaffold can be manipulated independently, various cell and biomarker combinations are possible to obtain relevant information regarding the actual state of the different types of cells.
Collapse
|
28
|
Individual Control and Quantification of 3D Spheroids in a High-Density Microfluidic Droplet Array. Cell Rep 2021; 31:107670. [PMID: 32460010 PMCID: PMC7262598 DOI: 10.1016/j.celrep.2020.107670] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/20/2019] [Accepted: 04/29/2020] [Indexed: 12/29/2022] Open
Abstract
As three-dimensional cell culture formats gain in popularity, there emerges a need for tools that produce vast amounts of data on individual cells within the spheroids or organoids. Here, we present a microfluidic platform that provides access to such data by parallelizing the manipulation of individual spheroids within anchored droplets. Different conditions can be applied in a single device by triggering the merging of new droplets with the spheroid-containing drops. This allows cell-cell interactions to be initiated for building microtissues, studying stem cells’ self-organization, or observing antagonistic interactions. It also allows the spheroids’ physical or chemical environment to be modulated, as we show by applying a drug over a large range of concentrations in a single parallelized experiment. This convergence of microfluidics and image acquisition leads to a data-driven approach that allows the heterogeneity of 3D culture behavior to be addressed across the scales, bridging single-cell measurements with population measurements. Microfluidic droplet pairs sequentially trapped in capillary anchors before merging 1 spheroid/droplet, with microenvironment modulations driven by droplet merging A wide range of drug concentrations tested on hepatic-like spheroids in a single chip Data-driven approach unravels 3D tissue-level dynamic drug response
Collapse
|
29
|
Puertas-Bartolomé M, Mora-Boza A, García-Fernández L. Emerging Biofabrication Techniques: A Review on Natural Polymers for Biomedical Applications. Polymers (Basel) 2021; 13:1209. [PMID: 33918049 PMCID: PMC8069319 DOI: 10.3390/polym13081209] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/21/2022] Open
Abstract
Natural polymers have been widely used for biomedical applications in recent decades. They offer the advantages of resembling the extracellular matrix of native tissues and retaining biochemical cues and properties necessary to enhance their biocompatibility, so they usually improve the cellular attachment and behavior and avoid immunological reactions. Moreover, they offer a rapid degradability through natural enzymatic or chemical processes. However, natural polymers present poor mechanical strength, which frequently makes the manipulation processes difficult. Recent advances in biofabrication, 3D printing, microfluidics, and cell-electrospinning allow the manufacturing of complex natural polymer matrixes with biophysical and structural properties similar to those of the extracellular matrix. In addition, these techniques offer the possibility of incorporating different cell lines into the fabrication process, a revolutionary strategy broadly explored in recent years to produce cell-laden scaffolds that can better mimic the properties of functional tissues. In this review, the use of 3D printing, microfluidics, and electrospinning approaches has been extensively investigated for the biofabrication of naturally derived polymer scaffolds with encapsulated cells intended for biomedical applications (e.g., cell therapies, bone and dental grafts, cardiovascular or musculoskeletal tissue regeneration, and wound healing).
Collapse
Affiliation(s)
- María Puertas-Bartolomé
- INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Saarland University, 66123 Saarbrücken, Germany
| | - Ana Mora-Boza
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, 2310 IBB Building, Atlanta, GA 30332-0363, USA
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Luis García-Fernández
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| |
Collapse
|
30
|
Fattahi P, Rahimian A, Slama MQ, Gwon K, Gonzalez-Suarez AM, Wolf J, Baskaran H, Duffy CD, Stybayeva G, Peterson QP, Revzin A. Core-shell hydrogel microcapsules enable formation of human pluripotent stem cell spheroids and their cultivation in a stirred bioreactor. Sci Rep 2021; 11:7177. [PMID: 33785778 PMCID: PMC8010084 DOI: 10.1038/s41598-021-85786-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
Cellular therapies based on human pluripotent stem cells (hPSCs) offer considerable promise for treating numerous diseases including diabetes and end stage liver failure. Stem cell spheroids may be cultured in stirred bioreactors to scale up cell production to cell numbers relevant for use in humans. Despite significant progress in bioreactor culture of stem cells, areas for improvement remain. In this study, we demonstrate that microfluidic encapsulation of hPSCs and formation of spheroids. A co-axial droplet microfluidic device was used to fabricate 400 μm diameter capsules with a poly(ethylene glycol) hydrogel shell and an aqueous core. Spheroid formation was demonstrated for three hPSC lines to highlight broad utility of this encapsulation technology. In-capsule differentiation of stem cell spheroids into pancreatic β-cells in suspension culture was also demonstrated.
