1
|
Yang Y, Yang Z, Liu H, Zhou Y. Aptamers in dentistry: diagnosis, therapeutics, and future perspectives. Biomater Sci 2024. [PMID: 39523847 DOI: 10.1039/d4bm01233j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Oral health is essential to general health. The diagnosis of dental diseases and treatment planning of dental care need to be straightforward and accurate. Recent studies have reported the use of aptamers in dentistry to achieve a simple diagnosis and facilitate therapy. Aptamers comprise nucleic acid sequences that possess a strong affinity for their target. Synthesized chemically, aptamers have several advantages, including smaller size, higher stability, and lower immunogenicity compared with monoclonal antibodies. They can be used to detect biomarkers in saliva and the presence of various pathogens, or can be used as a targeted drug delivery system for disease treatment. This review highlights current research on aptamers for dental care, especially the recent progress in oral disease diagnosis and therapeutics. The challenges and unresolved problems faced by the clinical use of aptamers are also discussed. In the future, the clinical applications of aptamers will be further extended to include, for example, dental indications and regenerative dentistry.
Collapse
Affiliation(s)
- Yang Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| | - Zhen Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| | - Hao Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| |
Collapse
|
2
|
Ge M, Zou H, Chen J, Zhang Q, Li C, Yang J, Wu J, Xie X, Liu J, Lei L, Peng S, Nie H. Cellular fibronectin-targeted fluorescent aptamer probes for early detection and staging of liver fibrosis. Acta Biomater 2024:S1742-7061(24)00614-7. [PMID: 39433198 DOI: 10.1016/j.actbio.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
Liver fibrosis is a key process in the progression of chronic liver disease to cirrhosis. Currently, early diagnosis and precise staging of liver fibrosis remain great challenges. Extracellular matrix (ECM) molecules expressed specifically during liver fibrosis are ideal targets for bioimaging and detection of liver fibrosis. Here, we report that fluorescent probes based on a nucleic acid aptamer (ZY-1) targeting cellular fibronectin (cFN), a critical ECM molecule significantly accumulating during liver fibrosis, are promising bioimaging agents for the staging of liver fibrosis. In the work, the outstanding binding affinity of ZY-1 to cFN was validated through an in vitro model of human-derived hepatic stellate cells (HSCs). Subsequently, we constructed different ZY-1-based fluorescent probes and explored the real-time imaging performance of these fluorescent probes in CCl4-induced mouse models of different liver fibrosis stages. The ZY-1-based fluorescent probes, for the first time, effectively identified and distinguished early-stage liver fibrosis (stage 3 of Ishak 6) from advanced liver fibrosis (stage 5 of Ishak 6). The proof-of-concept study provides compelling evidences that ZY-1-based probes are a promising tool for the early diagnosis and staging of liver fibrosis and paves the way for further development of clinical-related diagnosis strategies for fibrotic diseases of the liver and other organs. STATEMENT OF SIGNIFICANCE: Currently, early diagnosis and accurate staging of liver fibrosis continue to present significant challenges. This study demonstrates that fluorescent probes based on the nucleic acid aptamer ZY-1, which targets cellular fibronectin (cFN)-a crucial extracellular matrix (ECM) molecule that significantly accumulates during liver fibrosis-are promising bioimaging agents for staging liver fibrosis. The ZY-1-based fluorescent probes effectively identified and differentiated early-stage liver fibrosis from advanced liver fibrosis. This proof-of-concept study not only provides compelling evidence that ZY-1-based probes show promise for the early diagnosis and staging of liver fibrosis but also paves the way for further investigations into the use of ZY-1 in detecting other diseases associated with cFN.
Collapse
Affiliation(s)
- Mengjun Ge
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Haitao Zou
- National Supercomputing Center in Changsha, College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Jiahao Chen
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Qinyao Zhang
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Chang Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaxing Yang
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China
| | - Jiumei Wu
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Xing Xie
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lei Lei
- Cell Biology Research Group, Xiangya School of Stomatology, Central South University, Changsha, China.
| | - Shaoliang Peng
- National Supercomputing Center in Changsha, College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Hemin Nie
- Department of Biomedical Sciences, College of Biology, Hunan University, Changsha, China.
| |
Collapse
|
3
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
4
|
da Costa NMM, Parisi L, Ghezzi B, Elviri L, de Souza SLS, Novaes AB, de Oliveira PT, Macaluso GM, Palioto DB. Anti-Fibronectin Aptamer Modifies Blood Clot Pattern and Stimulates Osteogenesis: An Ex Vivo Study. Biomimetics (Basel) 2023; 8:582. [PMID: 38132522 PMCID: PMC10741424 DOI: 10.3390/biomimetics8080582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Scaffold (SCA) functionalization with aptamers (APT) provides adsorption of specific bioactive molecules on biomaterial surfaces. The aim of this study was to observe if SCA enriched with anti-fibronectin APT can favor coagulum (PhC) and osteoblasts (OSB) differentiation. METHODS 20 μg of APT was functionalized on SCA by simple adsorption. For PhC formation, SCAs were inserted into rat calvaria defects for 17 h. Following proper transportation (buffer solution PB), OSBs (UMR-106 lineage) were seeded over PhC + SCAs with and without APT. Cells and PhC morphology, PhC cell population, protein labeling and gene expression were observed in different time points. RESULTS The APT induced higher alkaline phosphatase and bone sialoprotein immunolabeling in OSB. Mesenchymal stem cells, leukocytes and lymphocytes cells were detected more in the APT group than when scaffolds were not functionalized. Additionally, an enriched and dense fibrin network and different cell types were observed, with more OSB and white blood cells in PhC formed on SCA with APT. The gene expression showed higher transforming growth factor beta 1 (TGF-b1) detection in SCA with APT. CONCLUSIONS The SCA functionalization with fibronectin aptamers may alter key morphological and functional features of blood clot formation, and provides a selective expression of proteins related to osteo differentiation. Additionally, aptamers increase TGF-b1 gene expression, which is highly associated with improvements in regenerative therapies.
