1
|
Cao H, Zeng Y, Yuan X, Wang JK, Tay CY. Waste-to-resource: Extraction and transformation of aquatic biomaterials for regenerative medicine. BIOMATERIALS ADVANCES 2025; 166:214023. [PMID: 39260186 DOI: 10.1016/j.bioadv.2024.214023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The fisheries and aquaculture industry are known for generating substantial waste or by-products, often underutilized, or relegated to low-value purposes. However, this overlooked segment harbors a rich repository of valuable bioactive materials of which have a broad-spectrum of high-value applications. As the blue economy gains momentum and fisheries expand, sustainable exploitation of these aquatic resources is increasingly prioritized. In this review, we present a comprehensive overview of technology-enabled methods for extracting and transforming aquatic waste into valuable biomaterials and their recent advances in regenerative medicine applications, focusing on marine collagen, chitin/chitosan, calcium phosphate and bioactive-peptides. We discuss the inherent bioactive qualities of these "waste-to-resource" aquatic biomaterials and identify opportunities for their use in regenerative medicine to advance healthcare while achieving the Sustainable Development Goals.
Collapse
Affiliation(s)
- Huaqi Cao
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Yuanjin Zeng
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Xueyu Yuan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jun Kit Wang
- School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chor Yong Tay
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore; Center for Sustainable Materials (SusMat), Nanyang Technological University, Singapore 637553, Singapore; Nanyang Environment & Water Research Institute, 1 CleanTech Loop, CleanTech One, Singapore 637141, Singapore.
| |
Collapse
|
2
|
Wang L, Dai Z, Bi J, Chen Y, Wang Z, Sun Z, Ji Z, Wang H, Zhang Y, Wang L, Mao J, Yang J. Polydopamine-functionalized calcium-deficient hydroxyapatite 3D-printed scaffold with sustained doxorubicin release for synergistic chemo-photothermal therapy of osteosarcoma and accelerated bone regeneration. Mater Today Bio 2024; 29:101253. [PMID: 39399244 PMCID: PMC11470592 DOI: 10.1016/j.mtbio.2024.101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/25/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Interior bone-tissue regeneration and rapid tumor recurrence post-resection are critical challenges in osteosarcoma and other bone cancers. Conventional bone tissue engineering scaffolds lack inhibitory effects on bone tumor recurrence. Herein, multifunctional scaffolds (named DOX/PDA@CDHA) were designed through the spontaneous polymerization of Dopamine (PDA) on the surface of Calcium Deficient Hydroxyapatite (CDHA) scaffolds, followed by in situ loading of the chemotherapeutic drug Doxorubicin (DOX). The PDA coating endowed the scaffolds with significant photothermal properties, while the gradual release of DOX provided an effective chemotherapeutic effect. The on-demand release of DOX at tumor sites, triggered by dual stimulation (near-infrared (NIR) light and the acidic pH typical of tumor microenvironments), specifically targets cancer cells, thereby mitigating systemic side effects. These unique characteristics facilitated effective osteosarcoma eradication both in vitro and in vivo. Moreover, the scaffold's composition, which mimics the mineral phase of natural bone and is enhanced by PDA's biocompatibility, promotes critical osteogenic and angiogenic processes. This facilitates not only tumor eradication but also the regeneration of healthy bone tissue. Collectively, this study presents a potent candidate for the regeneration of bone defects induced by osteosarcoma.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, PR China
- Schools of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Zihan Dai
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, 250061, PR China
| | - Jianqiang Bi
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, PR China
- Schools of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
| | - Ziyu Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, 100191, PR China
| | - Zhenqian Sun
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, 250061, PR China
| | - Zhongjie Ji
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, 250061, PR China
| | - Hongliang Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, #107 Wenhuaxi Road, Jinan, 250061, PR China
- Cheeloo College of Medicine, Shandong University, Jinan, 250061, PR China
| | - Yan Zhang
- Advanced Medical Research Institute/Translational Medicine Core Facility of Advanced Medical Research Institute, Shandong University, PR China
| | - Limei Wang
- Advanced Medical Research Institute/Translational Medicine Core Facility of Advanced Medical Research Institute, Shandong University, PR China
| | - Junjie Mao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, PR China
- Schools of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Junxing Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan, 250061, PR China
- Schools of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| |
Collapse
|
3
|
Pańtak P, Czechowska JP, Kashimbetova A, Čelko L, Montufar EB, Wójcik Ł, Zima A. Improving the processability and mechanical strength of self-hardening robocasted hydroxyapatite scaffolds with silane coupling agents. J Mech Behav Biomed Mater 2024; 161:106792. [PMID: 39547073 DOI: 10.1016/j.jmbbm.2024.106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Bone cements are the subject of intensive research, primarily due to their versatility and the increasing importance for personalized medicine. In this study, novel hybrid self-setting scaffolds, based on calcium phosphates and natural polymers, were fabricated using the robocasting technique. Additionally, the influence of two different silane coupling agents, tetraethyl orthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS), on the physicochemical and biological properties of the obtained materials was thoroughly investigated. The chemical and phase compositions (XRF, XRD, FTIR), setting process, rheological properties, mechanical strength, microstructure (SEM), and chemical stability in vitro were comprehensively examined. The use of silane coupling agents improved compressive strength of the scaffolds from 5.20 to 9.26 MPa. The incorporation of citrus pectin into the liquid phase of the materials, along with the use of a hybrid hydroxyapatite-chitosan powder, not only facilitated the development of printable pastes suitable for robocasting but also enhanced the physicochemical properties of the robocasted scaffolds. The results presented in this study underscore the beneficial influence of silane coupling agents on the characteristics of calcium phosphate-based bone scaffolds. Developed robocasted scaffolds hold great potential for applications in the field of bone tissue engineering and personalized medicine. Further in vitro and in vivo studies are necessary to validate their suitability for clinical applications.
