1
|
Xu Y, Yu Y, Guo Z. Hydrogels in cardiac tissue engineering: application and challenges. Mol Cell Biochem 2024:10.1007/s11010-024-05145-3. [PMID: 39495368 DOI: 10.1007/s11010-024-05145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Cardiovascular disease remains the leading cause of global mortality. Current stem cell therapy and heart transplant therapy have limited long-term stability in cardiac function. Cardiac tissue engineering may be one of the key methods for regenerating damaged myocardial tissue. As an ideal scaffold material, hydrogel has become a viable tissue engineering therapy for the heart. Hydrogel can not only provide mechanical support for infarcted myocardium but also serve as a carrier for various drugs, bioactive factors, and cells to increase myocardial contractility and improve the cell microenvironment in the infarcted area, thereby improving cardiac function. This paper reviews the applications of hydrogels and biomedical mechanisms in cardiac tissue engineering and discusses the challenge of clinical transformation of hydrogel in cardiac tissue engineering, providing new strategies for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Yaping Xu
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China
| | - Yuexin Yu
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Henan, 450016, Zhengzhou, People's Republic of China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003, Henan, People's Republic of China.
| |
Collapse
|
2
|
Finklea FB, Hashemi M, Tian Y, Hammons H, Halloin C, Triebert W, Zweigerdt R, Lipke EA. Chemically defined production of engineered cardiac tissue microspheres from hydrogel-encapsulated pluripotent stem cells. Biotechnol Bioeng 2024; 121:3614-3628. [PMID: 39104025 DOI: 10.1002/bit.28818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Chemically defined, suspension culture conditions are a key requirement in realizing clinical translation of engineered cardiac tissues (ECTs). Building on our previous work producing functional ECT microspheres through differentiation of biomaterial encapsulated human induced pluripotent stem cells (hiPSCs), here we establish the ability to use chemically defined culture conditions, including stem cell media (E8) and cardiac differentiation media (chemically defined differentiation media with three components, CDM3). A custom microfluidic cell encapsulation system was used to encapsulate hiPSCs at a range of initial cell concentrations and diameters in the hybrid biomaterial, poly(ethylene glycol)-fibrinogen (PF), for the formation of highly spherical and uniform ECT microspheres for subsequent cardiac differentiation. Initial microsphere diameter could be tightly controlled, and microspheres could be produced with an initial diameter between 400 and 800 µm. Three days after encapsulation, cardiac differentiation was initiated through small molecule modulation of Wnt signaling in CDM3. Cardiac differentiation occurred resulting in in situ ECT formation; results showed that this differentiation protocol could be used to achieve cardiomyocyte (CM) contents greater than 90%, although there was relatively high variability in CM content and yield between differentiation batches. Spontaneous contraction of ECT microspheres initiated between Days 7 and 10 of differentiation and ECT microspheres responded to electrical pacing up to 1.5 Hz. Resulting CMs had well-defined sarcomeres and the gap junction protein, connexin 43, and had appropriate temporal changes in gene expression. In summary, this study demonstrated the proof-of-concept to produce functional ECT microspheres with chemically defined media in suspension culture in combination with biomaterial support of microsphere encapsulated hiPSCs.
Collapse
Affiliation(s)
- Ferdous B Finklea
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | | | - Yuan Tian
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Hanna Hammons
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| | - Caroline Halloin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Wiebke Triebert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
3
|
Strash N, DeLuca S, Janer Carattini GL, Chen Y, Wu T, Helfer A, Scherba J, Wang I, Jain M, Naseri R, Bursac N. Time-dependent effects of BRAF-V600E on cell cycling, metabolism, and function in engineered myocardium. SCIENCE ADVANCES 2024; 10:eadh2598. [PMID: 38266090 PMCID: PMC10807800 DOI: 10.1126/sciadv.adh2598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Candidate cardiomyocyte (CM) mitogens such as those affecting the extracellular signal-regulated kinase (ERK) signaling pathway represent potential targets for functional heart regeneration. We explored whether activating ERK via a constitutively active mutant of B-raf proto-oncogene (BRAF), BRAF-V600E (caBRAF), can induce proproliferative effects in neonatal rat engineered cardiac tissues (ECTs). Sustained CM-specific caBRAF expression induced chronic ERK activation, substantial tissue growth, deficit in sarcomeres and contractile function, and tissue stiffening, all of which persisted for at least 4 weeks of culture. caBRAF-expressing CMs in ECTs exhibited broad transcriptomic changes, shift to glycolytic metabolism, loss of connexin-43, and a promigratory phenotype. Transient, doxycycline-controlled caBRAF expression revealed that the induction of CM cycling is rapid and precedes functional decline, and the effects are reversible only with short-lived ERK activation. Together, direct activation of the BRAF kinase is sufficient to modulate CM cycling and functional phenotype, offering mechanistic insights into roles of ERK signaling in the context of cardiac development and regeneration.
Collapse
Affiliation(s)
| | - Sophia DeLuca
- Department of Cell Biology, Duke University, Durham NC, USA
| | | | - Yifan Chen
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Tianyu Wu
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Abbigail Helfer
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Jacob Scherba
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Isabella Wang
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Mehul Jain
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Ramona Naseri
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Nenad Bursac
- Department of Cell Biology, Duke University, Durham NC, USA
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| |
Collapse
|
4
|
Finkel S, Sweet S, Locke T, Smith S, Wang Z, Sandini C, Imredy J, He Y, Durante M, Lagrutta A, Feinberg A, Lee A. FRESH™ 3D bioprinted cardiac tissue, a bioengineered platform for in vitro pharmacology. APL Bioeng 2023; 7:046113. [PMID: 38046544 PMCID: PMC10693443 DOI: 10.1063/5.0163363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
There is critical need for a predictive model of human cardiac physiology in drug development to assess compound effects on human tissues. In vitro two-dimensional monolayer cultures of cardiomyocytes provide biochemical and cellular readouts, and in vivo animal models provide information on systemic cardiovascular response. However, there remains a significant gap in these models due to their incomplete recapitulation of adult human cardiovascular physiology. Recent efforts in developing in vitro models from engineered heart tissues have demonstrated potential for bridging this gap using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in three-dimensional tissue structure. Here, we advance this paradigm by implementing FRESH™ 3D bioprinting to build human cardiac tissues in a medium throughput, well-plate format with controlled tissue architecture, tailored cellular composition, and native-like physiological function, specifically in its drug response. We combined hiPSC-CMs, endothelial cells, and fibroblasts in a cellular bioink and FRESH™ 3D bioprinted this mixture in the format of a thin tissue strip stabilized on a tissue fixture. We show that cardiac tissues could be fabricated directly in a 24-well plate format were composed of dense and highly aligned hiPSC-CMs at >600 million cells/mL and, within 14 days, demonstrated reproducible calcium transients and a fast conduction velocity of ∼16 cm/s. Interrogation of these cardiac tissues with the β-adrenergic receptor agonist isoproterenol showed responses consistent with positive chronotropy and inotropy. Treatment with calcium channel blocker verapamil demonstrated responses expected of hiPSC-CM derived cardiac tissues. These results confirm that FRESH™ 3D bioprinted cardiac tissues represent an in vitro platform that provides data on human physiological response.
