1
|
Hasani-Sadrabadi MM, Yuan W, Ferreira LDAQ, Liu Z, Shen J, Sarrión P, Sharifi F, Malek-Khatabi A, Dashtimoghadam E, Yu B, Ansari S, Moshaverinia A. Precise Engineering of Growth Factor Presentation Using Extracellular Microenvironment-Mimicking Microfluidic Microparticles. ACS Biomater Sci Eng 2024; 10:1686-1696. [PMID: 38347681 DOI: 10.1021/acsbiomaterials.3c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
One of the main challenges in tissue engineering is finding a way to deliver specific growth factors (GFs) with precise spatiotemporal control over their presentation. Here, we report a novel strategy for generating microscale carriers with enhanced affinity for high content loading suitable for the sustained and localized delivery of GFs. Our developed microparticles can be injected locally and sustainably release encapsulated growth factors for up to 28 days. Fine-tuning of particles' size, affinity, microstructures, and release kinetics is achieved using a microfluidic system along with bioconjugation techniques. We also describe an innovative 3D micromixer platform to control the formation of core-shell particles based on superaffinity using a polymer-peptide conjugate for further tuning of release kinetics and delayed degradation. Chitosan shells block the burst release of encapsulated GFs and enable their sustained delivery for up to 10 days. The matched release profiles and degradation provide the local tissues with biomimetic, developmental-biologic-compatible signals to maximize regenerative effects. The versatility of this approach is verified using three different therapeutic proteins, including human bone morphogenetic protein-2 (rhBMP-2), vascular endothelial growth factor (VEGF), and stromal cell-derived factor 1 (SDF-1α). As in vivo morphogenesis is typically driven by the combined action of several growth factors, the proposed technique can be developed to generate a library of GF-loaded particles with designated release profiles.
Collapse
Affiliation(s)
- Mohammad Mahdi Hasani-Sadrabadi
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, California 90095, United States
| | - Weihao Yuan
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Luiza de Almeida Queiroz Ferreira
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270, Brazil
| | - Zeyang Liu
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, California 90095, United States
| | - Jun Shen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Patricia Sarrión
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Fatemeh Sharifi
- Department of Chemical Engineering, Sharif University of Technology, Tehran 11365, Iran
| | - Atefeh Malek-Khatabi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176, Iran
| | - Erfan Dashtimoghadam
- Department of Chemistry and Physics, Troy University, Troy, Alabama 36082, United States
- Center for Materials and Manufacturing Sciences, Troy University, Troy, Alabama 36082, United States
| | - Bo Yu
- Section of Restorative Dentistry, School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Sahar Ansari
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Section of Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Zheng Y, Shariati K, Ghovvati M, Vo S, Origer N, Imahori T, Kaneko N, Annabi N. Hemostatic patch with ultra-strengthened mechanical properties for efficient adhesion to wet surfaces. Biomaterials 2023; 301:122240. [PMID: 37480758 DOI: 10.1016/j.biomaterials.2023.122240] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
Controlling traumatic bleeding from damaged internal organs while effectively sealing the wound is critical for saving the lives of patients. Existing bioadhesives suffer from blood incompatibility, insufficient adhesion to wet surfaces, weak mechanical properties, and complex application procedures. Here, we engineered a ready-to-use hemostatic bioadhesive with ultra-strengthened mechanical properties and fatigue resistance, robust adhesion to wet tissues within a few seconds of gentle pressing, deformability to accommodate physiological function and action, and the ability to stop bleeding efficiently. The engineered hydrogel, which demonstrated high elasticity (>900%) and toughness (>4600 kJ/m3), was formed by fine-tuning a series of molecular interactions and crosslinking mechanisms involving N-hydroxysuccinimide (NHS) conjugated alginate (Alg-NHS), poly (ethylene glycol) diacrylate (PEGDA), tannic acid (TA), and Fe3+ ions. Dual adhesive moieties including mussel-inspired pyrogallol/catechol and NHS synergistically enhanced wet tissue adhesion (>400 kPa in a wound closure test). In conjunction with physical sealing, the high affinity of TA/Fe3+ for blood could further augment hemostasis. The engineered bioadhesive demonstrated excellent in vitro and in vivo biocompatibility as well as improved hemostatic efficacy as compared to commercial Surgicel®. Overall, the hydrogel design strategy described herein holds great promise for overcoming existing obstacles impeding clinical translation of engineered hemostatic bioadhesives.
