1
|
Beyer HM, Kumar S, Nieke M, Diehl CMC, Tang K, Shumka S, Koh CS, Fleck C, Davies JA, Khammash M, Zurbriggen MD. Genetically-stable engineered optogenetic gene switches modulate spatial cell morphogenesis in two- and three-dimensional tissue cultures. Nat Commun 2024; 15:10470. [PMID: 39622829 PMCID: PMC11612184 DOI: 10.1038/s41467-024-54350-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024] Open
Abstract
Recent advances in tissue engineering have been remarkable, yet the precise control of cellular behavior in 2D and 3D cultures remains challenging. One approach to address this limitation is to genomically engineer optogenetic control of cellular processes into tissues using gene switches that can operate with only a few genomic copies. Here, we implement blue and red light-responsive gene switches to engineer genomically stable two- and three-dimensional mammalian tissue models. Notably, we achieve precise control of cell death and morphogen-directed patterning in 2D and 3D tissues by optogenetically regulating cell necroptosis and synthetic WNT3A signaling at high spatiotemporal resolution. This is accomplished using custom-built patterned LED systems, including digital mirrors and photomasks, as well as laser techniques. These advancements demonstrate the capability of precise spatiotemporal modulation in tissue engineering and open up new avenues for developing programmable 3D tissue and organ models, with significant implications for biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Hannes M Beyer
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | - Sant Kumar
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Klingelbergstrasse 48, Basel, Switzerland
| | - Marius Nieke
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | - Carroll M C Diehl
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | - Kun Tang
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | - Sara Shumka
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | - Cha San Koh
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany
| | - Christian Fleck
- Freiburg Center for Data Analysis and Modeling (FDM), University of Freiburg, Ernst-Zermelo-Straße 1, Freiburg im Breisgau, Germany
| | - Jamie A Davies
- Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Klingelbergstrasse 48, Basel, Switzerland.
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany.
- CEPLAS - Cluster of Excellence on Plant Sciences, Düsseldorf, Universitätsstrasse 1, Düsseldorf, Germany.
| |
Collapse
|
2
|
Beyer HM, Ramírez V. Integrating bioprinting and optogenetic technologies for precision plant tissue engineering. Curr Opin Biotechnol 2024; 89:103193. [PMID: 39208621 DOI: 10.1016/j.copbio.2024.103193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/11/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Recent advancements in plant bioprinting and optogenetic tools have unlocked new avenues to revolutionize plant tissue engineering. Bioprinting of plant cells has the potential to craft intricate 3D structures incorporating multiple cell types, replicating the complex microenvironments found in plants. Concurrently, optogenetic tools enable the control of biological events with spatial, temporal, and quantitative precision. Originally developed for human and microbial systems, these two cutting-edge methodologies are now being adapted for plant research. Although still in the early stages of development, we here review the latest progress in plant bioprinting and optogenetics and discuss compelling opportunities for plant biotechnology and research arising from the combination of the two technologies.
Collapse
Affiliation(s)
- Hannes M Beyer
- Institute of Synthetic Biology, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany.
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University Düsseldorf, Düsseldorf 40225, Germany.
| |
Collapse
|
3
|
Urban N, Hörner M, Weber W, Dincer C. OptoAssay-Light-controlled dynamic bioassay using optogenetic switches. SCIENCE ADVANCES 2024; 10:eadp0911. [PMID: 39321291 PMCID: PMC11423887 DOI: 10.1126/sciadv.adp0911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Circumventing the limitations of current bioassays, we introduce a light-controlled assay, OptoAssay, toward wash- and pump-free point-of-care diagnostics. Extending the capabilities of standard bioassays with light-dependent and reversible interaction of optogenetic switches, OptoAssays enable a bidirectional movement of assay components, only by changing the wavelength of light. Demonstrating exceptional versatility, the OptoAssay showcases its efficacy on various substrates, delivering a dynamic bioassay format. The applicability of the OptoAssay is successfully demonstrated by the calibration of a competitive model assay, resulting in a superior limit of detection of 8 pg ml-1, which is beyond those of conventional ELISA tests. In the future, combined with smartphones, OptoAssays could obviate the need for external flow control systems such as pumps or valves and signal readout devices, enabling on-site analysis in resource-limited settings.
