1
|
Su Z, Yang T, Wu X, Liu P, Nuermaimaiti Y, Ran Y, Wang P, Cao P. Comparative Analysis and Regeneration Strategies for Three Types of Cartilage. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 38970440 DOI: 10.1089/ten.teb.2024.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Cartilage tissue, encompassing hyaline cartilage, fibrocartilage, and elastic cartilage, plays a pivotal role in the human body because of its unique composition, structure, and biomechanical properties. However, the inherent avascularity and limited regenerative capacity of cartilage present significant challenges to its healing following injury. This review provides a comprehensive analysis of the current state of cartilage tissue engineering, focusing on the critical components of cell sources, scaffolds, and growth factors tailored to the regeneration of each cartilage type. We explore the similarities and differences in the composition, structure, and biomechanical properties of the three cartilage types and their implications for tissue engineering. A significant emphasis is placed on innovative strategies for cartilage regeneration, including the potential for in situ transformation of cartilage types through microenvironmental manipulation, which may offer novel avenues for repair and rehabilitation. The review underscores the necessity of a nuanced approach to cartilage tissue engineering, recognizing the distinct requirements of each cartilage type while exploring the potential of transforming one cartilage type into another as a flexible and adaptive repair strategy. Through this detailed examination, we aim to broaden the understanding of cartilage tissue engineering and inspire further research and development in this promising field.
Collapse
Affiliation(s)
- Zhan Su
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinze Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiran Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yisimayili Nuermaimaiti
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuxuan Ran
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pinyin Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Serna C, Sandepudi K, Keate RL, Zhang SL, Cotton KY, De La Isla A, Murillo M, Bouricha Y, Domenighetti AA, Franz CK, Jordan SW. Incorporation of decellularized-ECM in graphene-based scaffolds enhances axonal outgrowth and branching in neuro-muscular co-cultures. Sci Prog 2024; 107:368504241281469. [PMID: 39314156 PMCID: PMC11423365 DOI: 10.1177/00368504241281469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Peripheral nerve and large-scale muscle injuries result in significant disability, necessitating the development of biomaterials that can restore functional deficits by promoting tissue regrowth in an electroactive environment. Among these materials, graphene is favored for its high conductivity, but its low bioactivity requires enhancement through biomimetic components. In this study, we extrusion printed graphene-poly(lactide-co-glycolide) (graphene) lattice scaffolds, aiming to increase bioactivity by incorporating decellularized extracellular matrix (dECM) derived from mouse pup skeletal muscle. We first evaluated these scaffolds using human-induced pluripotent stem cell (hiPSC)-derived motor neurons co-cultured with supportive glia, observing significant improvements in axon outgrowth. Next, we tested the scaffolds with C2C12 mouse and human primary myoblasts, finding no significant differences in myotube formation between dECM-graphene and graphene scaffolds. Finally, using a more complex hiPSC-derived 3D motor neuron spheroid model co-cultured with human myoblasts, we demonstrated that dECM-graphene scaffolds significantly improved axonal expansion towards peripheral myoblasts and increased axonal network density compared to graphene-only scaffolds. Features of early neuromuscular junction formation were identified near neuromuscular interfaces in both scaffold types. These findings suggest that dECM-graphene scaffolds are promising candidates for enhancing neuromuscular regeneration, offering robust support for the growth and development of diverse neuromuscular tissues.
Collapse
Affiliation(s)
- Carlos Serna
- Division of Plastic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
- Biologics Laboratory, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Kirtana Sandepudi
- Division of Plastic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
- Biologics Laboratory, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Rebecca L Keate
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA
| | - Sophia L Zhang
- Division of Plastic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
- Biologics Laboratory, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Kristen Y Cotton
- Biologics Laboratory, Shirley Ryan AbilityLab, Chicago, IL, USA
- Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Ken & Ruth Dave Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Kimberly K. Querrey and Louis A. Simpson Institute for Bioelectronics, Simpson Querrey Biomedical Research Center, Chicago, IL, USA
| | - Alberto De La Isla
- Division of Plastic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
- Biologics Laboratory, Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Matias Murillo
- Biologics Laboratory, Shirley Ryan AbilityLab, Chicago, IL, USA
- Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Ken & Ruth Dave Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Kimberly K. Querrey and Louis A. Simpson Institute for Bioelectronics, Simpson Querrey Biomedical Research Center, Chicago, IL, USA
| | - Yasmine Bouricha
- Biologics Laboratory, Shirley Ryan AbilityLab, Chicago, IL, USA
- Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Ken & Ruth Dave Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Kimberly K. Querrey and Louis A. Simpson Institute for Bioelectronics, Simpson Querrey Biomedical Research Center, Chicago, IL, USA
| | - Andrea A Domenighetti
- Biologics Laboratory, Shirley Ryan AbilityLab, Chicago, IL, USA
- Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Colin K Franz
- Biologics Laboratory, Shirley Ryan AbilityLab, Chicago, IL, USA
- Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Ken & Ruth Dave Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Kimberly K. Querrey and Louis A. Simpson Institute for Bioelectronics, Simpson Querrey Biomedical Research Center, Chicago, IL, USA
| | - Sumanas W Jordan
- Division of Plastic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
- Biologics Laboratory, Shirley Ryan AbilityLab, Chicago, IL, USA
| |
Collapse
|
3
|
Patel M, Vernon B, Jeong B. Low-Molecular-Weight PEGs for Cryopreservation of Stem Cell Spheroids. Biomater Res 2024; 28:0037. [PMID: 38845843 PMCID: PMC11156479 DOI: 10.34133/bmr.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/05/2024] [Indexed: 06/09/2024] Open
Abstract
Stem cell spheroids (SCSs) are a valuable tool in stem cell research and regenerative medicine. SCSs provide a platform for stem cell behavior in a more biologically relevant context with enhanced cell-cell communications. In this study, we investigated the recovery of SCSs after cryopreservation at -196 °C for 7 days. Prior to cryopreservation, the SCSs were preincubated for 0 h (no preincubation), 2 h, 4 h, and 6 h at 37 °C in the presence of low-molecular-weight poly(ethylene glycol) (PEG) with molecular weights of 200, 400, and 600 Da. The recovery rate of SCSs was markedly affected by both the PEG molecular weight and the preincubation time. Specifically, when SCSs were preincubated with a PEG200 solution for 2 to 6 h, it significantly enhanced the recovery rate of the SCSs. Internalization of PEG200 through simple diffusion into the SCSs may be the cryoprotective mechanism. The PEG200 diffuses into the SCSs, which not only suppresses osmotic pressure development inside the cell but also inhibits ice formation. The recovered SCSs demonstrated both fusibility and capabilities for proliferation and differentiation comparable to SCSs recovered after dimethyl sulfoxide 10% cryopreservation. This study indicates that PEG200 serves as an effective cryoprotectant for SCSs. A simple preincubation procedure in the presence of the polymer greatly improves the recovery rate of SCSs from cryopreservation.
Collapse
Affiliation(s)
- Madhumita Patel
- Department of Chemistry and Nanoscience,
Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Brent Vernon
- School of Biological and Health Systems Engineering,
Arizona State University, Tempe, AZ 85287-9709, USA
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience,
Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
4
|
Chen T, Jiang Y, Huang JP, Wang J, Wang ZK, Ding PH. Essential elements for spatiotemporal delivery of growth factors within bio-scaffolds: A comprehensive strategy for enhanced tissue regeneration. J Control Release 2024; 368:97-114. [PMID: 38355052 DOI: 10.1016/j.jconrel.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
The precise delivery of growth factors (GFs) in regenerative medicine is crucial for effective tissue regeneration and wound repair. However, challenges in achieving controlled release, such as limited half-life, potential overdosing risks, and delivery control complexities, currently hinder their clinical implementation. Despite the plethora of studies endeavoring to accomplish effective loading and gradual release of GFs through diverse delivery methods, the nuanced control of spatial and temporal delivery still needs to be elucidated. In response to this pressing clinical imperative, our review predominantly focuses on explaining the prevalent strategies employed for spatiotemporal delivery of GFs over the past five years. This review will systematically summarize critical aspects of spatiotemporal GFs delivery, including judicious bio-scaffold selection, innovative loading techniques, optimization of GFs activity retention, and stimulating responsive release mechanisms. It aims to identify the persisting challenges in spatiotemporal GFs delivery strategies and offer an insightful outlook on their future development. The ultimate objective is to provide an invaluable reference for advancing regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Tan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yao Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jia-Ping Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jing Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Zheng-Ke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Pei-Hui Ding
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
5
|
Ogene L, Woods S, Hetmanski J, Lozano N, Karakasidi A, Caswell PT, Kostarelos K, Domingos MAN, Vranic S, Kimber SJ. Graphene oxide activates canonical TGFβ signalling in a human chondrocyte cell line via increased plasma membrane tension. NANOSCALE 2024; 16:5653-5664. [PMID: 38414413 PMCID: PMC10939054 DOI: 10.1039/d3nr06033k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Graphene Oxide (GO) has been shown to increase the expression of key cartilage genes and matrix components within 3D scaffolds. Understanding the mechanisms behind the chondroinductive ability of GO is critical for developing articular cartilage regeneration therapies but remains poorly understood. The objectives of this work were to elucidate the effects of GO on the key chondrogenic signalling pathway - TGFβ and identify the mechanism through which signal activation is achieved in human chondrocytes. Activation of canonical signalling was validated through GO-induced SMAD-2 phosphorylation and upregulation of known TGFβ response genes, while the use of a TGFβ signalling reporter assay allowed us to identify the onset of GO-induced signal activation which has not been previously reported. Importantly, we investigate the cell-material interactions and molecular mechanisms behind these effects, establishing a novel link between GO, the plasma membrane and intracellular signalling. By leveraging fluorescent lifetime imaging (FLIM) and a membrane tension probe, we reveal GO-mediated increases in plasma membrane tension, in real-time for the first time. Furthermore, we report the activation of mechanosensory pathways which are known to be regulated by changes in plasma membrane tension and reveal the activation of endogenous latent TGFβ in the presence of GO, providing a mechanism for signal activation. The data presented here are critical to understanding the chondroinductive properties of GO and are important for the implementation of GO in regenerative medicine.