Collapse
Affiliation(s)
- Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kaavian Shariati
- David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Interventional Neuroradiology, Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Steven Vo
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nolan Origer
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Taichiro Imahori
- Division of Interventional Neuroradiology, Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Naoki Kaneko
- Division of Interventional Neuroradiology, Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
3
|
Tolabi H, Davari N, Khajehmohammadi M, Malektaj H, Nazemi K, Vahedi S, Ghalandari B, Reis RL, Ghorbani F, Oliveira JM. Progress of Microfluidic Hydrogel-Based Scaffolds and Organ-on-Chips for the Cartilage Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2208852. [PMID: 36633376 DOI: 10.1002/adma.202208852] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/09/2022] [Indexed: 05/09/2023]
Abstract
Cartilage degeneration is among the fundamental reasons behind disability and pain across the globe. Numerous approaches have been employed to treat cartilage diseases. Nevertheless, none have shown acceptable outcomes in the long run. In this regard, the convergence of tissue engineering and microfabrication principles can allow developing more advanced microfluidic technologies, thus offering attractive alternatives to current treatments and traditional constructs used in tissue engineering applications. Herein, the current developments involving microfluidic hydrogel-based scaffolds, promising structures for cartilage regeneration, ranging from hydrogels with microfluidic channels to hydrogels prepared by the microfluidic devices, that enable therapeutic delivery of cells, drugs, and growth factors, as well as cartilage-related organ-on-chips are reviewed. Thereafter, cartilage anatomy and types of damages, and present treatment options are briefly overviewed. Various hydrogels are introduced, and the advantages of microfluidic hydrogel-based scaffolds over traditional hydrogels are thoroughly discussed. Furthermore, available technologies for fabricating microfluidic hydrogel-based scaffolds and microfluidic chips are presented. The preclinical and clinical applications of microfluidic hydrogel-based scaffolds in cartilage regeneration and the development of cartilage-related microfluidic chips over time are further explained. The current developments, recent key challenges, and attractive prospects that should be considered so as to develop microfluidic systems in cartilage repair are highlighted.
Collapse
Affiliation(s)
- Hamidreza Tolabi
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, 15875-4413, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, 15875-4413, Iran
| | - Niyousha Davari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran
| | - Mehran Khajehmohammadi
- Department of Mechanical Engineering, Faculty of Engineering, Yazd University, Yazd, 89195-741, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, 8916877391, Iran
| | - Haniyeh Malektaj
- Department of Materials and Production, Aalborg University, Fibigerstraede 16, Aalborg, 9220, Denmark
| | - Katayoun Nazemi
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Samaneh Vahedi
- Department of Material Science and Engineering, Faculty of Engineering, Imam Khomeini International University, Qazvin, 34149-16818, Iran
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| | - Farnaz Ghorbani
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058, Erlangen, Germany
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães, 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4805-017, Portugal
| |
Collapse
|
4
|
Novel Gels: An Emerging Approach for Delivering of Therapeutic Molecules and Recent Trends. Gels 2022; 8:gels8050316. [PMID: 35621614 PMCID: PMC9140900 DOI: 10.3390/gels8050316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/17/2022] Open
Abstract
Gels are semisolid, homogeneous systems with continuous or discrete therapeutic molecules in a suitable lipophilic or hydrophilic three-dimensional network base. Innovative gel systems possess multipurpose applications in cosmetics, food, pharmaceuticals, biotechnology, and so forth. Formulating a gel-based delivery system is simple and the delivery system enables the release of loaded therapeutic molecules. Furthermore, it facilitates the delivery of molecules via various routes as these gel-based systems offer proximal surface contact between a loaded therapeutic molecule and an absorption site. In the past decade, researchers have potentially explored and established a significant understanding of gel-based delivery systems for drug delivery. Subsequently, they have enabled the prospects of developing novel gel-based systems that illicit drug release by specific biological or external stimuli, such as temperature, pH, enzymes, ultrasound, antigens, etc. These systems are considered smart gels for their broad applications. This review reflects the significant role of advanced gel-based delivery systems for various therapeutic benefits. This detailed discussion is focused on strategies for the formulation of different novel gel-based systems, as well as it highlights the current research trends of these systems and patented technologies.