Collapse
Affiliation(s)
| | | | - Tyler Locke
- FluidForm, Inc., Waltham, Massachusetts 02451, USA
| | - Sydney Smith
- FluidForm, Inc., Waltham, Massachusetts 02451, USA
| | - Zhefan Wang
- FluidForm, Inc., Waltham, Massachusetts 02451, USA
| | | | - John Imredy
- In Vitro Safety Pharmacology, Genetic and Cellular Toxicology, Merck & Co. Inc., Rahway, New Jersey 07065, USA
| | - Yufang He
- Division of Technology, Infrastructure, Operations and Experience, Merck & Co. Inc., Rahway, New Jersey 07065, USA
| | - Marc Durante
- Division of Technology, Infrastructure, Operations and Experience, Merck & Co. Inc., Rahway, New Jersey 07065, USA
| | - Armando Lagrutta
- In Vitro Safety Pharmacology, Genetic and Cellular Toxicology, Merck & Co. Inc., Rahway, New Jersey 07065, USA
| | | | - Andrew Lee
- FluidForm, Inc., Waltham, Massachusetts 02451, USA
| |
Collapse
|
5
|
He C, Zhu C, Fan H, Qian Y, Zhai C, Hu H. Low T3 syndrome predicts more adverse events in patients with hypertrophic cardiomyopathy. Clin Cardiol 2023; 46:1569-1577. [PMID: 37711064 PMCID: PMC10716344 DOI: 10.1002/clc.24156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a common cardiac genetic disorder that clinically manifests with sudden death and progressive heart failure. Moreover, thyroid dysfunction is associated with increased cardiovascular morbidity and mortality risks. Therefore, this study aimed to clarify whether thyroid hormones could serve as an independent predictor of adverse events in patients with HCM. METHODS The cohort consisted of 782 patients with HCM who had thyroid hormones baseline data and were admitted to the Affiliated Hospital of Jiaxing University. Patients were divided into two groups according to serum levels of free triiodothyronine (fT3): the normal fT3 and low triiodothyronine (T3) syndrome groups. Low T3 syndrome was defined as fT3 < 2.43 pmol/L with a normal thyroid-stimulating hormone (TSH) level. Patients whose TSH levels were abnormally high or abnormally low were excluded from this study. The primary endpoint was the occurrence of sudden cardiac death (SCD) events, and the secondary endpoint was a composite of worsening heart failure (WHF) events, including heart failure death, cardiac decompensation, hospitalization for heart failure, and HCM-related stroke. The Kaplan-Meier and Cox regression were performed for the survival analysis. RESULTS After a median follow-up of 52 months, 75 SCD events and 134 WHF events were recorded. The Kaplan-Meier survival curves showed that the cumulative incidence of SCD events and WHF events were significantly higher in patients with low T3 syndrome (log-rank p = .02 and log-rank p = .001, respectively). Furthermore, multivariate Cox regression analysis demonstrated that low T3 syndrome is a strong predictor of SCD events and WHF events (adjusted hazard ratio [HR: 1.53, 95% confidence interval [CI]: 1.13-2.24, p < .01; HR: 3.87, 95% CI: 2.91-4.98, p < .001, respectively). CONCLUSIONS Low T3 syndrome is highly prevalent among patients with HCM and was independently associated with an increased risk of SCD events and WHF events. The routine assessment of serum fT3 levels may provide risk stratification in this population.
Collapse
Affiliation(s)
- Chao‐Jie He
- Department of CardiologyThe Affiliated Hospital of Jiaxing UniversityJiaxingZhejiangChina
| | - Chun‐Yan Zhu
- Department of AnesthesiologyThe Affiliated Hospital of Jiaxing UniversityJiaxingZhejiangChina
| | - Hong‐Yan Fan
- Department of CardiologyThe Affiliated Hospital of Jiaxing UniversityJiaxingZhejiangChina
| | - Ye‐Zhou Qian
- Department of CardiologyThe Affiliated Hospital of Jiaxing UniversityJiaxingZhejiangChina
| | - Chang‐Lin Zhai
- Department of CardiologyThe Affiliated Hospital of Jiaxing UniversityJiaxingZhejiangChina
| | - Hui‐Lin Hu
- Department of CardiologyThe Affiliated Hospital of Jiaxing UniversityJiaxingZhejiangChina
| |
Collapse
|
6
|
Galow AM, Brenmoehl J, Hoeflich A. Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cell Mol Life Sci 2023; 80:240. [PMID: 37541969 PMCID: PMC10403476 DOI: 10.1007/s00018-023-04894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
The limited endogenous regenerative capacity of the human heart renders cardiovascular diseases a major health threat, thus motivating intense research on in vitro heart cell generation and cell replacement therapies. However, so far, in vitro-generated cardiomyocytes share a rather fetal phenotype, limiting their utility for drug testing and cell-based heart repair. Various strategies to foster cellular maturation provide some success, but fully matured cardiomyocytes are still to be achieved. Today, several hormones are recognized for their effects on cardiomyocyte proliferation, differentiation, and function. Here, we will discuss how the endocrine system impacts cardiomyocyte maturation. After detailing which features characterize a mature phenotype, we will contemplate hormones most promising to induce such a phenotype, the routes of their action, and experimental evidence for their significance in this process. Due to their pleiotropic effects, hormones might be not only valuable to improve in vitro heart cell generation but also beneficial for in vivo heart regeneration. Accordingly, we will also contemplate how the presented hormones might be exploited for hormone-based regenerative therapies.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| |
Collapse
|
7
|
Shen S, Sewanan LR, Shao S, Halder SS, Stankey P, Li X, Campbell SG. Physiological calcium combined with electrical pacing accelerates maturation of human engineered heart tissue. Stem Cell Reports 2022; 17:2037-2049. [PMID: 35931080 PMCID: PMC9481907 DOI: 10.1016/j.stemcr.2022.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have wide potential application in basic research, drug discovery, and regenerative medicine, but functional maturation remains challenging. Here, we present a method whereby maturation of hiPSC-CMs can be accelerated by simultaneous application of physiological Ca2+ and frequency-ramped electrical pacing in culture. This combination produces positive force-frequency behavior, physiological twitch kinetics, robust β-adrenergic response, improved Ca2+ handling, and cardiac troponin I expression within 25 days. This study provides insights into the role of Ca2+ in hiPSC-CM maturation and offers a scalable platform for translational and clinical research.
Collapse
Affiliation(s)
- Shi Shen
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA
| | - Lorenzo R Sewanan
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephanie Shao
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA
| | - Saiti S Halder
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA
| | - Paul Stankey
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Xia Li
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, 55 Prospect St. MEC 211, New Haven, CT 06511, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA.
| |
Collapse
|
8
|
Kahn-Krell A, Pretorius D, Guragain B, Lou X, Wei Y, Zhang J, Qiao A, Nakada Y, Kamp TJ, Ye L, Zhang J. A three-dimensional culture system for generating cardiac spheroids composed of cardiomyocytes, endothelial cells, smooth-muscle cells, and cardiac fibroblasts derived from human induced-pluripotent stem cells. Front Bioeng Biotechnol 2022; 10:908848. [PMID: 35957645 PMCID: PMC9361017 DOI: 10.3389/fbioe.2022.908848] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/04/2022] [Indexed: 01/22/2023] Open
Abstract
Cardiomyocytes (CMs), endothelial cells (ECs), smooth-muscle cells (SMCs), and cardiac fibroblasts (CFs) differentiated from human induced-pluripotent stem cells (hiPSCs) are the fundamental components of cell-based regenerative myocardial therapy and can be used as in-vitro models for mechanistic studies and drug testing. However, newly differentiated hiPSC-CMs tend to more closely resemble fetal CMs than the mature CMs of adult hearts, and current techniques for improving CM maturation can be both complex and labor-intensive. Thus, the production of CMs for commercial and industrial applications will require more elementary methods for promoting CM maturity. CMs tend to develop a more mature phenotype when cultured as spheroids in a three-dimensional (3D) environment, rather than as two-dimensional monolayers, and the activity of ECs, SMCs, and CFs promote both CM maturation and electrical activity. Here, we introduce a simple and reproducible 3D-culture-based process for generating spheroids containing all four cardiac-cell types (i.e., cardiac spheroids) that is compatible with a wide range of applications and research equipment. Subsequent experiments demonstrated that the inclusion of vascular cells and CFs was associated with an increase in spheroid size, a decline in apoptosis, an improvement in sarcomere maturation and a change in CM bioenergetics.