Collapse
Affiliation(s)
- Pouria Fattahi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | - Ali Rahimian
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | - Michael Q Slama
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | - Kihak Gwon
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | - Alan M Gonzalez-Suarez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | - Jadon Wolf
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Harihara Baskaran
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Caden D Duffy
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | - Quinn P Peterson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55902, USA.
| |
Collapse
|
31
|
He F, Tao T, Liu H, Wang Y, Cui K, Guo Y, Qin J. Controllable Fabrication of Composite Core-Shell Capsules at a Macroscale as Organoid Biocarriers. ACS APPLIED BIO MATERIALS 2021; 4:1584-1596. [PMID: 35014507 DOI: 10.1021/acsabm.0c01441] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cell encapsulation technology is promising for generation of functional carriers with well-tailored structures for efficient transplantation and immunoprotection of cells/tissues. Stem cell organoids are highly potential for recapitulating the intricate architectures and functionalities of native organs and also providing an unlimited cell source for cellular replacement therapy. However, it remains challenging for loading the organoids with hundreds of micrometers size by current existing cell carriers. Herein, a simple and facile coextrusion strategy is developed for controllable fabrication of Ca-alginate/poly(ethylene imine) (Alg/PEI) macrocapsules for efficient encapsulation and cultivation of organoids. Human-induced pluripotent stem cell (hiPSC)-derived islet organoids are encapsulated in the aqueous compartments of the capsules and immunoisolated by a semipermeable Alg/PEI shell. Via electrostatic interactions, a PEI polyelectrolyte can be incorporated in the shell for restricting its swelling, thus effectively improving the stability of the capsules. The Alg/PEI macrocapsules are featured with desirable selective permeability for immunoisolation of antibodies from reaching the loaded organoids. Meanwhile, they also exhibit excellent permeability for mass transfer due to their well-defined core-shell structure. As such, the encapsulated islet organoids contain islet-specific multicellular components, with high viability and sensitive glucose-stimulated insulin secretion function. The proposed approach provides a versatile encapsulation system for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Fan He
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Tingting Tao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haitao Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaqing Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Kangli Cui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaqiong Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianhua Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| |
Collapse
|
32
|
Shieh H, Saadatmand M, Eskandari M, Bastani D. Microfluidic on-chip production of microgels using combined geometries. Sci Rep 2021; 11:1565. [PMID: 33452407 PMCID: PMC7810975 DOI: 10.1038/s41598-021-81214-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Microfluidic on-chip production of microgels using external gelation can serve numerous applications that involve encapsulation of sensitive cargos. Nevertheless, on-chip production of microgels in microfluidic devices can be challenging due to problems induced by the rapid increase in precursor solution viscosity like clogging. Here, a novel design incorporating a step, which includes a sudden increase in cross-sectional area, before a flow-focusing nozzle was proposed for microfluidic droplet generators. Besides, a shielding oil phase was utilized to avoid the occurrence of emulsification and gelation stages simultaneously. The step which was located before the flow-focusing nozzle facilitated the full shielding of the dispersed phase due to 3-dimensional fluid flow in this geometry. The results showed that the microfluidic device was capable of generating highly monodispersed spherical droplets (CV < 2% for step and CV < 5% for flow-focusing nozzle) with an average diameter in the range of 90-190 μm, both in step and flow-focusing nozzle. Moreover, it was proved that the device could adequately create a shelter for the dispersed phase regardless of the droplet formation locus. The ability of this microfluidic device in the production of microgels was validated by creating alginate microgels (with an average diameter of ~ 100 μm) through an external gelation process with on-chip calcium chloride emulsion in mineral oil.