Collapse
Affiliation(s)
- Natacha Malu Miranda da Costa
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil; (N.M.M.d.C.); (S.L.S.d.S.); (A.B.N.J.)
| | - Ludovica Parisi
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland;
| | - Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Lisa Elviri
- Istituto dei Materiali per l’Elettronica ed il Magnetismo, Consiglio Nazionale Delle Ricerche, Parco Area Delle Scienze 37/A, 43124 Parma, Italy;
| | - Sergio Luis Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil; (N.M.M.d.C.); (S.L.S.d.S.); (A.B.N.J.)
| | - Arthur Belém Novaes
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil; (N.M.M.d.C.); (S.L.S.d.S.); (A.B.N.J.)
| | - Paulo Tambasco de Oliveira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil;
| | - Guido Maria Macaluso
- Dipartimento di Scienze Degli Alimenti e del Farmaco, Parco Area Delle Scienze 27/A, 43124 Parma, Italy;
| | - Daniela Bazan Palioto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil; (N.M.M.d.C.); (S.L.S.d.S.); (A.B.N.J.)
| |
Collapse
|
5
|
Wang Y, Li J, Han H, Huang H, Du H, Cheng L, Ma C, Cai Y, Li G, Tao J, Cheng P. Application of locally responsive design of biomaterials based on microenvironmental changes in myocardial infarction. iScience 2023; 26:107662. [PMID: 37670787 PMCID: PMC10475519 DOI: 10.1016/j.isci.2023.107662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Morbidity and mortality caused by acute myocardial infarction (AMI) are on the rise, posing a grave threat to the health of the general population. Up to now, interventional, surgical, and pharmaceutical therapies have been the main treatment methods for AMI. Effective and timely reperfusion therapy decreases mortality, but it cannot stimulate myocardial cell regeneration or reverse ventricular remodeling. Cell therapy, gene therapy, immunotherapy, anti-inflammatory therapy, and several other techniques are utilized by researchers to improve patients' prognosis. In recent years, biomaterials for AMI therapy have become a hot spot in medical care. Biomaterials furnish a microenvironment conducive to cell growth and deliver therapeutic factors that stimulate cell regeneration and differentiation. Biomaterials adapt to the complex microenvironment and respond to changes in local physical and biochemical conditions. Therefore, environmental factors and material properties must be taken into account when designing biomaterials for the treatment of AMI. This article will review the factors that need to be fully considered in the design of biological materials.
Collapse
Affiliation(s)
- Yiren Wang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Junlin Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hukui Han
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huihui Huang
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Huan Du
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lianying Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Cui Ma
- Department of Mathematics, Army Medical University, Chongqing 400038, China
| | - Yongxiang Cai
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Chengdu 610072, China
| |
Collapse
|
6
|
Parisi L, Ghezzi B, Toffoli A, Macaluso GM, Lumetti S. Aptamer-enriched scaffolds for tissue regeneration: a systematic review of the literature. Front Bioeng Biotechnol 2023; 11:1199651. [PMID: 37265990 PMCID: PMC10229892 DOI: 10.3389/fbioe.2023.1199651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction: Aptamers are a brand-new class of receptors that can be exploited to improve the bioactivity of tissue engineering grafts. The aim of this work was to revise the current literature on in vitro and in vivo studies in order to i) identify current strategies adopted to improve scaffold bioactivity by aptamers; ii) assess effects of aptamer functionalization on cell behavior and iii) on tissue regeneration. Methods: Using a systematic search approach original research articles published up to 30 April 2022, were considered and screened. Results: In total, 131 records were identified and 18 were included in the final analysis. Included studies showed that aptamers can improve the bioactivity of biomaterials by specific adsorption of adhesive molecules or growth factors from the surrounding environment, or by capturing specific cell types. All the studies showed that aptamers ameliorate scaffold colonization by cells without modifying the physicochemical characteristics of the bare scaffold. Additionally, aptamers seem to promote the early stages of tissue healing and to promote anatomical and functional regeneration. Discussion: Although a metanalysis could not be performed due to the limited number of studies, we believe these findings provide solid evidence supporting the use of aptamers as a suitable modification to improve the bioactivity of tissue engineering constructs.
Collapse
Affiliation(s)
- Ludovica Parisi
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| | - Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, University of Parma, Parma, Italy
- Istituto dei Materiali per l’Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Andrea Toffoli
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, University of Parma, Parma, Italy
| | - Guido M. Macaluso
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, University of Parma, Parma, Italy
- Istituto dei Materiali per l’Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Simone Lumetti
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, University of Parma, Parma, Italy
- Istituto dei Materiali per l’Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| |
Collapse
|
7
|
Yuhan J, Zhu L, Zhu L, Huang K, He X, Xu W. Cell-specific aptamers as potential drugs in therapeutic applications: A review of current progress. J Control Release 2022; 346:405-420. [PMID: 35489545 DOI: 10.1016/j.jconrel.2022.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/23/2022]
Abstract
Cell-specific aptamers are a promising emerging player in the field of disease therapy. This paper reviews the multidimensional research progress made in terms of their classification, modification, and application. Based on the target location of cell-specific aptamers, it is defined and classified cell-specific aptamers into three groups including aptamers for cell surface markers, aptamers for intracellular components, and aptamers for extracellular components. Moreover, the modification methods of aptamers to achieve improved stability and affinity are concluded. In addition, recent advances in the application of cell-specific aptamers are discussed, mainly focusing on the increasing research attraction of cell state improving helpers and cell recruitment mediators in the improvement of cellular microenvironments to achieve successful disease therapy. This review also highlights 11 types of clinical aptamer drugs. Finally, the challenges and future directions of potential clinical applications are presented. In summary, we believe that cell-specific aptamers are promising drugs in disease therapy.