Collapse
Affiliation(s)
- Asher Kahn-Krell
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Danielle Pretorius
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bijay Guragain
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xi Lou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuhua Wei
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Aijun Qiao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuji Nakada
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Timothy J. Kamp
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, United States,Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Lei Ye
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States,Department of Medicine/Cardiovascular Diseases, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: Jianyi Zhang,
| |
Collapse
|
9
|
Fassina D, Costa CM, Longobardi S, Karabelas E, Plank G, Harding SE, Niederer SA. Modelling the interaction between stem cells derived cardiomyocytes patches and host myocardium to aid non-arrhythmic engineered heart tissue design. PLoS Comput Biol 2022; 18:e1010030. [PMID: 35363778 PMCID: PMC9007348 DOI: 10.1371/journal.pcbi.1010030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/13/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Application of epicardial patches constructed from human-induced pluripotent stem cell- derived cardiomyocytes (hiPSC-CMs) has been proposed as a long-term therapy to treat scarred hearts post myocardial infarction (MI). Understanding electrical interaction between engineered heart tissue patches (EHT) and host myocardium represents a key step toward a successful patch engraftment. EHT retain different electrical properties with respect to the host heart tissue due to the hiPSC-CMs immature phenotype, which may lead to increased arrhythmia risk. We developed a modelling framework to examine the influence of patch design on electrical activation at the engraftment site. We performed an in silico investigation of different patch design approaches to restore pre-MI activation properties and evaluated the associated arrhythmic risk. We developed an in silico cardiac electrophysiology model of a transmural cross section of host myocardium. The model featured an infarct region, an epicardial patch spanning the infarct region and a bath region. The patch is modelled as a layer of hiPSC-CM, combined with a layer of conductive polymer (CP). Tissue and patch geometrical dimensions and conductivities were incorporated through 10 modifiable model parameters. We validated our model against 4 independent experimental studies and showed that it can qualitatively reproduce their findings. We performed a global sensitivity analysis (GSA) to isolate the most important parameters, showing that the stimulus propagation is mainly governed by the scar depth, radius and conductivity when the scar is not transmural, and by the EHT patch conductivity when the scar is transmural. We assessed the relevance of small animal studies to humans by comparing simulations of rat, rabbit and human myocardium. We found that stimulus propagation paths and GSA sensitivity indices are consistent across species. We explored which EHT design variables have the potential to restore physiological propagation. Simulations predict that increasing EHT conductivity from 0.28 to 1-1.1 S/m recovered physiological activation in rat, rabbit and human. Finally, we assessed arrhythmia risk related to increasing EHT conductivity and tested increasing the EHT Na+ channel density as an alternative strategy to match healthy activation. Our results revealed a greater arrhythmia risk linked to increased EHT conductivity compared to increased Na+ channel density. We demonstrated that our modeling framework could capture the interaction between host and EHT patches observed in in vitro experiments. We showed that large (patch and tissue dimensions) and small (cardiac myocyte electrophysiology) scale differences between small animals and humans do not alter EHT patch effect on infarcted tissue. Our model revealed that only when the scar is transmural do EHT properties impact activation times and isolated the EHT conductivity as the main parameter influencing propagation. We predicted that restoring physiological activation by tuning EHT conductivity is possible but may promote arrhythmic behavior. Finally, our model suggests that acting on hiPSC-CMs low action potential upstroke velocity and lack of IK1 may restore pre-MI activation while not promoting arrhythmia.
Collapse
Affiliation(s)
- Damiano Fassina
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Caroline M. Costa
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Stefano Longobardi
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Elias Karabelas
- Institute of Mathematics & Scientific Computing, University of Graz, Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center (for Cell Signaling, Metabolism and Aging), Division Biophysics, Medical University of Graz, Graz, Austria
| | - Sian E. Harding
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Steven A. Niederer
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
10
|
Janbandhu V, Tallapragada V, Patrick R, Li Y, Abeygunawardena D, Humphreys DT, Martin EM, Ward AO, Contreras O, Farbehi N, Yao E, Du J, Dunwoodie SL, Bursac N, Harvey RP. Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction. Cell Stem Cell 2022; 29:281-297.e12. [PMID: 34762860 PMCID: PMC9021927 DOI: 10.1016/j.stem.2021.10.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/16/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
We report that cardiac fibroblasts (CFs) and mesenchymal progenitors are more hypoxic than other cardiac interstitial populations, express more hypoxia-inducible factor 1α (HIF-1α), and exhibit increased glycolytic metabolism. CF-specific deletion of Hif-1a resulted in decreased HIF-1 target gene expression and increased mesenchymal progenitors in uninjured hearts and increased CF activation without proliferation following sham injury, as demonstrated using single-cell RNA sequencing (scRNA-seq). After myocardial infarction (MI), however, there was ∼50% increased CF proliferation and excessive scarring and contractile dysfunction, a scenario replicated in 3D engineered cardiac microtissues. CF proliferation was associated with higher reactive oxygen species (ROS) as occurred also in wild-type mice treated with the mitochondrial ROS generator MitoParaquat (MitoPQ). The mitochondrial-targeted antioxidant MitoTEMPO rescued Hif-1a mutant phenotypes. Thus, HIF-1α in CFs provides a critical braking mechanism against excessive post-ischemic CF activation and proliferation through regulation of mitochondrial ROS. CFs are potential cellular targets for designer antioxidant therapies in cardiovascular disease.
Collapse
Affiliation(s)
- Vaibhao Janbandhu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia,St. Vincent’s Clinical School, UNSW Sydney, NSW, Australia,Correspondence: (V.J.), (R.P.H.)
| | - Vikram Tallapragada
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia,St. Vincent’s Clinical School, UNSW Sydney, NSW, Australia
| | - Ralph Patrick
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia,St. Vincent’s Clinical School, UNSW Sydney, NSW, Australia
| | - Yanzhen Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Dhanushi Abeygunawardena
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia,School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, Australia
| | - David T. Humphreys
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia,St. Vincent’s Clinical School, UNSW Sydney, NSW, Australia
| | | | - Alexander O. Ward
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia,St. Vincent’s Clinical School, UNSW Sydney, NSW, Australia
| | - Osvaldo Contreras
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia,St. Vincent’s Clinical School, UNSW Sydney, NSW, Australia
| | - Nona Farbehi
- Garvan Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research Sydney, NSW 2010, Australia
| | - Ernestene Yao
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Junjie Du
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | - Sally L. Dunwoodie
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia,St. Vincent’s Clinical School, UNSW Sydney, NSW, Australia
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA,Department of Medicine, Duke University, Durham, NC 27708, USA
| | - Richard P. Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia,St. Vincent’s Clinical School, UNSW Sydney, NSW, Australia,School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, Australia,Lead contact,Correspondence: (V.J.), (R.P.H.)
| |
Collapse
|
11
|
DeLuca S, Bursac N. CRISPR Library Screening in Cultured Cardiomyocytes. Methods Mol Biol 2022; 2485:1-13. [PMID: 35618895 PMCID: PMC9274507 DOI: 10.1007/978-1-0716-2261-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CRISPR-Cas9-based screening technologies enable precise, high-throughput genetic and epigenetic manipulation to study mechanisms of development and disease and identify new therapeutic targets. Here, we describe a general protocol for the generation of custom, pooled CRISPR sgRNA libraries for screening in cardiomyocyte cultures. This methodology can address a variety of lab-specific research questions in cardiomyocytes and other cell types, as the genes to be modified can be curated or whole genomes can be investigated. The use of lentiviral sgRNA delivery followed by high-throughput sequencing allows for rapid comparison and identification of candidate genes and epigenetic modifiers, which can be further validated individually or in sub-pooled libraries following screening.
