1
|
Tang Y, Wu B, Li J, Lu C, Wu J, Xiong R. Biomimetic Structural Hydrogels Reinforced by Gradient Twisted Plywood Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411372. [PMID: 39487623 DOI: 10.1002/adma.202411372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/16/2024] [Indexed: 11/04/2024]
Abstract
Naturally structural hydrogels such as crustacean exoskeletons possess a remarkable combination of seemingly contradictory properties: high strength, modulus, and toughness coupled with exceptional fatigue resistance, owing to their hierarchical structures across multiple length scales. However, replicating these unique mechanical properties in synthetic hydrogels remains a significant challenge. This work presents a synergistic approach for constructing hierarchical structural hydrogels by employing cholesteric liquid crystal self-assembly followed by nanocrystalline engineering. The resulting hydrogels exhibit a long-range ordered gradient twisted plywood structure with high crystallinity to mimic the design of crustacean exoskeletons. Consequently, the structural hydrogels achieve an unprecedented combination of ultrahigh strength (46 ± 3 MPa), modulus (496 ± 25 MPa), and toughness (170 ± 14 MJ m-3), together with recorded high fatigue threshold (32.5 kJ m-2) and superior impact resistance (48 ± 2 kJ m-1). Additionally, through controlling geometry and compositional gradients of the hierarchical structures, a programmable shape morphing process allows for the fabrication of complex 3D hydrogels. This study not only offers valuable insights into advanced design strategies applicable to a broad range of promising hierarchical materials, but also pave the ways for load-bearing applications in tissue engineering, wearable devices, and soft robotics.
Collapse
Affiliation(s)
- Yulu Tang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Bentao Wu
- School of Advanced Manufacturing, Sun Yat-sen University, Shenzhen, 51000, P. R. China
| | - Jie Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| | - Jianing Wu
- School of Advanced Manufacturing, Sun Yat-sen University, Shenzhen, 51000, P. R. China
| | - Rui Xiong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
2
|
Obiechefu Z, Onwubu SC, Naidoo D, Mokhothu TH, Mdluli PS. Comparison of Biowaste Fillers Extracted from Fish Scales and Collagen on the Mechanical Properties of High-Density Polyurethane Foams. Polymers (Basel) 2024; 16:2825. [PMID: 39408534 PMCID: PMC11478490 DOI: 10.3390/polym16192825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The utilization of biowaste fillers in the development of high-density polyurethane (PU) foams has gained significant attention due to environmental and economic benefits. This study investigates the mechanical properties of PU foams reinforced with biowaste fillers extracted from fish scales (FS) and fish scale-derived collagen (FSC). The fish scales and collagen were characterized for their composition and integrated into PU foams at various loadings. Mechanical properties such as tensile strength, hardness, and density were evaluated. ANOVA was used to analyze the mean values. Bonferroni tests were used to identify differences between the filler materials (α = 0.05). The tensile strength increases with an increase in filler content for both FS (59.48 Kpa) and FSC (65.43 Kpa). No differences were observed between FS and FSC in tensile strength. Significant differences were observed between the FS and FSC in both hardness and density (p < 0.001). The results demonstrated that both fillers enhanced the mechanical properties of PU foams, with collagen-reinforced foams showing superior performance. This suggests that collagen and fish scales can be effective biowaste fillers for developing environmentally friendly PU foams with enhanced mechanical properties.
Collapse
Affiliation(s)
- Zodidi Obiechefu
- Chemistry Department, Durban University of Technology (DUT), Durban 4001, South Africa; (Z.O.); (D.N.); (T.H.M.)
| | - Stanley Chibuzor Onwubu
- Chemistry Department, Durban University of Technology (DUT), Durban 4001, South Africa; (Z.O.); (D.N.); (T.H.M.)
| | - Deneshree Naidoo
- Chemistry Department, Durban University of Technology (DUT), Durban 4001, South Africa; (Z.O.); (D.N.); (T.H.M.)
| | - Thabang Hendrica Mokhothu
- Chemistry Department, Durban University of Technology (DUT), Durban 4001, South Africa; (Z.O.); (D.N.); (T.H.M.)