Collapse
Affiliation(s)
- Leona Ogene
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| | - Steven Woods
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| | - Joseph Hetmanski
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Neus Lozano
- Nanomedicine Lab, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Angeliki Karakasidi
- Nano-Cell Biology Lab, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Kostas Kostarelos
- Nanomedicine Lab, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB Bellaterra, 08193 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, Spain
- Centre for Nanotechnology in Medicine, Faculty of Biology Medicine & Health, The University of Manchester, Manchester, UK
| | - Marco A N Domingos
- Department of Solids and Structure, School of Engineering, Faculty of Science and Engineering, Henry Royce Institute, The University of Manchester, Manchester, UK
| | - Sandra Vranic
- Nano-Cell Biology Lab, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, The University of Manchester, Manchester, M13 9PT, UK
- Centre for Nanotechnology in Medicine, Faculty of Biology Medicine & Health, The University of Manchester, Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
6
|
Majumder N, Roy C, Doenges L, Martin I, Barbero A, Ghosh S. Covalent Conjugation of Small Molecule Inhibitors and Growth Factors to a Silk Fibroin-Derived Bioink to Develop Phenotypically Stable 3D Bioprinted Cartilage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9925-9943. [PMID: 38362893 DOI: 10.1021/acsami.3c18903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Implantation of a phenotypically stable cartilage graft could represent a viable approach for repairing osteoarthritic (OA) cartilage lesions. In the present study, we investigated the effects of modulating the bone morphogenetic protein (BMP), transforming growth factor beta (TGFβ), and interleukin-1 (IL-1) signaling cascades in human bone marrow stromal cell (hBMSC)-encapsulated silk fibroin gelatin (SF-G) bioink. The selected small molecules LDN193189, TGFβ3, and IL1 receptor antagonist (IL1Ra) are covalently conjugated to SF-G biomaterial to ensure sustained release, increased bioavailability, and printability, confirmed by ATR-FTIR, release kinetics, and rheological analyses. The 3D bioprinted constructs with chondrogenically differentiated hBMSCs were incubated in an OA-inducing medium for 14 days and assessed through a detailed qPCR, immunofluorescence, and biochemical analyses. Despite substantial heterogeneity in the observations among the donors, the IL1Ra molecule illustrated the maximum efficiency in enhancing the expression of articular cartilage components, reducing the expression of hypertrophic markers (re-validated by the GeneMANIA tool), as well as reducing the production of inflammatory molecules by the hBMSCs. Therefore, this study demonstrated a novel strategy to develop a chemically decorated, printable and biomimetic SF-G bioink to produce hyaline cartilage grafts resistant to acquiring OA traits that can be used for the treatment of degenerated cartilage lesions.
Collapse
Affiliation(s)
- Nilotpal Majumder
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chandrashish Roy
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Laura Doenges
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel 4031, Switzerland
| | - Sourabh Ghosh
- Regenerative Engineering Laboratory, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
7
|
Chen N, Li M, Yang J, Wang P, Song G, Wang H. Slow-sculpting graphene oxide/alginate gel loaded with platelet-rich plasma to promote wound healing in rats. Front Bioeng Biotechnol 2024; 12:1334087. [PMID: 38390356 PMCID: PMC10882075 DOI: 10.3389/fbioe.2024.1334087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Wounds, especially chronic wounds, have become an important problem that endangers human health. At present, there are many repair methods, and among them combines materials science and biology is one of the important repair methods. This study explored the preparation method, physicochemical properties, biological activity and safety of Platelet-Rich plasma (PRP)-loaded slow-sculpting graphene oxide (GO)/alginate gel, and applied it to acute full-thickness skin defect wounds in rats to observe its role in wound healing. The results show that the slow-sculpting GO/alginate gel has excellent plasticity and is suitable for a variety of irregularly shaped wounds. At the same time, its porous structure and water content can maintain the activity of platelets and their released growth factors in PRP, thereby promoting wound collagen synthesis and angiogenesis to accelerate wound healing. This indicates that the slow-sculpting GO/alginate gel is an excellent loading material for PRP, and the combination of the two may become one of the methods to promote wound repair.
Collapse
Affiliation(s)
- Ningjie Chen
- Shandong University, Jinan, Shandong, China
- Department of Burns and Plastic Surgery, Weihai Municipal Hospital, Weihai, China
| | - Mengjie Li
- Binzhou Medical University, Binzhou, Shandong, China
| | - Jincun Yang
- Department of Burns and Plastic Surgery, Weihai Municipal Hospital, Weihai, China
| | - Peng Wang
- Ministry of Scientific and Technological Innovation, Yantai Hi-tech Industrial Development Zone, Yantai, Shandong, China
| | - Guodong Song
- Shandong University, Jinan, Shandong, China
- Department of Burns and Orthopedic Surgery, Jinan Central Hospital, Jinan, Shandong, China
| | - Haitao Wang
- Department of Burns and Plastic Surgery, Weihai Municipal Hospital, Weihai, China
| |
Collapse
|
8
|
Ameer G, Keate R, Bury M, Mendez-Santos M, Gerena A, Goedegebuure M, Rivnay J, Sharma A. Cell-free biodegradable electroactive scaffold for urinary bladder regeneration. RESEARCH SQUARE 2024:rs.3.rs-3817836. [PMID: 38352487 PMCID: PMC10862962 DOI: 10.21203/rs.3.rs-3817836/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Tissue engineering heavily relies on cell-seeded scaffolds to support the complex biological and mechanical requirements of a target organ. However, in addition to safety and efficacy, translation of tissue engineering technology will depend on manufacturability, affordability, and ease of adoption. Therefore, there is a need to develop scalable biomaterial scaffolds with sufficient bioactivity to eliminate the need for exogenous cell seeding. Herein, we describe synthesis, characterization, and implementation of an electroactive biodegradable elastomer for urinary bladder tissue engineering. To create an electrically conductive and mechanically robust scaffold to support bladder tissue regeneration, we developed a phase-compatible functionalization method wherein the hydrophobic conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) was polymerized in situ within a similarly hydrophobic citrate-based elastomer poly(octamethylene-citrate-co-octanol) (POCO) film. We demonstrate the efficacy of this film as a scaffold for bladder augmentation in athymic rats, comparing PEDOT-POCO scaffolds to mesenchymal stromal cell-seeded POCO scaffolds. PEDOT-POCO recovered bladder function and anatomical structure comparably to the cell-seeded POCO scaffolds and significantly better than non-cell seeded POCO scaffolds. This manuscript reports: (1) a new phase-compatible functionalization method that confers electroactivity to a biodegradable elastic scaffold, and (2) the successful restoration of the anatomy and function of an organ using a cell-free electroactive scaffold.
Collapse
|
9
|
Ni F, Chen Y, Wang Z, Zhang X, Gao F, Shao Z, Wang H. Graphene derivative based hydrogels in biomedical applications. J Tissue Eng 2024; 15:20417314241282131. [PMID: 39430737 PMCID: PMC11490963 DOI: 10.1177/20417314241282131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/24/2024] [Indexed: 10/22/2024] Open
Abstract
Graphene and its derivatives are widely used in tissue-engineering scaffolds, especially in the form of hydrogels. This is due to their biocompatibility, electrical conductivity, high surface area, and physicochemical versatility. They are also used in tissue engineering. Tissue engineering is suitable for 3D printing applications, and 3D printing makes it possible to construct 3D structures from 2D graphene, which is a revolutionary technology with promising applications in tissue and organ engineering. In this review, the recent literature in which graphene and its derivatives have been used as the major components of hydrogels is summarized. The application of graphene and its derivative-based hydrogels in tissue engineering is described in detail from different perspectives.
Collapse
Affiliation(s)
- Feifei Ni
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Li W, Hu J, Chen C, Li X, Zhang H, Xin Y, Tian Q, Wang S. Emerging advances in hydrogel-based therapeutic strategies for tissue regeneration. Regen Ther 2023; 24:459-471. [PMID: 37772128 PMCID: PMC10523184 DOI: 10.1016/j.reth.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/14/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Significant developments in cell therapy and biomaterial science have broadened the therapeutic landscape of tissue regeneration. Tissue damage is a complex biological process in which different types of cells play a specific role in repairing damaged tissues and growth factors strictly regulate the activity of these cells. Hydrogels have become promising biomaterials for tissue regeneration if appropriate materials are selected and the hydrogel properties are well-regulated. Importantly, they can be used as carriers for living cells and growth factors due to the high water-holding capacity, high permeability, and good biocompatibility of hydrogels. Cell-loaded hydrogels can play an essential role in treating damaged tissues and open new avenues for cell therapy. There is ample evidence substantiating the ability of hydrogels to facilitate the delivery of cells (stem cell, macrophage, chondrocyte, and osteoblast) and growth factors (bone morphogenetic protein, transforming growth factor, vascular endothelial growth factor and fibroblast growth factor). This paper reviewed the latest advances in hydrogels loaded with cells or growth factors to promote the reconstruction of tissues. Furthermore, we discussed the shortcomings of the application of hydrogels in tissue engineering to promote their further development.
Collapse
Affiliation(s)
- Wenqi Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jing Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Cheng Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xinyue Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Honghua Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yanru Xin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Qingchang Tian
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
11
|
Lukin I, Erezuma I, Desimone MF, Zhang YS, Dolatshahi-Pirouz A, Orive G. Nanomaterial-based drug delivery of immunomodulatory factors for bone and cartilage tissue engineering. BIOMATERIALS ADVANCES 2023; 154:213637. [PMID: 37778293 DOI: 10.1016/j.bioadv.2023.213637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
As life expectancy continues to increase, so do disorders related to the musculoskeletal system. Orthopedics-related impairments remain a challenge, with nearly 325 thousand and 120 thousand deaths recorded in 2019. Musculoskeletal system, including bone and cartilage tissue, is a living system in which cells constantly interact with the immune system, which plays a key role in the tissue repair process. An alternative to bridge the gap between these two systems is exploiting nanomaterials, as they have proven to serve as delivery agents of an array of molecules, including immunomodulatory agents (anti-inflammatory drugs, cytokines), as well as having the ability to mimic tissue by their nanoscopic structure and promote tissue repair per se. Therefore, this review outlooks nanomaterials and immunomodulatory factors widely employed in the area of bone and cartilage tissue engineering. Emerging developments in nanomaterials for delivery of immunomodulatory agents for bone and cartilage tissue engineering applications have also been discussed. It can be concluded that latest progress in nanotechnology have enabled to design intricate systems with the ability to deliver biologically active agents, promoting tissue repair and regeneration; thus, nanomaterials studied herein have shown great potential to serve as immunomodulatory agents in the area of tissue engineering.
Collapse
Affiliation(s)
- Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Martin F Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| |
Collapse
|
12
|
Guo J, Cao G, Wei S, Han Y, Xu P. Progress in the application of graphene and its derivatives to osteogenesis. Heliyon 2023; 9:e21872. [PMID: 38034743 PMCID: PMC10682167 DOI: 10.1016/j.heliyon.2023.e21872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/13/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
As bone and joint injuries from various causes become increasingly prominent, how to effectively reconstruct and repair bone defects presents a difficult problem for clinicians and researchers. In recent years, graphene and its derivatives have been the subject of growing body of research and have been found to promote the proliferation and osteogenic differentiation of stem cells. This provides a new idea for solving the clinical problem of bone defects. However, as as numerous articles address various aspects and have not been fully systematized, there is an urgent need to classify and summarize them. In this paper, for the first time, the effects of graphene and its derivatives on stem cells in solution, in 2D and 3D structures and in vivo and their possible mechanisms are reviewed, and the cytotoxic effects of graphene and its derivatives were summarized and analyzed. The toxicity of graphene and its derivatives is further reviewed. In addition, we suggest possible future development directions of graphene and its derivatives in bone tissue engineering applications to provide a reference for further clinical application.