Collapse
Affiliation(s)
- Sophia DeLuca
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
12
|
Fang Y, Sun W, Zhang T, Xiong Z. Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: A review. Biomaterials 2021; 280:121298. [PMID: 34864451 DOI: 10.1016/j.biomaterials.2021.121298] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
The field of cardiac tissue engineering has advanced over the past decades; however, most research progress has been limited to engineered cardiac tissues (ECTs) at the microscale with minimal geometrical complexities such as 3D strips and patches. Although microscale ECTs are advantageous for drug screening applications because of their high-throughput and standardization characteristics, they have limited translational applications in heart repair and the in vitro modeling of cardiac function and diseases. Recently, researchers have made various attempts to construct engineered cardiac pumps (ECPs) such as chambered ventricles, recapitulating the geometrical complexity of the native heart. The transition from microscale ECTs to ECPs at a translatable scale would greatly accelerate their translational applications; however, researchers are confronted with several major hurdles, including geometrical reconstruction, vascularization, and functional maturation. Therefore, the objective of this paper is to review the recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps. We first review the bioengineering approaches to fabricate ECPs, and then emphasize the unmatched potential of 3D bioprinting techniques. We highlight key advances in bioprinting strategies with high cell density as researchers have begun to realize the critical role that the cell density of non-proliferative cardiomyocytes plays in the cell-cell interaction and functional contracting performance. We summarize the current approaches to engineering vasculatures both at micro- and meso-scales, crucial for the survival of thick cardiac tissues and ECPs. We showcase a variety of strategies developed to enable the functional maturation of cardiac tissues, mimicking the in vivo environment during cardiac development. By highlighting state-of-the-art research, this review offers personal perspectives on future opportunities and trends that may bring us closer to the promise of functional ECPs.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China; Department of Mechanical Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| |
Collapse
|
13
|
Possible Treatment of Myocardial Infarct Based on Tissue Engineering Using a Cellularized Solid Collagen Scaffold Functionalized with Arg-Glyc-Asp (RGD) Peptide. Int J Mol Sci 2021; 22:ijms222212563. [PMID: 34830447 PMCID: PMC8620820 DOI: 10.3390/ijms222212563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/23/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Currently, the clinical impact of cell therapy after a myocardial infarction (MI) is limited by low cell engraftment due to low cell retention, cell death in inflammatory and poor angiogenic infarcted areas, secondary migration. Cells interact with their microenvironment through integrin mechanoreceptors that control their survival/apoptosis/differentiation/migration and proliferation. The association of cells with a three-dimensional material may be a way to improve interactions with their integrins, and thus outcomes, especially if preparations are epicardially applied. In this review, we will focus on the rationale for using collagen as a polymer backbone for tissue engineering of a contractile tissue. Contractilities are reported for natural but not synthetic polymers and for naturals only for: collagen/gelatin/decellularized-tissue/fibrin/Matrigel™ and for different material states: hydrogels/gels/solids. To achieve a thick/long-term contractile tissue and for cell transfer, solid porous compliant scaffolds are superior to hydrogels or gels. Classical methods to produce solid scaffolds: electrospinning/freeze-drying/3D-printing/solvent-casting and methods to reinforce and/or maintain scaffold properties by reticulations are reported. We also highlight the possibility of improving integrin interaction between cells and their associated collagen by its functionalizing with the RGD-peptide. Using a contractile patch that can be applied epicardially may be a way of improving ventricular remodeling and limiting secondary cell migration.
Collapse
|
14
|
Strash N, DeLuca S, Janer Carattini GL, Heo SC, Gorsuch R, Bursac N. Human Erbb2-induced Erk activity robustly stimulates cycling and functional remodeling of rat and human cardiomyocytes. eLife 2021; 10:65512. [PMID: 34665129 PMCID: PMC8589446 DOI: 10.7554/elife.65512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Multiple mitogenic pathways capable of promoting mammalian cardiomyocyte (CM) proliferation have been identified as potential candidates for functional heart repair following myocardial infarction. However, it is unclear whether the effects of these mitogens are species-specific and how they directly compare in the same cardiac setting. Here, we examined how CM-specific lentiviral expression of various candidate mitogens affects human induced pluripotent stem cell-derived CMs (hiPSC-CMs) and neonatal rat ventricular myocytes (NRVMs) in vitro. In 2D-cultured CMs from both species, and in highly mature 3D-engineered cardiac tissues generated from NRVMs, a constitutively active mutant form of the human gene Erbb2 (cahErbb2) was the most potent tested mitogen. Persistent expression of cahErbb2 induced CM proliferation, sarcomere loss, and remodeling of tissue structure and function, which were attenuated by small molecule inhibitors of Erk signaling. These results suggest transient activation of Erbb2/Erk axis in CMs as a potential strategy for regenerative heart repair.
Collapse
Affiliation(s)
- Nicholas Strash
- Department of Cell Biology, Duke University, Durham, United States
| | - Sophia DeLuca
- Department of Cell Biology, Duke University, Durham, United States
| | | | - Soon Chul Heo
- Department of Biomedical Engineering, Duke University, Durham, United States
| | - Ryne Gorsuch
- Department of Biomedical Engineering, Duke University, Durham, United States
| | - Nenad Bursac
- Department of Cell Biology, Duke University, Durham, United States.,Department of Biomedical Engineering, Duke University, Durham, United States
| |
Collapse
|
15
|
Approaches to Optimize Stem Cell-Derived Cardiomyocyte Maturation and Function. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
3D bioprinted and integrated platforms for cardiac tissue modeling and drug testing. Essays Biochem 2021; 65:545-554. [PMID: 34269790 DOI: 10.1042/ebc20200106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022]
Abstract
Recent advances in biofabrication techniques, including 3D bioprinting, have allowed for the fabrication of cardiac models that are similar to the human heart in terms of their structure (e.g., volumetric scale and anatomy) and function (e.g., contractile and electrical properties). The importance of developing techniques for assessing the characteristics of 3D cardiac substitutes in real time without damaging their structures has also been emphasized. In particular, the heart has two primary mechanisms for transporting blood through the body: contractility and an electrical system based on intra and extracellular calcium ion exchange. This review introduces recent trends in 3D bioprinted cardiac tissues and the measurement of their structural, contractile, and electrical properties in real time. Cardiac models have also been regarded as alternatives to animal models as drug-testing platforms. Thus, perspectives on the convergence of 3D bioprinted cardiac tissues and their assessment for use in drug development are also presented.
Collapse
|
17
|
Gilani N, Wang K, Muncan A, Peter J, An S, Bhatti S, Pandya K, Zhang Y, Tang YD, Gerdes AM, Stout RF, Ojamaa K. Triiodothyronine maintains cardiac transverse-tubule structure and function. J Mol Cell Cardiol 2021; 160:1-14. [PMID: 34175303 DOI: 10.1016/j.yjmcc.2021.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 06/03/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022]
Abstract
Subclinical hypothyroidism and low T3 syndrome are commonly associated with an increased risk of cardiovascular disease (CVD) and mortality. We examined effects of T3 on T-tubule (TT) structures, Ca2+ mobilization and contractility, and clustering of dyadic proteins. Thyroid hormone (TH) deficiency was induced in adult female rats by propyl-thiouracil (PTU; 0.025%) treatment for 8 weeks. Rats were then randomized to continued PTU or triiodo-L-thyronine (T3; 10 μg/kg/d) treatment for 2 weeks (PTU + T3). After in vivo echocardiographic and hemodynamic recordings, cardiomyocytes (CM) were isolated to record Ca2+ transients and contractility. TT organization was assessed by confocal microscopy, and STORM images were captured to measure ryanodine receptor (RyR2) cluster number and size, and L-type Ca2+ channel (LTCC, Cav1.2) co-localization. Expressed genes including two integral TT proteins, junctophilin-2 (Jph-2) and bridging integrator-1 (BIN1), were analyzed in left ventricular (LV) tissues and cultured CM using qPCR and RNA sequencing. The T3 dosage used normalized serum T3, and reversed adverse effects of TH deficiency on in vivo measures of cardiac function. Recordings of isolated CM indicated that T3 increased rates of Ca2+ release and re-uptake, resulting in increased velocities of sarcomere shortening and re-lengthening. TT periodicity was significantly decreased, with reduced transverse tubules but increased longitudinal tubules in TH-deficient CMs and LV tissue, and these structures were normalized by T3 treatment. Analysis of STORM data of PTU myocytes showed decreased RyR2 cluster numbers and RyR localizations within each cluster without significant changes in Cav1.2 localizations within RyR clusters. T3 treatment normalized RyR2 cluster size and number. qPCR and RNAseq analyses of LV and cultured CM showed that Jph2 expression was T3-responsive, and its increase with treatment may explain improved TT organization and RyR-LTCC coupling.