Collapse
Affiliation(s)
- Hamed Shieh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mahnaz Eskandari
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Dariush Bastani
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
33
|
Hybrid microgels produced via droplet microfluidics for sustainable delivery of hydrophobic and hydrophilic model nanocarriers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111467. [DOI: 10.1016/j.msec.2020.111467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 01/28/2023]
|
34
|
Kim SJ, Kim EM, Yamamoto M, Park H, Shin H. Engineering Multi-Cellular Spheroids for Tissue Engineering and Regenerative Medicine. Adv Healthc Mater 2020; 9:e2000608. [PMID: 32734719 DOI: 10.1002/adhm.202000608] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Multi-cellular spheroids are formed as a 3D structure with dense cell-cell/cell-extracellular matrix interactions, and thus, have been widely utilized as implantable therapeutics and various ex vivo tissue models in tissue engineering. In principle, spheroid culture methods maximize cell-cell cohesion and induce spontaneous cellular assembly while minimizing cellular interactions with substrates by using physical forces such as gravitational or centrifugal forces, protein-repellant biomaterials, and micro-structured surfaces. In addition, biofunctional materials including magnetic nanoparticles, polymer microspheres, and nanofiber particles are combined with cells to harvest composite spheroids, to accelerate spheroid formation, to increase the mechanical properties and viability of spheroids, and to direct differentiation of stem cells into desirable cell types. Biocompatible hydrogels are developed to produce microgels for the fabrication of size-controlled spheroids with high efficiency. Recently, spheroids have been further engineered to fabricate structurally and functionally reliable in vitro artificial 3D tissues of the desired shape with enhanced specific biological functions. This paper reviews the overall characteristics of spheroids and general/advanced spheroid culture techniques. Significant roles of functional biomaterials in advanced spheroid engineering with emphasis on the use of spheroids in the reconstruction of artificial 3D tissue for tissue engineering are also thoroughly discussed.
Collapse
Affiliation(s)
- Se-Jeong Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Eun Mi Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Masaya Yamamoto
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
- Biomedical Engineering for Diagnosis and Treatment, Graduate School of Biomedical Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Hansoo Park
- School of Integrative Engineering, College of Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, 06974, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- Institute of Nano Science & Technology (INST), Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
35
|
Liu D, Chen S, Win Naing M. A review of manufacturing capabilities of cell spheroid generation technologies and future development. Biotechnol Bioeng 2020; 118:542-554. [PMID: 33146407 DOI: 10.1002/bit.27620] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/07/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
Spheroid culture provides cells with a three-dimensional environment that can better mimic physiological conditions compared to monolayer culture. Technologies involved in the generation of cell spheroids are continuously being innovated to produce spheroids with enhanced properties. In this paper, we review the manufacturing capabilities of current cell spheroid generation technologies. We propose that spheroid generation technologies should enable tight and robust process controls to produce spheroids of consistent and repeatable quality. Future technology development for the generation of cell spheroids should look into improvement in process control, standardization, scalability and monitoring, in addition to advanced methods of spheroid transfer and characterization.
Collapse
Affiliation(s)
- Dan Liu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sixun Chen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - May Win Naing
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.,Singapore Institute of Manufacturing Technology, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
36
|
Ling SD, Geng Y, Chen A, Du Y, Xu J. Enhanced single-cell encapsulation in microfluidic devices: From droplet generation to single-cell analysis. BIOMICROFLUIDICS 2020; 14:061508. [PMID: 33381250 PMCID: PMC7758092 DOI: 10.1063/5.0018785] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/09/2020] [Indexed: 05/24/2023]
Abstract
Single-cell analysis to investigate cellular heterogeneity and cell-to-cell interactions is a crucial compartment to answer key questions in important biological mechanisms. Droplet-based microfluidics appears to be the ideal platform for such a purpose because the compartmentalization of single cells into microdroplets offers unique advantages of enhancing assay sensitivity, protecting cells against external stresses, allowing versatile and precise manipulations over tested samples, and providing a stable microenvironment for long-term cell proliferation and observation. The present Review aims to give a preliminary guidance for researchers from different backgrounds to explore the field of single-cell encapsulation and analysis. A comprehensive and introductory overview of the droplet formation mechanism, fabrication methods of microchips, and a myriad of passive and active encapsulation techniques to enhance single-cell encapsulation efficiency were presented. Meanwhile, common methods for single-cell analysis, especially for long-term cell proliferation, differentiation, and observation inside microcapsules, are briefly introduced. Finally, the major challenges faced in the field are illustrated, and potential prospects for future work are discussed.
Collapse
Affiliation(s)
- Si Da Ling
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuhao Geng
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - An Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Nie J, Fu J, He Y. Hydrogels: The Next Generation Body Materials for Microfluidic Chips? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003797. [PMID: 33103353 DOI: 10.1002/smll.202003797] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Indexed: 05/27/2023]
Abstract
The integration of microfluidics with biomedical research is confronted with considerable limitations due to its body materials. With high content of water, hydrogels own superior biocompatibility and degradability. Can hydrogels become another material choice for the construction of microfluidic chips, particularly biofluidics? The present review aims to systematically establish the concept of hydrogel-based microfluidic chips (HMCs) and address three main concerns: i) why choosing hydrogels? ii) how to fabricate HMCs?, and iii) in which fields to apply HMCs? It is envisioned that hydrogels may be used increasingly as substitute for traditional materials and gradually act as the body material for microfluidic chips. The modifications of conventional process are highlighted to overcome issues arising from the incompatibility between the construction methods and hydrogel materials. Specifically targeting at the "soft and wet" hydrogels, an efficient flowchart of "i) high resolution template printing; ii) damage-free demolding; iii) twice-crosslinking bonding" is proposed. Accordingly, a broader microfluidic chip concept is proposed in terms of form and function. Potential biomedical applications of HMCs are discussed. This review also highlights the challenges arising from the material replacement, as well as the future directions of the proposed concept. Finally, the authors' viewpoints and perspectives for this emerging field are discussed.