Collapse
Affiliation(s)
- Jianbin Guo
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Guihua Cao
- Department of Geriatrics, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Song Wei
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yisheng Han
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Peng Xu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Tilton M, Camilleri ET, Astudillo Potes MD, Gaihre B, Liu X, Lucien F, Elder BD, Lu L. Visible light-induced 3D bioprinted injectable scaffold for minimally invasive tissue regeneration. BIOMATERIALS ADVANCES 2023; 153:213539. [PMID: 37429047 PMCID: PMC10528590 DOI: 10.1016/j.bioadv.2023.213539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023]
Abstract
Pre-formed hydrogel scaffolds have emerged as favorable vehicles for tissue regeneration, promoting minimally invasive treatment of native tissue. However, due to the high degree of swelling and inherently poor mechanical properties, development of complex structural hydrogel scaffolds at different dimensional scales has been a continuous challenge. Herein, we take a novel approach at the intersections of engineering design and bio-ink chemistry to develop injectable pre-formed structural hydrogel scaffolds fabricated via visible light (VL) induced digital light processing (DLP). In this study, we first determined the minimum concentration of poly(ethylene glycol) diacrylate (PEGDA) to be added to the gelatin methacrylate (GelMA) bio-ink in order to achieve scalable and high printing-fidelity with desired cell adhesion, viability, spreading, and osteogenic differentiation characteristics. Despite the advantages of hybrid GelMA-PEGDA bio-ink in improving scalability and printing-fidelity, compressibility, shape-recovery, and injectability of the 3D bioprinted scaffolds were compromised. To restore these needed characteristics for minimally invasive tissue regeneration applications, we performed topological optimization to design highly compressible and injectable pre-formed (i.e., 3D bioprinted) microarchitectural scaffolds. The designed injectable pre-formed microarchitectural scaffolds showed a great capacity to retain the viability of the encapsulated cells (>72 % after 10 cycles of injection). Lastly, ex ovo chicken chorioallantoic membrane (CAM) studies revealed that the optimized injectable pre-formed hybrid hydrogel scaffold is biocompatible and supports angiogenic growth.
Collapse
Affiliation(s)
- Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| | - Emily T Camilleri
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Maria D Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
14
|
AbouAitah K, Sabbagh F, Kim BS. Graphene Oxide Nanostructures as Nanoplatforms for Delivering Natural Therapeutic Agents: Applications in Cancer Treatment, Bacterial Infections, and Bone Regeneration Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2666. [PMID: 37836307 PMCID: PMC10574074 DOI: 10.3390/nano13192666] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Graphene, fullerenes, diamond, carbon nanotubes, and carbon dots are just a few of the carbon-based nanomaterials that have gained enormous popularity in a variety of scientific disciplines and industrial uses. As a two-dimensional material in the creation of therapeutic delivery systems for many illnesses, nanosized graphene oxide (NGO) is now garnering a large amount of attention among these materials. In addition to other benefits, NGO functions as a drug nanocarrier with remarkable biocompatibility, high pharmaceutical loading capacity, controlled drug release capability, biological imaging efficiency, multifunctional nanoplatform properties, and the power to increase the therapeutic efficacy of loaded agents. Thus, NGO is a perfect nanoplatform for the development of drug delivery systems (DDSs) to both detect and treat a variety of ailments. This review article's main focus is on investigating surface functionality, drug-loading methods, and drug release patterns designed particularly for smart delivery systems. The paper also examines the relevance of using NGOs to build DDSs and considers prospective uses in the treatment of diseases including cancer, infection by bacteria, and bone regeneration medicine. These factors cover the use of naturally occurring medicinal substances produced from plant-based sources.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; (K.A.); (F.S.)
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth Street, Dokki, Giza 12622, Egypt
| | - Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; (K.A.); (F.S.)
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea; (K.A.); (F.S.)
| |
Collapse
|
15
|
Bai L, Tao G, Feng M, Xie Y, Cai S, Peng S, Xiao J. Hydrogel Drug Delivery Systems for Bone Regeneration. Pharmaceutics 2023; 15:pharmaceutics15051334. [PMID: 37242576 DOI: 10.3390/pharmaceutics15051334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
With the in-depth understanding of bone regeneration mechanisms and the development of bone tissue engineering, a variety of scaffold carrier materials with desirable physicochemical properties and biological functions have recently emerged in the field of bone regeneration. Hydrogels are being increasingly used in the field of bone regeneration and tissue engineering because of their biocompatibility, unique swelling properties, and relative ease of fabrication. Hydrogel drug delivery systems comprise cells, cytokines, an extracellular matrix, and small molecule nucleotides, which have different properties depending on their chemical or physical cross-linking. Additionally, hydrogels can be designed for different types of drug delivery for specific applications. In this paper, we summarize recent research in the field of bone regeneration using hydrogels as delivery carriers, detail the application of hydrogels in bone defect diseases and their mechanisms, and discuss future research directions of hydrogel drug delivery systems in bone tissue engineering.
Collapse
Affiliation(s)
- Long Bai
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Gang Tao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Maogeng Feng
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yuping Xie
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shuyu Cai
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shuanglin Peng
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jingang Xiao
- Department of Oral Implantology, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
16
|
Li Y, Xu C, Lei C. The Delivery and Activation of Growth Factors Using Nanomaterials for Bone Repair. Pharmaceutics 2023; 15:pharmaceutics15031017. [PMID: 36986877 PMCID: PMC10052849 DOI: 10.3390/pharmaceutics15031017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Bone regeneration is a comprehensive process that involves different stages, and various growth factors (GFs) play crucial roles in the entire process. GFs are currently widely used in clinical settings to promote bone repair; however, the direct application of GFs is often limited by their fast degradation and short local residual time. Additionally, GFs are expensive, and their use may carry risks of ectopic osteogenesis and potential tumor formation. Nanomaterials have recently shown great promise in delivering GFs for bone regeneration, as they can protect fragile GFs and control their release. Moreover, functional nanomaterials can directly activate endogenous GFs, modulating the regeneration process. This review provides a summary of the latest advances in using nanomaterials to deliver exogenous GFs and activate endogenous GFs to promote bone regeneration. We also discuss the potential for synergistic applications of nanomaterials and GFs in bone regeneration, along with the challenges and future directions that need to be addressed.
Collapse
Affiliation(s)
- Yiwei Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
17
|
Zhao X, Gu R, Zhao Y, Wei F, Gao X, Zhuang Y, Xiao Z, Shen H, Dai J. Adult spinal cord tissue transplantation combined with local tacrolimus sustained-release collagen hydrogel promotes complete spinal cord injury repair. Cell Prolif 2023; 56:e13451. [PMID: 36916024 DOI: 10.1111/cpr.13451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
The strategy of replacing a completely damaged spinal cord with allogenic adult spinal cord tissues (aSCs) can potentially repair complete spinal cord injury (SCI) in combination with immunosuppressive drugs, such as tacrolimus (Tac), which suppress transplant rejection and improve graft survival. However, daily systemic administration of immunosuppressive agents may cause harsh side effects. Herein, a localized, sustained Tac-release collagen hydrogel (Col/Tac) was developed to maximize the immune regulatory efficacy but minimize the side effects of Tac after aSC transplantation in complete SCI recipients. Thoracic aSCs of rat donors were transplanted into the complete thoracic spinal cord transection rat recipients, after which Col/Tac hydrogel was implanted. The Tac-encapsulated collagen hydrogel exhibited suitable mechanical properties and long-term sustained Tac release behaviour. After Col/Tac hydrogel implantation in SCI rats with aSC transplantation, the recipients' survival rate significantly improved and the side effects on tissues were reduced compared with those with conventional Tac medication. Moreover, treatment with the Col/Tac hydrogel exhibited similarly reduced immune rejection levels by regulating immune responses and promoted neurogenesis compared to daily Tac injections, and thus improved functional restoration. Localized delivery of immunosuppressive agents by the Col/Tac hydrogel may be a promising strategy for overcoming immune rejection of transplants, with significant potential for clinical application in the future.
Collapse
Affiliation(s)
- Xinhao Zhao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, China.,China-Japan Union Hospital of Jilin University, Changchun, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Rui Gu
- China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Feng Wei
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
| | - Xu Gao
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, China.,China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Zhuang
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - He Shen
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research, Division of Nanobiomedicine, Suzhou Institute of NanoTech and NanoBionics, Chinese Academy of Sciences, Suzhou, China.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
| |
Collapse
|
18
|
Ha MY, Yang DH, You SJ, Kim HJ, Chun HJ. In-situ forming injectable GFOGER-conjugated BMSCs-laden hydrogels for osteochondral regeneration. NPJ Regen Med 2023; 8:2. [PMID: 36609447 PMCID: PMC9822921 DOI: 10.1038/s41536-022-00274-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
The collagen-mimetic peptide GFOGER possesses the chondrogenic potential and has been used as a cell adhesion peptide or chondrogenic inducer. Here, we prepared an injectable in situ forming composite hydrogel system comprising methoxy polyethylene glycol-b-polycaprolactone (MPEG-PCL) and GFOGER-conjugated PEG-PCL (GFOGER-PEG-PCL) with various GFOGER concentrations based on our recently patented technology. The conjugation of GFOGER to PEG-PCL was confirmed by 1H NMR, and the particle size distribution and rheological properties for the sol-gel transition behavior of the samples with respect to the GFOGER content were evaluated systemically. In vitro experiments using rat bone marrow-derived mesenchymal stem cells (BMSCs) revealed that the GFOGER-PEG-PCL hydrogel significantly enhanced expression of integrins (β1, α2, and α11), increased expression of FAK, and induced downstream signaling of ERK and p38. Overexpression of chondrogenic markers suggested that BMSCs have the potential to differentiate into chondrogenic lineages within GFOGER-PEG-PCL samples. In vivo studies using a rat osteochondral defect model revealed that transplanted BMSCs with GFOGER0.8-PEG-PCL survived at the defect with strong chondrogenic expression after 4 weeks. The stem cell-laden GFOGER0.8-PEG-PCL hydrogel produced remarkable osteochondral regeneration at 8 weeks of transplantation, as determined by histological findings and micro-CT analysis. The histomorphological score in the GFOGER0.8-PEG-PCL + BMSCs group was ~1.7-, 2.6-, and 5.3-fold higher than that in the GFOGER0.8-PEG-PCL, MPEG-PCL, and defect groups, respectively. Taken together, these results provide an important platform for further advanced GFOGER-based stem cell research for osteochondral repair.