Collapse
Affiliation(s)
- Nadine Urban
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110 Freiburg, Germany
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110 Freiburg, Germany
- University of Freiburg, Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, 79104 Freiburg, Germany
| | - Maximillian Hörner
- University of Freiburg, Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, 79104 Freiburg, Germany
| | - Wilfried Weber
- University of Freiburg, Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, 79104 Freiburg, Germany
- INM–Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Saarland University, Department of Materials Science and Engineering, Campus D2 2, 66123 Saarbrücken, Germany
| | - Can Dincer
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110 Freiburg, Germany
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110 Freiburg, Germany
| |
Collapse
|
4
|
Fischer AAM, Robertson HB, Kong D, Grimm MM, Grether J, Groth J, Baltes C, Fliegauf M, Lautenschläger F, Grimbacher B, Ye H, Helms V, Weber W. Engineering Material Properties of Transcription Factor Condensates to Control Gene Expression in Mammalian Cells and Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311834. [PMID: 38573961 DOI: 10.1002/smll.202311834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Phase separation of biomolecules into condensates is a key mechanism in the spatiotemporal organization of biochemical processes in cells. However, the impact of the material properties of biomolecular condensates on important processes, such as the control of gene expression, remains largely elusive. Here, the material properties of optogenetically induced transcription factor condensates are systematically tuned, and probed for their impact on the activation of target promoters. It is demonstrated that transcription factors in rather liquid condensates correlate with increased gene expression levels, whereas stiffer transcription factor condensates correlate with the opposite effect, reduced activation of gene expression. The broad nature of these findings is demonstrated in mammalian cells and mice, as well as by using different synthetic and natural transcription factors. These effects are observed for both transgenic and cell-endogenous promoters. The findings provide a novel materials-based layer in the control of gene expression, which opens novel opportunities in optogenetic engineering and synthetic biology.
Collapse
Affiliation(s)
- Alexandra A M Fischer
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 21a, 79104, Freiburg, Germany
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Hanah B Robertson
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarbrücken, Germany
| | - Deqiang Kong
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Merlin M Grimm
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Jakob Grether
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Biberach University of Applied Sciences, Karlstraße 6-11, 88400, Biberach an der Riß, Germany
| | - Johanna Groth
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Carsten Baltes
- Department of Experimental Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - Manfred Fliegauf
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Breisacherstr. 115, 79106, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Franziska Lautenschläger
- Department of Experimental Physics and Center for Biophysics, Saarland University, 66123, Saarbrücken, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Breisacherstr. 115, 79106, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- DZIF - German Center for Infection Research, Deutsches Zentrum für Infektionsforschung e.V., Inhoffenstr. 7, 38124, Braunschweig, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Volkhard Helms
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123, Saarbrücken, Germany
| | - Wilfried Weber
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 21a, 79104, Freiburg, Germany
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Department of Materials Science and Engineering, Campus D2 2, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
5
|
Lu Y, Chen Y, Zhu Y, Zhao J, Ren K, Lu Z, Li J, Hao Z. Stimuli-Responsive Protein Hydrogels: Their Design, Properties, and Biomedical Applications. Polymers (Basel) 2023; 15:4652. [PMID: 38139904 PMCID: PMC10747532 DOI: 10.3390/polym15244652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Protein-based hydrogels are considered ideal biomaterials due to their high biocompatibility, diverse structure, and their improved bioactivity and biodegradability. However, it remains challenging to mimic the native extracellular matrices that can dynamically respond to environmental stimuli. The combination of stimuli-responsive functionalities with engineered protein hydrogels has facilitated the development of new smart hydrogels with tunable biomechanics and biological properties that are triggered by cyto-compatible stimuli. This review summarizes the recent advancements of responsive hydrogels prepared from engineered proteins and integrated with physical, chemical or biological responsive moieties. We underscore the design principles and fabrication approaches of responsive protein hydrogels, and their biomedical applications in disease treatment, drug delivery, and tissue engineering are briefly discussed. Finally, the current challenges and future perspectives in this field are highlighted.
