1
|
Cadena MA, Sing A, Taylor K, Jin L, Ning L, Amoli MS, Singh Y, Lanjewar SN, Tomov ML, Serpooshan V, Sloan SA. A 3D Bioprinted Cortical Organoid Platform for Modeling Human Brain Development. Adv Healthc Mater 2024; 13:e2401603. [PMID: 38815975 PMCID: PMC11518656 DOI: 10.1002/adhm.202401603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Indexed: 06/01/2024]
Abstract
The ability to promote three-dimensional (3D) self-organization of induced pluripotent stem cells into complex tissue structures called organoids presents new opportunities for the field of developmental biology. Brain organoids have been used to investigate principles of neurodevelopment and neuropsychiatric disorders and serve as a drug screening and discovery platform. However, brain organoid cultures are currently limited by a lacking ability to precisely control their extracellular environment. Here, this work employs 3D bioprinting to generate a high-throughput, tunable, and reproducible scaffold for controlling organoid development and patterning. Additionally, this approach supports the coculture of organoids and vascular cells in a custom architecture containing interconnected endothelialized channels. Printing fidelity and mechanical assessments confirm that fabricated scaffolds closely match intended design features and exhibit stiffness values reflective of the developing human brain. Using organoid growth, viability, cytoarchitecture, proliferation, and transcriptomic benchmarks, this work finds that organoids cultured within the bioprinted scaffold long-term are healthy and have expected neuroectodermal differentiation. Lastly, this work confirms that the endothelial cells (ECs) in printed channel structures can migrate toward and infiltrate into the embedded organoids. This work demonstrates a tunable 3D culturing platform that can be used to create more complex and accurate models of human brain development and underlying diseases.
Collapse
Affiliation(s)
- Melissa A. Cadena
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anson Sing
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kylie Taylor
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Linqi Jin
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, United States
| | - Mehdi Salar Amoli
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Yamini Singh
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - The Brain Organoid Hub
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Samantha N. Lanjewar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Martin L. Tomov
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, US
| | - Steven A. Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Vorrius B, Qiao Z, Ge J, Chen Q. Smart Strategies to Overcome Drug Delivery Challenges in the Musculoskeletal System. Pharmaceuticals (Basel) 2023; 16:967. [PMID: 37513879 PMCID: PMC10383421 DOI: 10.3390/ph16070967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
The musculoskeletal system (MSKS) is composed of specialized connective tissues including bone, muscle, cartilage, tendon, ligament, and their subtypes. The primary function of the MSKS is to provide protection, structure, mobility, and mechanical properties to the body. In the process of fulfilling these functions, the MSKS is subject to wear and tear during aging and after injury and requires subsequent repair. MSKS diseases are a growing burden due to the increasing population age. The World Health Organization estimates that 1.71 billon people suffer from MSKS diseases worldwide. MSKS diseases usually involve various dysfunctions in bones, muscles, and joints, which often result in pain, disability, and a decrease in quality of life. The most common MSKS diseases are osteoporosis (loss of bone), osteoarthritis (loss of cartilage), and sarcopenia (loss of skeletal muscle). Because of the disease burden and the need for treatment, regenerative drug therapies for MSKS disorders are increasingly in demand. However, the difficulty of effective drug delivery in the MSKS has become a bottleneck for developing MSKS therapeutics. The abundance of extracellular matrix and its small pore size in the MSKS present a formidable barrier to drug delivery. Differences of vascularity among various MSKS tissues pose complications for drug delivery. Novel strategies are necessary to achieve successful drug delivery in different tissues composing the MSKS. Those considerations include the route of administration, mechanics of surrounding fluids, and biomolecular interactions, such as the size and charge of the particles and targeting motifs. This review focuses on recent advances in challenges to deliver drugs to each tissue of the MSKS, current strategies of drug delivery, and future ideas of how to overcome drug delivery challenges in the MSKS.
Collapse
Affiliation(s)
| | | | | | - Qian Chen
- Laboratory of Molecular Biology and Nanomedicine, Department of Orthopaedics, Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI 02903, USA; (B.V.); (Z.Q.); (J.G.)
| |
Collapse
|
3
|
Borisov V, Gili Sole L, Reid G, Milan G, Hutter G, Grapow M, Eckstein FS, Isu G, Marsano A. Upscaled Skeletal Muscle Engineered Tissue with In Vivo Vascularization and Innervation Potential. Bioengineering (Basel) 2023; 10:800. [PMID: 37508827 PMCID: PMC10376693 DOI: 10.3390/bioengineering10070800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Engineering functional tissues of clinically relevant size (in mm-scale) in vitro is still a challenge in tissue engineering due to low oxygen diffusion and lack of vascularization. To address these limitations, a perfusion bioreactor was used to generate contractile engineered muscles of a 3 mm-thickness and a 8 mm-diameter. This study aimed to upscale the process to 50 mm in diameter by combining murine skeletal myoblasts (SkMbs) with human adipose-derived stromal vascular fraction (SVF) cells, providing high neuro-vascular potential in vivo. SkMbs were cultured on a type-I-collagen scaffold with (co-culture) or without (monoculture) SVF. Large-scale muscle-like tissue showed an increase in the maturation index over time (49.18 ± 1.63% and 76.63 ± 1.22%, at 9 and 11 days, respectively) and a similar force of contraction in mono- (43.4 ± 2.28 µN) or co-cultured (47.6 ± 4.7 µN) tissues. Four weeks after implantation in subcutaneous pockets of nude rats, the vessel length density within the constructs was significantly higher in SVF co-cultured tissues (5.03 ± 0.29 mm/mm2) compared to monocultured tissues (3.68 ± 0.32 mm/mm2) (p < 0.005). Although no mature neuromuscular junctions were present, nerve-like structures were predominantly observed in the engineered tissues co-cultured with SVF cells. This study demonstrates that SVF cells can support both in vivo vascularization and innervation of contractile muscle-like tissues, making significant progress towards clinical translation.