Collapse
Affiliation(s)
- Mi Yeon Ha
- grid.411947.e0000 0004 0470 4224Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591 Republic of Korea ,grid.411947.e0000 0004 0470 4224Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591 Republic of Korea
| | - Dae Hyeok Yang
- grid.411947.e0000 0004 0470 4224Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591 Republic of Korea
| | - Su Jung You
- grid.411947.e0000 0004 0470 4224Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591 Republic of Korea
| | - Hyun Joo Kim
- grid.411947.e0000 0004 0470 4224Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591 Republic of Korea
| | - Heung Jae Chun
- grid.411947.e0000 0004 0470 4224Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591 Republic of Korea ,grid.411947.e0000 0004 0470 4224Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591 Republic of Korea ,grid.411947.e0000 0004 0470 4224Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591 Republic of Korea
| |
Collapse
|
19
|
Zheng K, Bai J, Yang H, Xu Y, Pan G, Wang H, Geng D. Nanomaterial-assisted theranosis of bone diseases. Bioact Mater 2022; 24:263-312. [PMID: 36632509 PMCID: PMC9813540 DOI: 10.1016/j.bioactmat.2022.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/27/2022] Open
Abstract
Bone-related diseases refer to a group of skeletal disorders that are characterized by bone and cartilage destruction. Conventional approaches can regulate bone homeostasis to a certain extent. However, these therapies are still associated with some undesirable problems. Fortunately, recent advances in nanomaterials have provided unprecedented opportunities for diagnosis and therapy of bone-related diseases. This review provides a comprehensive and up-to-date overview of current advanced theranostic nanomaterials in bone-related diseases. First, the potential utility of nanomaterials for biological imaging and biomarker detection is illustrated. Second, nanomaterials serve as therapeutic delivery platforms with special functions for bone homeostasis regulation and cellular modulation are highlighted. Finally, perspectives in this field are offered, including current key bottlenecks and future directions, which may be helpful for exploiting nanomaterials with novel properties and unique functions. This review will provide scientific guidance to enhance the development of advanced nanomaterials for the diagnosis and therapy of bone-related diseases.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author.Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China,Corresponding author.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, 215006, Jiangsu, China,Corresponding author. Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
20
|
Liu Z, Bian Y, Wu G, Fu C. Application of stem cells combined with biomaterial in the treatment of intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:1077028. [PMID: 36507272 PMCID: PMC9732431 DOI: 10.3389/fbioe.2022.1077028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
As the world population is aging, intervertebral disc degeneration (IDD) is becoming a global health issue of increasing concern. A variety of disc degeneration diseases (DDDs) have been proven to be associated with IDD, and these illnesses have significant adverse effects on both individuals and society. The application of stem cells in regenerative medicine, such as blood and circulation, has been demonstrated by numerous studies. Similarly, stem cells have made exciting progress in the treatment of IDD. However, due to complex anatomical structures and functional requirements, traditional stem cell injection makes it difficult to meet people's expectations. With the continuous development of tissue engineering and biomaterials, stem cell combined with biomaterials has far more prospects than before. This review aims to objectively and comprehensively summarize the development of stem cells combined with contemporary biomaterials and the difficulties that need to be overcome.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China,Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Yuya Bian
- Jilin Institute of Scientific and Technical Information, Changchun, China
| | - Guangzhi Wu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Guangzhi Wu, ; Changfeng Fu,
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China,*Correspondence: Guangzhi Wu, ; Changfeng Fu,
| |
Collapse
|
21
|
Zhang Z, Gao S, Hu Y, Chen X, Cheng C, Fu X, Zhang S, Wang X, Che Y, Zhang C, Chai R. Ti 3 C 2 T x MXene Composite 3D Hydrogel Potentiates mTOR Signaling to Promote the Generation of Functional Hair Cells in Cochlea Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203557. [PMID: 36117048 PMCID: PMC9661825 DOI: 10.1002/advs.202203557] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Indexed: 05/24/2023]
Abstract
Organoids have certain cellular composition and physiological features in common with real organs, making them promising models of organ formation, function, and diseases. However, Matrigel, the commonly used animal-derived matrices in which they are developed, has limitations in mechanical adjustability and providing complex physicochemical signals. Here, the incorporation of Ti3 C2 Tx MXene nanomaterial into Matrigel regulates the properties of Matrigel and exhibits satisfactory biocompatibility. The Ti3 C2 Tx MXene Matrigel composites (MXene-Matrigel) regulate the development of Cochlear Organoids (Cochlea-Orgs), particularly in promoting the formation and maturation of organoid hair cells. Additionally, regenerated hair cells in MXene-Matrigel are functional and exhibit better electrophysiological properties compared to hair cells in Matrigel. MXene-Matrigel potentiates the amycin (mTOR) signaling pathway to promote hair cell differentiation, and mTOR signaling inhibition restrains hair cell differentiation. Moreover, MXene-Matrigel facilitates innervation establishment between regenerated hair cells and spiral ganglion neurons (SGNs) growing from the Cochlea modiolus in a co-culture system, as well as promotes synapse formation efficiency. The approach overcomes some limitations of the Matrigel-dependent culture system and greatly accelerates the application of nanomaterials in organoid development and research on therapies for hearing loss.
Collapse
Affiliation(s)
- Zhong Zhang
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
- Department of Biochemistry and Molecular BiologyBiomedicine Discovery InstituteMonash UniversitySuzhou215123P. R. China
| | - Shan Gao
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
| | - Yang‐Nan Hu
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
| | - Xin Chen
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
| | - Cheng Cheng
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
| | - Xiao‐Long Fu
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
- Shandong Provincial HospitalShandong First Medical UniversityJinan250021P. R. China
| | - Sha‐Sha Zhang
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
| | - Xin‐Lin Wang
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
| | - Yu‐Wei Che
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
| | - Chen Zhang
- Department of NeurobiologySchool of Basic Medical SciencesBeijing Key Laboratory of Neural Regeneration and RepairAdvanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijing100069P. R. China
| | - Ren‐Jie Chai
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096P. R. China
| |
Collapse
|
22
|
Yadav S, Singh Raman AP, Meena H, Goswami AG, Bhawna, Kumar V, Jain P, Kumar G, Sagar M, Rana DK, Bahadur I, Singh P. An Update on Graphene Oxide: Applications and Toxicity. ACS OMEGA 2022; 7:35387-35445. [PMID: 36249372 PMCID: PMC9558614 DOI: 10.1021/acsomega.2c03171] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/30/2022] [Indexed: 08/24/2023]
Abstract
Graphene oxide (GO) has attracted much attention in the past few years because of its interesting and promising electrical, thermal, mechanical, and structural properties. These properties can be altered, as GO can be readily functionalized. Brodie synthesized the GO in 1859 by reacting graphite with KClO3 in the presence of fuming HNO3; the reaction took 3-4 days to complete at 333 K. Since then, various schemes have been developed to reduce the reaction time, increase the yield, and minimize the release of toxic byproducts (NO2 and N2O4). The modified Hummers method has been widely accepted to produce GO in bulk. Due to its versatile characteristics, GO has a wide range of applications in different fields like tissue engineering, photocatalysis, catalysis, and biomedical applications. Its porous structure is considered appropriate for tissue and organ regeneration. Various branches of tissue engineering are being extensively explored, such as bone, neural, dentistry, cartilage, and skin tissue engineering. The band gap of GO can be easily tuned, and therefore it has a wide range of photocatalytic applications as well: the degradation of organic contaminants, hydrogen generation, and CO2 reduction, etc. GO could be a potential nanocarrier in drug delivery systems, gene delivery, biological sensing, and antibacterial nanocomposites due to its large surface area and high density, as it is highly functionalized with oxygen-containing functional groups. GO or its composites are found to be toxic to various biological species and as also discussed in this review. It has been observed that superoxide dismutase (SOD) and reactive oxygen species (ROS) levels gradually increase over a period after GO is introduced in the biological systems. Hence, GO at specific concentrations is toxic for various species like earthworms, Chironomus riparius, Zebrafish, etc.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | | | - Harshvardhan Meena
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department
of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Abhay Giri Goswami
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Bhawna
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Vinod Kumar
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Pallavi Jain
- Department
of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Uttar Pradesh, India
| | - Gyanendra Kumar
- Department
of Chemistry, University of Delhi, Delhi, India
- Swami Shraddhanand
College, University of Delhi, Delhi, India
| | - Mansi Sagar
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Devendra Kumar Rana
- Department
of Physics, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Indra Bahadur
- Department
of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Prashant Singh
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| |
Collapse
|
23
|
Ferreira MJS, Mancini FE, Humphreys PA, Ogene L, Buckley M, Domingos MAN, Kimber SJ. Pluripotent stem cells for skeletal tissue engineering. Crit Rev Biotechnol 2022; 42:774-793. [PMID: 34488516 DOI: 10.1080/07388551.2021.1968785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we review the use of human pluripotent stem cells for skeletal tissue engineering. A number of approaches have been used for generating cartilage and bone from both human embryonic stem cells and induced pluripotent stem cells. These range from protocols relying on intrinsic cell interactions and signals from co-cultured cells to those attempting to recapitulate the series of steps occurring during mammalian skeletal development. The importance of generating authentic tissues rather than just differentiated cells is emphasized and enabling technologies for doing this are reported. We also review the different methods for characterization of skeletal cells and constructs at the tissue and single-cell level, and indicate newer resources not yet fully utilized in this field. There have been many challenges in this research area but the technologies to overcome these are beginning to appear, often adopted from related fields. This makes it more likely that cost-effective and efficacious human pluripotent stem cell-engineered constructs may become available for skeletal repair in the near future.
Collapse
Affiliation(s)
- Miguel J S Ferreira
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester, UK
| | - Fabrizio E Mancini
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul A Humphreys
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Leona Ogene
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Michael Buckley
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Marco A N Domingos
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
24
|
Nazar V, Kashi M, Haghbin Nazarpak M, Shahryari E, Mehrjoo M. Gelatin hydrogel reinforced by graphene oxide grafted chitosan for cartilage tissue engineering application. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2085704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Vida Nazar
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Mana Kashi
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | | | - Elham Shahryari
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, Iran
| | - Morteza Mehrjoo
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
- National cell bank of Iran, Pasteur institute of Iran, Tehran, Iran
| |
Collapse
|
25
|
Carotenuto F, Politi S, Ul Haq A, De Matteis F, Tamburri E, Terranova ML, Teodori L, Pasquo A, Di Nardo P. From Soft to Hard Biomimetic Materials: Tuning Micro/Nano-Architecture of Scaffolds for Tissue Regeneration. MICROMACHINES 2022; 13:mi13050780. [PMID: 35630247 PMCID: PMC9144100 DOI: 10.3390/mi13050780] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/30/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022]
Abstract
Failure of tissues and organs resulting from degenerative diseases or trauma has caused huge economic and health concerns around the world. Tissue engineering represents the only possibility to revert this scenario owing to its potential to regenerate or replace damaged tissues and organs. In a regeneration strategy, biomaterials play a key role promoting new tissue formation by providing adequate space for cell accommodation and appropriate biochemical and biophysical cues to support cell proliferation and differentiation. Among other physical cues, the architectural features of the biomaterial as a kind of instructive stimuli can influence cellular behaviors and guide cells towards a specific tissue organization. Thus, the optimization of biomaterial micro/nano architecture, through different manufacturing techniques, is a crucial strategy for a successful regenerative therapy. Over the last decades, many micro/nanostructured biomaterials have been developed to mimic the defined structure of ECM of various soft and hard tissues. This review intends to provide an overview of the relevant studies on micro/nanostructured scaffolds created for soft and hard tissue regeneration and highlights their biological effects, with a particular focus on striated muscle, cartilage, and bone tissue engineering applications.
Collapse
Affiliation(s)
- Felicia Carotenuto
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Correspondence: (F.C.); (P.D.N.)
| | - Sara Politi
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
- Dipartimento di Scienze e Tecnologie Chimiche, Università Degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Arsalan Ul Haq
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
| | - Fabio De Matteis
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Dipartimento Ingegneria Industriale, Università Degli Studi di Roma “Tor Vergata”, Via del Politecnico, 00133 Roma, Italy
| | - Emanuela Tamburri
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Dipartimento di Scienze e Tecnologie Chimiche, Università Degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Maria Letizia Terranova
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Dipartimento di Scienze e Tecnologie Chimiche, Università Degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Laura Teodori
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
| | - Alessandra Pasquo
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, CR Frascati, 00044 Rome, Italy; (S.P.); (L.T.); (A.P.)
| | - Paolo Di Nardo
- Dipartimento di Scienze Cliniche e Medicina Traslazionale, Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università Degli Studi di Roma “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (F.D.M.); (E.T.); (M.L.T.)