Collapse
Affiliation(s)
- Yuxuan Lu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.L.); (Y.C.)
| | - Yuhe Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (Y.L.); (Y.C.)
| | - Yuhan Zhu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Jingyi Zhao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Ketong Ren
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Zhao Lu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Jun Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| | - Ziyang Hao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China; (Y.Z.); (J.Z.)
| |
Collapse
|
6
|
Kneuttinger AC. A guide to designing photocontrol in proteins: methods, strategies and applications. Biol Chem 2022; 403:573-613. [PMID: 35355495 DOI: 10.1515/hsz-2021-0417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Light is essential for various biochemical processes in all domains of life. In its presence certain proteins inside a cell are excited, which either stimulates or inhibits subsequent cellular processes. The artificial photocontrol of specifically proteins is of growing interest for the investigation of scientific questions on the organismal, cellular and molecular level as well as for the development of medicinal drugs or biocatalytic tools. For the targeted design of photocontrol in proteins, three major methods have been developed over the last decades, which employ either chemical engineering of small-molecule photosensitive effectors (photopharmacology), incorporation of photoactive non-canonical amino acids by genetic code expansion (photoxenoprotein engineering), or fusion with photoreactive biological modules (hybrid protein optogenetics). This review compares the different methods as well as their strategies and current applications for the light-regulation of proteins and provides background information useful for the implementation of each technique.
Collapse
Affiliation(s)
- Andrea C Kneuttinger
- Institute of Biophysics and Physical Biochemistry and Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
7
|
Tang K, Beyer HM, Zurbriggen MD, Gärtner W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem Rev 2021; 121:14906-14956. [PMID: 34669383 PMCID: PMC8707292 DOI: 10.1021/acs.chemrev.1c00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
Collapse
Affiliation(s)
- Kun Tang
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Hannes M. Beyer
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Matias D. Zurbriggen
- Institute
of Synthetic Biology and CEPLAS, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| | - Wolfgang Gärtner
- Retired: Max Planck Institute
for Chemical Energy Conversion. At present: Institute for Analytical Chemistry, University
Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Hartzell EJ, Terr J, Chen W. Engineering a Blue Light Inducible SpyTag System (BLISS). J Am Chem Soc 2021; 143:8572-8577. [PMID: 34077186 DOI: 10.1021/jacs.1c03198] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The SpyCatcher/SpyTag protein conjugation system has recently exploded in popularity due to its fast kinetics and high yield under biologically favorable conditions in both in vitro and intracellular settings. The utility of this system could be expanded by introducing the ability to spatially and temporally control the conjugation event. Taking inspiration from photoreceptor proteins in nature, we designed a method to integrate light dependency into the protein conjugation reaction. The light-oxygen-voltage domain 2 of Avena sativa (AsLOV2) undergoes a dramatic conformational change in its c-terminal Jα-helix in response to blue light. By inserting SpyTag into the different locations of the Jα-helix, we created a blue light inducible SpyTag system (BLISS). In this design, the SpyTag is blocked from reacting with the SpyCatcher in the dark, but upon irradiation with blue light, the Jα-helix of the AsLOV2 undocks to expose the SpyTag. We tested several insertion sites and characterized the kinetics. We found three variants with dynamic ranges over 15, which were active within different concentration ranges. These could be tuned using SpyCatcher variants with different reaction kinetics. Further, the reaction could be instantaneously quenched by removing light. We demonstrated the spatial aspect of this light control mechanism through photopatterning of two fluorescent proteins. This system offers opportunities for many other biofabrication and optogenetics applications.
Collapse
Affiliation(s)
- Emily J Hartzell
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Justin Terr
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
9
|
Hörner M, Jerez-Longres C, Hudek A, Hook S, Yousefi OS, Schamel WWA, Hörner C, Zurbriggen MD, Ye H, Wagner HJ, Weber W. Spatiotemporally confined red light-controlled gene delivery at single-cell resolution using adeno-associated viral vectors. SCIENCE ADVANCES 2021; 7:7/25/eabf0797. [PMID: 34134986 PMCID: PMC8208708 DOI: 10.1126/sciadv.abf0797] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/04/2021] [Indexed: 05/15/2023]
Abstract
Methodologies for the controlled delivery of genetic information into target cells are of utmost importance for genetic engineering in both fundamental and applied research. However, available methods for efficient gene transfer into user-selected or even single cells suffer from low throughput, the need for complicated equipment, high invasiveness, or side effects by off-target viral uptake. Here, we engineer an adeno-associated viral (AAV) vector system that transfers genetic information into native target cells upon illumination with cell-compatible red light. This OptoAAV system allows adjustable and spatially resolved gene transfer down to single-cell resolution and is compatible with different cell lines and primary cells. Moreover, the sequential application of multiple OptoAAVs enables spatially resolved transduction with different transgenes. The approach presented is likely extendable to other classes of viral vectors and is expected to foster advances in basic and applied genetic research.