Collapse
Affiliation(s)
- Jieyu Yuhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
8
|
A review of protein adsorption and bioactivity characteristics of poly ε-caprolactone scaffolds in regenerative medicine. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Kanemoto Y, Miyaji H, Nishida E, Miyata S, Mayumi K, Yoshino Y, Kato A, Sugaya T, Akasaka T, Nathanael AJ, Santhakumar S, Oyane A. Periodontal tissue engineering using an apatite/collagen scaffold obtained by a plasma- and precursor-assisted biomimetic process. J Periodontal Res 2021; 57:205-218. [PMID: 34786723 DOI: 10.1111/jre.12954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/13/2021] [Accepted: 10/30/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES In the treatment of severe periodontal destruction, there is a strong demand for advanced scaffolds that can regenerate periodontal tissues with adequate quality and quantity. Recently, we developed a plasma- and precursor-assisted biomimetic process by which a porous collagen scaffold (CS) could be coated with low-crystalline apatite. The apatite-coated collagen scaffold (Ap-CS) promotes cellular ingrowth within the scaffold compared to CS in rat subcutaneous tissue. In the present study, the osteogenic activity of Ap-CS was characterized by cell culture and rat skull augmentation tests. In addition, the periodontal tissue reconstruction with Ap-CS in a beagle dog was compared to that with CS. METHODS The plasma- and precursor-assisted biomimetic process was applied to CS to obtain Ap-CS with a low-crystalline apatite coating. The effects of apatite coating on the scaffold characteristics (i.e., surface morphology, water absorption, Ca release, protein adsorption, and enzymatic degradation resistance) were assessed. Cyto-compatibility and the osteogenic properties of Ap-CS and CS were assessed in vitro using preosteoblastic MC3T3-E1 cells. In addition, we performed in vivo studies to evaluate bone augmentation and periodontal tissue reconstruction with Ap-CS and CS in a rat skull and canine furcation lesion, respectively. RESULTS As previously reported, the plasma- and precursor-assisted biomimetic process generated a low-crystalline apatite layer with a nanoporous structure that uniformly covered the Ap-CS surface. Ap-CS showed significantly higher water absorption, Ca release, lysozyme adsorption, and collagenase resistance than CS. Cell culture experiments revealed that Ap-CS was superior to CS in promoting the osteoblastic differentiation of MC3T3-E1 cells while suppressing their proliferation. Additionally, Ap-CS significantly promoted (compared to CS) the augmentation of the rat skull bone and showed the potential to regenerate alveolar bone in a dog furcation defect. CONCLUSION Ap-CS fabricated by the plasma- and precursor-assisted biomimetic process provided superior promotion of osteogenic differentiation and bone neoformation compared to CS.
Collapse
Affiliation(s)
- Yukimi Kanemoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Erika Nishida
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Saori Miyata
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kayoko Mayumi
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuto Yoshino
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akihito Kato
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tsukasa Akasaka
- Department of Biomedical Materials and Engineering, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Arputharaj Joseph Nathanael
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Syama Santhakumar
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ayako Oyane
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Abune L, Davis B, Wang Y. Aptamer-functionalized hydrogels: An emerging class of biomaterials for protein delivery, cell capture, regenerative medicine, and molecular biosensing. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1731. [PMID: 34132055 DOI: 10.1002/wnan.1731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/27/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Molecular recognition is essential to the development of biomaterials. Aptamers are a unique class of synthetic ligands interacting with not only their target molecules with high affinities and specificities but also their complementary sequences with high fidelity. Thus, aptamers have recently attracted significant attention in the development of an emerging class of biomaterials, that is, aptamer-functionalized hydrogels. In this review, we introduce the methods of incorporating aptamers into hydrogels as pendant motifs or crosslinkers. We further introduce the functions of these hydrogels in recognizing proteins, cells, and analytes through four applications including protein delivery, cell capture, regenerative medicine, and molecular biosensing. Notably, as aptamer-functionalized hydrogels have the characteristics of both aptamers and hydrogels, their potential applications are broad and beyond the scope of this review. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Lidya Abune
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brandon Davis
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
11
|
Chakraborty A, Ravi SP, Shamiya Y, Cui C, Paul A. Harnessing the physicochemical properties of DNA as a multifunctional biomaterial for biomedical and other applications. Chem Soc Rev 2021; 50:7779-7819. [PMID: 34036968 DOI: 10.1039/d0cs01387k] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The biological purpose of DNA is to store, replicate, and convey genetic information in cells. Progress in molecular genetics have led to its widespread applications in gene editing, gene therapy, and forensic science. However, in addition to its role as a genetic material, DNA has also emerged as a nongenetic, generic material for diverse biomedical applications. DNA is essentially a natural biopolymer that can be precisely programed by simple chemical modifications to construct materials with desired mechanical, biological, and structural properties. This review critically deciphers the chemical tools and strategies that are currently being employed to harness the nongenetic functions of DNA. Here, the primary product of interest has been crosslinked, hydrated polymers, or hydrogels. State-of-the-art applications of macroscopic, DNA-based hydrogels in the fields of environment, electrochemistry, biologics delivery, and regenerative therapy have been extensively reviewed. Additionally, the review encompasses the status of DNA as a clinically and commercially viable material and provides insight into future possibilities.
Collapse
Affiliation(s)
- Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.
| | - Shruthi Polla Ravi
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Caroline Cui
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada. and School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada and Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
12
|
Abune L, Wang Y. Affinity Hydrogels for Protein Delivery. Trends Pharmacol Sci 2021; 42:300-312. [PMID: 33632537 PMCID: PMC7954985 DOI: 10.1016/j.tips.2021.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022]
Abstract
Proteins have been studied as therapeutic agents for treatment of various human diseases. However, the delivery of protein drugs into the body is challenging. In this review, we summarize and highlight progress in developing affinity hydrogels (i.e., hydrogels functionalized with protein-bound ligands) for controlled protein release. Contrary to traditional hydrogels, which release proteins mainly through diffusion, affinity hydrogels stably retain and sustainably release proteins based mainly on diffusion coupled with a binding reaction. These hydrogels can also be modulated to release proteins in response to defined molecules in a triggered manner. Future research efforts may focus on the development of intelligent affinity hydrogels to mimic the properties of human tissues in sensing different environmental stimuli for on-demand release of single or multiple proteins (i.e., biomimetic intelligence for protein delivery).