Collapse
|
5
|
Terzopoulou Z, Zamboulis A, Koumentakou I, Michailidou G, Noordam MJ, Bikiaris DN. Biocompatible Synthetic Polymers for Tissue Engineering Purposes. Biomacromolecules 2022; 23:1841-1863. [PMID: 35438479 DOI: 10.1021/acs.biomac.2c00047] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as packaging, construction, textiles and electronics, synthetic polymers have also revolutionized the field of medicine. Starting with the first plastic syringe developed in 1955 to the complex polymeric materials used in the regeneration of tissues, their contributions have never been more prominent. Decades of research on polymeric materials, stem cells, and three-dimensional printing contributed to the rapid progress of tissue engineering and regenerative medicine that envisages the potential future of organ transplantations. This perspective discusses the role of synthetic polymers in tissue engineering, their design and properties in relation to each type of application. Additionally, selected recent achievements of tissue engineering using synthetic polymers are outlined to provide insight into how they will contribute to the advancement of the field in the near future. In this way, we aim to provide a guide that will help scientists with synthetic polymer design and selection for different tissue engineering applications.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Alexandra Zamboulis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioanna Koumentakou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgia Michailidou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Michiel Jan Noordam
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Liu G, Sun X, Li X, Wang Z. The Bioanalytical and Biomedical Applications of Polymer Modified Substrates. Polymers (Basel) 2022; 14:826. [PMID: 35215740 PMCID: PMC8878960 DOI: 10.3390/polym14040826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 01/11/2023] Open
Abstract
Polymers with different structures and morphology have been extensively used to construct functionalized surfaces for a wide range of applications because the physicochemical properties of polymers can be finely adjusted by their molecular weights, polydispersity and configurations, as well as the chemical structures and natures of monomers. In particular, the specific functions of polymers can be easily achieved at post-synthesis by the attachment of different kinds of active molecules such as recognition ligand, peptides, aptamers and antibodies. In this review, the recent advances in the bioanalytical and biomedical applications of polymer modified substrates were summarized with subsections on functionalization using branched polymers, polymer brushes and polymer hydrogels. The review focuses on their applications as biosensors with excellent analytical performance and/or as nonfouling surfaces with efficient antibacterial activity. Finally, we discuss the perspectives and future directions of polymer modified substrates in the development of biodevices for the diagnosis, treatment and prevention of diseases.
Collapse
Affiliation(s)
- Guifeng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun 130033, China; (G.L.); (X.L.)
| | - Xudong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Hefei 230026, China
| | - Xiaodong Li
- Department of Radiology, China-Japan Union Hospital of Jilin University, Xiantai Street, Changchun 130033, China; (G.L.); (X.L.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road, Hefei 230026, China
| |
Collapse
|
7
|
Tu P, Pan Y, Wu C, Yang G, Zhou X, Sun J, Wang L, Liu M, Wang Z, Liang Z, Guo Y, Ma Y. Cartilage Repair Using Clematis Triterpenoid Saponin Delivery Microcarrier, Cultured in a Microgravity Bioreactor Prior to Application in Rabbit Model. ACS Biomater Sci Eng 2022; 8:753-764. [PMID: 35084832 DOI: 10.1021/acsbiomaterials.1c01101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cartilage tissue engineering provides a promising method for the repair of articular cartilage defects, requiring appropriate biological scaffolds and necessary growth factors to enhance the efficiency of cartilage regeneration. Here, a silk fibroin (SF) microcarrier and a clematis triterpenoid saponin delivery SF (CTS-SF) microcarrier were prepared by the high-voltage electrostatic differentiation and lyophilization method, and chondrocytes were carried under the simulated microgravity condition by a rotating cell culture system. SF and CTS-SF microspheres were relatively uniform in size and had a porous structure with good swelling and cytocompatibility. Further, CTS-SF microcarriers could sustainably release CTSs in the monitored 10 days. Compared with the monolayer culture, chondrocytes under the microgravity condition maintained a better chondrogenic phenotype and showed better proliferation ability after culture on microcarriers. Moreover, the sustained release of CTS from CTS-SF microcarriers upregulated transforming growth factor-β, Smad2, and Smad3 signals, contributing to promote chondrogenesis. Hence, the biophysical effects of microgravity and bioactivities of CTS-ST were used for chondrocyte expansion and phenotype maintenance in vitro. With prolonged expansion, SF- and CTS-SF-based microcarrier-cell composites were directly implanted in vivo to repair rabbit articular defects. Gross evaluations, histopathological examinations, and biochemical analysis indicated that SF- and CTS-SF-based composites exhibited cartilage-like tissue repair compared with the nontreated group. Further, CTS-SF-based composites displayed superior hyaline cartilage-like repair that integrated with the surrounding cartilage better and higher cartilage extracellular matrix content. In conclusion, these results provide an alternative preparation method for drug-delivered SF microcarrier and a culture method for maintaining the chondrogenic phenotype of seed cells based on the microgravity environment. CTS showed its bioactive function, and the application of CTS-SF microcarriers can help repair and regenerate cartilage defects.