- Correspondence: (F.C.); (P.D.N.)
| |
Collapse
|
26
|
Gonzalez-Vilchis RA, Piedra-Ramirez A, Patiño-Morales CC, Sanchez-Gomez C, Beltran-Vargas NE. Sources, Characteristics, and Therapeutic Applications of Mesenchymal Cells in Tissue Engineering. Tissue Eng Regen Med 2022; 19:325-361. [PMID: 35092596 PMCID: PMC8971271 DOI: 10.1007/s13770-021-00417-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 01/31/2023] Open
Abstract
Tissue engineering (TE) is a therapeutic option within regenerative medicine that allows to mimic the original cell environment and functional organization of the cell types necessary for the recovery or regeneration of damaged tissue using cell sources, scaffolds, and bioreactors. Among the cell sources, the utilization of mesenchymal cells (MSCs) has gained great interest because these multipotent cells are capable of differentiating into diverse tissues, in addition to their self-renewal capacity to maintain their cell population, thus representing a therapeutic alternative for those diseases that can only be controlled with palliative treatments. This review aimed to summarize the state of the art of the main sources of MSCs as well as particular characteristics of each subtype and applications of MSCs in TE in seven different areas (neural, osseous, epithelial, cartilage, osteochondral, muscle, and cardiac) with a systemic revision of advances made in the last 10 years. It was observed that bone marrow-derived MSCs are the principal type of MSCs used in TE, and the most commonly employed techniques for MSCs characterization are immunodetection techniques. Moreover, the utilization of natural biomaterials is higher (41.96%) than that of synthetic biomaterials (18.75%) for the construction of the scaffolds in which cells are seeded. Further, this review shows alternatives of MSCs derived from other tissues and diverse strategies that can improve this area of regenerative medicine.
Collapse
Affiliation(s)
- Rosa Angelica Gonzalez-Vilchis
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Angelica Piedra-Ramirez
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Carlos Cesar Patiño-Morales
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Concepcion Sanchez-Gomez
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Nohra E Beltran-Vargas
- Department of Processes and Technology, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, Cuajimalpa. Vasco de Quiroga 4871. Cuajimalpa de Morelos, 05348, CDMX, Mexico.
| |
Collapse
|
27
|
Qiao K, Xu L, Tang J, Wang Q, Lim KS, Hooper G, Woodfield TBF, Liu G, Tian K, Zhang W, Cui X. The advances in nanomedicine for bone and cartilage repair. J Nanobiotechnology 2022; 20:141. [PMID: 35303876 PMCID: PMC8932118 DOI: 10.1186/s12951-022-01342-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
With the gradual demographic shift toward an aging and obese society, an increasing number of patients are suffering from bone and cartilage injuries. However, conventional therapies are hindered by the defects of materials, failing to adequately stimulate the necessary cellular response to promote sufficient cartilage regeneration, bone remodeling and osseointegration. In recent years, the rapid development of nanomedicine has initiated a revolution in orthopedics, especially in tissue engineering and regenerative medicine, due to their capacity to effectively stimulate cellular responses on a nanoscale with enhanced drug loading efficiency, targeted capability, increased mechanical properties and improved uptake rate, resulting in an improved therapeutic effect. Therefore, a comprehensive review of advancements in nanomedicine for bone and cartilage diseases is timely and beneficial. This review firstly summarized the wide range of existing nanotechnology applications in the medical field. The progressive development of nano delivery systems in nanomedicine, including nanoparticles and biomimetic techniques, which are lacking in the current literature, is further described. More importantly, we also highlighted the research advancements of nanomedicine in bone and cartilage repair using the latest preclinical and clinical examples, and further discussed the research directions of nano-therapies in future clinical practice.
Collapse
Affiliation(s)
- Kai Qiao
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Lu Xu
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
- Department of Dermatology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 61004, Sichuan, China
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, Guangdong, China
| | - Kang Tian
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Weiguo Zhang
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Xiaolin Cui
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand.
| |
Collapse
|
28
|
Zhao Y, Liu J, Gao Y, Xu Z, Dai C, Li G, Sun C, Yang Y, Zhang K. Conductive biocomposite hydrogels with multiple biophysical cues regulate schwann cell behaviors. J Mater Chem B 2022; 10:1582-1590. [PMID: 35156678 DOI: 10.1039/d1tb02361f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peripheral nerve injuries are serious clinical events, and surgical treatment has certain limitations. Conductive hydrogels are promising biomaterials for neural tissue engineering, as they can enhance the functionality of neurons and Schwann cells (SCs) by mimicking the biophysical and biochemical cues existing in the natural extracellular matrix. It remains unexplored, however, whether there is a connection between the effects of different cues, such as hydrogel elasticity and conductivity, on SC fate. In the present work, we fabricated a series of conductive biocomposite hydrogels with the combination of silk fibroin (SF) and graphene oxide (GO) nanosheets and demonstrated an approach to control hydrogel electrical conductivity, independent of matrix elasticity and polymer concentration. Our results indicated that the soft substrates play a more critical role in SC survival, proliferation, spreading, and gene expression of neurotrophic factors, while the increased conductivity may also be beneficial to SC functional behaviors. These findings may promote the understanding of cell-matrix interactions and provide new insights for the design of neural tissue engineering scaffolds.
Collapse
Affiliation(s)
- Yahong Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, P. R. China.
| | - Jina Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, P. R. China.
| | - Yisheng Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, P. R. China.
| | - Zhixin Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, P. R. China.
| | - Chaolun Dai
- Medical School, Nantong University, Nantong 226001, P. R. China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, P. R. China.
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, P. R. China.
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, P. R. China.
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China. .,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China.,Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P. R. China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
29
|
Woo Y, Patel M, Kim H, Park JK, Jung YJ, Cha SS, Jeong B. Pralatrexate Sustainably Released from Polypeptide Thermogel Is Effective for Chondrogenic Differentiation of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3773-3783. [PMID: 35014790 DOI: 10.1021/acsami.1c20585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Folic acid was reported to significantly improve chondrogenic differentiation of mesenchymal stem cells. In a similar mechanism of action, we investigated clinically approved antifolates by the U.S. Food and Drug Administration as chondrogenic-promoting compounds for tonsil-derived mesenchymal stem cells. A poly(ethylene glycol)-poly(l-alanine) thermogelling system was used as a three-dimensional cell culture matrix, where stem cells and antifolates could be incorporated simultaneously during a heat-induced in situ sol-to-gel transition. The antifolates could be supplied over several days by the sustained release of the drug from the thermogel. Initially, seven antifolates were prescreened based on cell viability and expression of a typical chondrogenic biomarker of type II collagen (COL II) at the mRNA level. Then, dapsone, pralatrexate, and trimethoprim were selected as candidate compounds in the second round screening, and detailed studies were carried out on the mRNA and protein expression of various chondrogenic biomarkers including COL II, SRY box transcription factor 9, and aggrecan. Three-dimensional cultures of stem cells in the thermogel in the absence of a chondrogenic promoter compound and in the presence of kartogenin (KGN) were performed as a negative control and positive control, respectively. The chondrogenic biomarkers were significantly increased in the selected antifolate-incorporating systems compared to the negative control system, without an increase in type I collagen (an osteogenic biomarker) expression. Pralatrexate was the best compound for inducing chondrogenic differentiation of the stem cells, even better than the positive control (KGN). Nuclear translocation of the core-binding factor β subunit (CBFβ) and enhanced nuclear runt-related transcription factor 1 (RUNX1) by antifolate treatment suggested that the chondrogenesis-enhancing mechanism is mediated by CBFβ and RUNX1. An in silico modeling study confirmed the mechanism by proving the high binding affinity of pralatrexate to a target protein of filamin A compared with other antifolate candidates. To conclude, pralatrexate was rediscovered as a lead compound, and the polypeptide thermogel incorporating pralatrexate and mesenchymal stem cells can be a very effective system in promoting chondrogenic differentiation of stem cells and might be used in injectable tissue engineering for cartilage repair.
Collapse
Affiliation(s)
- Yejin Woo
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Hyelin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jin Kyung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Yeon-Ju Jung
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| |
Collapse
|
30
|
Ikram R, Shamsuddin SAA, Mohamed Jan B, Abdul Qadir M, Kenanakis G, Stylianakis MM, Anastasiadis SH. Impact of Graphene Derivatives as Artificial Extracellular Matrices on Mesenchymal Stem Cells. Molecules 2022; 27:379. [PMID: 35056690 PMCID: PMC8781794 DOI: 10.3390/molecules27020379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Thanks to stem cells' capability to differentiate into multiple cell types, damaged human tissues and organs can be rapidly well-repaired. Therefore, their applicability in the emerging field of regenerative medicine can be further expanded, serving as a promising multifunctional tool for tissue engineering, treatments for various diseases, and other biomedical applications as well. However, the differentiation and survival of the stem cells into specific lineages is crucial to be exclusively controlled. In this frame, growth factors and chemical agents are utilized to stimulate and adjust proliferation and differentiation of the stem cells, although challenges related with degradation, side effects, and high cost should be overcome. Owing to their unique physicochemical and biological properties, graphene-based nanomaterials have been widely used as scaffolds to manipulate stem cell growth and differentiation potential. Herein, we provide the most recent research progress in mesenchymal stem cells (MSCs) growth, differentiation and function utilizing graphene derivatives as extracellular scaffolds. The interaction of graphene derivatives in human and rat MSCs has been also evaluated. Graphene-based nanomaterials are biocompatible, exhibiting a great potential applicability in stem-cell-mediated regenerative medicine as they may promote the behaviour control of the stem cells. Finally, the challenges, prospects and future trends in the field are discussed.
Collapse
Affiliation(s)
- Rabia Ikram
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Badrul Mohamed Jan
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece; (G.K.); (S.H.A.)
| | - Minas M. Stylianakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece; (G.K.); (S.H.A.)
- Department of Nursing, Faculty of Health Sciences, Hellenic Mediterranean University, GR-71410 Heraklion, Greece
| | - Spiros H. Anastasiadis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece; (G.K.); (S.H.A.)
| |
Collapse
|
31
|
Functional Graphene Nanomaterials-Based Hybrid Scaffolds for Osteogenesis and Chondrogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:65-87. [DOI: 10.1007/978-981-16-4923-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Daou F, Cochis A, Leigheb M, Rimondini L. Current Advances in the Regeneration of Degenerated Articular Cartilage: A Literature Review on Tissue Engineering and Its Recent Clinical Translation. MATERIALS 2021; 15:ma15010031. [PMID: 35009175 PMCID: PMC8745794 DOI: 10.3390/ma15010031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022]
Abstract
Functional ability is the basis of healthy aging. Articular cartilage degeneration is amongst the most prevalent degenerative conditions that cause adverse impacts on the quality of life; moreover, it represents a key predisposing factor to osteoarthritis (OA). Both the poor capacity of articular cartilage for self-repair and the unsatisfactory outcomes of available clinical interventions make innovative tissue engineering a promising therapeutic strategy for articular cartilage repair. Significant progress was made in this field; however, a marked heterogeneity in the applied biomaterials, biofabrication, and assessments is nowadays evident by the huge number of research studies published to date. Accordingly, this literature review assimilates the most recent advances in cell-based and cell-free tissue engineering of articular cartilage and also focuses on the assessments performed via various in vitro studies, ex vivo models, preclinical in vivo animal models, and clinical studies in order to provide a broad overview of the latest findings and clinical translation in the context of degenerated articular cartilage and OA.