Collapse
Affiliation(s)
- Lidya Abune
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
13
|
Parisi L, Rivara F, Costa CA, Abuna RP, Palioto DB, Macaluso GM. Aptamers recognizing fibronectin confer improved bioactivity to biomaterials and promote new bone formation in a periodontal defect in rats. Biomed Mater 2020; 16:015016. [PMID: 33325378 DOI: 10.1088/1748-605x/abb6b2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The use of alloplastic materials in periodontal regenerative therapies is limited by their incapacity to establish a dynamic dialog with the surrounding milieu. The aim of the present study was to control biomaterial surface bioactivity by introducing aptamers to induce the selective adsorption of fibronectin from blood, thus promoting platelets activation in vitro and bone regeneration in vivo. A hyaluronic acid/polyethyleneglycole-based hydrogel was enriched with aptamers selected for recognizing and binding fibronectin. In vitro, the capacity of constructs to support osteoblast adhesion, as well as platelets aggregation and activation was assessed by chemiluminescence within 24 h. Matrices were then evaluated in a rat periodontal defect to assess their regenerative potential by microcomputed tomography (µCT) and their osteogenic capacity by Luminex assay 5, 15 and 30 d postoperatively. Aptamers were found to confer matrices the capacity of sustaining firm cell adhesion (p = 0.0377) and to promote platelets activation (p = 0.0442). In vivo, aptamers promoted new bone formation 30 d post-operatively (p < 0.001) by enhancing osteoblastic lineage commitment maturation. Aptamers are a viable surface modification, which confers alloplastic materials the potential capacity to orchestrate blood clot formation, thus controlling bone healing.
Collapse
Affiliation(s)
- Ludovica Parisi
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Laboratory for Oral Molecular Biology, Dental Research Center, Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Freiburgstrasse 3, Bern 3010, Switzerland
| | - Federico Rivara
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, Parma 43126, Italy
| | - Camila A Costa
- Department of Oral & Maxillofacial Surgery, and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. Do Cafè, Ribeirão Preto, SP 14040-904, Brazil
- Department of Stomatological Sciences, School of Dentistry, Federal University of Goias, Avenida Arumã, Goiâna, GO 74835-320, Brazil
| | - Rodriguo Pf Abuna
- Cell Culture Laboratory, School of Dentistry of Ribeirao Preto, University of São Paulo, Av. Do Cafè, Ribeirão Preto, SP 14040-904, Brazil
- Fiocruz-Bi-Instituional Translational Medicine Project, Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Rua dos Técnicos, Ribeirão Preto, SP 14040-030, Brazil
| | - Daniela B Palioto
- Department of Oral & Maxillofacial Surgery, and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. Do Cafè, Ribeirão Preto, SP 14040-904, Brazil
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, Parma 43126, Italy
- Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parco Area delle Scienze 37/A, Parma 43124, Italy
| |
Collapse
|
14
|
Chen YF, Goodheart C, Rua D. The Body's Cellular and Molecular Response to Protein-Coated Medical Device Implants: A Review Focused on Fibronectin and BMP Proteins. Int J Mol Sci 2020; 21:ijms21228853. [PMID: 33238458 PMCID: PMC7700595 DOI: 10.3390/ijms21228853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022] Open
Abstract
Recent years have seen a marked rise in implantation into the body of a great variety of devices: hip, knee, and shoulder replacements, pacemakers, meshes, glucose sensors, and many others. Cochlear and retinal implants are being developed to restore hearing and sight. After surgery to implant a device, adjacent cells interact with the implant and release molecular signals that result in attraction, infiltration of the tissue, and attachment to the implant of various cell types including monocytes, macrophages, and platelets. These cells release additional signaling molecules (chemokines and cytokines) that recruit tissue repair cells to the device site. Some implants fail and require additional revision surgery that is traumatic for the patient and expensive for the payer. This review examines the literature for evidence to support the possibility that fibronectins and BMPs could be coated on the implants as part of the manufacturing process so that the proteins could be released into the tissue surrounding the implant and improve the rate of successful implantation.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA;
| | | | - Diego Rua
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA;
- Correspondence:
| |
Collapse
|
15
|
Girotti A, Escalera-Anzola S, Alonso-Sampedro I, González-Valdivieso J, Arias FJ. Aptamer-Functionalized Natural Protein-Based Polymers as Innovative Biomaterials. Pharmaceutics 2020; 12:E1115. [PMID: 33228250 PMCID: PMC7699523 DOI: 10.3390/pharmaceutics12111115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Biomaterials science is one of the most rapidly evolving fields in biomedicine. However, although novel biomaterials have achieved well-defined goals, such as the production of devices with improved biocompatibility and mechanical properties, their development could be more ambitious. Indeed, the integration of active targeting strategies has been shown to allow spatiotemporal control of cell-material interactions, thus leading to more specific and better-performing devices. This manuscript reviews recent advances that have led to enhanced biomaterials resulting from the use of natural structural macromolecules. In this regard, several structural macromolecules have been adapted or modified using biohybrid approaches for use in both regenerative medicine and therapeutic delivery. The integration of structural and functional features and aptamer targeting, although still incipient, has already shown its ability and wide-reaching potential. In this review, we discuss aptamer-functionalized hybrid protein-based or polymeric biomaterials derived from structural macromolecules, with a focus on bioresponsive/bioactive systems.