Collapse
Affiliation(s)
- Jing Nie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
38
|
Caldwell AS, Aguado BA, Anseth KS. Designing Microgels for Cell Culture and Controlled Assembly of Tissue Microenvironments. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1907670. [PMID: 33841061 PMCID: PMC8026140 DOI: 10.1002/adfm.201907670] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Indexed: 05/04/2023]
Abstract
Micron-sized hydrogels, termed microgels, are emerging as multifunctional platforms that can recapitulate tissue heterogeneity in engineered cell microenvironments. The microgels can function as either individual cell culture units or can be assembled into larger scaffolds. In this manner, individual microgels can be customized for single or multi-cell co-culture applications, or heterogeneous populations can be used as building blocks to create microporous assembled scaffolds that more closely mimic tissue heterogeneities. The inherent versatility of these materials allows user-defined control of the microenvironments, from the order of singly encapsulated cells to entire three-dimensional cell scaffolds. These hydrogel scaffolds are promising for moving towards personalized medicine approaches and recapitulating the multifaceted microenvironments that exist in vivo.
Collapse
Affiliation(s)
- Alexander S. Caldwell
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, USA, 80303
- BioFrontiers Institute, University of Colorado – Boulder, USA, 80303
| | - Brian A. Aguado
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, USA, 80303
- BioFrontiers Institute, University of Colorado – Boulder, USA, 80303
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, USA, 80303
- BioFrontiers Institute, University of Colorado – Boulder, USA, 80303
| |
Collapse
|
39
|
Feng Q, Gao H, Wen H, Huang H, Li Q, Liang M, Liu Y, Dong H, Cao X. Engineering the cellular mechanical microenvironment to regulate stem cell chondrogenesis: Insights from a microgel model. Acta Biomater 2020; 113:393-406. [PMID: 32629189 DOI: 10.1016/j.actbio.2020.06.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/07/2023]
Abstract
Biophysical cues (especially mechanical cues) embedded in cellular microenvironments show a critical impact on stem cell fate. Despite the capability of traditional hydrogels to mimic the feature of extracellular matrix (ECM) and tune their physicochemical properties via diverse approaches, their relatively large size not only induces biased results, but also hinders high-throughput screening and analysis. In this paper, a microgel model is proposed to recapitulate the role of 3D mechanical microenvironment on stem cell behaviors especially chondrogenesis in vitro. The small diameter of microgels brings the high surface area to volume ratio and then the enlarged diffusion area and shortened diffusion distance of soluble molecules, leading to uniform distribution of nutrients and negligible biochemical gradient inside microgels. To construct ECM-like microenvironment with tunable mechanical strength, three gelatin/hyaluronic acid hybrid microgels with low, medium and high crosslinking densities, i.e., Gel-HA(L), Gel-HA(M) and Gel-HA(H), are fabricated in microfluidic devices by Michael addition reaction between thiolated gelatin (Gel-SH) and ethylsulfated hyaluronic acid (HA-VS) with different substitution degrees of vinyl sulfone groups. Our results show that mouse bone marrow mesenchymal stem cell (BMSC) proliferation, distribution and chondrogenesis are all closely dependent on mechanical microenvironments in microgels. Noteworthily, BMSCs show a clear trend of differentiating into hyaline cartilage in Gel-HA(L) and fibrocartilage in Gel-HA(M) and Gel-HA(H). Whole transcriptome RNA sequencing reveals that mechanical microenvironment of microgels affects BMSC differentiation via TGF-β/Smad signaling pathway, Hippo signaling pathway and Integrin/YAP/TAZ signaling pathway. We believe this microgel model provides a new way to further explore the interaction between cells and 3D microenvironment. STATEMENT OF SIGNIFICANCE: In recent years, hydrogels have been frequently used to construct 3D microenvironment for cells. However, their relatively large size not only brings biased experimental results, but also limits high-throughput screening and analysis. Herein we propose a gelatin/hyaluronic acid microgel model to explore the effects of 3D cellular mechanical microenvironment (biophysical cues) on BMSC behaviors especially chondrogenesis, which can minimize the interference of biochemical gradients. Our results reveal that BMSC differentiation into either hyaline cartilage or fibrocartilage can be regulated via tailoring the mechanical properties of microgels. Whole transcriptome RNA sequencing proves that "TGF-β/Smad signaling pathway", "Hippo signaling pathway" and "Integrins/YAP/ TAZ signaling pathway" are activated or inhibited in this process.