Collapse
Affiliation(s)
- Maximilian Hörner
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Carolina Jerez-Longres
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Anna Hudek
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Sebastian Hook
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - O Sascha Yousefi
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Wolfgang W A Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Cindy Hörner
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hanna J Wagner
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Oh TJ, Fan H, Skeeters SS, Zhang K. Steering Molecular Activity with Optogenetics: Recent Advances and Perspectives. Adv Biol (Weinh) 2021; 5:e2000180. [PMID: 34028216 PMCID: PMC8218620 DOI: 10.1002/adbi.202000180] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/14/2020] [Indexed: 12/24/2022]
Abstract
Optogenetics utilizes photosensitive proteins to manipulate the localization and interaction of molecules in living cells. Because light can be rapidly switched and conveniently confined to the sub-micrometer scale, optogenetics allows for controlling cellular events with an unprecedented resolution in time and space. The past decade has witnessed an enormous progress in the field of optogenetics within the biological sciences. The ever-increasing amount of optogenetic tools, however, can overwhelm the selection of appropriate optogenetic strategies. Considering that each optogenetic tool may have a distinct mode of action, a comparative analysis of the current optogenetic toolbox can promote the further use of optogenetics, especially by researchers new to this field. This review provides such a compilation that highlights the spatiotemporal accuracy of current optogenetic systems. Recent advances of optogenetics in live cells and animal models are summarized, the emerging work that interlinks optogenetics with other research fields is presented, and exciting clinical and industrial efforts to employ optogenetic strategy toward disease intervention are reported.
Collapse
Affiliation(s)
- Teak-Jung Oh
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Huaxun Fan
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Savanna S Skeeters
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| | - Kai Zhang
- 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, IL, 61801, USA
| |
Collapse
|
11
|
Bhattacharya A, Niederholtmeyer H, Podolsky KA, Bhattacharya R, Song JJ, Brea RJ, Tsai CH, Sinha SK, Devaraj NK. Lipid sponge droplets as programmable synthetic organelles. Proc Natl Acad Sci U S A 2020; 117:18206-18215. [PMID: 32694212 PMCID: PMC7414067 DOI: 10.1073/pnas.2004408117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Living cells segregate molecules and reactions in various subcellular compartments known as organelles. Spatial organization is likely essential for expanding the biochemical functions of synthetic reaction systems, including artificial cells. Many studies have attempted to mimic organelle functions using lamellar membrane-bound vesicles. However, vesicles typically suffer from highly limited transport across the membranes and an inability to mimic the dense membrane networks typically found in organelles such as the endoplasmic reticulum. Here, we describe programmable synthetic organelles based on highly stable nonlamellar sponge phase droplets that spontaneously assemble from a single-chain galactolipid and nonionic detergents. Due to their nanoporous structure, lipid sponge droplets readily exchange materials with the surrounding environment. In addition, the sponge phase contains a dense network of lipid bilayers and nanometric aqueous channels, which allows different classes of molecules to partition based on their size, polarity, and specific binding motifs. The sequestration of biologically relevant macromolecules can be programmed by the addition of suitably functionalized amphiphiles to the droplets. We demonstrate that droplets can harbor functional soluble and transmembrane proteins, allowing for the colocalization and concentration of enzymes and substrates to enhance reaction rates. Droplets protect bound proteins from proteases, and these interactions can be engineered to be reversible and optically controlled. Our results show that lipid sponge droplets permit the facile integration of membrane-rich environments and self-assembling spatial organization with biochemical reaction systems.