Collapse
Affiliation(s)
- Alessandra Girotti
- BIOFORGE Research Group (Group for Advanced Materials and Nanobiotechnology), CIBER-BBN, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain
| | - Sara Escalera-Anzola
- Recombinant Biomaterials Research Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain; (S.E.-A.); (I.A.-S.); (J.G.-V.); (F.J.A.)
| | - Irene Alonso-Sampedro
- Recombinant Biomaterials Research Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain; (S.E.-A.); (I.A.-S.); (J.G.-V.); (F.J.A.)
| | - Juan González-Valdivieso
- Recombinant Biomaterials Research Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain; (S.E.-A.); (I.A.-S.); (J.G.-V.); (F.J.A.)
| | - Francisco. Javier Arias
- Recombinant Biomaterials Research Group, University of Valladolid, LUCIA Building, 47011 Valladolid, Spain; (S.E.-A.); (I.A.-S.); (J.G.-V.); (F.J.A.)
| |
Collapse
|
16
|
Ghezzi B, Parisi L, Vurro F, Alfieri I, Toffoli A, Meglioli M, Mozzoni B, Ghiacci G, Macaluso GM. Tetracalcium phosphate and biphasic tetracalcium phosphate/tricalcium phosphate powders' effects evaluation on human osteoblasts. ACTA ACUST UNITED AC 2020; 69:87-94. [PMID: 32181607 DOI: 10.23736/s0026-4970.20.04272-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Calcium ions levels in bone niches have been demonstrated to severely influence new bone formation. Osteoinductive scaffolds containing calcium have been largely studied to control the release of calcium in bone regeneration and tissue engineering purpose. The aim of the present study was, firstly, to synthesize two different resorbable calcium phosphate-based powders, thought to be reservoirs of calcium ions, and secondary, to investigate their effects on human osteoblasts, in order to develop a suitable titanium coating material. METHODS Tetracalcium phosphate (A450) and biphasic tetracalcium phosphatae/tricalcium phosphate (A850) powders were prepared with an innovative method. The presence of calcium phosphate structures was chemically confirmed with XRD. Furthermore, powders macroscopic aspect was observed with a stereomicroscope. For in-vitro experiments, human osteoblastic cells were cultured in the presence of A450 and A850, and assayed for viability and metabolic activity through Crystal Violet and MTT, respectively. RESULTS Our synthesis led to the formation of calcium phosphates in both samples, even though A850 presented a higher level of crystallinity and a more powdery aspects than A450. Both the samples enhanced the viability of cultured cells, inhibiting cell metabolic activity in the case of A850, which furthermore showed to be internalized by cells. CONCLUSIONS We developed two different kind of calcium phosphate-based powders and we tested their effect on human osteoblasts, underlying the possibility of use calcium phosphate-based coatings to enhance cell response on implantable materials.
Collapse
Affiliation(s)
- Benedetta Ghezzi
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy
| | - Ludovica Parisi
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy - .,Laboratory for Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Filippo Vurro
- Istituto dei Materiali per l'Elettronica e il Magnetisimo (IMEM-CNR), Parma, Italy
| | - Ilaria Alfieri
- Department of Chemical Sciences, Life and Environmental Sustainability, University of Parma, Parma, Italy
| | - Andrea Toffoli
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy
| | - Matteo Meglioli
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy
| | - Beatrice Mozzoni
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy
| | - Giulia Ghiacci
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy
| | - Guido M Macaluso
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, Italy.,Istituto dei Materiali per l'Elettronica e il Magnetisimo (IMEM-CNR), Parma, Italy
| |
Collapse
|
17
|
Parisi L, Toffoli A, Ghezzi B, Mozzoni B, Lumetti S, Macaluso GM. A glance on the role of fibronectin in controlling cell response at biomaterial interface. JAPANESE DENTAL SCIENCE REVIEW 2019; 56:50-55. [PMID: 31890058 PMCID: PMC6928270 DOI: 10.1016/j.jdsr.2019.11.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 10/26/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022] Open
Abstract
The bioactivity of biomaterials is closely related to cell response in contact with them. However, shortly after their insertion, materials are soon covered with proteins that constitute the biological fluids, and which render the direct surface recognition by cells almost impossible. The control of protein adsorption at the interface is therefore desirable. Extracellular matrix proteins are of particular interest in this sense, due to their well-known ability to modulate cell behavior. Particularly, fibronectin plays a leading role, being present in both healthy and injured tissues undergoing healing and regeneration. The aim of the present work is to give an overview on fibronectin and on its involvement in the control of cell behavior providing evidence of its pivotal role in the control of cell adhesion, spreading, migration, proliferation and differentiation. A deep insight into methods to enrich biomaterials surface with fibronectin will be then discussed, as well as new cues on the possibility to design tailored platforms able to specifically retain fibronectin from the surrounding extracellular milieu.
Collapse
Affiliation(s)
- Ludovica Parisi
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
- Labor für Orale Molekularbiologie, Klinik für Kieferorthopädie, Zahnmedizinische Klinik, Universität Bern, Freiburgstrasse 7, 3008 Bern, Switzerland
- Corresponding author. Present address: Labor für Orale Molekularbiologie, Klinik für Kieferorthopädie, Zahnmedizinische Kliniken, Universität Bern, Freiburgstrasse 7, CH-3010 Bern, Switzerland.