| | - Phumlane Selby Mdluli
- Health Platform, Advanced Materials Division, Mintek, Randburg 2194, South Africa;
- Faculty of Applied Science, Durban University of Technology, Durban 4001, South Africa
| |
Collapse
|
3
|
Nash RJ, Li Y. On-demand auxeticity and co-existing pre-tension induced compression stage in a sandwich design with kinematically constrained 3D suture tiles. Nat Commun 2024; 15:6994. [PMID: 39143060 PMCID: PMC11324751 DOI: 10.1038/s41467-024-50664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
By incorporating concepts from auxeticity, kinematic constraints, pre-tension induced compression (PIC), and suture tessellations, tiled sandwich composites are designed, demonstrating behaviors attributed to the synergy between auxeticity and pre-tension induced contact and compression, simultaneously triggered by a threshold strain. The designs can theoretically achieve on-demand Poisson's ratio in the widest range (-∞, +∞), and once triggered, the Poisson's ratio is stable under large deformation. Also, once the overall strain goes beyond the threshold, the designs enter into a PIC stage, ensuring the middle soft layer takes the tensile load, while the tiles are under compression via contact and the 3D articulation of the tooth-channel pairs. In this PIC stage, the tooth-channel pairs provide kinematic constraints via the contact and relative sliding between teeth and channels. The deformation mechanisms and mechanical properties of them are systematically explored via an integrated analytical, numerical, and experimental approach. Mechanical experiments are performed on 3D printed specimens. It is found that the length aspect ratio and the obliqueness of the teeth significantly influence the constraint angle and therefore the auxeticity and strength of the designs.
Collapse
Affiliation(s)
- Richard J Nash
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02215, USA
| | - Yaning Li
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02215, USA.
| |
Collapse
|
4
|
Chen T, Yang X, Zhang B, Li J, Pan J, Wang Y. Scale-inspired programmable robotic structures with concurrent shape morphing and stiffness variation. Sci Robot 2024; 9:eadl0307. [PMID: 39018371 DOI: 10.1126/scirobotics.adl0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
Biological organisms often have remarkable multifunctionality through intricate structures, such as concurrent shape morphing and stiffness variation in the octopus. Soft robots, which are inspired by natural creatures, usually require the integration of separate modules to achieve these various functions. As a result, the whole structure is cumbersome, and the control system is complex, often involving multiple control loops to finish a required task. Here, inspired by the scales that cover creatures like pangolins and fish, we developed a robotic structure that can vary its stiffness and change shape simultaneously in a highly integrated, compact body. The scale-inspired layered structure (SAILS) was enabled by the inversely designed programmable surface patterns of the scales. After fabrication, SAILS was inherently soft and flexible. When sealed in an elastic envelope and subjected to negative confining pressure, it transitioned to its designated shape and concurrently became stiff. SAILS could be actuated at frequencies as high as 5 hertz and achieved an apparent bending modulus change of up to 53 times between its soft and stiff states. We further demonstrated both the versatility of SAILS by developing a soft robot that is amphibious and adaptive and tunable landing systems for drones with the capacity to accommodate different loads.
Collapse
Affiliation(s)
- Tianyu Chen
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Xudong Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Bojian Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Junwei Li
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Jie Pan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Yifan Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| |
Collapse
|
5
|
Nash RJ, Li Y. Direction-dependent bending resistance of 3D printed bio-inspired composites with asymmetric 3D articulated tiles. BIOINSPIRATION & BIOMIMETICS 2024; 19:056006. [PMID: 38959906 DOI: 10.1088/1748-3190/ad5ee7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Inspired by the protective armors in nature, composites with asymmetric 3D articulated tiles attached to a soft layer are designed and fabricated via a multi-material 3D printer. The bending resistance of the new designs are characterized via three-point bending experiments. Bending rigidity, strength, and final deflection of the designs are quantified and compared when loaded in two different in-plane and two different out-of-plane directions. It is found that in general, the designs with articulated tiles show direction-dependent bending behaviors with significantly increased bending rigidity, strength, and deflection to final failure in certain loading directions, as is attributed to the asymmetric tile articulation (asymmetric about the mid-plane of tiles) and an interesting sliding-induced auxetic effect. Analytical, numerical, and experimental analyses are conducted to unveil the underlying mechanisms.