Collapse
Affiliation(s)
- Pengcheng Tu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,Nursing Institute of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China
| | - Chengjie Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Guanglu Yang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Xin Zhou
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Jie Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Lining Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Mengmin Liu
- Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Zhifang Wang
- Zhangjiagang Affiliated Hospital of Nanjing University of Chinese Medicine, Suzhou 215600, P.R. China
| | - Zhongqing Liang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yang Guo
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yong Ma
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, P.R. China.,Laboratory of New Techniques of Restoration and Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China.,School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| |
Collapse
|
8
|
Fryhofer GW, Zlotnick HM, Stoeckl BD, Farrell MJ, Steinberg DR, Mauck RL. Fabrication and maturation of integrated biphasic anatomic mesenchymal stromal cell-laden composite scaffolds for osteochondral repair and joint resurfacing. J Orthop Res 2021; 39:2323-2332. [PMID: 33368606 PMCID: PMC8222412 DOI: 10.1002/jor.24969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/23/2020] [Accepted: 12/21/2020] [Indexed: 02/04/2023]
Abstract
Articular cartilage injury can lead to joint-wide erosion and the early onset of osteoarthritis. To address this, we recently developed a rapid fabrication method to produce patient-specific engineered cartilage tissues to replace an entire articular surface. Here, we extended that work by coupling a mesenchymal stromal cell-laden hydrogel (methacrylated hyaluronic acid) with the porous polycaprolactone (PCL) bone integrating phase and assessed the composition and mechanical performance of these constructs over time. To improve initial construct stability, PCL/hydrogel interface parameters were first optimized by varying PCL pretreatment (with sodium hydroxide before ethanol) before hydrogel infusion. Next, cylindrical osteochondral constructs were formed and cultured in media containing transforming growth factor β3 for up to 8 weeks, with constructs evaluated for viability, histological features, and biochemical content. Mechanical properties were also assessed in axial compression and via an interface shear strength assay. Results showed that the fabrication process was compatible with cell viability, and that construct biochemical content and mechanical properties increased with time. Interestingly, compressive properties peaked at 5 weeks, while interfacial shear properties continued to improve beyond this time point. Finally, these fabrication methods were combined with a custom mold developed from limb-specific computed tomography imaging data to create an anatomic implantable cell-seeded biologic joint surface, which showedmaturation similar to the osteochondral cylinders. Future work will apply these advances in large animal models of critically sized osteochondral defects to study repair and whole joint resurfacing.
Collapse
Affiliation(s)
- George W. Fryhofer
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA,Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah M. Zlotnick
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Brendan D. Stoeckl
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Megan J. Farrell
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - David R. Steinberg
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA,Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA,Translational Musculoskeletal Research Center, Philadelphia VA Medical Center, Philadelphia, PA, USA,Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Gonçalves AM, Moreira A, Weber A, Williams GR, Costa PF. Osteochondral Tissue Engineering: The Potential of Electrospinning and Additive Manufacturing. Pharmaceutics 2021; 13:983. [PMID: 34209671 PMCID: PMC8309012 DOI: 10.3390/pharmaceutics13070983] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
The socioeconomic impact of osteochondral (OC) damage has been increasing steadily over time in the global population, and the promise of tissue engineering in generating biomimetic tissues replicating the physiological OC environment and architecture has been falling short of its projected potential. The most recent advances in OC tissue engineering are summarised in this work, with a focus on electrospun and 3D printed biomaterials combined with stem cells and biochemical stimuli, to identify what is causing this pitfall between the bench and the patients' bedside. Even though significant progress has been achieved in electrospinning, 3D-(bio)printing, and induced pluripotent stem cell (iPSC) technologies, it is still challenging to artificially emulate the OC interface and achieve complete regeneration of bone and cartilage tissues. Their intricate architecture and the need for tight spatiotemporal control of cellular and biochemical cues hinder the attainment of long-term functional integration of tissue-engineered constructs. Moreover, this complexity and the high variability in experimental conditions used in different studies undermine the scalability and reproducibility of prospective regenerative medicine solutions. It is clear that further development of standardised, integrative, and economically viable methods regarding scaffold production, cell selection, and additional biochemical and biomechanical stimulation is likely to be the key to accelerate the clinical translation and fill the gap in OC treatment.
Collapse
Affiliation(s)
| | - Anabela Moreira
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal; (A.M.G.); (A.M.)
| | - Achim Weber
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstrasse 12, 70569 Stuttgart, Germany;
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Pedro F. Costa
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal; (A.M.G.); (A.M.)