| | - Andrea Toffoli
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Beatrice Mozzoni
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Simone Lumetti
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Guido M. Macaluso
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy
- Istituto dei Materiali per l’Elettronica e l’Elettromagnetismo, Consiglio Nazionale delle Ricerche, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| |
Collapse
|
18
|
Toffoli A, Parisi L, Bianchi MG, Lumetti S, Bussolati O, Macaluso GM. Thermal treatment to increase titanium wettability induces selective proteins adsorption from blood serum thus affecting osteoblasts adhesion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110250. [PMID: 31761226 DOI: 10.1016/j.msec.2019.110250] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To investigate how a thermal treatment to increase titanium wettability influences proteins adsorption from blood serum and osteoblasts responses. METHODS Titanium discs with machined or micro-rough profiles were thermally treated to obtain hydrophilic surfaces. The adsorption kinetics of two representative serum proteins were determined by Bradford assay, while the stable protein adsorption pattern from blood serum was investigated by SDS-PAGE and Western Blot analysis. Subsequently, MC3T3-E1 cells were cultured on titanium for 24h and assayed for adhesion and morphology. RESULTS Thermally-induced hydrophilicity dramatically improved the capacity of titanium to selectively adsorb fibronectin and fibrinogen from blood serum, without evident influence on other representative serum proteins. The selective adsorption of fibronectin was linked to the improved capacity of MC3T3-E1 cells to adhere and spread on hydrophilic surfaces. SIGNIFICANCE We identified a potential method to improve selective protein adsorption on titanium by enhancing implant surface wettability through a thermal treatment. Selective fibronectin adsorption was further indicated as the responsible for improved osteoblasts adhesion. Targeting specific cell response by selective protein adsorption appears to be crucial to conceive even more performant therapies.
Collapse
Affiliation(s)
- Andrea Toffoli
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126, Parma, PR, Italy; Dipartimento di Medicina e Chirurgia, Via Gramsci 14, 43126, Parma, PR, Italy.
| | - Ludovica Parisi
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126, Parma, PR, Italy; Dipartimento di Medicina e Chirurgia, Via Gramsci 14, 43126, Parma, PR, Italy.
| | | | - Simone Lumetti
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126, Parma, PR, Italy; Dipartimento di Medicina e Chirurgia, Via Gramsci 14, 43126, Parma, PR, Italy.
| | - Ovidio Bussolati
- Dipartimento di Medicina e Chirurgia, Via Gramsci 14, 43126, Parma, PR, Italy.
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126, Parma, PR, Italy; Dipartimento di Medicina e Chirurgia, Via Gramsci 14, 43126, Parma, PR, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parco Area delle Scienze 37/A, 43124, Parma, PR, Italy.
| |
Collapse
|
19
|
Parisi L, Toffoli A, Mozzoni B, Rivara F, Ghezzi B, Cutrera M, Lumetti S, Macaluso GM. Is selective protein adsorption on biomaterials a viable option to promote periodontal regeneration? Med Hypotheses 2019; 132:109388. [PMID: 31491678 DOI: 10.1016/j.mehy.2019.109388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Periodontitis is an inflammatory condition that can induce significant destruction of the periodontium, the set of specialized tissues that provide nourishment and support to the teeth. According to the guided tissue regeneration principles, the periodontium can be regenerated if the spatiotemporal control of wound healing is obtained, namely the tune control of cell response. After material implantation, protein adsorption at the interface is the first occurring biological event, which influences subsequent cell response. With the regard of this, we hypothesize that the control of selective adsorption of biological cues from the surrounding milieu may be a key-point to control selective cell colonization of scaffolds for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Ludovica Parisi
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy; Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, IT, Italy.
| | - Andrea Toffoli
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy; Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, IT, Italy
| | - Beatrice Mozzoni
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy; Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, IT, Italy
| | - Federico Rivara
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy
| | - Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy; Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, IT, Italy
| | - Miriam Cutrera
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy
| | - Simone Lumetti
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy; Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, IT, Italy
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy; Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, IT, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, IT, Italy
| |
Collapse
|
20
|
Ghezzi B, Lagonegro P, Pece R, Parisi L, Bianchi M, Tatti R, Verucchi R, Attolini G, Quaretti M, Macaluso GM. Osteoblast adhesion and response mediated by terminal -SH group charge surface of SiOxCy nanowires. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:43. [PMID: 30929122 DOI: 10.1007/s10856-019-6241-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Robust cell adhesion is known to be necessary to promote cell colonization of biomaterials and differentiation of progenitors. In this paper, we propose the functionalization of Silicon Oxycarbide (SiOxCy) nanowires (NWs) with 3-mercaptopropyltrimethoxysilane (MPTMS), a molecule containing a terminal -SH group. The aim of this functionalization was to develop a surface capable to adsorb proteins and promote cell adhesion, proliferation and a better deposition of extracellular matrix. This functionalization can be used to anchor other structures such as nanoparticles, proteins or aptamers. It was observed that surface functionalization markedly affected the pattern of protein adsorption, as well as the in vitro proliferation of murine osteoblastic cells MC3T3-E1, which was increased on functionalized nanowires (MPTMS-NWs) compared to bare NWs (control) (p < 0.0001) after 48 h. The cells showed a better adhesion on MPTMS-NWs than on bare NWs, as confirmed by immunofluorescence studies on the cytoskeleton, which showed a more homogeneous vinculin distribution. Gene expression analysis showed higher expression levels for alkaline phosphatase and collagen I, putative markers of the osteoblast initial differentiation stage. These results suggest that functionalization of SiOxCy nanowires with MPTMS enhances cell growth and the expression of an osteoblastic phenotype, providing a promising strategy to improve the biocompatibility of SiOxCy nanowires for biomedical applications.
Collapse
Affiliation(s)
- Benedetta Ghezzi
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Paola Lagonegro
- ISMAC-CNR, Institute for macromolecular studies, Via Corti, 12, 20133, Milano, Italy.