Collapse
Affiliation(s)
- Farah Daou
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (F.D.); (A.C.); (M.L.)
| | - Andrea Cochis
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (F.D.); (A.C.); (M.L.)
| | - Massimiliano Leigheb
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (F.D.); (A.C.); (M.L.)
- Department of Orthopaedics and Traumatology, “Maggiore della Carità” Hospital, 28100 Novara, Italy
| | - Lia Rimondini
- Department of Health Sciences, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Università del Piemonte Orientale UPO, 28100 Novara, Italy; (F.D.); (A.C.); (M.L.)
- Correspondence: ; Tel.: +39-0321-660-673
| |
Collapse
|
33
|
Wang B, Chariyev-Prinz F, Burdis R, Eichholz K, Kelly DJ. Additive manufacturing of cartilage-mimetic scaffolds as off-the-shelf implants for joint regeneration. Biofabrication 2021; 14. [PMID: 34883477 DOI: 10.1088/1758-5090/ac41a0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/09/2021] [Indexed: 11/11/2022]
Abstract
Biomimetic scaffolds that provide a tissue-specific environment to cells are particularly promising for tissue engineering and regenerative medicine applications. The goal of this study was to integrate emerging additive manufacturing and biomaterial design strategies to produce articular cartilage (AC) mimetic scaffolds that could be used as 'off-the-shelf' implants for joint regeneration. To this end alginate sulfate, a sulfated glycosaminoglycan (sGAG) mimic, was used to functionalize porous alginate-based scaffolds and to support the sustained release of transforming growth factor-β3 (TGF-β3). Covalent crosslinking dramatically improved the elasticity of the alginate/alginate sulfate scaffolds, while scaffold architecture could be tailored using a directional freezing technique. Introducing such an anisotropic architecture was found to promote mesenchymal stem cell (MSC) infiltration into the scaffold and to direct the orientation of the deposited extracellular matrix, leading to the development of cartilage tissue with a biomimetic zonal architecture. In vitro experiments also demonstrated the capacity of the sulfated scaffolds to both enhance chondrogenesis of MSCs and to control the release of TGF-β3, leading to the development of a tissue rich in sGAG and type II collagen. The scaffolds were further reinforced with a 3D printed PLCL framework, leading to composite implants that were more elastic than those reinforced with PCL, and which better mimicked the bulk mechanical properties of native cartilage tissue. The ability of this composite scaffold to support chondrogenesis was then confirmed within a dynamic culture system. Altogether, these findings demonstrate the potential of such biomimetic scaffolds as putative 'single-stage' or 'off-the-shelf' strategies for articular cartilage regeneration.
Collapse
Affiliation(s)
- Bin Wang
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, IRELAND
| | - Farhad Chariyev-Prinz
- Trinity Biomedical Institute, Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Dublin, D02 PN40, IRELAND
| | - Ross Burdis
- Trinity Biomedical Institute, Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Dublin, D02 PN40, IRELAND
| | - Kian Eichholz
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, IRELAND
| | - Daniel John Kelly
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Parsons Building, Dublin 2, Dublin, IRELAND
| |
Collapse
|
34
|
A DAMP-scavenging, IL-10-releasing hydrogel promotes neural regeneration and motor function recovery after spinal cord injury. Biomaterials 2021; 280:121279. [PMID: 34847433 DOI: 10.1016/j.biomaterials.2021.121279] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) creates an inflammatory microenvironment characterized by damage-associated molecular patterns (DAMPs) and immune cell activation that exacerbate secondary damage and impair neurological recovery. Here we develop an immunoregulatory hydrogel scaffold for treating SCI that scavenges DAMPs and slowly releases the anti-inflammatory cytokine interleukin-10 (IL-10). We created this dual-functional scaffold by modifying a photocrosslinked gelatin hydrogel with the cationic, DAMP-binding polymer poly (amidoamine) and with IL-10, and compared the therapeutic activity of this scaffold with that of gelatin-only, gelatin + poly (amidoamine), and gelatin + IL-10 scaffolds in vitro and in vivo. In vitro, the dual-functional scaffold scavenged anionic DAMPs and exhibited sustained release of IL-10, reduced the proinflammatory responses of macrophages and microglia, and enhanced the neurogenic differentiation of neural stem cells. In a complete transection SCI mouse model, the injected dual-functional scaffold suppressed proinflammatory cytokine production, promoted the M2 macrophage/microglia phenotype, and led to neural regeneration and axon growth without scar formation to a greater extent than the single-function or control scaffolds. This DAMP-scavenging, IL-10-releasing scaffold provides a new strategy for promoting neural regeneration and motor function recovery following severe SCI.
Collapse
|
35
|
Preparation of quaternarized N-halamine-grafted graphene oxide nanocomposites and synergetic antibacterial properties. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
Wang H, Peng T, Wu H, Chen J, Chen M, Mei L, Li F, Wang W, Wu C, Pan X. In situ biomimetic lyotropic liquid crystal gel for full-thickness cartilage defect regeneration. J Control Release 2021; 338:623-632. [PMID: 34481927 DOI: 10.1016/j.jconrel.2021.08.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022]
Abstract
There is a great challenge in regenerating cartilage defects, which usually involve absent bearing capacity and poor adaptation to joint movement, further exacerbating subchondral bone damage. Therefore, ideal tissue-engineering cartilage scaffolds should be endowed with biomimetic and sustained-release function for promoting long-term chondrogenesis while protecting subchondral bone. Herein, in situ self-assembling gel based on glyceryl monooleate (GMO)-hyaluronic acid (HA) composite lyotropic liquid crystal (HLC) was developed as the biomimetic scaffold to deliver kartogenin for long-term cartilage regeneration. Compared to the GMO based (LLC) gel, HLC gel with modified lattice structure exhibited improved rheological properties for better joint protection by increasing mechanical strength, elasticity and lubrication. Besides, HLC gel successfully prolonged drug release and retention in the joint cavity over 4 weeks to provide combined effect of kartogenin and HA for cartilage repair. Pharmacodynamic studies demonstrated that HLC gel was the most effective to promote chondrogenesis and protect subchondral bone, making the damaged bone tissue restored to normal in divergent features as evidenced by the MRI, Micro-CT and histological results. Therefore, the HLC gel with joint protection and controlled drug release can serve as a firm scaffold for providing long-term cartilage repair.
Collapse
Affiliation(s)
- Hui Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Tingting Peng
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Haofeng Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jintian Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Minglong Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Liling Mei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Feng Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
37
|
Bao D, Sun J, Gong M, Shi J, Qin B, Deng K, Liu G, Zeng S, Xiang Z, Fu S. Combination of graphene oxide and platelet-rich plasma improves tendon-bone healing in a rabbit model of supraspinatus tendon reconstruction. Regen Biomater 2021; 8:rbab045. [PMID: 34484806 PMCID: PMC8411035 DOI: 10.1093/rb/rbab045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 08/01/2021] [Indexed: 02/05/2023] Open
Abstract
The treatment of rotator cuff tear is one of the major challenges for orthopedic surgeons. The key to treatment is the reconstruction of the tendon-bone interface (TBI). Autologous platelet-rich plasma (PRP) is used as a therapeutic agent to accelerate the healing of tendons, as it contains a variety of growth factors and is easy to prepare. Graphene oxide (GO) is known to improve the physical properties of biomaterials and promote tissue repair. In this study, PRP gels containing various concentrations of GO were prepared to promote TBI healing and supraspinatus tendon reconstruction in a rabbit model. The incorporation of GO improved the ultrastructure and mechanical properties of the PRP gels. The gels containing 0.5 mg/ml GO (0.5 GO/PRP) continuously released transforming growth factor-β1 (TGF-β1) and platelet-derived growth factor (PDGF)-AB, and the released TGF-β1 and PDGF-AB were still at high concentrations, ∼1063.451 pg/ml and ∼814.217 pg/ml, respectively, on the 14th day. In vitro assays showed that the 0.5 GO/PRP gels had good biocompatibility and promoted bone marrow mesenchymal stem cells proliferation and osteogenic and chondrogenic differentiation. After 12 weeks of implantation, the magnetic resonance imaging, micro-computed tomography and histological results indicated that the newly regenerated tendons in the 0.5 GO/PRP group had a similar structure to natural tendons. Moreover, the biomechanical results showed that the newly formed tendons in the 0.5 GO/PRP group had better biomechanical properties compared to those in the other groups, and had more stable TBI tissue. Therefore, the combination of PRP and GO has the potential to be a powerful advancement in the treatment of rotator cuff injuries.
Collapse
Affiliation(s)
- Dingsu Bao
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China.,Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiacheng Sun
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Min Gong
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Jie Shi
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Bo Qin
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Kai Deng
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Gang Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Shengqiang Zeng
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shijie Fu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| |
Collapse
|
38
|
Li Z, Xiang S, Lin Z, Li EN, Yagi H, Cao G, Yocum L, Li L, Hao T, Bruce KK, Fritch MR, Hu H, Wang B, Alexander PG, Khor KA, Tuan RS, Lin H. Graphene oxide-functionalized nanocomposites promote osteogenesis of human mesenchymal stem cells via enhancement of BMP-SMAD1/5 signaling pathway. Biomaterials 2021; 277:121082. [PMID: 34464823 DOI: 10.1016/j.biomaterials.2021.121082] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/07/2021] [Accepted: 08/21/2021] [Indexed: 12/28/2022]
Abstract
Biomaterials that can harness the intrinsic osteogenic potential of stem cells offer a promising strategy to accelerate bone regeneration and repair. Previously, we had used methacrylated gelatin (GelMA)-based scaffolds to achieve bone formation from human mesenchymal stem cells (hMSCs). In this study, we aimed to further enhance hMSC osteogenesis by incorporating graphene oxide (GO)-based nanosheets into GelMA. In vitro results showed high viability and metabolic activities in hMSCs encapsulated in the newly developed nanocomposites. Incorporation of GO markedly increased mineralization within hMSC-laden constructs, which was further increased by replacing GO with silica-coated graphene oxide (SiGO). Mechanistic analysis revealed that the nanosheet enhanced the production, retention, and biological activity of endogenous bone morphogenetic proteins (BMPs), resulting in robust osteogenesis in the absence of exogenous osteoinductive growth factors. Specifically, the osteoinductive effect of the nanosheets was abolished by inhibiting the BMP signaling pathway with LDN-193189 treatment. The bone formation potential of the technology was further tested in vivo using a mouse subcutaneous implantation model, where hMSCs-laden GO/GelMA and SiGO/GelMA samples resulted in bone volumes 108 and 385 times larger, respectively, than the GelMA control group. Taken together, these results demonstrate the biological activity and mechanism of action of GO-based nanosheets in augmenting the osteogenic capability of hMSCs, and highlights the potential of leveraging nanomaterials such as GO and SiGO for bone tissue engineering applications.