Collapse
Affiliation(s)
- Vladislav Borisov
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Laia Gili Sole
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Gregory Reid
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Giulia Milan
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Gregor Hutter
- Laboratory of Brain Tumor Immunotherapy, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Martin Grapow
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Friedrich Stefan Eckstein
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Giuseppe Isu
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| | - Anna Marsano
- Laboratory of Cardiac Surgery and Engineering, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Cardiac Surgery, Department of Surgery, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
4
|
Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23126480. [PMID: 35742923 PMCID: PMC9224400 DOI: 10.3390/ijms23126480] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer membrane particles that play critical roles in intracellular communication through EV-encapsulated informative content, including proteins, lipids, and nucleic acids. Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal ability derived from bone marrow, fat, umbilical cord, menstruation blood, pulp, etc., which they use to induce tissue regeneration by their direct recruitment into injured tissues, including the heart, liver, lung, kidney, etc., or secreting factors, such as vascular endothelial growth factor or insulin-like growth factor. Recently, MSC-derived EVs have been shown to have regenerative effects against various diseases, partially due to the post-transcriptional regulation of target genes by miRNAs. Furthermore, EVs have garnered attention as novel drug delivery systems, because they can specially encapsulate various target molecules. In this review, we summarize the regenerative effects and molecular mechanisms of MSC-derived EVs.
Collapse
|
5
|
Assis A, Camargo S, Margalit R, Mitrani E. Creation of a vascular inducing device using mesenchymal stem cells to induce angiogenesis. J Biosci Bioeng 2021; 132:408-416. [PMID: 34326013 DOI: 10.1016/j.jbiosc.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
Conventional treatments of peripheral vascular disease and coronary artery disease have partial success but are still limited. Methods to deliver angiogenic factors into ischemic areas using gene, protein and cell therapies are faced with difficult issues such a delivery, effective concentration and duration of action. Tissue engineering offers the possibility of creating a functional self-contained three-dimensional (3D) unit that works as a coordinated biological pump that can secrete a whole range of angiogenic factors. We report a tissue engineering approach using decellularized micro-fragments and mesenchymal stem cells (MSCs) to create a vascular inducing device (VID). Proteomic analysis of the decellularized micro-fragments and of the VIDs reveals a large number of extracellular-matrix (ECM) proteins. Moreover, the VIDs were found to transcribe and secrete a whole repertoire of angiogenic factors in a sustained manner. Furthermore, preliminary results of implantation VIDs into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice indicate formation of vascular network at the site within a week. We propose that those VIDs could serve as a safe, localized, simple and powerful method for the treatment of certain types of vascular diseases.
Collapse
Affiliation(s)
- Assaf Assis
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Givat Ram Campus, Jerusalem 91904, Israel
| | - Sandra Camargo
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Givat Ram Campus, Jerusalem 91904, Israel
| | | | - Eduardo Mitrani
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Givat Ram Campus, Jerusalem 91904, Israel.
| |
Collapse
|
6
|
Developing a Glyoxal-Crosslinked Chitosan/Gelatin Hydrogel for Sustained Release of Human Platelet Lysate to Promote Tissue Regeneration. Int J Mol Sci 2021; 22:ijms22126451. [PMID: 34208633 PMCID: PMC8234746 DOI: 10.3390/ijms22126451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/12/2021] [Accepted: 06/12/2021] [Indexed: 12/22/2022] Open
Abstract
The clinical application of human platelet lysate (HPL) holds promise for tissue regeneration, and the development of an efficient vehicle for its delivery is desired. Chitosan-based hydrogels are potential candidates, but they often exhibit weak mechanical properties. In this study, a chitosan/gelatin (CS-GE) hydrogel crosslinked by glyoxal was fabricated for sustained release of HPL. The influence of HPL on Hs68 fibroblast and human umbilical vein endothelial cell (HUVEC) culture was evaluated, and we found that supplementing 5% HPL in the medium could significantly improve cell proliferation relative to supplementing 10% fetal bovine serum (FBS). Moreover, HPL accelerated the in vitro wound closure of Hs68 cells and facilitated the tube formation of HUVECs. Subsequently, we fabricated CS-GE hydrogels crosslinked with different concentrations of glyoxal, and the release pattern of FITC-dextrans (4, 40 and 500 kDa) from the hydrogels was assessed. After an ideal glyoxal concentration was determined, we further characterized the crosslinked CS-GE hydrogels encapsulated with different amounts of HPL. The HPL-incorporated hydrogel was shown to significantly promote the proliferation of Hs68 cells and the migration of HUVECs. Moreover, the release pattern of transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor-BB (PDGF-BB) from hydrogel was examined in vitro, demonstrating a sustained release profile of the growth factors. Finally, the chick chorioallantoic membrane assay revealed that HPL encapsulation in the hydrogel significantly stimulated angiogenesis in ovo. These results demonstrate the great potential of the crosslinked CS-GE hydrogel to serve as an effective delivery system for HPL to promote tissue regeneration.