| |
Collapse
|
10
|
Sobreiro-Almeida R, Melica ME, Lasagni L, Osório H, Romagnani P, Neves NM. Particulate kidney extracellular matrix: bioactivity and proteomic analysis of a novel scaffold from porcine origin. Biomater Sci 2021; 9:186-198. [PMID: 33174559 DOI: 10.1039/d0bm01272f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decellularized matrices are attractive substrates, being able to retain growth factors and proteins present in the native tissue. Several biomaterials can be produced by processing these matrices. However, new substrates capable of being injected that reverse local kidney injuries are currently scarce. Herein, we hypothesized that the decellularized particulate kidney porcine ECM (pKECM) could support renal progenitor cell cultures for posterior implantation. Briefly, kidneys are cut into pieces, decellularized by immersion on detergent solutions, lyophilized and reduced into particles. Then, ECM particles are analyzed for nuclear material remaining by DNA quantification and histological examination, molecular conformation by FITR and structural morphology by SEM. Protein extraction is also optimized for posterior identification and quantification by mass spectrometry. The results obtained confirm the collagenous structure and composition of the ECM, the effective removal of nucleic material and the preservation of ECM proteins with great similarity to human kidneys. Human renal progenitor cells (hRPCs) are seeded in different ratios with pKECM, on 3D suspensions. The conducted assays for cell viability, proliferation and distribution over 7 days of culture suggest that these matrices as biocompatible and bioactive substrates for hRPCs. Also, by analyzing CD133 expression, an optimal ratio for specific phenotypic expression is revealed, demonstrating the potential of these substrates to modulate cellular behavior. The initial hypothesis of developing and characterizing a particulate ECM biomaterial as a consistent substrate for 3D cultures is successfully validated. The findings in this manuscript suggest these particles as valuable tools for regenerative nephrology by minimizing surgeries and locally reversing small injuries which can lead to chronic renal disfunction.
Collapse
Affiliation(s)
- Rita Sobreiro-Almeida
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
| | | | | | | | | | | |
Collapse
|
11
|
Lamparelli EP, Lovecchio J, Ciardulli MC, Giudice V, Dale TP, Selleri C, Forsyth N, Giordano E, Maffulli N, Della Porta G. Chondrogenic Commitment of Human Bone Marrow Mesenchymal Stem Cells in a Perfused Collagen Hydrogel Functionalized with hTGF-β1-Releasing PLGA Microcarrier. Pharmaceutics 2021; 13:pharmaceutics13030399. [PMID: 33802877 PMCID: PMC8002618 DOI: 10.3390/pharmaceutics13030399] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering strategies can be relevant for cartilage repair and regeneration. A collagen matrix was functionalized with the addition of poly-lactic-co-glycolic acid microcarriers (PLGA-MCs) carrying a human Transforming Growth Factor β1 (hTFG-β1) payload, to provide a 3D biomimetic environment with the capacity to direct stem cell commitment towards a chondrogenic phenotype. PLGA-MCs (mean size 3 ± 0.9 μm) were prepared via supercritical emulsion extraction technology and tailored to sustain delivery of payload into the collagen hydrogel for 21 days. PLGA-MCs were coseeded with human Bone Marrow Mesenchymal Stem Cells (hBM-MSCs) in the collagen matrix. Chondrogenic induction was suggested when dynamic perfusion was applied as indicated by transcriptional upregulation of COL2A1 gene (5-fold; p < 0.01) and downregulation of COL1A1 (0.07-fold; p < 0.05) and COL3A1 (0.11-fold; p < 0.05) genes, at day 16, as monitored by qRT-PCR. Histological and quantitative-immunofluorescence (qIF) analysis confirmed cell activity by remodeling the synthetic extracellular matrix when cultured in perfused conditions. Static constructs lacked evidence of chondrogenic specific gene overexpression, which was probably due to a reduced mass exchange, as determined by 3D system Finite Element Modelling (FEM) analysis. Proinflammatory (IL-6, TNF, IL-12A, IL-1β) and anti-inflammatory (IL-10, TGF-β1) cytokine gene expression by hBM-MSC was observed only in dynamic culture (TNF and IL-1β 10-fold, p < 0.001; TGF-β1 4-fold, p < 0.01 at Day 16) confirming the cells’ immunomodulatory activity mainly in relation to their commitment and not due to the synthetic environment. This study supports the use of 3D hydrogel scaffolds, equipped for growth factor controlled delivery, as tissue engineered models for the study of in vitro chondrogenic differentiation and opens clinical perspectives for injectable collagen-based advanced therapy systems.
Collapse
Affiliation(s)
- Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy; (E.P.L.); (M.C.C.); (V.G.); (C.S.); (N.M.)
| | - Joseph Lovecchio
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, via dell’Università 50, 47522 Cesena, FC, Italy; (J.L.); (E.G.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E, 40064 Ozzano dell’Emilia, BO, Italy
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy; (E.P.L.); (M.C.C.); (V.G.); (C.S.); (N.M.)
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy; (E.P.L.); (M.C.C.); (V.G.); (C.S.); (N.M.)
| | - Tina P. Dale
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.P.D.); (N.F.)