Collapse
Affiliation(s)
- Qi Feng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Huichang Gao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Hongji Wen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Hanhao Huang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Minhua Liang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Yang Liu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P R China.
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P R China; Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
40
|
Jiang Z, Shaha R, McBride R, Jiang K, Tang M, Xu B, Goroncy AK, Frick C, Oakey J. Crosslinker length dictates step-growth hydrogel network formation dynamics and allows rapid on-chip photoencapsulation. Biofabrication 2020; 12:035006. [DOI: 10.1088/1758-5090/ab7ef4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Wang J, Yu Y, Guo J, Lu W, Wei Q, Zhao Y. The Construction and Application of Three-Dimensional Biomaterials. ACTA ACUST UNITED AC 2020; 4:e1900238. [PMID: 32293130 DOI: 10.1002/adbi.201900238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/26/2019] [Indexed: 12/14/2022]
Abstract
Biomaterials have been widely explored and applied in many areas, especially in the field of tissue engineering. The interface of biomaterials and cells has been deeply investigated. However, it has been demonstrated that conventional 2D biomaterials fail to maintain the 3D structures and phenotypes of cells, which is the result of their limited ability to mimic the latter's complex extracellular matrix. To overcome this challenge, cell cultivation dependent on 3D biomaterials has emerged as an alternative strategy to make the recovery of 3D structures and functions of cells possible. Thus, with the thriving development of 3D cell culture in tissue engineering, a holistic review of the construction and application of 3D biomaterials is desired. Here, recent developments in 3D biomaterials for tissue engineering are reviewed. An overview of various approaches to construct 3D biomaterials, such as electro-jetting/-spinning, micro-molding, microfluidics, and 3D bio-printing, is first presented. Their typical applications in constructing cell sheets, vascular structures, cell spheroids, and macroscopic cellular constructs are described as well. Following these two sections, the current status and challenges are analyzed, as well as the future outlook of 3D biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Jie Wang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jiahui Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Wei Lu
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Qiong Wei
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
42
|
Cell subtype-dependent formation of breast tumor spheroids and their variable responses to chemotherapeutics within microfluidics-generated 3D microgels with tunable mechanics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110932. [PMID: 32409080 DOI: 10.1016/j.msec.2020.110932] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/18/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022]
Abstract
Tumor spheroids have been considered valuable miniaturized three dimensional (3D) tissue models for fundamental biological investigation as well as drug screening applications. Most tumor spheroids are generated utilizing the inherent aggregate behavior of tumor cells, and the effect of microenvironmental factors such as extracellular matrix (ECM) on tumor spheroid formation has not been extensively elucidated to date. Herein, uniform-sized spherical microgels encapsulated with different subtypes of breast tumor cells, based on tumor aggressiveness, are developed by flow-focusing microfluidics technology. Mechanical properties of microgels are controlled in a wide range via polymer concentration, and their influence on tumor physiology and spheroid formation is shown to be highly dependent on cell subtype. Specifically, the formation of polyploid/multinucleated giant cancer cells is a key early step in determining initial proliferation and eventual tumor spheroid generation within microgels with varying mechanics. In addition, chemotherapeutic screening performed on these tumor spheroids in microgels also display significantly variable cytotoxic effects based on microgel mechanics for each cell subtype, further highlighting the importance of microenvironmental factors on tumor spheroid physiology.