Collapse
Affiliation(s)
- Piotr Pańtak
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza Av. 30, 30-058, Kraków, Poland.
| | - Joanna P Czechowska
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza Av. 30, 30-058, Kraków, Poland.
| | - Adelia Kashimbetova
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic
| | - Ladislav Čelko
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic
| | - Edgar B Montufar
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00, Brno, Czech Republic
| | - Łukasz Wójcik
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza Av. 30, 30-058, Kraków, Poland
| | - Aneta Zima
- Faculty of Materials Science and Ceramics, AGH University of Krakow, Mickiewicza Av. 30, 30-058, Kraków, Poland
| |
Collapse
|
4
|
Oladele IO, Adekola SA, Agbeboh NI, Isola-Makinde BA, Adewuyi BO. Synthesis and Application of Sustainable Tricalcium Phosphate Based Biomaterials From Agro-Based Materials: A Review. Biomed Eng Comput Biol 2024; 15:11795972241293525. [PMID: 39524096 PMCID: PMC11544672 DOI: 10.1177/11795972241293525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Trends in health care delivery systems have shifted as a result of the modern uses of biomaterials in medicine. Contrary to traditional medicine, modern healthcare are now useful in solving problems that were considered impossible some years back. One of the most significant factors to the most recent advancements in implant development has been the use of calcium based materials in the creation of necessary implants in the form of soft and hard tissues. With the advent of naturally sourced materials in the manufacturing of biomaterials, lots of attention are now focused on the different sources of agro-based resources that can be used for the product developments. These agro-based materials are now been considered for sustainable and ecological purposes in several areas of applications globally in the recent times. Hence, the review was carried out with focus on the sources, relevance, processing techniques and applications of tricalcium phosphate based biomaterials in modern day healthcare delivery. This review provides a historical and prospective picture of the crucial functions that materials based on tricalcium phosphate will play in fulfilling human requirements for medication.
Collapse
Affiliation(s)
- Isiaka Oluwole Oladele
- Department of Metallurgical and Materials Engineering, Federal University of Technology, Akure, Ondo, Nigeria
| | - Samson Ademola Adekola
- Department of Metallurgical and Materials Engineering, Federal University of Technology, Akure, Ondo, Nigeria
- Biomedical Engineering Department, Achievers University Owo, Ondo Sate, Nigeria
| | - Newton Itua Agbeboh
- Department of Metallurgical and Materials Engineering, Federal University of Technology, Akure, Ondo, Nigeria
- Department of Mechanical and Mechatronics Engineering, Federal University Otuoke, Otuoke, Bayelsa State, Nigeria
| | | | - Benjamin Omotayo Adewuyi
- Department of Metallurgical and Materials Engineering, Federal University of Technology, Akure, Ondo, Nigeria
| |
Collapse
|
5
|
Yuan Y, Hu J, Shen L, He L, Zhu Y, Meng D, Jiang Q. Injectable calcium phosphate cement integrated with BMSCs-encapsulated microcapsules for bone tissue regeneration. Biomed Mater 2024; 19:065034. [PMID: 39312953 DOI: 10.1088/1748-605x/ad7e69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Injectable calcium phosphate cement (CPC) offers significant benefits for the minimally invasive repair of irregular bone defects. However, the main limitations of CPC, including its deficiency in osteogenic properties and insufficient large porosity, require further investigation and resolution. In this study, alginate-chitosan-alginate (ACA) microcapsules were used to encapsulate and deliver rat bone mesenchymal stem cells (rBMSCs) into CPC paste, while a porous CPC scaffold was established to support cell growth. Our results demonstrated that the ACA cell microcapsules effectively protect the cells and facilitate their transport into the CPC paste, thereby enhancing cell viability post-implantation. Additionally, the ACA + CPC extracts were found to stimulate osteogenic differentiation of rBMSCs. Furthermore, results from a rat cranial parietal bone defect model showed that ACA microcapsules containing exogenous rBMSCs initially improved thein situosteogenic potential of CPC within bone defects, providing multiple sites for bone growth. Over time, the osteogenic potential of the exogenous cells diminishes, yet the pores created by the microcapsules persist in supporting ongoing bone formation by recruiting endogenous cells to the osteogenic sites. In conclusion, the utilization of ACA loaded stem cell microcapsules satisfactorily facilitate osteogenesis and degradation of CPC, making it a promising scaffold for bone defect transplantation.
Collapse
Affiliation(s)
- Yafei Yuan
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Jiangqi Hu
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Lipei Shen
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Lin He
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Yixuan Zhu
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Dan Meng
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| | - Qingsong Jiang
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No.4, Beijing 100050, People's Republic of China
| |
Collapse
|
6
|
Kim J, Choi YJ, Gal CW, Sung A, Utami SS, Park H, Yun HS. Enhanced Osteogenesis in 2D and 3D Culture Systems Using RGD Peptide and α-TCP Phase Transition within Alginate-Based Hydrogel. Macromol Biosci 2024; 24:e2400190. [PMID: 39116430 DOI: 10.1002/mabi.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/21/2024] [Indexed: 08/10/2024]
Abstract
Cell-laden hydrogels have been extensively investigated in various tissue engineering fields by their potential capacity to deposit numerous types of cells in a specific area. They are largely used in soft-tissue engineering applications because of their low mechanical strength. In addition, sodium alginate is well-known for its encapsulation, loading capacity and for being easily controllable; however, it lacks cell-binding ligands and hence the ability to adhere cells. In this study, it is aimed to enhance osteogenesis in cells encapsulated in alginate and improve its mechanical properties by introducing a synthetic peptide and calcium phosphate phase transition. To increase cell-hydrogel interactions and increasing cell viability, an RGD peptide is added to a photocrosslinkable methacrylate-modified alginate, and alpha-tricalcium phosphate (α-TCP) is added to the hydrogel to increase its mechanical strength via phase transition. Cell proliferation, growth, and differentiation are assessed in both 2D and 3D cell cultures. The addition of α-TCP significantly improved the mechanical properties of the hydrogel. Moreover, the RGD peptide and α-TCP showed a synergistic effect with significantly improved cell adhesion and osteogenesis in both 2D and 3D cell cultures. Therefore, the functional hydrogel developed in this study can potentially be used for bone tissue regeneration.