Collapse
|
7
|
Masson-Meyers DS, Tayebi L. Vascularization strategies in tissue engineering approaches for soft tissue repair. J Tissue Eng Regen Med 2021; 15:747-762. [PMID: 34058083 DOI: 10.1002/term.3225] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022]
Abstract
Insufficient vascularization during tissue repair is often associated with poor clinical outcomes. This is a concern especially when patients have critical-sized injuries, where the size of the defect restricts vascularity, or even in small defects that have to be treated under special conditions, such as after radiation therapy (relevant to tumor resection) that hinders vascularity. In fact, poor vascularization is one of the major obstacles for clinical application of tissue engineering methods in soft tissue repair. As a key issue, lack of graft integration, caused by inadequate vascularization after implantation, can lead to graft failure. Moreover, poor vascularization compromises the viability of cells seeded in deep portions of scaffolds/graft materials, due to hypoxia and insufficient nutrient supply. In this article we aim to review vascularization strategies employed in tissue engineering techniques to repair soft tissues. For this purpose, we start by providing a brief overview of the main events during the physiological wound healing process in soft tissues. Then, we discuss how tissue repair can be achieved through tissue engineering, and considerations with regards to the choice of scaffold materials, culture conditions, and vascularization techniques. Next, we highlight the importance of vascularization, along with strategies and methods of prevascularization of soft tissue equivalents, particularly cell-based prevascularization. Lastly, we present a summary of commonly used in vitro methods during the vascularization of tissue-engineered soft tissue constructs.
Collapse
Affiliation(s)
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA
| |
Collapse
|
8
|
Gonçalves RC, Banfi A, Oliveira MB, Mano JF. Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials 2020; 269:120628. [PMID: 33412374 DOI: 10.1016/j.biomaterials.2020.120628] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022]
Abstract
The maintenance of a healthy vascular system is essential to ensure the proper function of all organs of the human body. While macrovessels have the main role of blood transportation from the heart to all tissues, microvessels, in particular capillaries, are responsible for maintaining tissues' functionality by providing oxygen, nutrients and waste exchanges. Occlusion of blood vessels due to atherosclerotic plaque accumulation remains the leading cause of mortality across the world. Autologous vein and artery grafts bypassing are the current gold standard surgical procedures to substitute primarily obstructed vascular structures. Ischemic scenarios that condition blood supply in downstream tissues may arise from blockage phenomena, as well as from other disease or events leading to trauma. The (i) great demand for new vascular substitutes, arising from both the limited availability of healthy autologous vessels, as well as the shortcomings associated with small-diameter synthetic vascular grafts, and (ii) the challenging induction of the formation of adequate and stable microvasculature are current driving forces for the growing interest in the development of bioinspired strategies to ensure the proper function of vasculature in all its dimensional scales. Here, a critical review of well-established technologies and recent biotechnological advances to substitute or regenerate the vascular system is provided.
Collapse
Affiliation(s)
- Raquel C Gonçalves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Andrea Banfi
- Department of Biomedicine, University of Basel, Basel, 4056, Switzerland; Department of Surgery, University Hospital Basel, Basel, 4056, Switzerland
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
9
|
Angiogenesis in Wound Healing following Pharmacological and Toxicological Exposures. CURRENT PATHOBIOLOGY REPORTS 2020. [DOI: 10.1007/s40139-020-00212-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Chen X, Wang M, Chen F, Wang J, Li X, Liang J, Fan Y, Xiao Y, Zhang X. Correlations between macrophage polarization and osteoinduction of porous calcium phosphate ceramics. Acta Biomater 2020; 103:318-332. [PMID: 31857257 DOI: 10.1016/j.actbio.2019.12.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023]
Abstract
The host immune response is critical for in situ osteogenesis, but correlations between local inflammatory reactions and biomaterial osteoinduction are still poorly understood. This study used a murine intramuscular implantation model to demonstrate that calcium phosphate ceramics with different phase compositions exhibited divergent osteoinductivities. The osteoinductive potential of each ceramic was closely associated with the immunomodulatory capacity of the material, and especially with the regulation of macrophage polarization and functional status. Biphasic calcium phosphate (BCP) ceramics with superior osteoinductive potential enhanced the fraction of CD206+ M2 macrophages, up-regulated expression of M2 phenotypic markers in vitro, and increased the ARG+ M2 population in vivo. This suggested that BCP ceramics could ameliorate long-term inflammation and build a pro-osteogenic microenvironment. However, β-tricalcium phosphate (β-TCP) ceramics with no obvious osteoinductivity increased the fraction of CCR7+ M1 macrophages, promoted the secretion of M1 phenotypic markers in vitro, and maintained a high proportion of iNOS+ M1 macrophages in vivo. It indicated that β-TCP ceramics could exacerbate inflammation and inhibit ectopic bone formation. Hydroxyapatite ceramics with an intermediate osteoinductivity exhibited a moderate amount of both M1 and M2 macrophages. These findings highlight the critical role of macrophage polarization in biomaterial-dependent osteoinduction, which not only deepens our understanding of osteoinductive mechanisms but also provides a strategy to design bone substitutes by endowing materials with the proper immunomodulatory abilities to achieve the desired clinic performance. STATEMENT OF SIGNIFICANCE: Calcium phosphate (CaP) ceramics with osteoinductive capacities are able to induce ectopic bone formation in non-osseous sites. However, its underlying mechanism is largely unknown. Previous studies have demonstrated an indispensable role of macrophages in osteogenesis, inspiring us that local inflammatory reaction may affect material-dependent osteoinduction. This study indicated that CaP ceramics with different phase composition could present divergent osteoinductive capacities through modulating polarization and functional status of macrophages, as biphasic calcium phosphate with potent osteoinductivity ameliorated long-term inflammation and induced a healing-associated M2 phenotype to initiate bone formation. These findings not only get an insight into the mechanism of CaP-involved osteoinduction, but also help the design of tissue-inducing implants by endowing biomaterials with proper immunomodulatory ability.