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy; (E.P.L.); (M.C.C.); (V.G.); (C.S.); (N.M.)
| | - Nicholas Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK; (T.P.D.); (N.F.)
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna, via dell’Università 50, 47522 Cesena, FC, Italy; (J.L.); (E.G.)
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E, 40064 Ozzano dell’Emilia, BO, Italy
- Advanced Research Center on Electronic Systems (ARCES), University of Bologna, via Vincenzo Toffano 2/2, 40125 Bologna, BO, Italy
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy; (E.P.L.); (M.C.C.); (V.G.); (C.S.); (N.M.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy; (E.P.L.); (M.C.C.); (V.G.); (C.S.); (N.M.)
- Research Centre for Biomaterials BIONAM, Università di Salerno, via Giovanni Paolo II, 84084 Fisciano, SA, Italy
- Correspondence: ; Tel./Fax: +39-089965234
| |
Collapse
|
12
|
Martínez-Moreno D, Jiménez G, Chocarro-Wrona C, Carrillo E, Montañez E, Galocha-León C, Clares-Naveros B, Gálvez-Martín P, Rus G, de Vicente J, Marchal JA. Pore geometry influences growth and cell adhesion of infrapatellar mesenchymal stem cells in biofabricated 3D thermoplastic scaffolds useful for cartilage tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111933. [PMID: 33641924 DOI: 10.1016/j.msec.2021.111933] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/24/2022]
Abstract
The most pressing need in cartilage tissue engineering (CTE) is the creation of a biomaterial capable to tailor the complex extracellular matrix of the tissue. Despite the standardized used of polycaprolactone (PCL) for osteochondral scaffolds, the pronounced stiffness mismatch between PCL scaffold and the tissue it replaces remarks the biomechanical incompatibility as main limitation. To overcome it, the present work was focused in the design and analysis of several geometries and pore sizes and how they affect cell adhesion and proliferation of infrapatellar fat pad-derived mesenchymal stem cells (IPFP-MSCs) loaded in biofabricated 3D thermoplastic scaffolds. A novel biomaterial for CTE, the 1,4-butanediol thermoplastic polyurethane (b-TPUe) together PCL were studied to compare their mechanical properties. Three different geometrical patterns were included: hexagonal (H), square (S), and, triangular (T); each one was printed with three different pore sizes (PS): 1, 1.5 and 2 mm. Results showed differences in cell adhesion, cell proliferation and mechanical properties depending on the geometry, porosity and type of biomaterial used. Finally, the microstructure of the two optimal geometries (T1.5 and T2) was deeply analyzed using multiaxial mechanical tests, with and without perimeters, μCT for microstructure analysis, DNA quantification and degradation assays. In conclusion, our results evidenced that IPFP-MSCs-loaded b-TPUe scaffolds had higher similarity with cartilage mechanics and T1.5 was the best adapted morphology for CTE.
Collapse
Affiliation(s)
- D Martínez-Moreno
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - G Jiménez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - C Chocarro-Wrona
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - E Carrillo
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - E Montañez
- Department of Orthopedic Surgery and Traumatology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | - C Galocha-León
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - B Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - P Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain; R&D Human Health, Bioibérica S.A.U., Barcelona E-08029, Spain
| | - G Rus
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain; Department of Structural Mechanics, University of Granada, Politécnico de Fuentenueva, Granada E-18071, Spain
| | - J de Vicente
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain; Department of Applied Physics, Faculty of Sciences, University of Granada, Granada, Spain.
| | - J A Marchal
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain.
| |
Collapse
|
13
|
Yu X, Hu Y, Zou L, Yan S, Zhu H, Zhang K, Liu W, He D, Yin J. A bilayered scaffold with segregated hydrophilicity-hydrophobicity enables reconstruction of goat hierarchical temporomandibular joint condyle cartilage. Acta Biomater 2021; 121:288-302. [PMID: 33238194 DOI: 10.1016/j.actbio.2020.11.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 12/27/2022]
Abstract
Temporomandibular joint (TMJ) supports chewing, talking or other daily oral activities. So far, it still remains a great challenge to treat the defected TMJ condyle cartilage through tissue engineering technology. Herein, a bilayered scaffold is designed to fully reconstruct the different cartilage matrices of TMJ condyle under same induction condition. The bilayered scaffold with segregated hydrophobicity-hydrophilicity in top and bottom layer is prepared from a low and high content of polyethylene glycol (PEG) crosslinked poly (L-glutamic acid)-g-polycaprolactone (PLGA-g-PCL). The hydrophobic aggregates in top layer support the adhesion and spread of bone mesenchymal stem cells (BMSCs), thus inducing the differentation towards fibrocartilage; while aggregates (spheroids) are formed on the hydrophlic bottom layer, showing a preferable hyaline differentiation pathway under same chondrogenic induction in vitro. After 14 d in vitro induction, the scaffold/BMSCs construct is implanted in goat TMJ condyle defects. The post-operative outcome after 2 months demonstrates that the defects are fully covered by neo-cartilage. And the regenerated hierarchical TMJ condyle cartilage perfectly consist of ordered fibrocartilage and hyaline cartilage, which is same as natural condyle cartilage. These results corroborate that this bilayered scaffold with segregated hydrophilicity-hydrophobicity carrying induced BMSCs is a promising for treatment of TMJ condyle cartilage defects.