Collapse
Affiliation(s)
- Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Henrike Niederholtmeyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Kira A Podolsky
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Rupak Bhattacharya
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Jing-Jin Song
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Chu-Hsien Tsai
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Sunil K Sinha
- Department of Physics, University of California San Diego, La Jolla, CA 92093
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
12
|
Hörner M, Yousefi OS, Schamel WWA, Weber W. Production, Purification and Characterization of Recombinant Biotinylated Phytochrome B for Extracellular Optogenetics. Bio Protoc 2020; 10:e3541. [PMID: 33659515 PMCID: PMC7842835 DOI: 10.21769/bioprotoc.3541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/26/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
In the field of extracellular optogenetics, photoreceptors are applied outside of cells to obtain systems with a desired functionality. Among the diverse applied photoreceptors, phytochromes are the only ones that can be actively and reversibly switched between the active and inactive photostate by the illumination with cell-compatible red and far-red light. In this protocol, we describe the production of a biotinylated variant of the photosensory domain of A. thaliana phytochrome B (PhyB-AviTag) in E. coli with a single, optimized expression plasmid. We give detailed instructions for the purification of the protein by immobilized metal affinity chromatography and the characterization of the protein in terms of purity, biotinylation, spectral photoswitching and the light-dependent interaction with its interaction partner PIF6. In comparison to previous studies applying PhyB-AviTag, the optimized expression plasmid used in this protocol simplifies the production process and shows an increased yield and purity.
Collapse
Affiliation(s)
- Maximilian Hörner
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - O. Sascha Yousefi
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Wolfgang W. A. Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Banerjee S, Mitra D. Structural Basis of Design and Engineering for Advanced Plant Optogenetics. TRENDS IN PLANT SCIENCE 2020; 25:35-65. [PMID: 31699521 DOI: 10.1016/j.tplants.2019.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 09/12/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
In optogenetics, light-sensitive proteins are specifically expressed in target cells and light is used to precisely control the activity of these proteins at high spatiotemporal resolution. Optogenetics initially used naturally occurring photoreceptors to control neural circuits, but has expanded to include carefully designed and engineered photoreceptors. Several optogenetic constructs are based on plant photoreceptors, but their application to plant systems has been limited. Here, we present perspectives on the development of plant optogenetics, considering different levels of design complexity. We discuss how general principles of light-driven signal transduction can be coupled with approaches for engineering protein folding to develop novel optogenetic tools. Finally, we explore how the use of computation, networks, circular permutation, and directed evolution could enrich optogenetics.
Collapse
Affiliation(s)
- Sudakshina Banerjee
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Devrani Mitra
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India.
| |
Collapse
|
14
|
Rogers KW, Müller P. Optogenetic approaches to investigate spatiotemporal signaling during development. Curr Top Dev Biol 2019; 137:37-77. [PMID: 32143750 DOI: 10.1016/bs.ctdb.2019.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Embryogenesis is coordinated by signaling pathways that pattern the developing organism. Many aspects of this process are not fully understood, including how signaling molecules spread through embryonic tissues, how signaling amplitude and dynamics are decoded, and how multiple signaling pathways cooperate to pattern the body plan. Optogenetic approaches can be used to address these questions by providing precise experimental control over a variety of biological processes. Here, we review how these strategies have provided new insights into developmental signaling and discuss how they could contribute to future investigations.
Collapse
Affiliation(s)
- Katherine W Rogers
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Patrick Müller
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany; Modeling Tumorigenesis Group, Translational Oncology Division, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
15
|
Using Tools from Optogenetics to Create Light-Responsive Biomaterials: LOVTRAP-PEG Hydrogels for Dynamic Peptide Immobilization. Ann Biomed Eng 2019; 48:1885-1894. [PMID: 31720906 DOI: 10.1007/s10439-019-02407-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
Hydrogel materials have become a versatile platform for in vitro cell culture due to their ability to simulate many aspects of native tissues. However, precise spatiotemporal presentation of peptides and other biomolecules has remained challenging. Here we report the use of light-sensing proteins (LSPs), more commonly used in optogenetics research, as light-activated reversible binding sites within synthetic poly(ethylene glycol) (PEG) hydrogels. We used LOVTRAP, a two component LSP system consisting of LOV2, a protein domain that can cycle reversibly between "light" and "dark" conformations in response to blue light, and a z-affibody, Zdark (Zdk), that binds the dark state of LOV2, to spatiotemporally control the presentation of a recombinant protein within PEG hydrogels. By immobilizing LOV2 within PEG gels, we were able to capture a recombinant fluorescent protein (used as a model biomolecule) containing a Zdk domain, and then release the Zdk fusion protein using blue light. Zdk was removed from LOV2-containing PEG gels using focused blue light, resulting in a 30% reduction of fluorescence compared to unexposed regions of the gel. Additionally, the reversible binding capability of LOVTRAP was observed in our system, enabling our LOV2 gels to capture and release Zdk at least three times. By adding a Zdk domain to a recombinant peptide or protein, dynamic, spatially constrained displays of non-diffusing ligands within a PEG gel could feasibly be achieved using LOV2.