Collapse
Affiliation(s)
- Xuening Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Menglu Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Fuying Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Jing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Gianni-Barrera R, Di Maggio N, Melly L, Burger MG, Mujagic E, Gürke L, Schaefer DJ, Banfi A. Therapeutic vascularization in regenerative medicine. Stem Cells Transl Med 2020; 9:433-444. [PMID: 31922362 PMCID: PMC7103618 DOI: 10.1002/sctm.19-0319] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Therapeutic angiogenesis, that is, the generation of new vessels by delivery of specific factors, is required both for rapid vascularization of tissue‐engineered constructs and to treat ischemic conditions. Vascular endothelial growth factor (VEGF) is the master regulator of angiogenesis. However, uncontrolled expression can lead to aberrant vascular growth and vascular tumors (angiomas). Major challenges to fully exploit VEGF potency for therapy include the need to precisely control in vivo distribution of growth factor dose and duration of expression. In fact, the therapeutic window of VEGF delivery depends on its amount in the microenvironment around each producing cell rather than on the total dose, since VEGF remains tightly bound to extracellular matrix (ECM). On the other hand, short‐term expression of less than about 4 weeks leads to unstable vessels, which promptly regress following cessation of the angiogenic stimulus. Here, we will briefly overview some key aspects of the biology of VEGF and angiogenesis and discuss their therapeutic implications with a particular focus on approaches using gene therapy, genetically modified progenitors, and ECM engineering with recombinant factors. Lastly, we will present recent insights into the mechanisms that regulate vessel stabilization and the switch between normal and aberrant vascular growth after VEGF delivery, to identify novel molecular targets that may improve both safety and efficacy of therapeutic angiogenesis.
Collapse
Affiliation(s)
- Roberto Gianni-Barrera
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Nunzia Di Maggio
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Ludovic Melly
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland.,Cardiac, Vascular, and Thoracic Surgery, CHU UCL Namur, Yvoir, Belgium
| | - Maximilian G Burger
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland.,Plastic and Reconstructive Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Edin Mujagic
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland.,Vascular Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Lorenz Gürke
- Vascular Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Plastic and Reconstructive Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Andrea Banfi
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland.,Plastic and Reconstructive Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland.,Vascular Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Minardi S, Guo M, Zhang X, Luo X. An elastin-based vasculogenic scaffold promotes marginal islet mass engraftment and function at an extrahepatic site. JOURNAL OF IMMUNOLOGY AND REGENERATIVE MEDICINE 2019; 3:1-12. [PMID: 31681866 PMCID: PMC6824601 DOI: 10.1016/j.regen.2018.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In islet transplantation, one of the major obstacles to optimal engraftment is the loss of islet natural vascularization and islet-specific extracellular matrix (ECM) during the islet isolation process. Thus, transplanted islets must re-establish nutritional and physical support through formation of new blood vessels and new ECM. To promote this critical process, we developed an elastin-based vasculogenic and ECM-promoting scaffold engineered for extrahepatic islet transplantation. The scaffold by design consisted of type I collagen (Coll) blended with 20wt% of elastin (E) shown to promote angiogenesis as well as de novo ECM deposition. The resulting "CollE" scaffolds h ad interconnected pores with a size distribution tailored to accommodate seeding of islets as well as growth of new blood vessels. In vitro, CollE scaffolds enabled prolonged culture of murine islets for up to one week while preserving their integrity, viability and function. In vivo, after only four weeks post-transplant of a marginal islet mass, CollE scaffolds demonstrated enhanced vascularization of the transplanted islets in the epididymal fat pad and promoted a prompt reversal of hyperglycemia in previously diabetic recipients. This outcome was comparable to that of kidney capsular (KC) islet transplantation, and superior to that of islets transplanted on the control collagen-only scaffolds (Coll). Crucial genes associated with angiogenesis (VEGFA, PDGFB, FGF1, and COL3A1) as well as de novo islet-specific matrix deposition (COL6A1, COL4A1, LAMA2 and FN1) were all significantly upregulated in islets on CollE scaffolds in comparison to those on Coll scaffolds. Finally, CollE scaffolds were also able to support human islet culture in vitro. In conclusion, CollE scaffolds have the potential to improve the clinical outcome of marginal islet transplantation at extrahepatic sites by promoting angiogenesis and islet-specific ECM deposition.