Collapse
Affiliation(s)
- Zhong Li
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shiqi Xiang
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zixuan Lin
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eileen N Li
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Haruyo Yagi
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Guorui Cao
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lauren Yocum
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - La Li
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tingjun Hao
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katherine K Bruce
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA
| | - Madalyn R Fritch
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Huanlong Hu
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Bing Wang
- Molecular Therapeutics Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter G Alexander
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Khiam Aik Khor
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Rocky S Tuan
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Hang Lin
- Center for Cellular & Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
39
|
Lee SJ, Nam Y, Rim YA, Lee K, Ju JH, Kim DS. Perichondrium-inspired permeable nanofibrous tube well promoting differentiation of hiPSC-derived pellet toward hyaline-like cartilage pellet. Biofabrication 2021; 13. [PMID: 34404032 DOI: 10.1088/1758-5090/ac1e76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023]
Abstract
The pellet formation has been regarded as a golden standard forin vitrochondrogenic differentiation. However, a spatially inhomogeneous chondrogenic microenvironment around a pellet resulted from the use of a traditional impermeable narrow tube, such as the conical tube, undermines the differentiation performance and therapeutic potential of differentiated cartilage pellet in defective articular cartilage treatment. To address this drawback, a perichondrium-inspired permeable nanofibrous tube (PINaT) well with a nanofibrous wall permeable to gas and soluble molecules is proposed. The PINaT well was fabricated with a micro deep drawing process where a flat thin nanofibrous membrane was transformed to a 3.5 mm deep tube well with a ∼50µm thick nanofibrous wall. Similar toin vivoperichondrium, the PINaT well was found to allow oxygen and growth factor diffusion required for chondrogenic differentiation across the entire nanofibrous wall. Analyses of gene expressions (COL2A1, COL10A1, ACAN, and SOX9), proteins (type II and X collagen), and glycosaminoglycans contents were conducted to assess the differentiation performance and clinical efficacy of differentiated cartilage pellet. The regulated spatially homogeneous chondrogenic microenvironment around the human induced pluripotent stem cell-derived pellet (3 × 105cells per pellet) in the PINaT well remarkably improved the quality of the differentiated pellet toward a more hyaline-like cartilage pellet. Furthermore, an accelerated chondrogenic differentiation process of the pellet produced by the PINaT well was achieved for 14 days, demonstrating a hyaline cartilage-specific marker similar to the control pellet differentiated for 20 days. Finally, the enhanced clinical efficacy of the hyaline-like cartilage pellet was confirmed using an osteochondral defect rat model, with the repaired tissue resembling hyaline cartilage rather than fibrous cartilage after 8 weeks of regeneration.
Collapse
Affiliation(s)
- Seong Jin Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yoojun Nam
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Kijun Lee
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, 20 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea.,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
40
|
Xiaoli F, Yaqing Z, Ruhui L, Xuan L, Aijie C, Yanli Z, Chen H, Lili C, Longquan S. Graphene oxide disrupted mitochondrial homeostasis through inducing intracellular redox deviation and autophagy-lysosomal network dysfunction in SH-SY5Y cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126158. [PMID: 34492938 DOI: 10.1016/j.jhazmat.2021.126158] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/05/2021] [Accepted: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Graphene oxide (GO) nanomaterials have significant advantages for drug delivery and electrode materials in neural science, however, their exposure risks to the central nervous system (CNS) and toxicity concerns are also increased. The current studies of GO-induced neurotoxicity remain still ambiguous, let alone the mechanism of how complicated GO chemistry affects its biological behavior with neural cells. In this study, we characterized the commercially available GO in detail and investigated its biological adverse effects using cultured SH-SY5Y cells. We found that ultrasonic processing in medium changed the oxidation status and surface reactivity on the planar surface of GO due to its hydration activity, causing lipid peroxidation and cell membrane damage. Subsequently, ROS-disrupted mitochondrial homeostasis, resulting from the activation of NOX2 signaling, was observed following GO internalization. The autophagy-lysosomal network was initiated as a defensive reaction to obliterate oxidative damaged mitochondria and foreign nanomaterials, which was ineffective due to reduced lysosomal degradation capacity. These sequential cellular responses exacerbated mitochondrial stress, leading to apoptotic cell death. These data highlight the importance of the structure-related activity of GO on its biological properties and provide an in-depth understanding of how GO-derived cellular redox signaling induces mitochondrion-related cascades that modulate cell functionality and survival.
Collapse
Affiliation(s)
- Feng Xiaoli
- Stomatology Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Zhang Yaqing
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Luo Ruhui
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lai Xuan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chen Aijie
- Stomatology Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhang Yanli
- Stomatology Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hu Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chen Lili
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shao Longquan
- Stomatology Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China.
| |
Collapse
|
41
|
Xie M, Fritch M, He Y, Fu H, Hong Y, Lin H. Dynamic loading enhances chondrogenesis of human chondrocytes within a biodegradable resilient hydrogel. Biomater Sci 2021; 9:5011-5024. [PMID: 34109952 DOI: 10.1039/d1bm00413a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyaline cartilage in the knee joint is a soft tissue that is both stiff and elastic, which raises unique challenges in developing scaffolds for the repair of cartilage injury. In this study, we mixed poly-d,l-lactic acid/polyethylene glycol/poly-d,l-lactic acid (PEG-PDLLA-DA) with polycaprolactone-poly(ethylene glycol)-polycaprolactone (PEG-PCL-DA) with the aim to create a cartilage-like hydrogel. Results indicated that the hydrogel made from PEG-PDLLA-DA/PEG-PCL-DA (50/50) was biodegradable and resilient, able to bear compressive loads with strains up to 50%. Human chondrocytes maintained high viability after being seeded in the hydrogel and underwent robust chondrogenesis upon stimulation. The application of dynamic compressive loading further promoted the generation of cartilage matrix and increased the compressive moduli of engineered cartilage tissues. Then engineered cartilage tissues, with or without being stimulated by dynamic loading, were implanted subcutaneously in mice, and results showed that the cartilage matrices and chondrocyte phenotypes were well preserved. Lastly, we conducted the mechanistic study to understand how dynamic loading influenced chondrogenesis. Specifically, the levels p-Erk and p38 kinases were found to remarkably increase on day 1 upon dynamic compressive loading, decrease on day 3, and then slightly elevate on day 7. In comparison, the expression of YAP and RhoA peaked on day 3 after mechanical loading. Levels of PIEZO1 and TRPV4 protein increased with the extension of dynamic loading culture time. Taken together, this newly developed resilient hydrogel represents a robust scaffold for cartilage regeneration. Moreover, based on the time their levels reach the peak, three groups of proteins are identified in mediating chondrocyte response to dynamic loading, which has not been previously reported.
Collapse
Affiliation(s)
- Mingsheng Xie
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15217, USA. and Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Madalyn Fritch
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15217, USA.
| | - Yuchen He
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15217, USA.
| | - Huikang Fu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15217, USA. and Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15219, USA and McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
42
|
Ligorio C, O'Brien M, Hodson NW, Mironov A, Iliut M, Miller AF, Vijayaraghavan A, Hoyland JA, Saiani A. TGF-β3-loaded graphene oxide - self-assembling peptide hybrid hydrogels as functional 3D scaffolds for the regeneration of the nucleus pulposus. Acta Biomater 2021; 127:116-130. [PMID: 33831573 DOI: 10.1016/j.actbio.2021.03.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022]
Abstract
Intervertebral disc (IVD) degeneration is a process that starts in the central nucleus pulposus (NP) and leads to inflammation, extracellular matrix (ECM) degradation, and progressive loss of disc height. Early treatment of IVD degeneration is critical to the reduction of low back pain and related disability. As such, minimally invasive therapeutic approaches that can halt and reverse NP degeneration at the early stages of the disease are needed. Recently, we developed an injectable graphene oxide (GO) - self-assembling peptide FEFKFEFK (F: phenylalanine; K: lysine; E: glutamic acid) hybrid hydrogels as potential delivery platform for cells and/or drugs in the NP. In this current study, we explored the possibility of using the GO present in these hybrid hydrogels as a vehicle for the sequestration and controlled delivery of transforming growth factor beta-3 (TGF-β3), an anabolic growth factor (GF) known to direct NP cell fate and function. For this purpose, we first investigated the potential of GO to bind and sequestrate TGF-β3. We then cultured bovine NP cells in the new functional scaffolds and investigated their response to the presence of GO and TGF-β3. Our results clearly showed that GO flakes can sequestrate TGF-β3 through strong binding interactions resulting in a slow and prolonged release, with the GF remaining active even when bound to the GO flakes. The adsorption of the GF on the GO flakes to create TGF-β3-loaded GO flakes and their subsequent incorporation in the hydrogels through mixing, [(GO/TGF-β3Ads)-F8] hydrogel, led to the upregulation of NP-specific genes, accompanied by the production and deposition of an NP-like ECM, rich in aggrecan and collagen II. NP cells actively interacted with TGF-β3-loaded GO flakes and remodeled the scaffolds through endocytosis. This work highlights the potential of using GO as a nanocarrier for the design of functional hybrid peptide-based hydrogels. STATEMENT OF SIGNIFICANCE: Intervertebral disc (IVD) degeneration is a process that starts in the central nucleus pulposus (NP) and leads to inflammation, extracellular matrix (ECM) degradation, and progressive loss of disc height. As such, minimally invasive therapeutic approaches that can halt and reverse NP degeneration at the early stages of the disease are needed. In this current study, we explored the possibility of using peptide - GO hybrid hydrogels as a vehicle for the sequestration and controlled delivery of transforming growth factor beta-3 (TGF-β3), an anabolic growth factor (GF) known to direct NP cell fate and function.
Collapse
|
43
|
Adorinni S, Rozhin P, Marchesan S. Smart Hydrogels Meet Carbon Nanomaterials for New Frontiers in Medicine. Biomedicines 2021; 9:570. [PMID: 34070138 PMCID: PMC8158376 DOI: 10.3390/biomedicines9050570] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Carbon nanomaterials include diverse structures and morphologies, such as fullerenes, nano-onions, nanodots, nanodiamonds, nanohorns, nanotubes, and graphene-based materials. They have attracted great interest in medicine for their high innovative potential, owing to their unique electronic and mechanical properties. In this review, we describe the most recent advancements in their inclusion in hydrogels to yield smart systems that can respond to a variety of stimuli. In particular, we focus on graphene and carbon nanotubes, for applications that span from sensing and wearable electronics to drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Simone Adorinni
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
| | - Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
44
|
Sustained Release Systems for Delivery of Therapeutic Peptide/Protein. Biomacromolecules 2021; 22:2299-2324. [PMID: 33957752 DOI: 10.1021/acs.biomac.1c00160] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptide/protein therapeutics have been significantly applied in the clinical treatment of various diseases such as cancer, diabetes, etc. owing to their high biocompatibility, specificity, and therapeutic efficacy. However, due to their immunogenicity, instability stemming from its complex tertiary and quaternary structure, vulnerability to enzyme degradation, and rapid renal clearance, the clinical application of protein/peptide therapeutics is significantly confined. Though nanotechnology has been demonstrated to prevent enzyme degradation of the protein therapeutics and thus enhance the half-life, issues such as initial burst release and uncontrollable release kinetics are still unsolved. Moreover, the traditional administration method results in poor patient compliance, limiting the clinical application of protein/peptide therapeutics. Exploiting the sustained-release formulations for more controllable delivery of protein/peptide therapeutics to decrease the frequency of injection and enhance patient compliance is thus greatly meaningful. In this review, we comprehensively summarize the substantial advancements of protein/peptide sustained-release systems in the past decades. In addition, the advantages and disadvantages of all these sustained-release systems in clinical application together with their future challenges are also discussed in this review.