Collapse
Affiliation(s)
- Nimra Gilani
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA.
| | - Kaihao Wang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA; Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Adam Muncan
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA.
| | - Jerrin Peter
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA.
| | - Shimin An
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA; Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Simran Bhatti
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA.
| | - Khushbu Pandya
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA.
| | - Youhua Zhang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA.
| | - Yi-Da Tang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - A Martin Gerdes
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA.
| | - Randy F Stout
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA; NYIT Imaging Center, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA.
| | - Kaie Ojamaa
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Blvd., Old Westbury, New York 11568, USA.
| |
Collapse
|
18
|
Engineered cardiac tissues: a novel in vitro model to investigate the pathophysiology of mouse diabetic cardiomyopathy. Acta Pharmacol Sin 2021; 42:932-941. [PMID: 33037406 DOI: 10.1038/s41401-020-00538-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/13/2020] [Indexed: 01/12/2023] Open
Abstract
Rodent diabetic models, used to understand the pathophysiology of diabetic cardiomyopathy (DCM), remain several limitations. Engineered cardiac tissues (ECTs) have emerged as robust 3D in vitro models to investigate structure-function relationships as well as cardiac injury and repair. Advanced glycation end-products (AGEs), produced through glycation of proteins or lipids in response to hyperglycemia, are important pathogenic factor for the development of DCM. In the current study, we developed a murine-based ECT model to investigate cardiac injury produced by AGEs. We treated ECTs composed of neonatal murine cardiac cells with AGEs and observed AGE-related functional, cellular, and molecular alterations: (1) AGEs (150 µg/mL) did not cause acute cytotoxicity, which displayed as necrosis detected by medium LDH release or apoptosis detected by cleaved caspase 3 and TUNEL staining, but negatively impacted ECT function on treatment day 9; (2) AGEs treatment significantly increased the markers of fibrosis (TGF-β, α-SMA, Ctgf, Collagen I-α1, Collagen III-α1, and Fn1) and hypertrophy (Nppa and Myh7); (3) AGEs treatment significantly increased ECT oxidative stress markers (3-NT, 4-HNE, HO-1, CAT, and SOD2) and inflammation response markers (PAI-1, TNF-α, NF-κB, and ICAM-1); and (4) AGE-induced pathogenic responses were all attenuated by pre-application of AGE receptor antagonist FPS-ZM1 (20 µM) or the antioxidant glutathione precursor N-acetylcysteine (5 mM). Therefore, AGEs-treated murine ECTs recapitulate the key features of DCM's functional, cellular and molecular pathogenesis, and may serve as a robust in vitro model to investigate cellular structure-function relationships, signaling pathways relevant to DCM and pharmaceutical intervention strategies.
Collapse
|
19
|
Ye J, Xiao Z, Gao L, Zhang J, He L, Zhang H, Liu Q, Yang G. Assessment of the effects of four crosslinking agents on gelatin hydrogel for myocardial tissue engineering applications. BIOMEDICAL MATERIALS (BRISTOL, ENGLAND) 2021; 16. [PMID: 33975301 DOI: 10.1088/1748-605x/abfff2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Cardiomyocyte (CM) transplantation is a promising option for regenerating infarcted myocardium. However, poor cell survival and residence rates reduce the efficacy of cell transplantation. Gelatin (GA) hydrogel as a frequently-used cell carrier is a possible approach to increase the survival rate of CMs. In this study, microbial transglutaminase (mTG) and chemical crosslinkers glutaraldehyde, genipin, and 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide were employed to prepare GA hydrogels. The mechanical properties and degradation characteristics of these hydrogels were then evaluated. Neonatal rat CMs (NRCMs) were isolated and inoculated on the surface of these hydrogels or encapsulated in mTG-hydrogels. Cellular growth morphology and beating behavior were observed. Cellular viability and immunofluorescence were analyzed. Intracellular Ca2+transient and membrane potential propagation were detected using fluorescence dyes (Fluo-3 and di-4-ANEPPS, respectively). Results showed that the chemical crosslinkers exhibited high cytotoxicity and resulted in high rates of cell death. By contrast, mTG-hydrogels showed excellent cell compatibility. The CMs cultured in mTG-hydrogels for a week expressed CM maturation markers. The NRCMs begun independently beating on the third day of culture, and their beating synchronized after a week of culture. Furthermore, intracellular Ca2+transient events with periodicity were observed. In conclusion, the novel mTG-crosslinked GA hydrogel synthesized herein has good biocompatibility, and it supports CM adhesion, growth, and maturation.
Collapse
Affiliation(s)
- Jing Ye
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Zhenghua Xiao
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, Chengdu 610041, People's Republic of China
| | - Lu Gao
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Jing Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Ling He
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Han Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Qi Liu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Gang Yang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| |
Collapse
|
20
|
Zhan RZ, Rao L, Chen Z, Strash N, Bursac N. Loss of sarcomeric proteins via upregulation of JAK/STAT signaling underlies interferon-γ-induced contractile deficit in engineered human myocardium. Acta Biomater 2021; 126:144-153. [PMID: 33705988 DOI: 10.1016/j.actbio.2021.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022]
Abstract
The level of circulating interferon-γ (IFNγ) is elevated in various clinical conditions including autoimmune and inflammatory diseases, sepsis, acute coronary syndrome, and viral infections. As these conditions are associated with high risk of myocardial dysfunction, we investigated the effects of IFNγ on 3D fibrin-based engineered human cardiac tissues ("cardiobundles"). Cardiobundles were fabricated from human pluripotent stem cell-derived cardiomyocytes, exposed to 0-20 ng/ml of IFNγ on culture days 7-14, and assessed for changes in tissue structure, viability, contractile force and calcium transient generation, action potential propagation, cytokine secretion, and expression of select genes and proteins. We found that application of IFNγ induced a dose-dependent reduction in contractile force generation, deterioration of sarcomeric organization, and cardiomyocyte disarray, without significantly altering cell viability, action potential propagation, or calcium transient amplitude. At molecular level, the IFNγ-induced structural and functional deficits could be attributed to altered balance of pro- and anti-inflammatory cytokines, upregulation of JAK/STAT signaling pathway (JAK1, JAK2, and STAT1), and reduced expression of myosin heavy chain, myosin light chain-2v, and sarcomeric α-actinin. Application of clinically used JAK/STAT inhibitors, tofacitinib and baricitinib, fully prevented IFNγ-induced cardiomyopathy, confirming the critical roles of this signaling pathway in inflammatory cardiac disease. Taken together, our in vitro studies in engineered myocardial tissues reveal direct adverse effects of pro-inflammatory cytokine IFNγ on human cardiomyocytes and establish the foundation for a potential use of cardiobundle platform in modeling of inflammatory myocardial disease and therapy. STATEMENT OF SIGNIFICANCE: Various inflammatory and autoimmune diseases including rheumatoid arthritis, sepsis, lupus erythematosus, Chagas disease, and others, as well as viral infections including H1N1 influenza and COVID-19 show increased systemic levels of a pro-inflammatory cytokine interferon-γ (IFNγ) and are associated with high risk of heart disease. Here we explored for the first time if chronically elevated levels of IFNγ can negatively affect structure and function of engineered human heart tissues in vitro. Our studies revealed IFNγ-induced deterioration of myofibrillar organization and contractile force production in human cardiomyocytes, attributed to decreased expression of multiple sarcomeric proteins and upregulation of JAK/STAT signaling pathway. FDA-approved JAK inhibitors fully blocked the adverse effects of IFNγ, suggesting a potentially effective strategy against human inflammatory cardiomyopathy.