Collapse
Affiliation(s)
- Richard J Nash
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02215, United States of America
| | - Yaning Li
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02215, United States of America
| |
Collapse
|
6
|
Tan Y, Jia Z, Deng Z, Li L. Elasmoid fish scales as a natural fibre composite: microscopic heterogeneities in structure, mineral distribution, and mechanical properties. Interface Focus 2024; 14:20230074. [PMID: 39081626 PMCID: PMC11285402 DOI: 10.1098/rsfs.2023.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 08/02/2024] Open
Abstract
The elasmoid scales in teleost fish serve as exemplary models for natural fibre composites with integrated flexibility and protection. Yet, limited research has been focused on the potential structural, chemical, and mechanical heterogeneity within individual scales. This study presents systematic characterizations of the elasmoid scales from black drum fish (Pogonias cromis) at different zones within individual scales as a natural fibre composite, focusing on the microscopic structural heterogeneities and corresponding mechanical effects. The focus field at the centre of the scales exhibits a classical tri-layered collagen-based composite design, consisting of the mineralized outermost limiting layer, external elasmodine layer in the middle, and the unmineralized internal elasmodine layer. In comparison, the rostral field at the anterior end of the scales exhibits a two-layered design: the mineralized outermost limiting layer exhibits radii sections on the outer surface, and the inner elasmodine layer consists of collagen fibre-based sublayers with alternating mineralization levels. Chemical and nanoindentation analysis suggests a close correlation between the mineralization levels and the local nanomechanical properties. Comparative finite element modelling shows that the rostral-field scales achieve increased flexibility under both concave and convex bending. Moreover, the evolving geometries of isolated Mandle's corpuscles in the internal elasmodine layer, transitioning from irregular shapes to faceted octahedrons, suggest the mechanisms of mineral growth and space-filling to thicken the mineralized layers in scales during growth, which enhances the bonding strength between the adjacent collagen fibre layers. This work offers new insights into the structural variations in individual elasmoid scales, providing strategies for bioinspired fibre composite designs with local-adapted functional requirements.
Collapse
Affiliation(s)
- Yiming Tan
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA24061, USA
| | - Zian Jia
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA24061, USA
| | - Zhifei Deng
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA24061, USA
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD21218, USA
| | - Ling Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA24061, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA19104, USA
| |
Collapse
|
7
|
Yu HP, Zhu YJ. Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chem Soc Rev 2024; 53:4490-4606. [PMID: 38502087 DOI: 10.1039/d2cs00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
Collapse
Affiliation(s)
- Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Esteban MÁ. A review of soluble factors and receptors involved in fish skin immunity: The tip of the iceberg. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109311. [PMID: 38128682 DOI: 10.1016/j.fsi.2023.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The immune system of fish possesses soluble factors, receptors, pathways and cells very similar to those of the other vertebrates' immune system. Throughout evolutionary history, the exocrine secretions of organisms have accumulated a large reservoir of soluble factors that serve to protect organisms from microbial pathogens that could disrupt mucosal barrier homeostasis. In parallel, a diverse set of recognition molecules have been discovered that alert the organism to the presence of pathogens. The known functions of both the soluble factors and receptors mentioned above encompass critical aspects of host defense, such as pathogen binding and neutralization, opsonization, or modulation of inflammation if present. The molecules and receptors cooperate and are able to initiate the most appropriate immune response in an attempt to eliminate pathogens before host infection can begin. Furthermore, these recognition molecules, working in coordination with soluble defence factors, collaboratively erect a robust and perfectly coordinated defence system with complementary specificity, activity and tissue distribution. This intricate network constitutes an immensely effective defence mechanism for fish. In this context, the present review focuses on some of the main soluble factors and recognition molecules studied in the last decade in the skin mucosa of teleost fish. However, knowledge of these molecules is still very limited in all teleosts. Therefore, further studies are suggested throughout the review that would help to better understand the functions in which the proteins studied are involved.