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124, Parma, Italy.
| | - Roberta Pece
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- School of Medicine, University of Genoa, DIMES, L.go R. Benzi 10, Genoa, 16131, Italy
| | - Ludovica Parisi
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Massimiliano Bianchi
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Roberta Tatti
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Trento unit, Via alla Cascata, 56/C, 38123, Trento, Italy
| | - Roberto Verucchi
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Trento unit, Via alla Cascata, 56/C, 38123, Trento, Italy
| | - Giovanni Attolini
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124, Parma, Italy
| | - Martina Quaretti
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124, Parma, Italy
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- ISMAC-CNR, Institute for macromolecular studies, Via Corti, 12, 20133, Milano, Italy
| |
Collapse
|
21
|
Parisi L, Toffoli A, Bianchi MG, Bergonzi C, Bianchera A, Bettini R, Elviri L, Macaluso GM. Functional Fibronectin Adsorption on Aptamer-Doped Chitosan Modulates Cell Morphology by Integrin-Mediated Pathway. MATERIALS 2019; 12:ma12050812. [PMID: 30857264 PMCID: PMC6427328 DOI: 10.3390/ma12050812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/29/2022]
Abstract
A decisive step in cell-biomaterial interaction is represented by the adsorption of proteins at the interface, whose fine control may be useful to trigger proper cell response. To this purpose, we can selectively control protein adsorption on biomaterials by means of aptamers. Aptamers selected to recognize fibronectin dramatically enhance chitosan ability to promote cell proliferation and adhesion, but the underlying biological mechanism remains unknown. We supposed that aptamers contributed to ameliorate the adsorption of fibronectin in an advantageous geometrical conformation for cells, thus regulating their morphology by the proper activation of the integrin-mediated pathway. We investigated this possibility by culturing epithelial cells on chitosan enriched with increasing doses of aptamers in the presence or in the absence of cytoskeleton pharmacological inhibitors. Our results showed that aptamers control cell morphology in a dose dependent manner (p < 0.0001). Simultaneously, when the inhibition of actin polymerization was induced, the control of cell morphology was attenuated (p < 0.0001), while no differences were detected when cells contractility was challenged (p > 0.05). Altogether, our data provide evidence that aptamers contribute to control fibronectin adsorption on biomaterials by preserving its conformation and thus function. Furthermore, our work provides a new insight into a new way to accurately tailor material surface bioactivity.
Collapse
Affiliation(s)
- Ludovica Parisi
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Andrea Toffoli
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Massimiliano G Bianchi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Carlo Bergonzi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 59/A, 43124 Parma, Italy.
| | - Annalisa Bianchera
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 59/A, 43124 Parma, Italy.
| | - Ruggero Bettini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 59/A, 43124 Parma, Italy.
| | - Lisa Elviri
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 59/A, 43124 Parma, Italy.
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- IMEM-CNR National Research Council, Parco Area delle Scienze 37/A, 43124 Parma, Italy.
| |
Collapse
|
22
|
Abstract
The conjugation of biomolecules can impart materials with the bioactivity necessary to modulate specific cell behaviors. While the biological roles of particular polypeptide, oligonucleotide, and glycan structures have been extensively reviewed, along with the influence of attachment on material structure and function, the key role played by the conjugation strategy in determining activity is often overlooked. In this review, we focus on the chemistry of biomolecule conjugation and provide a comprehensive overview of the key strategies for achieving controlled biomaterial functionalization. No universal method exists to provide optimal attachment, and here we will discuss both the relative advantages and disadvantages of each technique. In doing so, we highlight the importance of carefully considering the impact and suitability of a particular technique during biomaterial design.
Collapse
Affiliation(s)
- Christopher D. Spicer
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
| | - E. Thomas Pashuck
- NJ
Centre for Biomaterials, Rutgers University, 145 Bevier Road, Piscataway, New Jersey United States
| | - Molly M. Stevens
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London, United Kingdom
| |
Collapse
|
23
|
Parisi L, Toffoli A, Ghiacci G, Macaluso GM. Tailoring the Interface of Biomaterials to Design Effective Scaffolds. J Funct Biomater 2018; 9:E50. [PMID: 30134538 PMCID: PMC6165026 DOI: 10.3390/jfb9030050] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Tissue engineering (TE) is a multidisciplinary science, which including principles from material science, biology and medicine aims to develop biological substitutes to restore damaged tissues and organs. A major challenge in TE is the choice of suitable biomaterial to fabricate a scaffold that mimics native extracellular matrix guiding resident stem cells to regenerate the functional tissue. Ideally, the biomaterial should be tailored in order that the final scaffold would be (i) biodegradable to be gradually replaced by regenerating new tissue, (ii) mechanically similar to the tissue to regenerate, (iii) porous to allow cell growth as nutrient, oxygen and waste transport and (iv) bioactive to promote cell adhesion and differentiation. With this perspective, this review discusses the options and challenges facing biomaterial selection when a scaffold has to be designed. We highlight the possibilities in the final mold the materials should assume and the most effective techniques for its fabrication depending on the target tissue, including the alternatives to ameliorate its bioactivity. Furthermore, particular attention has been given to the influence that all these aspects have on resident cells considering the frontiers of materiobiology. In addition, a focus on chitosan as a versatile biomaterial for TE scaffold fabrication has been done, highlighting its latest advances in the literature on bone, skin, cartilage and cornea TE.
Collapse
Affiliation(s)
- Ludovica Parisi
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Andrea Toffoli
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Giulia Ghiacci
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43126 Parma, Italy.
| |
Collapse
|
24
|
Griesser J, Hetényi G, Bernkop-Schnürch A. Thiolated Hyaluronic Acid as Versatile Mucoadhesive Polymer: From the Chemistry Behind to Product Developments-What Are the Capabilities? Polymers (Basel) 2018; 10:polym10030243. [PMID: 30966278 PMCID: PMC6414859 DOI: 10.3390/polym10030243] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/07/2018] [Accepted: 02/24/2018] [Indexed: 01/09/2023] Open
Abstract
Within the last decade, intensive research work has been conducted on thiolated hyaluronic acids (HA-SH). By attaching sulfhydryl ligands onto naturally occurring hyaluronic acid various types of HA-SH can be designed. Due the ability of disulfide bond formation within the polymer itself as well as with biological materials, certain properties such as mucoadhesive, gelling, enzyme inhibitory, permeation enhancing and release controlling properties are improved. Besides the application in the field of drug delivery, HA-SH has been investigated as auxiliary material for wound healing. Within this review, the characteristics of novel drug delivery systems based on HA-SH are summarized and the versatility of this polymer for further applications is described by introducing numerous relevant studies in this field.