Collapse
|
43
|
Zhao Q, Cui H, Wang Y, Du X. Microfluidic Platforms toward Rational Material Fabrication for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903798. [PMID: 31650698 DOI: 10.1002/smll.201903798] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/03/2019] [Indexed: 05/16/2023]
Abstract
The emergence of micro/nanomaterials in recent decades has brought promising alternative approaches in various biomedicine-related fields such as pharmaceutics, diagnostics, and therapeutics. These micro/nanomaterials for specific biomedical applications shall possess tailored properties and functionalities that are closely correlated to their geometries, structures, and compositions, therefore placing extremely high demands for manufacturing techniques. Owing to the superior capabilities in manipulating fluids and droplets at microscale, microfluidics has offered robust and versatile platform technologies enabling rational design and fabrication of micro/nanomaterials with precisely controlled geometries, structures and compositions in high throughput manners, making them excellent candidates for a variety of biomedical applications. This review briefly summarizes the progress of microfluidics in the fabrication of various micro/nanomaterials ranging from 0D (particles), 1D (fibers) to 2D/3D (film and bulk materials) materials with controllable geometries, structures, and compositions. The applications of these microfluidic-based materials in the fields of diagnostics, drug delivery, organs-on-chips, tissue engineering, and stimuli-responsive biodevices are introduced. Finally, an outlook is discussed on the future direction of microfluidic platforms for generating materials with superior properties and on-demand functionalities. The integration of new materials and techniques with microfluidics will pave new avenues for preparing advanced micro/nanomaterials with enhanced performance for biomedical applications.
Collapse
Affiliation(s)
- Qilong Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| | - Huanqing Cui
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| | - Yunlong Wang
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| | - Xuemin Du
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China
| |
Collapse
|
44
|
Mohamed MGA, Ambhorkar P, Samanipour R, Yang A, Ghafoor A, Kim K. Microfluidics-based fabrication of cell-laden microgels. BIOMICROFLUIDICS 2020; 14:021501. [PMID: 32161630 PMCID: PMC7058428 DOI: 10.1063/1.5134060] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/16/2020] [Indexed: 05/02/2023]
Abstract
Microfluidic principles have been extensively utilized as powerful tools to fabricate controlled monodisperse cell-laden hydrogel microdroplets for various biological applications, especially tissue engineering. In this review, we report recent advances in microfluidic-based droplet fabrication and provide our rationale to justify the superiority of microfluidics-based techniques over other microtechnology methods in achieving the encapsulation of cells within hydrogels. The three main components of such a system-hydrogels, cells, and device configurations-are examined thoroughly. First, the characteristics of various types of hydrogels including natural and synthetic types, especially concerning cell encapsulation, are examined. This is followed by the elucidation of the reasoning behind choosing specific cells for encapsulation. Next, in addition to a detailed discussion of their respective droplet formation mechanisms, various device configurations including T-junctions, flow-focusing, and co-flowing that aid in achieving cell encapsulation are critically reviewed. We then present an outlook on the current applications of cell-laden hydrogel droplets in tissue engineering such as 3D cell culturing, rapid generation and repair of tissues, and their usage as platforms for studying cell-cell and cell-microenvironment interactions. Finally, we shed some light upon the prospects of microfluidics-based production of cell-laden microgels and propose some directions for forthcoming research that can aid in overcoming challenges currently impeding the translation of the technology into clinical success.
Collapse
Affiliation(s)
- Mohamed G. A. Mohamed
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Pranav Ambhorkar
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Roya Samanipour
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Annie Yang
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Ali Ghafoor
- Irving K. Barber School of Arts and Sciences, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | | |
Collapse
|
45
|
Jo YK, Lee D. Biopolymer Microparticles Prepared by Microfluidics for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903736. [PMID: 31559690 DOI: 10.1002/smll.201903736] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Biopolymers are macromolecules that are derived from natural sources and have attractive properties for a plethora of biomedical applications due to their biocompatibility, biodegradability, low antigenicity, and high bioactivity. Microfluidics has emerged as a powerful approach for fabricating polymeric microparticles (MPs) with designed structures and compositions through precise manipulation of multiphasic flows at the microscale. The synergistic combination of materials chemistry afforded by biopolymers and precision provided by microfluidic capabilities make it possible to design engineered biopolymer-based MPs with well-defined physicochemical properties that are capable of enabling an efficient delivery of therapeutics, 3D culture of cells, and sensing of biomolecules. Here, an overview of microfluidic approaches is provided for the design and fabrication of functional MPs from three classes of biopolymers including polysaccharides, proteins, and microbial polymers, and their advances for biomedical applications are highlighted. An outlook into the future research on microfluidically-produced biopolymer MPs for biomedical applications is also provided.