Collapse
Affiliation(s)
- María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
9
|
Park JE, Je H, Kim CR, Park S, Yu Y, Cho W, Won S, Kang DJ, Han TH, Kwak R, Lee SG, Kim S, Wie JJ. Programming Anisotropic Functionality of 3D Microdenticles by Staggered-Overlapped and Multilayered Microarchitectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309518. [PMID: 38014492 DOI: 10.1002/adma.202309518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Natural sharkskin features staggered-overlapped and multilayered architectures of riblet-textured anisotropic microdenticles, exhibiting drag reduction and providing a flexible yet strong armor. However, the artificial fabrication of three-dimensional (3D) sharkskin with these unique functionalities and mechanical integrity is a challenge using conventional techniques. In this study, it is reported on the facile microfabrication of multilayered 3D sharkskin through the magnetic actuation of polymeric composites and subsequent chemical shape fixation by casting thin polymeric films. The fabricated hydrophobic sharkskin, with geometric symmetry breaking, achieves anisotropic drag reduction in frontal and backward flow directions against the riblet-textured microdenticles. For mechanical integrity, hard-on-soft multilayered mechanical properties are realized by coating the polymeric sharkskin with thin layers of zinc oxide and platinum, which have higher hardness and recovery behaviors than the polymer. This multilayered hard-on-soft sharkskin exhibits friction anisotropy, mechanical robustness, and structural recovery. Furthermore, coating the MXene nanosheets provides the fabricated sharkskin with a low electrical resistance of ≈5.3 Ω, which leads to high Joule heating (≈229.9 °C at 2.75 V). The proposed magnetomechanical actuation-assisted microfabrication strategy is expected to facilitate the development of devices requiring multifunctional microtextures.
Collapse
Affiliation(s)
- Jeong Eun Park
- Department of Organic and Nano Engineering, The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyeongmin Je
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chae Ryean Kim
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Sudong Park
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yeonuk Yu
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Woongbi Cho
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sukyoung Won
- Department of Organic and Nano Engineering, The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Jun Kang
- Department of Organic and Nano Engineering, The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Hee Han
- Department of Organic and Nano Engineering, The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
| | - Rhokyun Kwak
- Department of Mechanical Convergence Engineering, Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seung Goo Lee
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Sanha Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jeong Jae Wie
- Department of Organic and Nano Engineering, Human-Tech Convergence Program, Department of Chemical Engineering, Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Chemical Engineering, The Michael M. Szwarc Polymer Research Institute, State University of New York College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| |
Collapse
|
10
|
Doodi R, Gunji BM. Prediction and experimental validation approach to improve performance of novel hybrid bio-inspired 3D printed lattice structures using artificial neural networks. Sci Rep 2023; 13:7763. [PMID: 37173382 PMCID: PMC10182031 DOI: 10.1038/s41598-023-33935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Novel Cellular lattice structures with lightweight designs are gaining more interest in the automobile and aerospace sectors. Additive manufacturing technologies have focused on designing and manufacturing cellular structures in recent years, increasing the versatility of these structures because of the significant benefits like high strength-to-weight ratio. In this research, a novel hybrid type of cellular lattice structure is designed, bio-inspired from the circular patterns seen in the bamboo tree structure and the overlapping patterns found on the dermal layers of fish-like species. The unit lattice cell with varied overlapping areas with a unit cell wall thickness of 0.4 to 0.6 mm. Fusion 360 software models the lattice structures with a constant volume of 40 × 40 × 40 mm. Utilizing the stereolithography (SLA) process and a vat polymerization type three-dimensional printing equipment is used to fabricate the 3D printed specimens. A quasi-static compression test was carried out on all 3D printed specimens, and the energy absorption capacity of each structure was calculated. Machine learning technique like the Artificial neural network (ANN) with Levenberg-Marquardt Algorithm (ANN-LM) was applied to the present research to predict the energy absorption of the lattice structure with parameters such as overlapping area, wall thickness, and size of the unit cell. The k-fold cross-validation technique was applied in the training phase to get the best training results. Overall, the results obtained using the ANN tool are validated and can be a favourable tool for lattice energy prediction with available data.