Collapse
|
14
|
Chocarro‐Wrona C, de Vicente J, Antich C, Jiménez G, Martínez‐Moreno D, Carrillo E, Montañez E, Gálvez‐Martín P, Perán M, López‐Ruiz E, Marchal JA. Validation of the 1,4-butanediol thermoplastic polyurethane as a novel material for 3D bioprinting applications. Bioeng Transl Med 2021; 6:e10192. [PMID: 33532591 PMCID: PMC7823129 DOI: 10.1002/btm2.10192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022] Open
Abstract
Tissue engineering (TE) seeks to fabricate implants that mimic the mechanical strength, structure, and composition of native tissues. Cartilage TE requires the development of functional personalized implants with cartilage-like mechanical properties capable of sustaining high load-bearing environments to integrate into the surrounding tissue of the cartilage defect. In this study, we evaluated the novel 1,4-butanediol thermoplastic polyurethane elastomer (b-TPUe) derivative filament as a 3D bioprinting material with application in cartilage TE. The mechanical behavior of b-TPUe in terms of friction and elasticity were examined and compared with human articular cartilage, PCL, and PLA. Moreover, infrapatellar fat pad-derived human mesenchymal stem cells (MSCs) were bioprinted together with scaffolds. in vitro cytotoxicity, proliferative potential, cell viability, and chondrogenic differentiation were analyzed by Alamar blue assay, SEM, confocal microscopy, and RT-qPCR. Moreover, in vivo biocompatibility and host integration were analyzed. b-TPUe demonstrated a much closer compression and shear behavior to native cartilage than PCL and PLA, as well as closer tribological properties to cartilage. Moreover, b-TPUe bioprinted scaffolds were able to maintain proper proliferative potential, cell viability, and supported MSCs chondrogenesis. Finally, in vivo studies revealed no toxic effects 21 days after scaffolds implantation, extracellular matrix deposition and integration within the surrounding tissue. This is the first study that validates the biocompatibility of b-TPUe for 3D bioprinting. Our findings indicate that this biomaterial can be exploited for the automated biofabrication of artificial tissues with tailorable mechanical properties including the great potential for cartilage TE applications.
Collapse
Affiliation(s)
- Carlos Chocarro‐Wrona
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Juan de Vicente
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
- Department of Applied PhysicsFaculty of Sciences, University of GranadaGranadaSpain
| | - Cristina Antich
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Gema Jiménez
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Daniel Martínez‐Moreno
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Esmeralda Carrillo
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| | - Elvira Montañez
- Biomedical Research Institute of Málaga (IBIMA)Málaga
- Department of Orthopedic Surgery and TraumatologyVirgen de la Victoria University HospitalMálagaSpain
| | - Patricia Gálvez‐Martín
- Department of Pharmacy and Pharmaceutical TechnologySchool of Pharmacy, University of GranadaGranadaSpain
- Advanced Therapies AreaBioibérica S.A.UBarcelonaSpain
| | - Macarena Perán
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
- Department of Health SciencesUniversity of JaénJaénSpain
| | - Elena López‐Ruiz
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
- Department of Health SciencesUniversity of JaénJaénSpain
| | - Juan Antonio Marchal
- Biosanitary Research Institute of Granada (ibs.GRANADA)University Hospitals of Granada‐University of GranadaGranadaSpain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of GranadaGranadaSpain
- Department of Human Anatomy and EmbryologyFaculty of Medicine, University of GranadaGranadaSpain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranadaSpain
| |
Collapse
|
15
|
Shi Z, Xu Y, Mulatibieke R, Zhong Q, Pan X, Chen Y, Lian Q, Luo X, Shi Z, Zhu Q. Nano-Silicate-Reinforced and SDF-1α-Loaded Gelatin-Methacryloyl Hydrogel for Bone Tissue Engineering. Int J Nanomedicine 2020; 15:9337-9353. [PMID: 33262591 PMCID: PMC7699450 DOI: 10.2147/ijn.s270681] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Autologous bone grafts are the gold standard for treating bone defects. However, limited bone supply and morbidity at the donor site restrict its extensive use. Therefore, developing bone graft materials as an alternative to autologous grafts has gained considerable attention. Injectable hydrogels endowed with osteogenic potential have the ability to fill irregular bone defects using minimally invasive procedures and have thus been attracting researchers’ attention. However, from a clinical perspective, most fabrication methods employed for the current injectable osteogenic hydrogels are difficult and inconvenient. In the current study, we fabricated an injectable osteogenic hydrogel using a simple and convenient strategy. Materials