Collapse
Affiliation(s)
- Jueun Kim
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Yeong-Jin Choi
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Chang-Woo Gal
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Aram Sung
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Siwi Setya Utami
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
- Department of Advanced Materials Engineering, University of Science and Technology, 217 Gajeon-ro, Yeseong-gu, Daejeon, Republic of Korea
| | - Honghyun Park
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
| | - Hui-Suk Yun
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, South Korea
- Department of Advanced Materials Engineering, University of Science and Technology, 217 Gajeon-ro, Yeseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Silingardi F, Salamanna F, Español M, Maglio M, Sartori M, Giavaresi G, Bigi A, Ginebra MP, Boanini E. Regulation of osteogenesis and angiogenesis by cobalt, manganese and strontium doped apatitic materials for functional bone tissue regeneration. BIOMATERIALS ADVANCES 2024; 163:213968. [PMID: 39059113 DOI: 10.1016/j.bioadv.2024.213968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/13/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Strontium, cobalt, and manganese ions are present in the composition of bone and useful for bone metabolism, even when combined with calcium phosphate in the composition of biomaterials. Herein we explored the possibility to include these ions in the composition of apatitic materials prepared through the cementitious reaction between ion-substituted calcium phosphate dibasic dihydrate, CaHPO4·2H2O (DCPD) and tetracalcium phosphate, Ca4(PO4)2O (TTCP). The results of the chemical, structural, morphological and mechanical characterization indicate that cobalt and manganese exhibit a greater delaying effect than strontium (about 15 at.%) on the cementitious reaction, even though they are present in smaller amounts within the materials (about 0.8 and 4.5 at.%, respectively). Furthermore, the presence of the foreign ions in the apatitic materials leads to a slight reduction of porosity and to enhancement of compressive strength. The results of biological tests show that the presence of strontium and manganese, as well as calcium, in the apatitic materials cultured in direct contact with human mesenchymal stem cells (hMSCs) stimulates their viability and activity. In contrast, the apatitic material containing cobalt exhibits a lower metabolic activity. All the materials have a positive effect on the expression of Vascular Endothelial Growth Factor (VEGF) and Von Willebrand Factor (vWF). Moreover, the apatitic material containing strontium induces the most significant reduction in the differentiation of preosteoclasts into osteoclasts, demonstrating not only osteogenic and angiogenic properties, but also ability to regulate bone resorption.
Collapse
Affiliation(s)
- Francesca Silingardi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Francesca Salamanna
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Montserrat Español
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona 08019, Spain
| | - Melania Maglio
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Maria Sartori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Gianluca Giavaresi
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Adriana Bigi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona 08019, Spain
| | - Elisa Boanini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
8
|
Nicolas T, Ségolène R, Thierry R, Maeva D, Joelle V, Arnaud P, Ludmila B, Pierre W, Pierre C, Baptiste C. Multiparametric influence of 3D-printed organo-mineral scaffolds on bone regeneration. Sci Rep 2024; 14:20848. [PMID: 39242756 PMCID: PMC11379694 DOI: 10.1038/s41598-024-71698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
The development of synthetic bone substitutes that equal or exceed the efficacy of autologous graft remains challenging. In this study, a rat calvarial defect model was used as a reference to investigate the influence of composition and architecture of 3D-printed cement, with or without bioactives, on tissue regeneration. Printable cement pastes were formulated by combining hyaluronic acid and cement precursors. Cementitious scaffolds were printed with 3 different patterns. After 7 weeks of implantation with or without bone marrow, multiparametric qualitative and quantitative assessments were performed using µCT, SEM, and histology. None of the set-up strategies was as efficient as autologous cancellous bone graft to repair calvarial defects. Nonetheless, the presence of scaffold improved the skull vault closure, particularly when the scaffold was soaked in total bone marrow before implantation. No significant effect of scaffold macro-architecture was observed on tissue mineralization. Magnesium phosphate-based scaffolds (MgP) seemed to induce higher bone formation than their calcium-phosphate-based counterparts. They also displayed a quicker biodegradation and sparse remaining material was found after 7 weeks of implantation. Although further improvements are required to reach clinical settings, this study demonstrated the potential of organo-mineral cements for bone regeneration and highlighted the peculiar properties of MgP-based cements.