Collapse
|
21
|
Chang YC, Mirhaidari G, Kelly J, Breuer C. Current Challenges and Solutions to Tissue Engineering of Large-scale Cardiac Constructs. Curr Cardiol Rep 2021; 23:47. [PMID: 33733317 DOI: 10.1007/s11886-021-01474-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Large-scale tissue engineering of cardiac constructs is a rapidly advancing field; however, there are several barriers still associated with the creation and clinical application of large-scale engineered cardiac tissues. We provide an overview of the current challenges and recently (within the last 5 years) described promising solutions to overcoming said challenges. RECENT FINDINGS The five major criteria yet to be met for clinical application of engineered cardiac tissues are successful electrochemical/mechanical cell coupling, efficient maturation of cardiomyocytes, functional vascularization of large tissues, balancing appropriate immune response, and large-scale generation of constructs. Promising solutions include the use of carbon/graphene in conjunction with existing scaffold designs, utilization of biological hormones, 3D bioprinting, and gene editing. While some of the described barriers to generation of large-scale cardiac tissue have seen encouraging advancements, there is no solution that yet achieves all 5 described criteria. It is vital then to consider a combination of techniques to achieve the optimal construct. Critically, following the demonstration of a viable construct, there remain important considerations to address associated with good manufacturing practices and establishing a standard for clinical trials.
Collapse
Affiliation(s)
- Yu-Chun Chang
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Research Building III, Columbus, OH, 43215, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Gabriel Mirhaidari
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Research Building III, Columbus, OH, 43215, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - John Kelly
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Research Building III, Columbus, OH, 43215, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.,The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA
| | - Christopher Breuer
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Research Building III, Columbus, OH, 43215, USA. .,Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA. .,Department of Surgery, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
22
|
Tadevosyan K, Iglesias-García O, Mazo MM, Prósper F, Raya A. Engineering and Assessing Cardiac Tissue Complexity. Int J Mol Sci 2021; 22:ijms22031479. [PMID: 33540699 PMCID: PMC7867236 DOI: 10.3390/ijms22031479] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 01/14/2023] Open
Abstract
Cardiac tissue engineering is very much in a current focus of regenerative medicine research as it represents a promising strategy for cardiac disease modelling, cardiotoxicity testing and cardiovascular repair. Advances in this field over the last two decades have enabled the generation of human engineered cardiac tissue constructs with progressively increased functional capabilities. However, reproducing tissue-like properties is still a pending issue, as constructs generated to date remain immature relative to native adult heart. Moreover, there is a high degree of heterogeneity in the methodologies used to assess the functionality and cardiac maturation state of engineered cardiac tissue constructs, which further complicates the comparison of constructs generated in different ways. Here, we present an overview of the general approaches developed to generate functional cardiac tissues, discussing the different cell sources, biomaterials, and types of engineering strategies utilized to date. Moreover, we discuss the main functional assays used to evaluate the cardiac maturation state of the constructs, both at the cellular and the tissue levels. We trust that researchers interested in developing engineered cardiac tissue constructs will find the information reviewed here useful. Furthermore, we believe that providing a unified framework for comparison will further the development of human engineered cardiac tissue constructs displaying the specific properties best suited for each particular application.
Collapse
Affiliation(s)
- Karine Tadevosyan
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), 08908 L’Hospitalet del Llobregat, Spain;
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Olalla Iglesias-García
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), 08908 L’Hospitalet del Llobregat, Spain;
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, 31008 Pamplona, Spain; (M.M.M.); (F.P.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (O.I.-G.); (A.R.)
| | - Manuel M. Mazo
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, 31008 Pamplona, Spain; (M.M.M.); (F.P.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Felipe Prósper
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, 31008 Pamplona, Spain; (M.M.M.); (F.P.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Center for Networked Biomedical Research on Cancer (CIBERONC), 28029 Madrid, Spain
| | - Angel Raya
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), 08908 L’Hospitalet del Llobregat, Spain;
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Correspondence: (O.I.-G.); (A.R.)
| |
Collapse
|
23
|
Chen Z, Li B, Zhan RZ, Rao L, Bursac N. Exercise mimetics and JAK inhibition attenuate IFN-γ-induced wasting in engineered human skeletal muscle. SCIENCE ADVANCES 2021; 7:eabd9502. [PMID: 33523949 DOI: 10.1126/sciadv.abd9502] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Chronic inflammatory diseases often lead to muscle wasting and contractile deficit. While exercise can have anti-inflammatory effects, the underlying mechanisms remain unclear. Here, we used an in vitro tissue-engineered model of human skeletal muscle ("myobundle") to study effects of exercise-mimetic electrical stimulation (E-stim) on interferon-γ (IFN-γ)-induced muscle weakness. Chronic IFN-γ treatment of myobundles derived from multiple donors induced myofiber atrophy and contractile loss. E-stim altered the myobundle secretome, induced myofiber hypertrophy, and attenuated the IFN-γ-induced myobundle wasting and weakness, in part by down-regulating JAK (Janus kinase)/STAT1 (signal transducer and activator of transcription 1) signaling pathway amplified by IFN-γ. JAK/STAT inhibitors fully prevented IFN-γ-induced myopathy, confirming the critical roles of STAT1 activation in proinflammatory action of IFN-γ. Our results reveal a previously unknown mechanism of the cell-autonomous anti-inflammatory effects of muscle exercise and establish the utility of human myobundle platform for studies of inflammatory muscle disease and therapy.
Collapse
Affiliation(s)
- Zhaowei Chen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Binjie Li
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Ren-Zhi Zhan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lingjun Rao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
24
|
Yong U, Lee S, Jung S, Jang J. Interdisciplinary approaches to advanced cardiovascular tissue engineering: ECM-based biomaterials, 3D bioprinting, and its assessment. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/2516-1091/abb211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Choi SW, Cho YW, Kim JG, Kim YJ, Kim E, Chung HM, Kang SW. Effect of Cell Labeling on the Function of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Int J Stem Cells 2020; 13:287-294. [PMID: 32323512 PMCID: PMC7378900 DOI: 10.15283/ijsc19138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 11/09/2022] Open
Abstract
Cell labeling technologies are required to monitor the fate of transplanted cells in vivo and to select target cells for the observation of certain changes in vitro. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been transplanted for the treatment of heart injuries or used in vitro for preclinical cardiac safety assessments. Cardiomyocyte (CM) labeling has been used in these processes to facilitate target cell monitoring. However, the functional effect of the labeling agent on hiPSC-CMs has not been studied. Therefore, we investigated the effects of labeling agents on CM cellular functions. 3'-Dioctadecyloxacarbocyanine perchlorate (DiO), quantum dots (QDs), and a DNA plasmid expressing EGFP using Lipo2K were used to label hiPSC-CMs. We conclude that the hiPSC-CM labeling with DiO and QDs does not induce arrhythmogenic effects but rather improves the mRNA expression of cardiac ion channels and Ca2+ influx by L-type Ca2+ channels. Thus, DiO and QD labeling agents may be useful tools to monitor transplanted CMs, and further in vivo influences of the labeling agents should be investigated in the future.