and Methods Gelatin-methacryloyl (GelMA) pre-polymer was synthetized. Nano silicate (SN) and stromal cell-derived factor-1 alpha (SDF-1α) were introduced into the pre-polymer to achieve injectability, controlled release property, excellent osteogenic ability, and efficient stem cell homing. Results The GelMA-SN-SDF-1α demonstrated excellent injectability via a 17-G needle at room temperature. The loaded SDF-1α exhibited a long-term controlled release pattern and efficiently stimulated MSC migration and homing. The GelMA-SN-SDF-1α hydrogel amplified cell spreading, migration, osteogenic-related biomarker expression, and matrix mineralization. The GelMA-SN-SDF-1α hydrogel filled critical-sized calvaria defects in rats and demonstrated excellent bone regeneration ability, as assessed using micro-CT scanning and histomorphometric staining. Conclusion The GelMA-SN-SDF-1α hydrogel provides a simple and convenient strategy for the fabrication of injectable osteogenic graft materials. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/FhyefSKUa34
Collapse
Affiliation(s)
- Zhe Shi
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yichuan Xu
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ruzha Mulatibieke
- Department of Plastic Surgery, The Third Affiliated Hospital of Sun Yet-Sen University, Guangzhou, People's Republic of China
| | - Qiang Zhong
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xin Pan
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuhang Chen
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qiang Lian
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xin Luo
- Rehabilitation Medical School, Guangzhou International Economics College, Guangzhou, People's Republic of China
| | - Zhanjun Shi
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qingan Zhu
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
16
|
Shklyar TF, Orkhey EA, Safronov AP, Blyakhman FA. Biocompatible contactless electrically responsive hydrogel‐based force maker. POLYM INT 2020. [DOI: 10.1002/pi.6033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tatyana F Shklyar
- Institute of Natural Science and Mathematics Ural Federal University Yekaterinburg Russian Federation
- Department of Biomedical Physics and Engineering Ural State Medical University Yekaterinburg Russian Federation
| | - Ekaterina A Orkhey
- Institute of Natural Science and Mathematics Ural Federal University Yekaterinburg Russian Federation
- Department of Biomedical Physics and Engineering Ural State Medical University Yekaterinburg Russian Federation
| | - Alexander P Safronov
- Institute of Natural Science and Mathematics Ural Federal University Yekaterinburg Russian Federation
- Institute of Electrophysics UB RAS Yekaterinburg Russian Federation
| | - Felix A Blyakhman
- Institute of Natural Science and Mathematics Ural Federal University Yekaterinburg Russian Federation
- Department of Biomedical Physics and Engineering Ural State Medical University Yekaterinburg Russian Federation
| |
Collapse
|
17
|
Conde-González A, Dutta D, Wallace R, Callanan A, Bradley M. Rapid fabrication and screening of tailored functional 3D biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110489. [PMID: 31923957 DOI: 10.1016/j.msec.2019.110489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/09/2019] [Accepted: 11/23/2019] [Indexed: 11/16/2022]
Abstract
Three dimensional synthetic polymer scaffolds have remarkable chemical and mechanical tunability in addition to biocompatibility. However, the chemical and physical space is vast in view of the number of variables that can be altered e.g. chemical composition, porosity, pore size and mechanical properties to name but a few. Here, we report the development of an array of 3D polymer scaffolds, whereby the physical and chemical properties of the polymer substrates were controlled, characterized in parallel (e.g. micro-CT scanning of 24 samples) and biological properties screened. This approach allowed the screening of 48 different polymer scaffolds constructed in situ by means of freeze-casting and photo-polymerisation with the tunable composition and 3D architecture of the polymer scaffolds facilitating the identification of optimal 3D biomaterials. As a proof of concept, the array approach was used to identify 3D polymers that were capable of supporting cell growth while controlling their behaviour. Sitting alongside classical polymer microarray technology, this novel platform reduces the gap between the identification of a biomaterial in 2D and its subsequent 3D application.
Collapse
Affiliation(s)
| | - Deepanjalee Dutta
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Robert Wallace
- Orthopaedics and Trauma, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Anthony Callanan
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Edinburgh EH9 3DW, UK
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK.
| |
Collapse
|