Collapse
Affiliation(s)
- Touya Nicolas
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Reiss Ségolène
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Rouillon Thierry
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Dutilleul Maeva
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Veziers Joelle
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Pare Arnaud
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Brasset Ludmila
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Weiss Pierre
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Corre Pierre
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Charbonnier Baptiste
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France.
| |
Collapse
|
9
|
Vlajić Tovilović T, Petrović S, Lazarević M, Pavić A, Plačkić N, Milovanović A, Milošević M, Miletic V, Veljović D, Radunović M. Effect of Acetylsalicylic Acid on Biological Properties of Novel Cement Based on Calcium Phosphate Doped with Ions of Strontium, Copper, and Zinc. Int J Mol Sci 2024; 25:7940. [PMID: 39063181 PMCID: PMC11276672 DOI: 10.3390/ijms25147940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to compare the biological properties of newly synthesized cements based on calcium phosphate with a commercially used cement, mineral trioxide aggregate (MTA). Strontium (Sr)-, Copper (Cu)-, and Zinc (Zn)-doped hydroxyapatite (miHAp) powder was obtained through hydrothermal synthesis and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectrometry (EDX). Calcium phosphate cement (CPC) was produced by mixing miHAp powder with a 20 wt.% citric acid solution, followed by the assessment of its compressive strength, setting time, and in vitro bioactivity. Acetylsalicylic acid (ASA) was added to the CPC, resulting in CPCA. Biological tests were conducted on CPC, CPCA, and MTA. The biocompatibility of the cement extracts was evaluated in vitro using human dental pulp stem cells (hDPSCs) and in vivo using a zebrafish model. Antibiofilm and antimicrobial effect (quantified by CFUs/mL) were assessed against Streptococcus mutans and Lactobacillus rhamnosus. None of the tested materials showed toxicity, while CPCA even increased hDPSCs proliferation. CPCA showed a better safety profile than MTA and CPC, and no toxic or immunomodulatory effects on the zebrafish model. CPCA exhibited similar antibiofilm effects against S. mutans and L. rhamnosus to MTA.
Collapse
Affiliation(s)
- Tamara Vlajić Tovilović
- School of Dental Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (T.V.T.); (S.P.); (M.L.)
| | - Sanja Petrović
- School of Dental Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (T.V.T.); (S.P.); (M.L.)
| | - Miloš Lazarević
- School of Dental Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (T.V.T.); (S.P.); (M.L.)
| | - Aleksandar Pavić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11 000 Belgrade, Serbia; (A.P.); (N.P.)
| | - Nikola Plačkić
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11 000 Belgrade, Serbia; (A.P.); (N.P.)
| | - Aleksa Milovanović
- Faculty of Mechanical Engineering, University of Belgrade, 11 000 Belgrade, Serbia; (A.M.); (M.M.)
| | - Miloš Milošević
- Faculty of Mechanical Engineering, University of Belgrade, 11 000 Belgrade, Serbia; (A.M.); (M.M.)
| | - Vesna Miletic
- Faculty of Medicine and Health, Sydney Dental School, University of Sydney, Surry Hills, NSW 2010, Australia;
| | - Djordje Veljović
- Faculty of Technology and Metallurgy, University of Belgrade, 11 000 Belgrade, Serbia
| | - Milena Radunović
- School of Dental Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (T.V.T.); (S.P.); (M.L.)
| |
Collapse
|
10
|
Czechowska JP, Dorner-Reisel A, Zima A. Hybrid Bone Substitute Containing Tricalcium Phosphate and Silver Modified Hydroxyapatite-Methylcellulose Granules. J Funct Biomater 2024; 15:196. [PMID: 39057317 PMCID: PMC11278312 DOI: 10.3390/jfb15070196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Despite years of extensive research, achieving the optimal properties for calcium phosphate-based biomaterials remains an ongoing challenge. Recently, 'biomicroconcretes' systems consisting of setting-phase-forming bone cement matrix and aggregates (granules/microspheres) have been developed and studied. However, further investigations are necessary to clarify the complex interplay between the synthesis, structure, and properties of these materials. This article focusses on the development and potential applications of hybrid biomaterials based on alpha-tricalcium phosphate (αTCP), hydroxyapatite (HA) and methylcellulose (MC) modified with silver (0.1 wt.% or 1.0 wt.%). The study presents the synthesis and characterization of silver-modified hybrid granules and seeks to determine the possibility and efficiency of incorporating these hybrid granules into αTCP-based biomicroconcretes. The αTCP and hydroxyapatite provide structural integrity and osteoconductivity, the presence of silver imparts antimicrobial properties, and MC allows for the self-assembling of granules. This combination creates an ideal environment for bone regeneration, while it potentially may prevent bacterial colonization and infection. The material's chemical and phase composition, setting times, compressive strength, microstructure, chemical stability, and bioactive potential in simulated body fluid are systematically investigated. The results of the setting time measurements showed that both the size and the composition of granules (especially the hybrid nature) have an impact on the setting process of biomicroconcretes. The addition of silver resulted in prolonged setting times compared to the unmodified materials. Developed biomicroconcretes, despite exhibiting lower compressive strength compared to traditional calcium phosphate cements, fall within the range of human cancellous bone and demonstrate chemical stability and bioactive potential, indicating their suitability for bone substitution and regeneration. Further in vitro studies and in vivo assessments are needed to check the potential of these biomaterials in clinical applications.