Collapse
|
16
|
Hörner M, Gerhardt K, Salavei P, Hoess P, Härrer D, Kaiser J, Tabor JJ, Weber W. Production of Phytochromes by High-Cell-Density E. coli Fermentation. ACS Synth Biol 2019; 8:2442-2450. [PMID: 31526004 DOI: 10.1021/acssynbio.9b00267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phytochromes are important photoreceptors of plants, bacteria, and fungi responsive to light in the red and far-red spectrum. For increasing applications in basic research, synthetic biology, and materials sciences, it is required to recombinantly produce and purify phytochromes in high amounts. An ideal host organism for this purpose is E. coli due to its widespread use, fast growth, and ability for high-cell-density fermentation. Here, we describe the development of a generic platform for the production of phytochromes in E. coli that is compatible with high-cell-density fermentation. We exemplify our approach by the production of the photosensory domains of phytochrome B (PhyB) from A. thaliana and of the cyanobacterial phytochrome 1 (Cph1) from Synechocystis PCC 6803 in the multigram scale per 10 L fermentation run.
Collapse
|
17
|
Yousefi OS, Günther M, Hörner M, Chalupsky J, Wess M, Brandl SM, Smith RW, Fleck C, Kunkel T, Zurbriggen MD, Höfer T, Weber W, Schamel WW. Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor. eLife 2019; 8:42475. [PMID: 30947807 PMCID: PMC6488296 DOI: 10.7554/elife.42475] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/05/2019] [Indexed: 12/18/2022] Open
Abstract
The immune system distinguishes between self and foreign antigens. The kinetic proofreading (KPR) model proposes that T cells discriminate self from foreign ligands by the different ligand binding half-lives to the T cell receptor (TCR). It is challenging to test KPR as the available experimental systems fall short of only altering the binding half-lives and keeping other parameters of the interaction unchanged. We engineered an optogenetic system using the plant photoreceptor phytochrome B (PhyB) as a ligand to selectively control the dynamics of ligand binding to the TCR by light. This opto-ligand-TCR system was combined with the unique property of PhyB to continuously cycle between the binding and non-binding states under red light, with the light intensity determining the cycling rate and thus the binding duration. Mathematical modeling of our experimental datasets showed that indeed the ligand-TCR interaction half-life is the decisive factor for activating downstream TCR signaling, substantiating KPR.
Collapse
Affiliation(s)
- O Sascha Yousefi
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Günther
- Division of Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Maximilian Hörner
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Julia Chalupsky
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Wess
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Simon M Brandl
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert W Smith
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Christian Fleck
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Tim Kunkel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Matias D Zurbriggen
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Institute of Synthetic Biology and Cluster of Excellence on Plant Sciences, University of Düsseldorf, Düsseldorf, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Wilfried Weber
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wolfgang Wa Schamel
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
18
|
Hörner M, Raute K, Hummel B, Madl J, Creusen G, Thomas OS, Christen EH, Hotz N, Gübeli RJ, Engesser R, Rebmann B, Lauer J, Rolauffs B, Timmer J, Schamel WWA, Pruszak J, Römer W, Zurbriggen MD, Friedrich C, Walther A, Minguet S, Sawarkar R, Weber W. Phytochrome-Based Extracellular Matrix with Reversibly Tunable Mechanical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806727. [PMID: 30687975 DOI: 10.1002/adma.201806727] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Interrogation and control of cellular fate and function using optogenetics is providing revolutionary insights into biology. Optogenetic control of cells is achieved by coupling genetically encoded photoreceptors to cellular effectors and enables unprecedented spatiotemporal control of signaling processes. Here, a fast and reversibly switchable photoreceptor is used to tune the mechanical properties of polymer materials in a fully reversible, wavelength-specific, and dose- and space-controlled manner. By integrating engineered cyanobacterial phytochrome 1 into a poly(ethylene glycol) matrix, hydrogel materials responsive to light in the cell-compatible red/far-red spectrum are synthesized. These materials are applied to study in human mesenchymal stem cells how different mechanosignaling pathways respond to changing mechanical environments and to control the migration of primary immune cells in 3D. This optogenetics-inspired matrix allows fundamental questions of how cells react to dynamic mechanical environments to be addressed. Further, remote control of such matrices can create new opportunities for tissue engineering or provide a basis for optically stimulated drug depots.