Collapse
Affiliation(s)
- Yun Kee Jo
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
46
|
Ino K, Ozawa F, Dang N, Hiramoto K, Hino S, Akasaka R, Nashimoto Y, Shiku H. Biofabrication Using Electrochemical Devices and Systems. ACTA ACUST UNITED AC 2020; 4:e1900234. [DOI: 10.1002/adbi.201900234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/01/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering Tohoku University 6‐6‐11 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8579 Japan
| | - Fumisato Ozawa
- Institute of Industrial Science The University of Tokyo 4‐6‐1 Komaba Meguro‐ku Tokyo 153–8505 Japan
| | - Ning Dang
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement CNRS‐Université de Lorraine Villers‐lès‐Nancy 54600 France
| | - Kaoru Hiramoto
- Graduate School of Environmental Studies Tohoku University 6‐6‐11 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8579 Japan
| | - Shodai Hino
- Graduate School of Environmental Studies Tohoku University 6‐6‐11 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8579 Japan
| | - Rise Akasaka
- School of Engineering Tohoku University 6‐6‐11 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8579 Japan
| | - Yuji Nashimoto
- Graduate School of Engineering Tohoku University 6‐6‐11 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8579 Japan
- Frontier Research Institute for Interdisciplinary Sciences Tohoku University 6‐3 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8578 Japan
| | - Hitoshi Shiku
- Graduate School of Engineering Tohoku University 6‐6‐11 Aramaki‐aza Aoba Aoba‐ku Sendai 980–8579 Japan
| |
Collapse
|
47
|
Liu Z, Wang J. Biological Influence of Nonswelling Microgels on Cartilage Induction of Mouse Adipose-Derived Stem Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6508094. [PMID: 31737672 PMCID: PMC6815524 DOI: 10.1155/2019/6508094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/09/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022]
Abstract
In cartilage tissue engineering, the target cells' functional performance depends on the biomaterials. However, it is difficult to develop an appropriate scaffold to differentiate mouse adipose-derived stem cells (mADSCs) into chondrocyte despite an increasing number of studies on biological scaffold materials. The purpose of this study was to create a novel scaffold for mADSC culture and chondrogenic differentiation with a new series of microgels based on polyethyleneimine (PEI), polyethylene glycol (PEG), and poly (L-lactic acid) (PLLA) and able to resist swelling with changes in temperature, pH, and polymer concentration. The biocompatibility and ability of the nonswelling microgels were then examined and served as scaffolds for cell culture and for cartilage differentiation. The results show that the new microgels are a novel biomaterial that both retains its nonswelling properties under various conditions and facilitates important scaffold functions such as cell adhesion, proliferation, and cartilage induction.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Spine Surgery, Xiangya Hospital, Central South University, 87, Xiangya Road, Changsha 410008, Hunan, China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, 87, Xiangya Road, Changsha 410008, Hunan, China
| | - Jun Wang
- Department of Spine Surgery, Xiangya Hospital, Central South University, 87, Xiangya Road, Changsha 410008, Hunan, China
- Hunan Engineering Laboratory of Advanced Artificial Osteo-Materials, Xiangya Hospital, Central South University, 87, Xiangya Road, Changsha 410008, Hunan, China
| |
Collapse
|
48
|
Trujillo-de Santiago G, Flores-Garza BG, Tavares-Negrete JA, Lara-Mayorga IM, González-Gamboa I, Zhang YS, Rojas-Martínez A, Ortiz-López R, Álvarez MM. The Tumor-on-Chip: Recent Advances in the Development of Microfluidic Systems to Recapitulate the Physiology of Solid Tumors. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2945. [PMID: 31514390 PMCID: PMC6766252 DOI: 10.3390/ma12182945] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022]
Abstract
The ideal in vitro recreation of the micro-tumor niche-although much needed for a better understanding of cancer etiology and development of better anticancer therapies-is highly challenging. Tumors are complex three-dimensional (3D) tissues that establish a dynamic cross-talk with the surrounding tissues through complex chemical signaling. An extensive body of experimental evidence has established that 3D culture systems more closely recapitulate the architecture and the physiology of human solid tumors when compared with traditional 2D systems. Moreover, conventional 3D culture systems fail to recreate the dynamics of the tumor niche. Tumor-on-chip systems, which are microfluidic devices that aim to recreate relevant features of the tumor physiology, have recently emerged as powerful tools in cancer research. In tumor-on-chip systems, the use of microfluidics adds another dimension of physiological mimicry by allowing a continuous feed of nutrients (and pharmaceutical compounds). Here, we discuss recently published literature related to the culture of solid tumor-like tissues in microfluidic systems (tumor-on-chip devices). Our aim is to provide the readers with an overview of the state of the art on this particular theme and to illustrate the toolbox available today for engineering tumor-like structures (and their environments) in microfluidic devices. The suitability of tumor-on-chip devices is increasing in many areas of cancer research, including the study of the physiology of solid tumors, the screening of novel anticancer pharmaceutical compounds before resourcing to animal models, and the development of personalized treatments. In the years to come, additive manufacturing (3D bioprinting and 3D printing), computational fluid dynamics, and medium- to high-throughput omics will become powerful enablers of a new wave of more sophisticated and effective tumor-on-chip devices.