Collapse
Affiliation(s)
- Joanna P. Czechowska
- Faculty of Materials Science and Ceramics, AGH University of Krakow, 30 Mickiewicza Av., 30-059 Krakow, Poland
| | - Annett Dorner-Reisel
- Faculty of Mechanical Engineering, Schmalkalden University of Applied Sciences, 98574 Schmalkalden, Germany
| | - Aneta Zima
- Faculty of Materials Science and Ceramics, AGH University of Krakow, 30 Mickiewicza Av., 30-059 Krakow, Poland
| |
Collapse
|
11
|
Czechowska JP, Pańtak P, Kowalska KJ, Vedaiyan J, Balasubramanian M, Ganesan SM, Kwiecień K, Pamuła E, Kandaswamy R, Zima A. The Influence of Citrus Pectin and Polyacrylamide Modified with Plant-Derived Additives on the Properties of α-TCP-Based Bone Cements. Polymers (Basel) 2024; 16:1711. [PMID: 38932061 PMCID: PMC11207233 DOI: 10.3390/polym16121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Materials based on highly reactive α-tricalcium phosphate (α-TCP) powder were developed and evaluated. Furthermore, the impact of different polymeric additives, such as citrus pectin or polyacrylamide (PAAM) modified with sago starch, neem flower, or rambutan peel, on the physiochemical and biological properties of the developed materials was assessed. The addition of modified PAAM shortened the setting process of bone cements and decreased their compressive strength. On the other hand, the addition of citrus pectin significantly enhanced the mechanical strength of the material from 4.46 to 7.15 MPa. The improved mechanical properties of the bone cement containing citrus pectin were attributed to the better homogenization of cementitious pastes and pectin cross-linking by Ca2+ ions. In vitro tests performed on L929 cells showed that 10% extracts from α-TCP cements modified with pectin are more cytocompatible than control cements without any additives. Cements containing PAAM with plant-derived modifiers show some degree of cytotoxicity for the highly concentrated 10% extracts, but for diluted extracts, cytotoxicity was reduced, as shown by a resazurin reduction test and live/dead staining. All the developed bone substitutes exhibited in vitro bioactivity, making them promising candidates for further biological studies. This research underscores the advantageous properties of the obtained biomaterials and paves the way for subsequent more advanced in vitro and in vivo investigations.
Collapse
Affiliation(s)
- Joanna P. Czechowska
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland (K.J.K.)
| | - Piotr Pańtak
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland (K.J.K.)
| | - Kinga J. Kowalska
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland (K.J.K.)
| | - Jeevitha Vedaiyan
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, India (M.B.); (S.M.G.)
| | - Mareeswari Balasubramanian
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, India (M.B.); (S.M.G.)
| | - Sundara Moorthi Ganesan
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, India (M.B.); (S.M.G.)
| | - Konrad Kwiecień
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Ravichandran Kandaswamy
- Department of Rubber and Plastics Technology, Madras Institute of Technology Campus, Anna University, Chromepet, Chennai 600 044, India (M.B.); (S.M.G.)
| | - Aneta Zima
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland (K.J.K.)
| |
Collapse
|
12
|
Wang X, Zhou Y, Luo C, Zhao J, Ji Y, Wang Z, Zheng P, Li D, Shi Y, Nishiura A, Matsumoto N, Honda Y, Xu B, Huang F. Senolytics ameliorate the failure of bone regeneration through the cell senescence-related inflammatory signalling pathway. Biomed Pharmacother 2024; 175:116606. [PMID: 38670048 DOI: 10.1016/j.biopha.2024.116606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Stress-induced premature senescent (SIPS) cells induced by various stresses deteriorate cell functions. Dasatinib and quercetin senolytics (DQ) can alleviate several diseases by eliminating senescent cells. α-tricalcium phosphate (α-TCP) is a widely used therapeutic approach for bone restoration but induces bone formation for a comparatively long time. Furthermore, bone infection exacerbates the detrimental prognosis of bone formation during material implant surgery due to oral cavity bacteria and unintentional contamination. It is essential to mitigate the inhibitory effects on bone formation during surgical procedures. Little is known that DQ improves bone formation in Lipopolysaccharide (LPS)-contaminated implants and its intrinsic mechanisms in the study of maxillofacial bone defects. This study aims to investigate whether the administration of DQ ameliorates the impairments on bone repair inflammation and contamination by eliminating SIPS cells. α-TCP and LPS-contaminated α-TCP were implanted into Sprague-Dawley rat calvaria bone defects. Simultaneously, bone formation in the bone defects was investigated with or without the oral administration of DQ. Micro-computed tomography and hematoxylin-eosin staining showed that senolytics significantly enhanced bone formation at the defect site. Histology and immunofluorescence staining revealed that the levels of p21- and p16-positive senescent cells, inflammation, macrophages, reactive oxygen species, and tartrate-resistant acid phosphatase-positive cells declined after administering DQ. DQ could partially alleviate the production of senescent markers and senescence-associated secretory phenotypes in vitro. This study indicates that LPS-contaminated α-TCP-based biomaterials can induce cellular senescence and hamper bone regeneration. Senolytics have significant therapeutic potential in reducing the adverse osteogenic effects of biomaterial-related infections and improving bone formation capacity.
Collapse
Affiliation(s)
- Xinchen Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan
| | - Yue Zhou
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan; Department of Stomatological Research Center, Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Chuyi Luo
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan
| | - Jianxin Zhao
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan
| | - Yuna Ji
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zheng Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pengchao Zheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dingji Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuhan Shi
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Aki Nishiura
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan
| | - Naoyuki Matsumoto
- Department of Orthodontics, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan
| | - Yoshitomo Honda
- Department of Oral Anatomy, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan.