Collapse
Affiliation(s)
- Seong Woo Choi
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Young-Woo Cho
- Department of Pharmacy, Chungbuk National University College of Pharmacy, Cheongju, Korea.,Division of Drug Evaluation, NDDC, Oseong Medical Innovation Foundation, Cheongju, Korea
| | - Jae Gon Kim
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon, Korea
| | - Yong-Jin Kim
- R&D Unit, Amorepacific Corporation, Yongin, Korea
| | - Eunmi Kim
- R&D Unit, Amorepacific Corporation, Yongin, Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Sun-Woong Kang
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
26
|
Kim MS, Fleres B, Lovett J, Anfinson M, Samudrala SSK, Kelly LJ, Teigen LE, Cavanaugh M, Marquez M, Geurts AM, Lough JW, Mitchell ME, Fitts RH, Tomita-Mitchell A. Contractility of Induced Pluripotent Stem Cell-Cardiomyocytes With an MYH6 Head Domain Variant Associated With Hypoplastic Left Heart Syndrome. Front Cell Dev Biol 2020; 8:440. [PMID: 32656206 PMCID: PMC7324479 DOI: 10.3389/fcell.2020.00440] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a clinically and anatomically severe form of congenital heart disease; however, its etiology remains largely unknown. We previously demonstrated that genetic variants in the MYH6 gene are significantly associated with HLHS. Additionally, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from an HLHS-affected family trio (affected parent, unaffected parent, affected proband) carrying an MYH6-R443P head domain variant demonstrated dysmorphic sarcomere structure and increased compensatory MYH7 expression. Analysis of iPSC-CMs derived from the HLHS trio revealed that only beta myosin heavy chain expression was observed in CMs carrying the MYH6-R443P variant after differentiation day 15 (D15). Functional assessments performed between D20-D23 revealed that MYH6-R443P variant CMs contracted more slowly (40 ± 2 vs. 47 ± 2 contractions/min, P < 0.05), shortened less (5.6 ± 0.5 vs. 8.1 ± 0.7% of cell length, P < 0.05), and exhibited slower shortening rates (19.9 ± 1.7 vs. 28.1 ± 2.5 μm/s, P < 0.05) and relaxation rates (11.0 ± 0.9 vs. 19.7 ± 2.0 μm/s, P < 0.05). Treatment with isoproterenol had no effect on iPSC-CM mechanics. Using CRISPR/Cas9 gene editing technology, introduction of the R443P variant into the unaffected parent's iPSCs recapitulated the phenotype of the proband's iPSC-CMs, and conversely, correction of the R443P variant in the proband's iPSCs rescued the cardiomyogenic differentiation, sarcomere organization, slower contraction (P < 0.05) and decreased velocity phenotypes (P < 0.0001). This is the first report to identify that cardiac tissues from HLHS patients with MYH6 variants can exhibit sarcomere disorganization in atrial but not ventricular tissues. This new discovery was not unexpected, since MYH6 is expressed predominantly in the postnatal atria in humans. These findings demonstrate the feasibility of employing patient-derived iPSC-CMs, in combination with patient cardiac tissues, to gain mechanistic insight into how genetic variants can lead to HLHS. Results from this study suggest that decreased contractility of CMs due to sarcomere disorganization in the atria may effect hemodynamic changes preventing development of a normal left ventricle.
Collapse
Affiliation(s)
- Min-Su Kim
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Medical College of Wisconsin, Herma Heart Institute, Milwaukee, WI, United States
| | - Brandon Fleres
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Jerrell Lovett
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Melissa Anfinson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sai Suma K Samudrala
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lauren J Kelly
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Laura E Teigen
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Matthew Cavanaugh
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Maribel Marquez
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John W Lough
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael E Mitchell
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Medical College of Wisconsin, Herma Heart Institute, Milwaukee, WI, United States
| | - Robert H Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - Aoy Tomita-Mitchell
- Division of Pediatric Cardiothoracic Surgery, Department of Surgery, Medical College of Wisconsin, Herma Heart Institute, Milwaukee, WI, United States.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
27
|
Karbassi E, Fenix A, Marchiano S, Muraoka N, Nakamura K, Yang X, Murry CE. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol 2020; 17:341-359. [PMID: 32015528 DOI: 10.1038/s41569-019-0331-x] [Citation(s) in RCA: 408] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
Our knowledge of pluripotent stem cell (PSC) biology has advanced to the point where we now can generate most cells of the human body in the laboratory. PSC-derived cardiomyocytes can be generated routinely with high yield and purity for disease research and drug development, and these cells are now gradually entering the clinical research phase for the testing of heart regeneration therapies. However, a major hurdle for their applications is the immature state of these cardiomyocytes. In this Review, we describe the structural and functional properties of cardiomyocytes and present the current approaches to mature PSC-derived cardiomyocytes. To date, the greatest success in maturation of PSC-derived cardiomyocytes has been with transplantation into the heart in animal models and the engineering of 3D heart tissues with electromechanical conditioning. In conventional 2D cell culture, biophysical stimuli such as mechanical loading, electrical stimulation and nanotopology cues all induce substantial maturation, particularly of the contractile cytoskeleton. Metabolism has emerged as a potent means to control maturation with unexpected effects on electrical and mechanical function. Different interventions induce distinct facets of maturation, suggesting that activating multiple signalling networks might lead to increased maturation. Despite considerable progress, we are still far from being able to generate PSC-derived cardiomyocytes with adult-like phenotypes in vitro. Future progress will come from identifying the developmental drivers of maturation and leveraging them to create more mature cardiomyocytes for research and regenerative medicine.
Collapse
Affiliation(s)
- Elaheh Karbassi
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Aidan Fenix
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Silvia Marchiano
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Naoto Muraoka
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Kenta Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA. .,Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA. .,Department of Pathology, University of Washington, Seattle, WA, USA. .,Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA. .,Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
28
|
Zhao Y, Rafatian N, Wang EY, Wu Q, Lai BFL, Lu RX, Savoji H, Radisic M. Towards chamber specific heart-on-a-chip for drug testing applications. Adv Drug Deliv Rev 2020; 165-166:60-76. [PMID: 31917972 PMCID: PMC7338250 DOI: 10.1016/j.addr.2019.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
Modeling of human organs has long been a task for scientists in order to lower the costs of therapeutic development and understand the pathological onset of human disease. For decades, despite marked differences in genetics and etiology, animal models remained the norm for drug discovery and disease modeling. Innovative biofabrication techniques have facilitated the development of organ-on-a-chip technology that has great potential to complement conventional animal models. However, human organ as a whole, more specifically the human heart, is difficult to regenerate in vitro, in terms of its chamber specific orientation and its electrical functional complexity. Recent progress with the development of induced pluripotent stem cell differentiation protocols, made recapitulating the complexity of the human heart possible through the generation of cells representative of atrial & ventricular tissue, the sinoatrial node, atrioventricular node and Purkinje fibers. Current heart-on-a-chip approaches incorporate biological, electrical, mechanical, and topographical cues to facilitate tissue maturation, therefore improving the predictive power for the chamber-specific therapeutic effects targeting adult human. In this review, we will give a summary of current advances in heart-on-a-chip technology and provide a comprehensive outlook on the challenges involved in the development of human physiologically relevant heart-on-a-chip.