Collapse
Affiliation(s)
- Silvia Minardi
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Michelle Guo
- Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, United States
| | - Xiaomin Zhang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xunrong Luo
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
13
|
Composite Hydrogels with the Simultaneous Release of VEGF and MCP-1 for Enhancing Angiogenesis for Bone Tissue Engineering Applications. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rapid new microvascular network induction was critical for bone regeneration, which required the spatiotemporal delivery of growth factors and transplantation of endothelial cells. In this study, the linear poly(d,l-lactic-co-glycolic acid)-b-methoxy poly(ethylene glycol) (PLGA-mPEG) block copolymer microspheres were prepared for simultaneously delivering vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1). Then, vascular endothelial cells (VECs) with growth factor loaded microspheres were composited into a star-shaped PLGA-mPEG block copolymer solution. After this, composite hydrogel (microspheres ratio: 5 wt%) was formed by increasing the temperature to 37 °C. The release profiles of VEGF and MCP-1 from composite hydrogels in 30 days were investigated to confirm the different simultaneous delivery systems. The VECs exhibited a good proliferation in the composite hydrogels, which proved that the composite hydrogels had a good cytocompatibility. Furthermore, in vivo animal experiments showed that the vessel density and the mean vessel diameters increased over weeks after the composite hydrogels were implanted into the necrosis site of the rabbit femoral head. The above results suggested that the VECs-laden hydrogel composited with the dual-growth factor simultaneous release system has the potential to enhance angiogenesis in bone tissue engineering.
Collapse
|
14
|
Zhao YC, Xue CH, Zhang TT, Wang YM. Saponins from Sea Cucumber and Their Biological Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7222-7237. [PMID: 29932674 DOI: 10.1021/acs.jafc.8b01770] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Sea cucumbers, belonging to the phylum Echinodermata, have been valued for centuries as a nutritious and functional food with various bioactivities. Sea cucumbers can produce highly active substances, notably saponins, the main secondary metabolites, which are the basis of their chemical defense. The saponins are mostly triterpene glycosides with triterpenes or steroid in aglycone, which possess multiple biological properties including antitumor, hypolipidemic activity, improvement of nonalcoholic fatty liver, inhibition of fat accumulation, antihyperuricemia, promotion of bone marrow hematopoiesis, antihypertension, etc. Sea cucumber saponins have received attention due to their rich sources, low toxicity, high efficiency, and few side effects. This review summarizes current research on the structure and activities of sea cucumber saponins based on the physiological and pharmacological activities from source, experimental models, efficacy, and mechanisms, which may provide a valuable reference for the development of sea cucumber saponins.
Collapse
Affiliation(s)
- Ying-Cai Zhao
- College of Food Science and Engineering , Ocean University of China , Qingdao , 266003 , Shandong China
| | - Chang-Hu Xue
- College of Food Science and Engineering , Ocean University of China , Qingdao , 266003 , Shandong China
- Qingdao National Laboratory for Marine Science and Technology , Laboratory of Marine Drugs & Biological Products , Qingdao 266237 , China
| | - Tian-Tian Zhang
- College of Food Science and Engineering , Ocean University of China , Qingdao , 266003 , Shandong China
| | - Yu-Ming Wang
- College of Food Science and Engineering , Ocean University of China , Qingdao , 266003 , Shandong China
- Qingdao National Laboratory for Marine Science and Technology , Laboratory of Marine Drugs & Biological Products , Qingdao 266237 , China
| |
Collapse
|
15
|
Boffito M, Di Meglio F, Mozetic P, Giannitelli SM, Carmagnola I, Castaldo C, Nurzynska D, Sacco AM, Miraglia R, Montagnani S, Vitale N, Brancaccio M, Tarone G, Basoli F, Rainer A, Trombetta M, Ciardelli G, Chiono V. Surface functionalization of polyurethane scaffolds mimicking the myocardial microenvironment to support cardiac primitive cells. PLoS One 2018; 13:e0199896. [PMID: 29979710 PMCID: PMC6034803 DOI: 10.1371/journal.pone.0199896] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/15/2018] [Indexed: 11/28/2022] Open
Abstract
Scaffolds populated with human cardiac progenitor cells (CPCs) represent a therapeutic opportunity for heart regeneration after myocardial infarction. In this work, square-grid scaffolds are prepared by melt-extrusion additive manufacturing from a polyurethane (PU), further subjected to plasma treatment for acrylic acid surface grafting/polymerization and finally grafted with laminin-1 (PU-LN1) or gelatin (PU-G) by carbodiimide chemistry. LN1 is a cardiac niche extracellular matrix component and plays a key role in heart formation during embryogenesis, while G is a low-cost cell-adhesion protein, here used as a control functionalizing molecule. X-ray photoelectron spectroscopy analysis shows nitrogen percentage increase after functionalization. O1s and C1s core-level spectra and static contact angle measurements show changes associated with successful functionalization. ELISA assay confirms LN1 surface grafting. PU-G and PU-LN1 scaffolds both improve CPC adhesion, but LN1 functionalization is superior in promoting proliferation, protection from apoptosis and expression of differentiation markers for cardiomyocytes, endothelial and smooth muscle cells. PU-LN1 and PU scaffolds are biodegraded into non-cytotoxic residues. Scaffolds subcutaneously implanted in mice evoke weak inflammation and integrate with the host tissue, evidencing a significant blood vessel density around the scaffolds. PU-LN1 scaffolds show their superiority in driving CPC behavior, evidencing their promising role in myocardial regenerative medicine.