| | - Baoshan Xu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Fang Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Qian E, Kang Y. Branched Channels in Porous β-Tricalcium Phosphate Scaffold Promote Vascularization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19081-19093. [PMID: 38442339 DOI: 10.1021/acsami.3c17328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Rapid and efficient vascularization is still considerably challenging for a porous β-tricalcium phosphate (β-TCP) scaffold to achieve. To overcome this challenge, branched channels were created in the porous β-TCP scaffold by using 3D printing and a template-casting method to facilitate the instant flow of blood supply. Human bone mesenchymal stem cells (hBMSCs) and human umbilical vein endothelial cells (HUVECs) were seeded in the channeled porous scaffolds and characterized through a double-stranded DNA (dsDNA) assay, alkaline phosphatase (ALP) assay, and cell migration. Channeled porous β-TCP scaffolds were then implanted in the subcutaneous pockets of mice. Histological staining and immunohistochemical staining on vascularization and bone-related markers were carried out on the embedded paraffin sections. Results from in vitro experiments showed that branched channels significantly promoted HUVECs' infiltration, migration, proliferation, and angiogenesis, and also promoted the proliferation and osteogenesis differentiation of hBMSCs. In vivo implantation results showed that, in the early stage after implantation, cells significantly migrated into branched channeled scaffolds. More matured blood vessels formed in the branched channeled scaffolds compared to that in nonchanneled and straight channeled scaffolds. Beside promoting vascularization, the branched channels also stimulated the infiltration of bone-related cells into the scaffolds. These results suggested that the geometric design of branched channels in the porous β-TCP scaffold promoted rapid vascularization and potentially stimulated bone cells recruitment.
Collapse
Affiliation(s)
- Enze Qian
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, United States
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida 33431, United States
- Faculty of Integrative Biology Ph.D. Program, Department of Biological Science, Florida Atlantic University, Boca Raton, Florida 33431, United States
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| |
Collapse
|
14
|
Demir Ö, Pylostomou A, Loca D. Octacalcium phosphate phase forming cements as an injectable bone substitute materials: Preparation and in vitro structural study. BIOMATERIALS ADVANCES 2024; 157:213731. [PMID: 38103399 DOI: 10.1016/j.bioadv.2023.213731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
In the realm of regenerating damaged or degenerated bones through minimally invasive techniques, injectable materials have emerged as exceptionally promising. Among these, calcium phosphate bone cements (CPCs) have garnered significant interest due to their remarkable bioactivity, setting it apart from non-degradable alternatives such as polymethyl methacrylate cements. α-Tricalcium phosphate (α-TCP) is a widely used solid phase component in CPCs. It can transform into calcium-deficient hydroxyapatite (CDHAp) when it comes in contact with water. In this study, we aimed to create an injectable, self-setting bone cement using low-temperature synthesized α-TCP powder as a single precursor of the powder phase. We found that changes in the pH of the liquid phase (pH 6.0, pH 6.2, pH 7.0 and pH 7.4) significantly altered the cement's setting, handling, and mechanical properties. The formation of the octacalcium phosphate (OCP) phase was identified in our study, which positively affects the osteoblastic cell response. Hardened OCP-forming bone cements prepared using a liquid phase with pH 7.0 and 7.4 showed better osteogenic cell attachment and proliferation than those prepared with pH 6.0 and 6.2. Our study suggests that changes in the pH of the liquid phase can significantly affect the properties of α-TCP-based bone cement, and the presence of the OCP phase is crucial for optimal cement performance.
Collapse
Affiliation(s)
- Öznur Demir
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Athanasia Pylostomou
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Dagnija Loca
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St 3, Riga LV-1007, Latvia; Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia.
| |
Collapse
|
15
|
Pańtak P, Czechowska JP, Zima A. The influence of silane coupling agents on the properties of α-TCP-based ceramic bone substitutes for orthopaedic applications. RSC Adv 2023; 13:34020-34031. [PMID: 38020001 PMCID: PMC10663883 DOI: 10.1039/d3ra06027f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
Biomaterials based on α-TCP are highly recommended for medical applications due to their ability to bond chemically with bone tissue. However, in order to improve their physicochemical properties, modifications are needed. In this work, novel, hybrid α-TCP-based bone cements were developed and examinated. The influence of two different silane coupling agents (SCAs) - tetraethoxysilane (TEOS) and 3-glycidoxypropyl trimethoxysilane (GPTMS) on the properties of the final materials was investigated. Application of modifiers allowed us to obtain hybrid materials due to the presence of different bonds in their structure, for example between calcium phosphates and SCA molecules. The use of SCAs increased the compressive strength of the bone cements from 7.24 ± 0.35 MPa to 12.17 ± 0.48 MPa. Moreover, modification impacted the final setting time of the cements, reducing it from 11.0 to 6.5 minutes. The developed materials displayed bioactive potential in simulated body fluid. Presented findings demonstrate the beneficial influence of silane coupling agents on the properties of calcium phosphate-based bone substitutes and pave the way for their further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Piotr Pańtak
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-058 Kraków Poland
| | - Joanna P Czechowska
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-058 Kraków Poland
| | - Aneta Zima
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology Mickiewicza Av. 30 30-058 Kraków Poland
| |
Collapse
|
16
|
Kim J, Raja N, Choi YJ, Gal CW, Sung A, Park H, Yun HS. Enhancement of properties of a cell-laden GelMA hydrogel-based bioink via calcium phosphate phase transition. Biofabrication 2023; 16:015010. [PMID: 37871585 DOI: 10.1088/1758-5090/ad05e2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
To improve the properties of the hydrogel-based bioinks, a calcium phosphate phase transition was applied, and the products were examined. We successfully enhanced the mechanical properties of the hydrogels by adding small amounts (< 0.5 wt%) of alpha-tricalcium phosphate (α-TCP) to photo-crosslinkable gelatin methacrylate (GelMA). As a result of the hydrolyzing calcium phosphate phase transition involvingα-TCP, which proceeded for 36 h in the cell culture medium, calcium-deficient hydroxyapatite was produced. Approximately 18 times the compressive modulus was achieved for GelMA with 0.5 wt%α-TCP (20.96 kPa) compared with pure GelMA (1.18 kPa). Although cell proliferation decreased during the early stages of cultivation, both osteogenic differentiation and mineralization activities increased dramatically when the calcium phosphate phase transition was performed with 0.25 wt%α-TCP. The addition ofα-TCP improved the printability and fidelity of GelMA, as well as the structural stability and compressive modulus (approximately six times higher) after three weeks of culturing. Therefore, we anticipate that the application of calcium phosphate phase transition to hydrogels may have the potential for hard tissue regeneration.