Collapse
Affiliation(s)
- Ramakrishna Doodi
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Bala Murali Gunji
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
11
|
Guo M, Wu S, Zhao J, Zhuang J, Wu Q. Characterization of the structural and mechanical properties of pinecone fish (Monocentris japonica) scales. Microsc Res Tech 2023; 86:589-599. [PMID: 36715138 DOI: 10.1002/jemt.24297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/21/2022] [Accepted: 01/15/2023] [Indexed: 01/31/2023]
Abstract
In this paper, the microstructure characteristics and mechanical properties (including nano-indentation, tensile, and penetration behaviors) of the scales from pinecone fish (Monocentris japonica) were investigated. The M. japonica scales display a unique hierarchical structure and consist of three layers: an outer bone layer with high mineralization, an intermediate bone layer with obvious pore structures, and an inner collagen layer composed of multiple plies of collagen fibers. The hardness and indentation modulus of the three structural layers exhibit gradient changes, and decrease gradually from the outer layer to the inner layer. Tensile tests show that the tensile response and failure modes of the scales are different under dry and hydrated conditions. The dry scales have higher tensile strength (46.35 MPa) and Young's modulus (0.74 GPa), while the hydrated scales exhibit higher ultimate strain (20.18%) and toughness (4.57 MPa). Penetration tests indicate that the scales have a significantly high resistance to penetration, and increase the penetration force by more than six times compared with the descaled skin. Furthermore, the structure-property relationship of the M. japonica scales was discussed. It is found that the hard outer layer and the porous intermediate layer help to disperse the stress, and the soft inner layer containing collagen fiber plies helps to deflect the crack propagation, which are responsible for the excellent mechanical properties of the scales. The outcome of this study can provide a valuable biomimetic design inspiration for lightweight and high-strength composite materials in engineering fields. RESEARCH HIGHLIGHTS: Microstructure characteristics and mechanical properties of the Monocentris japonica scales were investigated. The M. japonica scales can be divided into three layers rather than two layers. The M. japonica scales exhibited high tensile strength and penetration resistance.
Collapse
Affiliation(s)
- Mingzhuo Guo
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Siyang Wu
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China.,Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, China
| | - Jiale Zhao
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, China
| | - Jian Zhuang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, China
| | - Qian Wu
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China.,Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, China
| |
Collapse
|
12
|
Zheng Y, Li X, Liu P, Chen Y, Guo C. The Armor of the Chinese Sturgeon: A Study of the Microstructure and Mechanical Properties of the Ventral Bony Plates. MICROMACHINES 2023; 14:256. [PMID: 36837956 PMCID: PMC9959584 DOI: 10.3390/mi14020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Benefiting from their unique morphological characteristics and structural properties, the ventral bony plates of the Chinese sturgeon are excellent biological protective tissue. In this work, we studied the micro- and macro-morphology and mechanical properties of the ventral bony plates of the Chinese sturgeon to elucidate the special protective mechanisms of the bony plates. Experiments involving scanning electron microscopy and energy-dispersive X-ray spectroscopy revealed that the bony plates possess a hierarchical structure and a ridge-like shape. This structure comprises a surface layer containing mineralized nanocrystals and an internal layer containing mineralized collagen fibers. From the surface layer to the internal layer, the degree of mineralization decreases gradually. Nanoindentation, tension, and compression tests demonstrated that the bony plates feature excellent mechanical properties and a high specific tensile strength comparable to that of stainless steel. Moreover, water can significantly improve the fracture toughness and deformability of the bony plates and effectively enhance the damage tolerance of the structures. The obtained results concerning the microstructure-property-function relationships of the ventral bony plates of the Chinese sturgeon may provide novel insights for designing protective structures that are both lightweight and high strength.
Collapse
Affiliation(s)
- Yu Zheng
- College of Mechanical and Electrical Engineering, Suqian University, Suqian 223800, China
| | - Xin Li
- College of Mechanical and Electrical Engineering, Suqian University, Suqian 223800, China
| | - Ping Liu
- College of Mechanical and Electrical Engineering, Suqian University, Suqian 223800, China
| | - Ying Chen
- College of Mechanical and Electrical Engineering, Suqian University, Suqian 223800, China
| | - Ce Guo
- Institute of Bio-Inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
13
|
Zhang E, Tung CH, Feng L, Zhou YR. Superior Damage Tolerance of Fish Skins. MATERIALS (BASEL, SWITZERLAND) 2023; 16:953. [PMID: 36769958 PMCID: PMC9918016 DOI: 10.3390/ma16030953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/28/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Skin is the largest organ of many animals. Its protective function against hostile environments and predatorial attack makes high mechanical strength a vital characteristic. Here, we measured the mechanical properties of bass fish skins and found that fish skins are highly ductile with a rupture strain of up to 30-40% and a rupture strength of 10-15 MPa. The fish skins exhibit a strain-stiffening behavior. Stretching can effectively eliminate the stress concentrations near the pre-existing holes and edge notches, suggesting that the skins are highly damage tolerant. Our measurement determined a flaw-insensitivity length that exceeds those of most engineering materials. The strain-stiffening and damage tolerance of fish skins are explained by an agent-based model of a collagen network in which the load-bearing collagen microfibers assembled from nanofibrils undergo straightening and reorientation upon stretching. Our study inspires the development of artificial skins that are thin, flexible, but highly fracture-resistant and widely applicable in soft robots.