Collapse
Affiliation(s)
- Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Franca Di Meglio
- Department of Public Health, University of Naples ‘Federico II’, Naples, Italy
| | - Pamela Mozetic
- Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome, Italy
- Center for Translational Medicine, International Clinical Research Center, St.Anne’s University Hospital, Brno, Czechia
| | - Sara Maria Giannitelli
- Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples ‘Federico II’, Naples, Italy
| | - Daria Nurzynska
- Department of Public Health, University of Naples ‘Federico II’, Naples, Italy
| | - Anna Maria Sacco
- Department of Public Health, University of Naples ‘Federico II’, Naples, Italy
| | - Rita Miraglia
- Department of Public Health, University of Naples ‘Federico II’, Naples, Italy
| | - Stefania Montagnani
- Department of Public Health, University of Naples ‘Federico II’, Naples, Italy
| | - Nicoletta Vitale
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Guido Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Francesco Basoli
- Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alberto Rainer
- Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome, Italy
- Institute for Photonics and Nanotechnology, National Research Council, Rome, Italy
| | - Marcella Trombetta
- Department of Engineering, Tissue Engineering Unit, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
16
|
Decoration of RGD-mimetic porous scaffolds with engineered and devitalized extracellular matrix for adipose tissue regeneration. Acta Biomater 2018; 73:154-166. [PMID: 29684623 DOI: 10.1016/j.actbio.2018.04.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/22/2018] [Accepted: 04/19/2018] [Indexed: 12/16/2022]
Abstract
Fat grafting is emerging as a promising alternative to silicon implants in breast reconstruction surgery. Unfortunately, this approach does not provide a proper mechanical support and is affected by drawbacks such as tissue resorption and donor site morbidity. Synthetic scaffolds can offer a valuable alternative to address these challenges, but poorly recapitulate the biochemical stimuli needed for tissue regeneration. Here, we aim at combining the positive features of a structural, synthetic polymer to an engineered, devitalized extracellular matrix (ECM) to generate a hybrid construct that can provide a mix of structural and biological stimuli needed for adipose tissue regeneration. A RGD-mimetic synthetic scaffold OPAAF, designed for soft tissue engineering, was decorated with ECM deposited by human adipose stromal cells (hASCs). The adipoinductive potential of the hybrid ECM-OPAAF construct was validated in vitro, by culture with hASC in a perfusion bioreactor system, and in vivo, by subcutaneous implantation in nude mouse. Our findings demonstrate that the hybrid ECM-OPAAF provides proper mechanical support and adipoinductive stimuli, with potential applicability as off-the-shelf material for adipose tissue reconstruction. STATEMENT OF SIGNIFICANCE In this study we combined the functionalities of a synthetic polymer with those of an engineered and subsequently devitalized extracellular matrix (ECM) to generate a hybrid material for adipose tissue regeneration. The developed hybrid ECM-OPAAF was demonstrated to regulate human adipose stromal cells adipogenic commitment in vitro and adipose tissue infiltration in vivo. Our findings demonstrate that the hybrid ECM-OPAAF provide proper mechanical support and adipoinductive stimuli and represents a promising off-the-shelf material for adipose tissue reconstruction. We believe that our approach could offer an alternative strategy for adipose tissue reconstruction in case of mastectomy or congenital abnormalities, overcoming the current limitations of autologous fat based strategies such as volume resorption and donor site morbidity.
Collapse
|
17
|
Gaudiello E, Melly L, Cerino G, Boccardo S, Jalili-Firoozinezhad S, Xu L, Eckstein F, Martin I, Kaufmann BA, Banfi A, Marsano A. Scaffold Composition Determines the Angiogenic Outcome of Cell-Based Vascular Endothelial Growth Factor Expression by Modulating Its Microenvironmental Distribution. Adv Healthc Mater 2017; 6. [PMID: 28994225 DOI: 10.1002/adhm.201700600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/25/2017] [Indexed: 01/22/2023]
Abstract
Delivery of genetically modified cells overexpressing Vascular Endothelial Growth Factor (VEGF) is a promising approach to induce therapeutic angiogenesis in ischemic tissues. The effect of the protein is strictly modulated by its interaction with the components of the extracellular matrix. Its therapeutic potential depends on a sustained but controlled release at the microenvironmental level in order to avoid the formation of abnormal blood vessels. In this study, it is hypothesized that the composition of the scaffold plays a key role in modulating the binding, hence the therapeutic effect, of the VEGF released by 3D-cell constructs. It is found that collagen sponges, which poorly bind VEGF, prevent the formation of localized hot spots of excessive concentration, therefore, precluding the development of aberrant angiogenesis despite uncontrolled expression by a genetically engineered population of adipose tissue-derived stromal cells. On the contrary, after seeding on VEGF-binding egg-white scaffolds, the same cell population caused aberrantly enlarged vascular structures after 14 d. Collagen-based engineered tissues also induced a safe and efficient angiogenesis in both the patch itself and the underlying myocardium in rat models. These findings open new perspectives on the control and the delivery of proangiogenic stimuli, and are fundamental for the vascularization of engineered tissues/organs.