Collapse
Affiliation(s)
- Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Naimeh Rafatian
- Division of Cardiology and Peter Munk Cardiac Center, University of Health Network, Toronto, Ontario M5G 2N2, Canada
| | - Erika Yan Wang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Qinghua Wu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Benjamin F L Lai
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Rick Xingze Lu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Houman Savoji
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Toronto General Research Institute, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
29
|
Adverse transverse-tubule remodeling in a rat model of heart failure is attenuated with low-dose triiodothyronine treatment. Mol Med 2019; 25:53. [PMID: 31810440 PMCID: PMC6898920 DOI: 10.1186/s10020-019-0120-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
Abstract Pre-clinical animal studies have shown that triiodothyronine (T3) replacement therapy improves cardiac contractile function after myocardial infarction (MI). We hypothesized that T3 treatment could prevent adverse post-infarction cardiomyocyte remodeling by maintaining transverse-tubule (TT) structures, thus improving calcium dynamics and contractility. Methods Myocardial infarction (MI) or sham surgeries were performed on female Sprague-Dawley rats (aged 12 wks), followed by treatment with T3 (5μg/kg/d) or vehicle in drinking water for 16 wks (n = 10–11/group). After in vivo echocardiographic and hemodynamic analyses, left ventricular myocytes were isolated by collagenase digestion and simultaneous calcium and contractile transients in single cardiomyocytes were recorded using IonOptix imaging. Live cardiomyocytes were stained with AlexaFluor-488 conjugated wheat germ agglutinin (WGA-488) or di-8-ANEPPS, and multiple z-stack images per cell were captured by confocal microscopy for analysis of TT organization. RTqPCR and immunoblot approaches determined expression of TT proteins. Results Echocardiography and in vivo hemodynamic measurements showed significant improvements in systolic and diastolic function in T3- vs vehicle-treated MI rats. Isolated cardiomyocyte analysis showed significant dysfunction in measurements of myocyte relengthening in MI hearts, and improvements with T3 treatment: max relengthening velocity (Vmax, um/s), 2.984 ± 1.410 vs 1.593 ± 0.325, p < 0.05 and time to Vmax (sec), 0.233 ± 0.037 vs 0.314 ± 0.019, p < 0.001; MI + T3 vs MI + Veh, respectively. Time to peak contraction was shortened by T3 treatment (0.161 ± 0.021 vs 0.197 ± 0.011 s., p < 0.01; MI + T3 vs MI + Veh, respectively). Analysis of TT periodicity of WGA- or ANEPPS-stained cardiomyocytes indicated significant TT disorganization in MI myocytes and improvement with T3 treatment (transverse-oriented tubules (TE%): 9.07 ± 0.39 sham, 6.94 ± 0.67 MI + Veh and 8.99 ± 0.38 MI + T3; sham vs MI + Veh, p < 0.001; MI + Veh vs MI + T3, p < 0.01). Quantitative RT-PCR showed that reduced expression of BIN1 (Bridging integrator-1), Jph2 (junctophilin-2), RyR2 (ryanodine receptor) and Cav1.2 (L-type calcium channel) in the failing myocardium were increased by T3 and immunoblot analysis further supporting a potential T3 effect on the TT-associated proteins, BIN1 and Jph2. In conclusion, low dose T3 treatment initiated immediately after myocardial infarction attenuated adverse TT remodeling, improved calcium dynamics and contractility, thus supporting the potential therapeutic utility of T3 treatment in heart failure.
Collapse
|
30
|
Solazzo M, O'Brien FJ, Nicolosi V, Monaghan MG. The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioeng 2019; 3:041501. [PMID: 31650097 PMCID: PMC6795503 DOI: 10.1063/1.5116579] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023] Open
Abstract
The human heart possesses minimal regenerative potential, which can often lead to chronic heart failure following myocardial infarction. Despite the successes of assistive support devices and pharmacological therapies, only a whole heart transplantation can sufficiently address heart failure. Engineered scaffolds, implantable patches, and injectable hydrogels are among the most promising solutions to restore cardiac function and coax regeneration; however, current biomaterials have yet to achieve ideal tissue regeneration and adequate integration due a mismatch of material physicochemical properties. Conductive fillers such as graphene, carbon nanotubes, metallic nanoparticles, and MXenes and conjugated polymers such as polyaniline, polypyrrole, and poly(3,4-ethylendioxythiophene) can possibly achieve optimal electrical conductivities for cardiac applications with appropriate suitability for tissue engineering approaches. Many studies have focused on the use of these materials in multiple fields, with promising effects on the regeneration of electrically active biological tissues such as orthopedic, neural, and cardiac tissue. In this review, we critically discuss the role of heart electrophysiology and the rationale toward the use of electroconductive biomaterials for cardiac tissue engineering. We present the emerging applications of these smart materials to create supportive platforms and discuss the crucial role that electrical stimulation has been shown to exert in maturation of cardiac progenitor cells.
Collapse
|
31
|
Yifa O, Weisinger K, Bassat E, Li H, Kain D, Barr H, Kozer N, Genzelinakh A, Rajchman D, Eigler T, Umansky KB, Lendengolts D, Brener O, Bursac N, Tzahor E. The small molecule Chicago Sky Blue promotes heart repair following myocardial infarction in mice. JCI Insight 2019; 4:128025. [PMID: 31723055 DOI: 10.1172/jci.insight.128025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
The adult mammalian heart regenerates poorly after injury and, as a result, ischemic heart diseases are among the leading causes of death worldwide. The recovery of the injured heart is dependent on orchestrated repair processes including inflammation, fibrosis, cardiomyocyte survival, proliferation, and contraction properties that could be modulated in patients. In this work we designed an automated high-throughput screening system for small molecules that induce cardiomyocyte proliferation in vitro and identified the small molecule Chicago Sky Blue 6B (CSB). Following induced myocardial infarction, CSB treatment reduced scar size and improved heart function of adult mice. Mechanistically, we show that although initially identified using in vitro screening for cardiomyocyte proliferation, in the adult mouse CSB promotes heart repair through (i) inhibition of CaMKII signaling, which improves cardiomyocyte contractility; and (ii) inhibition of neutrophil and macrophage activation, which attenuates the acute inflammatory response, thereby contributing to reduced scarring. In summary, we identified CSB as a potential therapeutic agent that enhances cardiac repair and function by suppressing postinjury detrimental processes, with no evidence for cardiomyocyte renewal.
Collapse
Affiliation(s)
- Oren Yifa
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Karen Weisinger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Elad Bassat
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hanjun Li
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - David Kain
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Haim Barr
- HTS unit, The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), and
| | - Noga Kozer
- HTS unit, The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), and
| | - Alexander Genzelinakh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dana Rajchman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Eigler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Kfir Baruch Umansky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daria Lendengolts
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Brener
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
32
|
Mills RJ, Hudson JE. Bioengineering adult human heart tissue: How close are we? APL Bioeng 2019; 3:010901. [PMID: 31069330 PMCID: PMC6481734 DOI: 10.1063/1.5070106] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) have extensive applications in fundamental biology, regenerative medicine, disease modelling, and drug discovery/toxicology. Whilst large numbers of cardiomyocytes can be generated from hPSCs, extensive characterization has revealed that they have immature cardiac properties. This has raised potential concerns over their usefulness for many applications and has led to the pursuit of driving maturation of hPSC-cardiomyocytes. Currently, the best approach for driving maturity is the use of tissue engineering to generate highly functional three-dimensional heart tissue. Although we have made significant progress in this area, we have still not generated heart tissue that fully recapitulates all the properties of an adult heart. Deciphering the processes driving cardiomyocyte maturation will be instrumental in uncovering the mechanisms that govern optimal heart function and identifying new therapeutic targets for heart disease.
Collapse
Affiliation(s)
- Richard J Mills
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| |
Collapse
|
33
|
Biomaterializing the promise of cardiac tissue engineering. Biotechnol Adv 2019; 42:107353. [PMID: 30794878 DOI: 10.1016/j.biotechadv.2019.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Abstract
During an average individual's lifespan, the human heart pumps nearly 200 million liters of blood delivered by approximately 3 billion heartbeats. Therefore, it is not surprising that native myocardium under this incredible demand is extraordinarily complex, both structurally and functionally. As a result, successful engineering of adult-mimetic functional cardiac tissues is likely to require utilization of highly specialized biomaterials representative of the native extracellular microenvironment. There is currently no single biomaterial that fully recapitulates the architecture or the biochemical and biomechanical properties of adult myocardium. However, significant effort has gone toward designing highly functional materials and tissue constructs that may one day provide a ready source of cardiac tissue grafts to address the overwhelming burden of cardiomyopathic disease. In the near term, biomaterial-based scaffolds are helping to generate in vitro systems for querying the mechanisms underlying human heart homeostasis and disease and discovering new, patient-specific therapeutics. When combined with advances in minimally-invasive cardiac delivery, ongoing efforts will likely lead to scalable cell and biomaterial technologies for use in clinical practice. In this review, we describe recent progress in the field of cardiac tissue engineering with particular emphasis on use of biomaterials for therapeutic tissue design and delivery.
Collapse
|