Collapse
Affiliation(s)
- Emily Zhang
- State College Area High School, State College, PA 16801, USA
| | - Chi-Huan Tung
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Luyi Feng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, State College, PA 16802, USA
| | - Yu Ren Zhou
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
In Vitro Bioaccessibility of Selenium from Commonly Consumed Fish in Thailand. Foods 2022; 11:foods11213312. [PMID: 36359924 PMCID: PMC9656991 DOI: 10.3390/foods11213312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022] Open
Abstract
Selenium (Se), abundantly obtained in fish, is a crucial trace element for human health. Since there are no data on Se bioaccessibility from commonly consumed fish in Thailand, this study assessed the in vitro bioaccessibility of Se using the equilibrium dialyzability method. The five fish species most commonly consumed in Thailand were selected to determine total Se content using several preparation methods (fresh, boiling, and frying). Equilibrium dialyzability was used to perform in vitro bioaccessibility using enzymatic treatment to simulate gastrointestinal digestion for all boiled and fried fish as well as measuring Se using inductively coupled plasma triple quadrupole mass spectrometry (ICP-QQQ-MS). Two-way ANOVA with interaction followed by Tukey’s honestly significant difference (HSD) post hoc test revealed that boiled Indo-Pacific Spanish mackerel, longtail tuna, and short-bodied mackerel were significantly higher in Se content than striped snakehead and giant sea perch (p < 0.05). For fried fish, longtail tuna showed the highest Se content (262.4 µg/100 g of product) and was significantly different compared to the other fish (p < 0.05, estimated marginal means was 43.8−115.6 µg/100 g of product). Se bioaccessibilities from striped snakehead (70.0%) and Indo-Pacific Spanish mackerel (64.6%) were significantly higher than for longtail tuna (p < 0.05). No significant difference in bioaccessibility was found in terms of preparation method (i.e., boiling and frying). In conclusion, the fish included in this study, either boiled or fried, have high Se content and are good sources of Se due to high bioaccessibility.
Collapse
|
15
|
Kayacan MY, Üzün A. Ballistic performance of novel design of bulletproof plates inspired by biomimetic approaches. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Ahmet Üzün
- Mechanical Engineering Isparta University of Applied Sciences Isparta Turkey
| |
Collapse
|
16
|
Hossain MS, Ebrahimi H, Ghosh R. Fish scale inspired structures-a review of materials, manufacturing and models. BIOINSPIRATION & BIOMIMETICS 2022; 17:061001. [PMID: 35803252 DOI: 10.1088/1748-3190/ac7fd0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Fish scale inspired materials and structures can provide advanced mechanical properties and functionalities. These materials, inspired by fish scales, take the form of either composite materials or multi-material discrete exoskeleton type structures. Over the last decade they have been under intense scrutiny for generating tailorable and tunable stiffness, penetration and fracture resistance, buckling prevention, nonlinear damping, hydrodynamic and camouflaging functions. Such programmable behavior emerges from leveraging their unique morphology and structure-property relationships. Several advanced tools for characterization, manufacturing, modeling and computation have been employed to understand and discover their behavior. With the rapid proliferation of additive manufacturing techniques and advances in modeling and computational methods, this field is seeing renewed efforts to realize even more ambitious designs. In this paper we present a review and recapitulation of the state-of-the art of fish scale inspired materials.