Collapse
Affiliation(s)
- Emanuele Gaudiello
- Department of Biomedicine; University of Basel; Hebelstrasse 20 CH-4031 Basel Switzerland
- Department of Surgery; University Hospital Basel; Spitalstrasse 21 CH-4031 Basel Switzerland
| | - Ludovic Melly
- Department of Biomedicine; University of Basel; Hebelstrasse 20 CH-4031 Basel Switzerland
- Department of Surgery; University Hospital Basel; Spitalstrasse 21 CH-4031 Basel Switzerland
| | - Giulia Cerino
- Department of Biomedicine; University of Basel; Hebelstrasse 20 CH-4031 Basel Switzerland
- Department of Surgery; University Hospital Basel; Spitalstrasse 21 CH-4031 Basel Switzerland
| | - Stefano Boccardo
- Department of Biomedicine; University of Basel; Hebelstrasse 20 CH-4031 Basel Switzerland
- Department of Surgery; University Hospital Basel; Spitalstrasse 21 CH-4031 Basel Switzerland
| | - Sasan Jalili-Firoozinezhad
- Department of Biomedicine; University of Basel; Hebelstrasse 20 CH-4031 Basel Switzerland
- Department of Surgery; University Hospital Basel; Spitalstrasse 21 CH-4031 Basel Switzerland
| | - Lifen Xu
- Department of Biomedicine; University of Basel; Hebelstrasse 20 CH-4031 Basel Switzerland
| | - Friedrich Eckstein
- Department of Biomedicine; University of Basel; Hebelstrasse 20 CH-4031 Basel Switzerland
- Department of Surgery; University Hospital Basel; Spitalstrasse 21 CH-4031 Basel Switzerland
| | - Ivan Martin
- Department of Biomedicine; University of Basel; Hebelstrasse 20 CH-4031 Basel Switzerland
- Department of Surgery; University Hospital Basel; Spitalstrasse 21 CH-4031 Basel Switzerland
| | - Beat A. Kaufmann
- Department of Biomedicine; University of Basel; Hebelstrasse 20 CH-4031 Basel Switzerland
| | - Andrea Banfi
- Department of Biomedicine; University of Basel; Hebelstrasse 20 CH-4031 Basel Switzerland
- Department of Surgery; University Hospital Basel; Spitalstrasse 21 CH-4031 Basel Switzerland
| | - Anna Marsano
- Department of Biomedicine; University of Basel; Hebelstrasse 20 CH-4031 Basel Switzerland
- Department of Surgery; University Hospital Basel; Spitalstrasse 21 CH-4031 Basel Switzerland
| |
Collapse
|
18
|
Cerino G, Gaudiello E, Muraro MG, Eckstein F, Martin I, Scherberich A, Marsano A. Engineering of an angiogenic niche by perfusion culture of adipose-derived stromal vascular fraction cells. Sci Rep 2017; 7:14252. [PMID: 29079730 PMCID: PMC5660248 DOI: 10.1038/s41598-017-13882-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/02/2017] [Indexed: 01/01/2023] Open
Abstract
In vitro recapitulation of an organotypic stromal environment, enabling efficient angiogenesis, is crucial to investigate and possibly improve vascularization in regenerative medicine. Our study aims at engineering the complexity of a vascular milieu including multiple cell-types, a stromal extracellular matrix (ECM), and molecular signals. For this purpose, the human adipose stromal vascular fraction (SVF), composed of a heterogeneous mix of pericytes, endothelial/stromal progenitor cells, was cultured under direct perfusion flow on three-dimensional (3D) collagen scaffolds. Perfusion culture of SVF-cells reproducibly promoted in vitro the early formation of a capillary-like network, embedded within an ECM backbone, and the release of numerous pro-angiogenic factors. Compared to static cultures, perfusion-based engineered constructs were more rapidly vascularized and supported a superior survival of delivered cells upon in vivo ectopic implantation. This was likely mediated by pericytes, whose number was significantly higher (4.5-fold) under perfusion and whose targeted depletion resulted in lower efficiency of vascularization, with an increased host foreign body reaction. 3D-perfusion culture of SVF-cells leads to the engineering of a specialized milieu, here defined as an angiogenic niche. This system could serve as a model to investigate multi-cellular interactions in angiogenesis, and as a module supporting increased grafted cell survival in regenerative medicine.
Collapse
Affiliation(s)
- Giulia Cerino
- Departments of Biomedicine and Surgery, University of Basel and University Hospital of Basel, 4031, Basel, Switzerland
| | - Emanuele Gaudiello
- Departments of Biomedicine and Surgery, University of Basel and University Hospital of Basel, 4031, Basel, Switzerland
| | - Manuele Giuseppe Muraro
- Departments of Biomedicine and Surgery, University of Basel and University Hospital of Basel, 4031, Basel, Switzerland
| | - Friedrich Eckstein
- Departments of Biomedicine and Surgery, University of Basel and University Hospital of Basel, 4031, Basel, Switzerland
| | - Ivan Martin
- Departments of Biomedicine and Surgery, University of Basel and University Hospital of Basel, 4031, Basel, Switzerland
| | - Arnaud Scherberich
- Departments of Biomedicine and Surgery, University of Basel and University Hospital of Basel, 4031, Basel, Switzerland
| | - Anna Marsano
- Departments of Biomedicine and Surgery, University of Basel and University Hospital of Basel, 4031, Basel, Switzerland.