Collapse
Affiliation(s)
- Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo León CP 64849, Mexico.
- Departamento de Ingeniería Mecátrónica y Eléctrica, Tecnologico de Monterrey, Monterrey, Nuevo León CP 64849, Mexico.
| | | | | | - Itzel Montserrat Lara-Mayorga
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo León CP 64849, Mexico
- Departamento de Ingeniería Mecátrónica y Eléctrica, Tecnologico de Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Ivonne González-Gamboa
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Augusto Rojas-Martínez
- Centro de Investigación y Transferencia en Salud, Hospital San José, Tecnologico de Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Rocío Ortiz-López
- Centro de Investigación y Transferencia en Salud, Hospital San José, Tecnologico de Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Mario Moisés Álvarez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, Nuevo León CP 64849, Mexico.
| |
Collapse
|
49
|
Newsom JP, Payne KA, Krebs MD. Microgels: Modular, tunable constructs for tissue regeneration. Acta Biomater 2019; 88:32-41. [PMID: 30769137 PMCID: PMC6441611 DOI: 10.1016/j.actbio.2019.02.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 01/02/2023]
Abstract
Biopolymer microgels are emerging as a versatile tool for aiding in the regeneration of damaged tissues due to their biocompatible nature, tunable microporous structure, ability to encapsulate bioactive factors, and tailorable properties such as stiffness and composition. These properties of microgels, along with their injectability, have allowed for their utilization in a multitude of different tissue engineering applications. Controlled release of growth factors, antibodies, and other bioactive factors from microgels have demonstrated their capabilities as transporters for essential bioactive molecules necessary for guiding tissue reconstruction. Additionally, recent in vitro studies of cellular interaction and proliferation within microgel structures have laid the initial groundwork for regenerative tissue engineering using these materials. Microgels have even been crosslinked together in various ways or 3D printed to form three-dimensional scaffolds to support cell growth. In vivo studies of microgels have pioneered the clinical relevance of these novel and innovative materials for regenerative tissue engineering. This review will cover recent developments and research of microgels as they pertain to bioactive factor release, cellular interaction and proliferation in vitro, and tissue regeneration in vivo. STATEMENT OF SIGNIFICANCE: This review is focused on state-of-the-art microgel technology and innovations within the tissue engineering field, focusing on the use of microgels in bioactive factor delivery and as cell-interactive scaffolds, both in vitro and in vivo. Microgels are hydrogel microparticles that can be tuned based on the biopolymer from which they are derived, the crosslinking chemistry used, and the fabrication method. The emergence of microgels for tissue regeneration applications in recent years illuminates their versatility and applicability in clinical settings.
Collapse
Affiliation(s)
- Jake P Newsom
- Chemical & Biological Engineering, Colorado School of Mines, Golden, CO, United States
| | - Karin A Payne
- Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Melissa D Krebs
- Chemical & Biological Engineering, Colorado School of Mines, Golden, CO, United States.
| |
Collapse
|
50
|
Wechsler ME, Stephenson RE, Murphy AC, Oldenkamp HF, Singh A, Peppas NA. Engineered microscale hydrogels for drug delivery, cell therapy, and sequencing. Biomed Microdevices 2019; 21:31. [PMID: 30904963 DOI: 10.1007/s10544-019-0358-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Engineered microscale hydrogels have emerged as promising therapeutic approaches for the treatment of various diseases. These microgels find wide application in the biomedical field because of the ease of injectability, controlled release of therapeutics, flexible means of synthesis, associated tunability, and can be engineered as stimuli-responsive. While bulk hydrogels of several length-scale dimensions have been used for over two decades in drug delivery applications, their use as microscale carriers of drug and cell-based therapies is relatively new. Herein, we critically summarize the fundamentals of hydrogels based on their equilibrium and dynamics of their molecular structure, as well as solute diffusion as it relates to drug delivery. In addition, examples of common microgel synthesis techniques are provided. The ability to tune microscale hydrogels to obtain controlled release of therapeutics is discussed, along with microgel considerations for cell encapsulation as it relates to the development of cell-based therapies. We conclude with an outlook on the use of microgels for cell sequencing, and the convergence of the use of microscale hydrogels for drug delivery, cell therapy, and cell sequencing based systems.
Collapse
Affiliation(s)
- Marissa E Wechsler
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Regan E Stephenson
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Andrew C Murphy
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Heidi F Oldenkamp
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ankur Singh
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA.
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA.
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|