Collapse
Affiliation(s)
- Md Shahjahan Hossain
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States of America
| | - Hossein Ebrahimi
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States of America
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States of America
| |
Collapse
|
17
|
Yu C, Tseng B, Yang Z, Tung C, Zhao E, Ren Z, Yu S, Chen P, Chen C, Buehler MJ. Hierarchical Multiresolution Design of Bioinspired Structural Composites Using Progressive Reinforcement Learning. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chi‐Hua Yu
- Department of Engineering Science National Cheng Kung University No. 1, University Rd. Tainan 701 Taiwan
- Laboratory for Atomistic and Molecular Mechanics Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Bor‐Yann Tseng
- Department of Engineering Science National Cheng Kung University No. 1, University Rd. Tainan 701 Taiwan
| | - Zhenze Yang
- Laboratory for Atomistic and Molecular Mechanics Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
- Department of Materials Science and Engineering Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
| | - Cheng‐Che Tung
- Department of Materials Science and Engineering National Tsing Hua University No.101, Section 2, Kuang‐Fu Road Hsinchu 300044 Taiwan
| | - Elena Zhao
- Deerfield Academy 7 Boyden Ln Deerfield MA 01342 USA
| | - Zhi‐Fan Ren
- Department of Chemical Engineering National Cheng Kung University No. 1, University Rd. Tainan 701 Taiwan
| | - Sheng‐Sheng Yu
- Department of Chemical Engineering National Cheng Kung University No. 1, University Rd. Tainan 701 Taiwan
| | - Po‐Yu Chen
- Department of Materials Science and Engineering National Tsing Hua University No.101, Section 2, Kuang‐Fu Road Hsinchu 300044 Taiwan
| | - Chuin‐Shan Chen
- Department of Civil Engineering National Taiwan University No. 1, Sec. 4, Roosevelt Rd. Taipei 10617 Taiwan
- Department of Materials Science and Engineering National Taiwan University No. 1, Sec. 4, Roosevelt Rd. Taipei 10617 Taiwan
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
- Department of Materials Science and Engineering Massachusetts Institute of Technology 77 Massachusetts Ave. Cambridge MA 02139 USA
- Center for Computational Science and Engineering, Schwarzman College of Computing Massachusetts Institute of Technology 77 Massachusetts Ave Cambridge MA 02139 USA
- Center for Materials Science and Engineering 77 Massachusetts Ave Cambridge MA 02139 USA
| |
Collapse
|
18
|
Singhato A, Judprasong K, Sridonpai P, Laitip N, Ornthai N, Yafa C, Chimkerd C. Effect of Different Cooking Methods on Selenium Content of Fish Commonly Consumed in Thailand. Foods 2022; 11:foods11121808. [PMID: 35742006 PMCID: PMC9222360 DOI: 10.3390/foods11121808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
Although fish are good sources of selenium (Se), an essential trace element for the human body, very limited data exist on Se content in commonly consumed fish in Thailand. Consequently, this study investigated selenium content and the effect of cooking among 10 fish species (5 freshwater and 5 marine) most-commonly consumed by the Thai people. The fish were purchased from three representative wholesale markets within or nearby to Bangkok. All fish species were prepared to determine their edible portions (EP) and moisture contents. Total Se in fresh, boiled, and fried fish were analysed using Inductively Coupled Plasma-Triple Quadrupole-Mass Spectrometry (ICP-QQQ-MS). In general, higher levels of Se were found in marine fish (37.1−198.5 µg/100 g EP in fresh fish, 48.0−154.4 µg/100 g EP in boiled fish, and 52.9−262.4 µg/100 g EP in fried fish) compared to freshwater fish (6.9−29.4 µg/100 g EP in fresh fish, 10.1−26.5 µg/100 g EP in boiled fish, and 13.7−43.8 µg/100 g EP in fried fish). While Longtail tuna showed significantly higher Se content than other fish (p < 0.05), boiled Longtail tuna had significantly lower true retention of Se than the other fish (p < 0.05). Most fish species retained a high level of selenium (ranged 64.1−100.0% true retention in boiling and frying). Longtail tuna, Short-bodied mackerel, Indo-pacific Spanish mackerel, Nile tilapia, and red Nile tilapia−cooked by boiling and frying−are recommended for consumption as excellent sources of selenium.
Collapse
Affiliation(s)
- Alongkote Singhato
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Kunchit Judprasong
- Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (C.C.)