Collapse
|
45
|
Zhao M, Shi J, Cai W, Liu K, Shen K, Li Z, Wang Y, Hu D. Advances on Graphene-Based Nanomaterials and Mesenchymal Stem Cell-Derived Exosomes Applied in Cutaneous Wound Healing. Int J Nanomedicine 2021; 16:2647-2665. [PMID: 33854313 PMCID: PMC8040697 DOI: 10.2147/ijn.s300326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/27/2021] [Indexed: 12/15/2022] Open
Abstract
Graphene is a new type of carbon nanomaterial discovered after fullerene and carbon nanotube. Due to the excellent biological properties such as biocompatibility, cell proliferation stimulating, and antibacterial properties, graphene and its derivatives have become emerging candidates for the development of novel cutaneous wound dressings and composite scaffolds. On the other hand, pre-clinical research on exosomes derived from mesenchymal stem cells (MSC-Exos) has been intensified for cell-free treatment in wound healing and cutaneous regeneration, via ameliorating the damaged microenvironment of the wound site. Here, we provide a comprehensive understanding of the latest studies and observations on the various effects of graphene-based nanomaterials (GBNs) and MSC-Exos during the cutaneous wound repair process, as well as the putative mechanisms thereof. In addition, we propose the possible forward directions of GBNs and MSC-Exos applications, expecting to promote the clinical transformation.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Jihong Shi
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Weixia Cai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Kaituo Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Kuo Shen
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Zichao Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Yunchuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, Shannxi, 710032, People’s Republic of China
| |
Collapse
|
46
|
Gelatin reduced Graphene Oxide Nanosheets as Kartogenin Nanocarrier Induces Rat ADSCs Chondrogenic Differentiation Combining with Autophagy Modification. MATERIALS 2021; 14:ma14051053. [PMID: 33668133 PMCID: PMC7956601 DOI: 10.3390/ma14051053] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Biocompatible reduced graphene oxide (rGO) could deliver drugs for synergistically stimulating stem cells directed differentiation with influences on specific cellular activities. Here, we prepared a biodegradable gelatin reduced graphene oxide (rGO@Ge) to evaluate its functions in promoting rat adipose derived mesenchymal stem cells (ADSCs) chondrogenic differentiation through delivering kartogenin (KGN) into the stem cell efficiently. The optimum KGN concentration (approximately 1 μM) that promoted the proliferation and chondrogenic differentiation of ADSCs was clarified by a series of experiments, including immunofluorescent (IF) staining (Sox-9, Col II), alcian blue (Ab) staining, toluidine blue (Tb) staining and real-time quantitative PCR analysis of the chondrogenic markers. Meanwhile, the biocompatibility of rGO@Ge was evaluated to clearly define the nonhazardous concentration range, and the drug loading and releasing properties of rGO@Ge were tested with KGN for its further application in inducing ADSCs chondrogenic differentiation. Furthermore, the mechanism of rGO@Ge entering ADSCs was investigated by the different inhibitors that are involved in the endocytosis of the nanocarrier, and the degradation of the rGO@Ge in ADSCs was observed by transmission electron microscopy (TEM). The synergistic promoting effect of rGO@Ge nanocarrier on ADSCs chondrogenesis with KGN was also studied by the IF, Ab, Tb stainings and PCR analysis of the chondrogenic markers. Finally, the intracellular Reactive Oxygen Species (ROS) and autophagy induced by KGN/rGO@Ge complex composites were tested in details for clarification on the correlation between the autophagy and chondrogenesis in ADSCs induced by rGO@Ge. All the results show that rGO@Ge as a biocompatible nanocarrier can deliver KGN into ADSCs for exerting a pro-chondrogenic effect and assist the drug to promote ADSCs chondrogenesis synergistically through modification of the autophagy in vitro, which promised its further application in repairing cartilage defect in vivo.
Collapse
|
47
|
Walker M, Luo J, Pringle EW, Cantini M. ChondroGELesis: Hydrogels to harness the chondrogenic potential of stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111822. [PMID: 33579465 DOI: 10.1016/j.msec.2020.111822] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023]
Abstract
The extracellular matrix is a highly complex microenvironment, whose various components converge to regulate cell fate. Hydrogels, as water-swollen polymer networks composed by synthetic or natural materials, are ideal candidates to create biologically active substrates that mimic these matrices and target cell behaviour for a desired tissue engineering application. Indeed, the ability to tune their mechanical, structural, and biochemical properties provides a framework to recapitulate native tissues. This review explores how hydrogels have been engineered to harness the chondrogenic response of stem cells for the repair of damaged cartilage tissue. The signalling processes involved in hydrogel-driven chondrogenesis are also discussed, identifying critical pathways that should be taken into account during hydrogel design.
Collapse
Affiliation(s)
- Matthew Walker
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Jiajun Luo
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Eonan William Pringle
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK
| | - Marco Cantini
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, UK.
| |
Collapse
|
48
|
Lin H, Zhou Y, Lei Q, Lin D, Chen J, Wu C. Effect of inorganic phosphate on migration and osteogenic differentiation of bone marrow mesenchymal stem cells. BMC DEVELOPMENTAL BIOLOGY 2021; 21:1. [PMID: 33407089 PMCID: PMC7788862 DOI: 10.1186/s12861-020-00229-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/10/2020] [Indexed: 12/26/2022]
Abstract
Background Phosphate is the major ingredient of bone tissue, and is also an important component of commercial bone substitute materials, bone scaffolds, and implant surface coatings. With the dissolution of the bone substitute materials and the degradation by cells, local ion concentrations will change and affect bone tissue reconstruction. Bone marrow -derived mesenchymal stem cells (BM-MSCs) are main autologous cells to repair injured bone. When bone injure occurs, BM-MSCs migrate to the damaged area, differentiate into osteoblasts, and secrete bioactive factors to promote bone tissue repaired. This study aimed to investigate the effect of inorganic phosphate (Pi) at a series of concentration on migration and osteogenic differentiation of human bone marrow -derived mesenchymal stem cells(hBM-MSCs). Methods The culture of hBM-MSCs in mediums with different concentration of Pi from 2 mM to 10 mM were performed. HBM-MSCs migration were examined with transwell assays. HBM-MSCs proliferation were evaluated by cell counting kit-8 colorimetric method. Osteogenic genes expression were analyzed by real-time reverse transcriptase polymerase chain reaction. Mineralized nodules formation were demonstrated by Alizarin red staining. Result 4–10 mM Pi could effectively promote the migration of hBM-MSCs at 12 h and 18 h. There was no significant difference in the migration number of hBM-MSCs in Pi culture mediums at a concentration of 6, 8, and10mM. 2–10 mM Pi could promote the proliferation of hBM-MSCs to varying degrees in the observation period, while 4–10 mM Pi could promote the osteogenic differentiation and mineralization of hBM-MSCs. Conclusion The findings in our study showed 4-10 mM Pi could promote the migration, osteogenic differentiation, and mineralization of hBM-MSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-020-00229-x.
Collapse
Affiliation(s)
- Hengzhang Lin
- Department of Stomatology, Fujian Provincial Governmental Hospital, Fuzhou, China
| | - Yong Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Qun Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| | - Dong Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Chuhuo Wu
- Fujian Medical University, Fuzhou, China
| |
Collapse
|
49
|
Han X, Xu H, Che L, Sha D, Huang C, Meng T, Song D. Application of Inorganic Nanocomposite Hydrogels in Bone Tissue Engineering. iScience 2020; 23:101845. [PMID: 33305193 PMCID: PMC7711279 DOI: 10.1016/j.isci.2020.101845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone defects caused by trauma and surgery are common clinical problems encountered by orthopedic surgeons. Thus, a hard-textured, natural-like biomaterial that enables encapsulated cells to obtain the much-needed biophysical stimulation and produce functional bone tissue is needed. Incorporating nanomaterials into cell-laden hydrogels is a straightforward tactic for producing tissue engineering structures that integrate perfectly with the body and for tailoring the material characteristics of hydrogels without hindering nutrient exchange with the surroundings. In this review, recent developments in inorganic nanocomposite hydrogels for bone tissue engineering that are of vital importance but have not yet been comprehensively reviewed are summarized.
Collapse
Affiliation(s)
- Xiaying Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai 200080, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lingbin Che
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai 200080, China
| | - Dongyong Sha
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Chaojun Huang
- Department of Orthopedics, Shanghai General Hospital, Nanjing Medical University, Shanghai 200080, China
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai 200080, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai 200080, China
| |
Collapse
|
50
|
Cao B, Dai X. Platelet lysate induces chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells by regulating the lncRNA H19/miR-29b-3p/SOX9 axis. FEBS Open Bio 2020; 10:2656-2665. [PMID: 33058414 PMCID: PMC7714074 DOI: 10.1002/2211-5463.13002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/20/2020] [Accepted: 10/10/2020] [Indexed: 11/25/2022] Open
Abstract
Platelet lysate (PL) has been shown to induce chondrogenic differentiation of human umbilical cord‐derived mesenchymal stem cells (hUCMSCs). However, the underlying mechanism is still not clear. The aim of this study was to investigate whether long noncoding RNA H19 is involved in this process. hUCMSCs were isolated, identified and cultured in 5% PL‐supplemented chondrogenic differentiation medium. Chondrogenic differentiation was assessed by Alcian blue staining. The expressions of H19, miR‐29b‐3p, SRY‐related high‐mobility‐group box 9 (SOX9), collagen II and aggrecan were determined by quantitative real‐time PCR and western blot. The interaction between miR‐29b‐3p and H19 or SOX9 was analyzed by luciferase reporter assay. During PL‐induced chondrogenic differentiation of hUCMSCs, expressions of H19 and SOX9 were increased, whereas miR‐29b‐3p expression was decreased. H19 overexpression promoted, whereas H19 silencing attenuated the PL‐induced chondrogenic differentiation of hUCMSCs. SOX9 was identified as a direct target of miR‐29b‐3p, and H19 was observed to act as a sponge of miR‐29b‐3p to up‐regulate SOX9 expression. The chondrogenic differentiation‐promoting effect of H19 overexpression was negated when miR‐29b‐3p expression was up‐regulated by Lenti‐miR‐29b‐3p infection. In conclusion, PL induced chondrogenic differentiation of hUCMSCs by regulating the H19/miR‐29b‐3p/SOX9 axis.
Collapse
Affiliation(s)
- Boran Cao
- Department of OrthopedicsThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xin Dai
- Department of OncologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|