Collapse
Affiliation(s)
- Jueun Kim
- Department of Advanced Materials Engineering, University of Science and Technology, 217 Gajeon-ro, Yeseong-gu, Daejeon, Republic of Korea
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| | - Naren Raja
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| | - Yeong-Jin Choi
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| | - Chang-Woo Gal
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| | - Aram Sung
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| | - Honghyun Park
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| | - Hui-Suk Yun
- Department of Advanced Materials Engineering, University of Science and Technology, 217 Gajeon-ro, Yeseong-gu, Daejeon, Republic of Korea
- Department of Advanced Biomaterials Research, Ceramic Materials Division, Korea Institute of Materials Science, 797 Changwon-daero, Seongasna-gu, Changwon, Republic of Korea
| |
Collapse
|
17
|
Gupta T, Ghosh SB, Bandyopadhyay-Ghosh S, Sain M. Is it possible to 3D bioprint load-bearing bone implants? A critical review. Biofabrication 2023; 15:042003. [PMID: 37669643 DOI: 10.1088/1758-5090/acf6e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Rehabilitative capabilities of any tissue engineered scaffold rely primarily on the triad of (i) biomechanical properties such as mechanical properties and architecture, (ii) chemical behavior such as regulation of cytokine expression, and (iii) cellular response modulation (including their recruitment and differentiation). The closer the implant can mimic the native tissue, the better it can rehabilitate the damage therein. Among the available fabrication techniques, only 3D bioprinting (3DBP) can satisfactorily replicate the inherent heterogeneity of the host tissue. However, 3DBP scaffolds typically suffer from poor mechanical properties, thereby, driving the increased research interest in development of load-bearing 3DBP orthopedic scaffolds in recent years. Typically, these scaffolds involve multi-material 3D printing, comprising of at-least one bioink and a load-bearing ink; such that mechanical and biological requirements of the biomaterials are decoupled. Ensuring high cellular survivability and good mechanical properties are of key concerns in all these studies. 3DBP of such scaffolds is in early developmental stages, and research data from only a handful of preliminary animal studies are available, owing to limitations in print-capabilities and restrictive materials library. This article presents a topically focused review of the state-of-the-art, while highlighting aspects like available 3DBP techniques; biomaterials' printability; mechanical and degradation behavior; and their overall bone-tissue rehabilitative efficacy. This collection amalgamates and critically analyses the research aimed at 3DBP of load-bearing scaffolds for fulfilling demands of personalized-medicine. We highlight the recent-advances in 3DBP techniques employing thermoplastics and phosphate-cements for load-bearing applications. Finally, we provide an outlook for possible future perspectives of 3DBP for load-bearing orthopedic applications. Overall, the article creates ample foundation for future research, as it gathers the latest and ongoing research that scientists could utilize.
Collapse
Affiliation(s)
- Tanmay Gupta
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Subrata Bandhu Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Sanchita Bandyopadhyay-Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Mohini Sain
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Pańtak P, Czechowska JP, Cichoń E, Zima A. Novel Double Hybrid-Type Bone Cements Based on Calcium Phosphates, Chitosan and Citrus Pectin. Int J Mol Sci 2023; 24:13455. [PMID: 37686268 PMCID: PMC10488044 DOI: 10.3390/ijms241713455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023] Open
Abstract
In this work, the influence of the liquid phase composition on the physicochemical properties of double hybrid-type bone substitutes was investigated. The solid phase of obtained biomicroconcretes was composed of highly reactive α-tricalcium phosphate powder (α-TCP) and hybrid hydroxyapatite/chitosan granules (HA/CTS). Various combinations of disodium phosphate (Na2HPO4) solution and citrus pectin gel were used as liquid phases. The novelty of this study is the development of double-hybrid materials with a dual setting system. The double hybrid phenomenon is due to the interactions between polycationic polymer (chitosan in hybrid granules) and polyanionic polymer (citrus pectin). The chemical and phase composition (FTIR, XRD), setting times (Gillmore needles), injectability, mechanical strength, microstructure (SEM) and chemical stability in vitro were studied. The setting times of obtained materials ranged from 4.5 to 30.5 min for initial and from 7.5 to 55.5 min for final setting times. The compressive strength varied from 5.75 to 13.24 MPa. By incorporating citrus pectin into the liquid phase of the materials, not only did it enhance their physicochemical properties, but it also resulted in the development of fully injectable materials featuring a dual setting system. It has been shown that the properties of materials can be controlled by using the appropriate ratio of citrus pectin in the liquid phase.
Collapse
Affiliation(s)
- Piotr Pańtak
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Av. 30, 30-058 Krakow, Poland
| | - Joanna P. Czechowska
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Av. 30, 30-058 Krakow, Poland
| | - Ewelina Cichoń
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland;
| | - Aneta Zima
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Av. 30, 30-058 Krakow, Poland
| |
Collapse
|
19
|
Gelli R, Ridi F. An Overview of Magnesium-Phosphate-Based Cements as Bone Repair Materials. J Funct Biomater 2023; 14:424. [PMID: 37623668 PMCID: PMC10455751 DOI: 10.3390/jfb14080424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
In the search for effective biomaterials for bone repair, magnesium phosphate cements (MPCs) are nowadays gaining importance as bone void fillers thanks to their many attractive features that overcome some of the limitations of the well-investigated calcium-phosphate-based cements. The goal of this review was to highlight the main properties and applications of MPCs in the orthopedic field, focusing on the different types of formulations that have been described in the literature, their main features, and the in vivo and in vitro response towards them. The presented results will be useful to showcase the potential of MPCs in the orthopedic field and will suggest novel strategies to further boost their clinical application.