- Correspondence: ; Tel.: +66-2800-2380
| | - Piyanut Sridonpai
- Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (C.C.)
| | - Nunnapus Laitip
- Chemical Metrology and Biometry Department, National Institute of Metrology (Thailand), Pathum Thani 12120, Thailand; (N.L.); (N.O.); (C.Y.)
| | - Nattikarn Ornthai
- Chemical Metrology and Biometry Department, National Institute of Metrology (Thailand), Pathum Thani 12120, Thailand; (N.L.); (N.O.); (C.Y.)
| | - Charun Yafa
- Chemical Metrology and Biometry Department, National Institute of Metrology (Thailand), Pathum Thani 12120, Thailand; (N.L.); (N.O.); (C.Y.)
| | - Chanika Chimkerd
- Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand; (P.S.); (C.C.)
| |
Collapse
|
19
|
Rawat P, Liu P, Zhang C, Guo S, Jawad LA, Sadighzadeh Z, Zhu D. Hierarchical structure and mechanical properties of fish scales from Lutjanidae with different habitat depths. JOURNAL OF FISH BIOLOGY 2022; 100:242-252. [PMID: 34739135 DOI: 10.1111/jfb.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
In recent days, many researchers are focusing on emerging a new class of bio-inspired architectured materials. The primary strategy of these architecture designs is directly dependent on the types of available literature based on higher-ordered species such as nacre and fish scales. In this study, the authors have investigated the microstructural features and mechanical properties of five different ray-finned fish scales from Lutjanidae family collected in Iran. It was found that habitat depth and habits may result in significant changes in scale's surface morphology and mechanical properties. Interestingly, the variations in cross-sectional microstructural features such as fibre orientation and layer thickness ratios in scales did not show noticeable differences. It has also been proved that the mechanical performance of fish scales is influenced by the shape, array pattern and compactness of strips on posterior edges in a scale. Moreover, the radii count at anterior positions is higher in fishes living in wide-ranging depth; it supports in achieving higher scale stiffness and flexibility during movement. Consideration of these factors may help in optimising the performance of newly designed architectured materials subjected to mechanical loadings.
Collapse
Affiliation(s)
- Prashant Rawat
- Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha, P. R. China
- Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, India
- International Science Innovation Collaboration Base for Green & Advanced Civil Engineering Materials of Hunan Province, Hunan University, Changsha, P. R. China
| | - Peng Liu
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, P. R. China
| | - Chaohui Zhang
- Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Shuaicheng Guo
- Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha, P. R. China
- International Science Innovation Collaboration Base for Green & Advanced Civil Engineering Materials of Hunan Province, Hunan University, Changsha, P. R. China
| | - Laith A Jawad
- School of Environmental and Animal Sciences, Unitec Institute of Technology, Auckland, New Zealand
| | - Zahra Sadighzadeh
- Marine Biology Department, Graduate school of Marine Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Deju Zhu
- Key Laboratory for Green & Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha, P. R. China
- International Science Innovation Collaboration Base for Green & Advanced Civil Engineering Materials of Hunan Province, Hunan University, Changsha, P. R. China
| |
Collapse
|
20
|
Nishikawa H, Araoka F. A New Class of Chiral Nematic Phase with Helical Polar Order. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101305. [PMID: 34278630 DOI: 10.1002/adma.202101305] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/25/2021] [Indexed: 06/13/2023]
Abstract
A novel chiral nematic phase with a polar helical order is realized via the introduction of helical twisting power into a polar nematogen. The properties of the induced polar nematic (polar cholesteric: Np*) phase differ from those of the conventional cholesteric (N*) phases existing thus far. Np*, which is a new class of N* structures, is characterized not only by its helically twisted nematic director, but also by a continuously twisted polarization. Transmission spectroscopy and helical pitch measurements in a wedge cell revealed that the half-helical pitch in the Np* phase vanished because of the polar response in the Np* helix. The inner polar director in the Np* phase is confirmed in dielectric and second-harmonic-generation studies. Furthermore, this unique Np*LC, which corresponds to a half-/full-pitch helix, enables ultrafast electro-optic switching (τ < 20 µs), and proposes new potential applications for electrically interchangeable photonic bandgaps.
Collapse
Affiliation(s)
- Hiroya Nishikawa
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Fumito Araoka
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|