Collapse
Affiliation(s)
- Maximilian Hörner
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Katrin Raute
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Barbara Hummel
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Josef Madl
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Guido Creusen
- Institute for Macromolecular Chemistry, FMF Freiburg Materials Research Center, University of Freiburg, 79104, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), University of Freiburg, 79110, Freiburg, Germany
| | - Oliver S Thomas
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Erik H Christen
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Natascha Hotz
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Raphael J Gübeli
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Raphael Engesser
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- Institute of Physics, University of Freiburg, 79104, Freiburg, Germany
| | - Balder Rebmann
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Jasmin Lauer
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79085, Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79085, Freiburg, Germany
| | - Jens Timmer
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- Institute of Physics, University of Freiburg, 79104, Freiburg, Germany
| | - Wolfgang W A Schamel
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, 79104, Freiburg, Germany
| | - Jan Pruszak
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Winfried Römer
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), University of Freiburg, 79110, Freiburg, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, Heinrich Heine University Düsseldorf, 40204, Düsseldorf, Germany
| | - Christian Friedrich
- Institute for Macromolecular Chemistry, FMF Freiburg Materials Research Center, University of Freiburg, 79104, Freiburg, Germany
| | - Andreas Walther
- Institute for Macromolecular Chemistry, FMF Freiburg Materials Research Center, University of Freiburg, 79104, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), University of Freiburg, 79110, Freiburg, Germany
- Cluster of Excellence Living, Adaptive and Energy-Autonomous Materials Systems (livMatS), University of Freiburg, 79110, Freiburg, Germany
| | - Susana Minguet
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Center, University of Freiburg, 79104, Freiburg, Germany
| | - Ritwick Sawarkar
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Wilfried Weber
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
19
|
Hörner M, Eble J, Yousefi OS, Schwarz J, Warscheid B, Weber W, Schamel WWA. Light-Controlled Affinity Purification of Protein Complexes Exemplified by the Resting ZAP70 Interactome. Front Immunol 2019; 10:226. [PMID: 30863395 PMCID: PMC6399385 DOI: 10.3389/fimmu.2019.00226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Multiprotein complexes control the behavior of cells, such as of lymphocytes of the immune system. Methods to affinity purify protein complexes and to determine their interactome by mass spectrometry are thus widely used. One drawback of these methods is the presence of false positives. In fact, the elution of the protein of interest (POI) is achieved by changing the biochemical properties of the buffer, so that unspecifically bound proteins (the false positives) may also elute. Here, we developed an optogenetics-derived and light-controlled affinity purification method based on the light-regulated reversible protein interaction between phytochrome B (PhyB) and its phytochrome interacting factor 6 (PIF6). We engineered a truncated variant of PIF6 comprising only 22 amino acids that can be genetically fused to the POI as an affinity tag. Thereby the POI can be purified with PhyB-functionalized resin material using 660 nm light for binding and washing, and 740 nm light for elution. Far-red light-induced elution is effective but very mild as the same buffer is used for the wash and elution. As proof-of-concept, we expressed PIF-tagged variants of the tyrosine kinase ZAP70 in ZAP70-deficient Jurkat T cells, purified ZAP70 and associating proteins using our light-controlled system, and identified the interaction partners by quantitative mass spectrometry. Using unstimulated T cells, we were able to detect the known interaction partners, and could filter out all other proteins.
Collapse
Affiliation(s)
- Maximilian Hörner
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Eble
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - O Sascha Yousefi
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Jennifer Schwarz
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Bettina Warscheid
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang W A Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany.,Centre for Chronic Immunodeficiency CCI, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|