Collapse
Affiliation(s)
| | - Francesca Ridi
- Department of Chemistry “Ugo Schiff” and CSGI Consortium, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
20
|
Pillai A, Chakka J, Heshmathi N, Zhang Y, Alkadi F, Maniruzzaman M. Multifunctional Three-Dimensional Printed Copper Loaded Calcium Phosphate Scaffolds for Bone Regeneration. Pharmaceuticals (Basel) 2023; 16:ph16030352. [PMID: 36986452 PMCID: PMC10052742 DOI: 10.3390/ph16030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Bone regeneration using inorganic nanoparticles is a robust and safe approach. In this paper, copper nanoparticles (Cu NPs) loaded with calcium phosphate scaffolds were studied for their bone regeneration potential in vitro. The pneumatic extrusion method of 3D printing was employed to prepare calcium phosphate cement (CPC) and copper loaded CPC scaffolds with varying wt% of copper nanoparticles. A new aliphatic compound Kollisolv MCT 70 was used to ensure the uniform mixing of copper nanoparticles with CPC matrix. The printed scaffolds were studied for physico-chemical characterization for surface morphology, pore size, wettability, XRD, and FTIR. The copper ion release was studied in phosphate buffer saline at pH 7.4. The in vitro cell culture studies for the scaffolds were performed using human mesenchymal stem cells (hMSCs). The cell proliferation study in CPC-Cu scaffolds showed significant cell growth compared to CPC. The CPC-Cu scaffolds showed improved alkaline phosphatase activity and angiogenic potential compared to CPC. The CPC-Cu scaffolds showed significant concentration dependent antibacterial activity in Staphylococcus aureus. Overall, the CPC scaffolds loaded with 1 wt% Cu NPs showed improved activity compared to other CPC-Cu and CPC scaffolds. The results showed that copper has improved the osteogenic, angiogenic and antibacterial properties of CPC scaffolds, facilitating better bone regeneration in vitro.
Collapse
|
21
|
Sasaki K, Ninomiya Y, Takechi M, Tsuru K, Ishikawa K, Shigeishi H, Ohta K, Aikawa T. Physical Properties and Antimicrobial Release Ability of Gentamicin-Loaded Apatite Cement/α-TCP Composites: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16030995. [PMID: 36770002 PMCID: PMC9918266 DOI: 10.3390/ma16030995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 06/10/2023]
Abstract
Apatite cement (AC), which has excellent osteoconductive ability, and alpha-tricalcium phosphate (α-TCP), which can be used for bone replacement, are useful bone substitute materials. The objective of this study was to clarify the physical properties and antimicrobial release ability of antibiotic-loaded AC/α-TCP composites in vitro. Gentamicin-loaded, rapid setting AC/α-TCP composites were prepared in 2 mixing ratios (10:3 and 10:6). The cement paste of AC/α-TCP composites was prepared in a plastic mold and dried in a thermostatic chamber at 37 °C and 100% relative humidity for 24 h. A diametral tensile strength test, powder X-ray diffraction analysis, and gentamicin release test were performed. The diametral tensile strengths of the AC/α-TCP composites were significantly less than that of AC alone. Powder X-ray diffraction patterns exhibited the characteristic peaks of hydroxyapatite in the AC/α-TCP composites and gentamicin-loaded AC/α-TCP composites. The concentration of the released gentamicin was maintained above the minimum inhibitory concentration of Staphylococcus aureus until Day 30 in both the gentamicin-loaded AC/α-TCP composites (10:3 and 10:6). Our results suggest that a gentamicin-loaded AC/α-TCP composite has potential as a drug delivery system. Further study is essential to investigate the antimicrobial activity and safety of the gentamicin-loaded AC/α-TCP composites in animal models.
Collapse
Affiliation(s)
- Kazuki Sasaki
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yoshiaki Ninomiya
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Masaaki Takechi
- Department of Dentistry, Oral and Maxillofacial Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Kure 737-0023, Japan
| | - Kanji Tsuru
- Section of Bioengineering, Department of Dental Engineering, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hideo Shigeishi
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tomonao Aikawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
22
|
Chen C, Huang B, Liu Y, Liu F, Lee IS. Functional engineering strategies of 3D printed implants for hard tissue replacement. Regen Biomater 2022; 10:rbac094. [PMID: 36683758 PMCID: PMC9845531 DOI: 10.1093/rb/rbac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
Three-dimensional printing technology with the rapid development of printing materials are widely recognized as a promising way to fabricate bioartificial bone tissues. In consideration of the disadvantages of bone substitutes, including poor mechanical properties, lack of vascularization and insufficient osteointegration, functional modification strategies can provide multiple functions and desired characteristics of printing materials, enhance their physicochemical and biological properties in bone tissue engineering. Thus, this review focuses on the advances of functional engineering strategies for 3D printed biomaterials in hard tissue replacement. It is structured as introducing 3D printing technologies, properties of printing materials (metals, ceramics and polymers) and typical functional engineering strategies utilized in the application of bone, cartilage and joint regeneration.
Collapse
Affiliation(s)
- Cen Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Bo Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yi Liu
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, PR China
| | - Fan Liu
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang 110002, PR China
| | | |
Collapse
|