| |
Collapse
|
19
|
Celikkin N, Rinoldi C, Costantini M, Trombetta M, Rainer A, Święszkowski W. Naturally derived proteins and glycosaminoglycan scaffolds for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1277-1299. [PMID: 28575966 DOI: 10.1016/j.msec.2017.04.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/02/2017] [Accepted: 04/03/2017] [Indexed: 12/25/2022]
Abstract
Tissue engineering (TE) aims to mimic the complex environment where organogenesis takes place using advanced materials to recapitulate the tissue niche. Cells, three-dimensional scaffolds and signaling factors are the three main and essential components of TE. Over the years, materials and processes have become more and more sophisticated, allowing researchers to precisely tailor the final chemical, mechanical, structural and biological features of the designed scaffolds. In this review, we will pose the attention on two specific classes of naturally derived polymers: fibrous proteins and glycosaminoglycans (GAGs). These materials hold great promise for advances in the field of regenerative medicine as i) they generally undergo a fast remodeling in vivo favoring neovascularization and functional cells organization and ii) they elicit a negligible immune reaction preventing severe inflammatory response, both representing critical requirements for a successful integration of engineered scaffolds with the host tissue. We will discuss the recent achievements attained in the field of regenerative medicine by using proteins and GAGs, their merits and disadvantages and the ongoing challenges to move the current concepts to practical clinical application.
Collapse
Affiliation(s)
- Nehar Celikkin
- Warsaw University of Technology, Faculty of Material Science and Engineering, 141 Woloska str., 02-507 Warsaw, Poland
| | - Chiara Rinoldi
- Warsaw University of Technology, Faculty of Material Science and Engineering, 141 Woloska str., 02-507 Warsaw, Poland
| | - Marco Costantini
- Tissue Engineering Unit, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Marcella Trombetta
- Tissue Engineering Unit, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Alberto Rainer
- Tissue Engineering Unit, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Wojciech Święszkowski
- Warsaw University of Technology, Faculty of Material Science and Engineering, 141 Woloska str., 02-507 Warsaw, Poland.
| |
Collapse
|
20
|
Cheng NC, Lin WJ, Ling TY, Young TH. Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis. Acta Biomater 2017; 51:258-267. [PMID: 28131942 DOI: 10.1016/j.actbio.2017.01.060] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/30/2016] [Accepted: 01/23/2017] [Indexed: 12/18/2022]
Abstract
Adipose-derived stem cells (ASCs) secrete several angiogenic growth factors and can be applied to treat ischemic tissue. However, transplantation of dissociated ASCs has frequently resulted in rapid cell death. Therefore, we aimed to develop a thermosensitive chitosan/gelatin hydrogel that is capable of ASC sustained release for therapeutic angiogenesis. By blending gelatin in the chitosan thermosensitive hydrogel, we significantly enhanced the viability of the encapsulated ASCs. During in vitro culturing, the gradual degradation of gelatin led to sustained release of ASCs from the chitosan/gelatin hydrogel. In vitro wound healing assays revealed significantly faster cell migration by co-culturing fibroblasts with ASCs encapsulated in chitosan/gelatin hydrogel compared to pure chitosan hydrogels. Additionally, significantly higher concentrations of vascular endothelial growth factor were found in the supernatant of ASC-encapsulated chitosan/gelatin hydrogels. Co-culturing SVEC4-10 endothelial cells with ASC-encapsulated chitosan/gelatin hydrogels resulted in significantly more tube-like structures, indicating the hydrogel's potential in promoting angiogenesis. Chick embryo chorioallantoic membrane assay and mice wound healing model showed significantly higher capillary density after applying ASC-encapsulated chitosan/gelatin hydrogel. Relative to ASC alone or ASC-encapsulated chitosan hydrogel, more ASCs were also found in the wound tissue on post-wounding day 5 after applying ASC-encapsulated chitosan/gelatin hydrogel. Therefore, chitosan/gelatin thermosensitive hydrogels not only maintain ASC survival, they also enable sustained release of ASCs for therapeutic angiogenesis applications, thereby exhibiting great clinical potential in treating ischemic diseases. STATEMENT OF SIGNIFICANCE Adipose-derived stem cells (ASCs) exhibit great potential to treat ischemic diseases. However, poor delivery methods lead to low cellular survival or dispersal of cells from target sites. In this study, we developed a thermosensitive chitosan/gelatin hydrogel that not only enhances the viability of the encapsulated ASCs, the gradual degradation of gelatin also result in a more porous architecture, leading to sustained release of ASCs from the hydrogel. ASC-encapsulated hydrogel enhanced in vitro wound healing of fibroblasts and tube formation of endothelial cells. It also promoted in vivo angiogenesis in a chick embryo chorioallantoic membrane assay and a mice wound model. Therefore, chitosan/gelatin hydrogel represents an effective delivery system that allows for controlled release of viable ASCs for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, 7 Chung-Shan S Rd, Taipei 100, Taiwan.
| | - Wei-Jhih Lin
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, 1 Jen-Ai Rd, Taipei 100, Taiwan.
| | - Thai-Yen Ling
- Department of Pharmacology, College of Medicine, National Taiwan University, 1 Jen-Ai Rd, Taipei 100, Taiwan.
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, 1 Jen-Ai Rd, Taipei 100, Taiwan.
| |
Collapse
|