Collapse
Affiliation(s)
- Janine Griesser
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.
| | - Gergely Hetényi
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.
| | - Andreas Bernkop-Schnürch
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
25
|
Parisi L, Galli C, Bianchera A, Lagonegro P, Elviri L, Smerieri A, Lumetti S, Manfredi E, Bettini R, Macaluso GM. Anti-fibronectin aptamers improve the colonization of chitosan films modified with D-(+) Raffinose by murine osteoblastic cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:136. [PMID: 28762141 DOI: 10.1007/s10856-017-5931-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
The aim of the present study was to investigate how the enrichment of chitosan films with anti-fibronectin aptamers could enhance scaffold colonization by osteoblasts, by improving their adhesion and accelerating their proliferation. Chitosan discs were enriched with excess of anti-fibronectin aptamer. Aptamer adsorption on chitosan was monitored by measuring aptamer concentration in the supernatant by spectrophotometry, as well as its release, while functionalization was confirmed by labelling aptamers with a DNA intercalating dye. Chitosan samples were then characterized morphologically with atomic force microscopy and physically with contact angle measurement. Chitosan enrichment with fibronectin was then investigated by immunofluorescence and Bradford assay. 2% chitosan discs were then enriched with increasing doses of aptamers and used as culture substrates for MC3T3-E1 cells. Cell growth was monitored by optical microscopy, while cell viability and metabolic activity were assessed by chemiluminescence and by Resazurin Sodium Salt assay. Cell morphology was investigated by cytofluorescence and by scanning electron microscopy. Chitosan films efficiently bound and retained aptamers. Aptamers did not affect the amount of adsorbed fibronectin, but affected osteoblasts behavior. Cell growth was proportional to the amount of aptamer used for the functionalization, as well as aptamers influenced cell morphology and their adhesion to the substrate. Our results demonstrate that the enrichment of chitosan films with aptamers could selectively improve osteoblasts behavior. Furthermore, our results support further investigation of this type of functionalization as a suitable modification to ameliorate the biocompatibility of biomaterial for hard tissue engineering applications.
Collapse
Affiliation(s)
- L Parisi
- Dip. Medicina e Chirurgia, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - C Galli
- Dip. Medicina e Chirurgia, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- IMEM-CNR National Research Council, Via Università 7, 43126, Parma, Italy
| | - A Bianchera
- Dip. Farmacia, University of Parma, Via Università 7, 43126, Parma, Italy
| | - P Lagonegro
- IMEM-CNR National Research Council, Via Università 7, 43126, Parma, Italy
| | - L Elviri
- Dip. Farmacia, University of Parma, Via Università 7, 43126, Parma, Italy
| | - A Smerieri
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - S Lumetti
- Dip. Medicina e Chirurgia, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - E Manfredi
- Dip. Medicina e Chirurgia, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
| | - R Bettini
- Dip. Farmacia, University of Parma, Via Università 7, 43126, Parma, Italy
| | - G M Macaluso
- Dip. Medicina e Chirurgia, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- IMEM-CNR National Research Council, Via Università 7, 43126, Parma, Italy
| |
Collapse
|
26
|
Guan X, Avci-Adali M, Alarçin E, Cheng H, Kashaf SS, Li Y, Chawla A, Jang HL, Khademhosseini A. Development of hydrogels for regenerative engineering. Biotechnol J 2017; 12:10.1002/biot.201600394. [PMID: 28220995 PMCID: PMC5503693 DOI: 10.1002/biot.201600394] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/07/2022]
Abstract
The aim of regenerative engineering is to restore complex tissues and biological systems through convergence in the fields of advanced biomaterials, stem cell science, and developmental biology. Hydrogels are one of the most attractive biomaterials for regenerative engineering, since they can be engineered into tissue mimetic 3D scaffolds to support cell growth due to their similarity to native extracellular matrix. Advanced nano- and micro-technologies have dramatically increased the ability to control properties and functionalities of hydrogel materials by facilitating biomimetic fabrication of more sophisticated compositions and architectures, thus extending our understanding of cell-matrix interactions at the nanoscale. With this perspective, this review discusses the most commonly used hydrogel materials and their fabrication strategies for regenerative engineering. We highlight the physical, chemical, and functional modulation of hydrogels to design and engineer biomimetic tissues based on recent achievements in nano- and micro-technologies. In addition, current hydrogel-based regenerative engineering strategies for treating multiple tissues, such as musculoskeletal, nervous and cardiac tissue, are also covered in this review. The interaction of multiple disciplines including materials science, cell biology, and chemistry, will further play an important role in the design of functional hydrogels for the regeneration of complex tissues.
Collapse
Affiliation(s)
- Xiaofei Guan
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Orthopedic Department, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr. 7/1, Tuebingen 72076, Germany
| | - Emine Alarçin
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, Istanbul 34668, Turkey
| | - Hao Cheng
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sara Saheb Kashaf
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuxiao Li
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aditya Chawla
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hae Lin Jang
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Division of Biomedical Engineering, Department of Medicine, Biomaterials Innovation Research Center, Harvard Medical School, Brigham & Women’s Hospital, Boston, MA 02139, USA
- Division of Health Sciences & Technology, Harvard-Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience & Technology, Konkuk University, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
27
|
Lagonegro P, Rossi F, Galli C, Smerieri A, Alinovi R, Pinelli S, Rimoldi T, Attolini G, Macaluso G, Macaluso C, Saddow S, Salviati G. A cytotoxicity study of silicon oxycarbide nanowires as cell scaffold for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:465-471. [DOI: 10.1016/j.msec.2016.12.096] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/16/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
|