1
|
Tamegart L, Abbaoui A, Oukhrib M, Bouyatas MM, Gamrani H. Physiological Alterations of Subchronic Lead Exposure Induced Degeneration of Epithelial Cells in Proximal Tubules and the Remedial Effect of Curcumin-III in Meriones shawi: a Possible Link with Vasopressin Release. Biol Trace Elem Res 2022; 200:1303-1311. [PMID: 34176078 DOI: 10.1007/s12011-021-02751-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
At the industrial working conditions, lead exposure could induce several alterations for the human body. Subchronic lead exposure is linked with several injuries including cerebral and renal dysfunctions. The present work discusses the effects of subchronic lead toxicity (3 g/l) in drinking water during the period of treatment (6 weeks) on vasopressin system and epithelial cells in proximal tubules. Also, we aimed to evaluate the protective effect of curcumin-III administered orally by gavage (30 mg/kg BW), against subchronic Pb exposure in Meriones shawi. The biochemical and histopathological examinations demonstrate renal damages induced by lead toxicity. In addition, the behavioral and immunohistochemical studies revealed that Pb neurotoxicity exhibited an anxious behavior with a significant elevation of the vasopressin (AVP) staining within the paraventricular nuclei. The study showed also curcumin-III restored the renal alterations with an anxiolytic effect. Moreover, it restored the AVP level in the studying nuclei. Our work supports a possible link between AVP release and epithelial degeneration in the proximal tubules, and shows a new pharmacological effect of curcumin-III as an anxiolytic agent against lead toxicity.
Collapse
Affiliation(s)
- Lahcen Tamegart
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Abdellatif Abbaoui
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Mjid Oukhrib
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Mouly Mustapha Bouyatas
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
- Department of Biology, Multidisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh, Morocco
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco.
- Neurosciences, Pharmacology and Environment Unit, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Avenue My Abdellah, B.P. 2390, Marrakesh, Morocco.
| |
Collapse
|
2
|
Levin-Schwartz Y, Cowell W, Leon Hsu HH, Enlow MB, Amarasiriwardena C, Andra SS, Wright RJ, Wright RO. Metal mixtures are associated with increased anxiety during pregnancy. ENVIRONMENTAL RESEARCH 2022; 204:112276. [PMID: 34717944 PMCID: PMC8671328 DOI: 10.1016/j.envres.2021.112276] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Exposure to low-dose toxic metals in the environment is ubiquitous. Several murine studies have shown metals induce anxiety-like behaviors, and mechanistic research supports that metals disrupt neurotransmitter signaling systems implicated in the pathophysiology of anxiety. In this study, we extend prior research by examining joint exposure to six metals in relation to maternal anxiety symptoms during pregnancy. METHODS The sample includes 380 participants enrolled in the PRogramming of Intergenerational Stress Mechanisms (PRISM) pregnancy cohort. Spot urine was collected during pregnancy (mean ± standard deviation: 31.1 ± 6.1 weeks), and concentrations of six metals (barium [Ba], cadmium [Cd], chromium [Cr], cesium [Cs], lead [Pb], antimony [Sb]) were measured by Inductively Coupled Plasma - Mass Spectrometry. Trait anxiety symptoms were measured during pregnancy using a short version of the Spielberger State Trait Anxiety Inventory (STAI-T) and information on covariates was collected by questionnaire. We used weighted quantile sum (WQS) regression as the primary modeling approach to examine metals, treated as a mixture, in relation to higher (≥20) vs. lower anxiety symptoms while adjusting for urinary creatinine and key sociodemographic variables. RESULTS The sample is socioeconomically and racially/ethnically diverse. Urinary metal concentrations were log-normally distributed and 25% of the sample had an STAI-T score ≥20. Joint exposure to metals was associated with elevated anxiety symptoms (ORWQS = 1.56, 95% CI: 1.24, 1.96); Cd (61.8%), Cr (14.7%), and Cs (12.7%) contributed the greatest weight to the mixture effect. CONCLUSION Exposure to metals in the environment may be associated with anxiety symptoms during pregnancy. This is a public health concern, as anxiety disorders are highly prevalent and associated with significant co-morbidities, especially during pregnancy when both the mother and developing fetus are susceptible to adverse health outcomes.
Collapse
Affiliation(s)
- Yuri Levin-Schwartz
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Whitney Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Syam S Andra
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
El-Shetry ES, Mohamed AAR, Khater SI, Metwally MMM, Nassan MA, Shalaby S, A M El-Mandrawy S, Bin Emran T, M Abdel-Ghany H. Synergistically enhanced apoptotic and oxidative DNA damaging pathways in the rat brain with lead and/or aluminum metals toxicity: Expression pattern of genes OGG1 and P53. J Trace Elem Med Biol 2021; 68:126860. [PMID: 34583094 DOI: 10.1016/j.jtemb.2021.126860] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Lead (Pb) and aluminum (Al) are ubiquitous environmental pollutants and are known to induce neurodegenerative disorders. They enhance neuronal changes and may involve glial alterations and other consequences. We intend to evaluate the mechanism through which the long-term exposure to Pb acetate alone or in combination with aluminum-chloride induced neurological impacts in rats. METHODS For this aim, a total number of forty male Sprague Dawley rats were assigned into four groups. Control (DW), Pb acetate (12.5 mg/kg BW), Al chloride (64 mg/kg BW), and the combination group were experimentally exposed for 60 days. Biochemical evaluation of oxidative stress biomarkers, transcriptional-mediated changes in the expression pattern of OGG1 and P53 genes by qRT-PCR were applied. Histopathological modifications in the brain tissue with immunohistochemical reactivity of GFAP were also detected. RESULTS Our findings revealed that lipid peroxidation was markedly enhanced but inhibited antioxidant enzyme activity in brain tissue in all exposed groups regarding the control. Pb-acetate elevated the biochemical concentration of dopamine and serotonin while AlCl3 declined their levels in the brain homogenate of rats. Furthermore, the exposure to one or both metals elevated the comet assay indices and serum level of 8-hydroxy-2' -deoxyguanosine, up-regulated the expression of P53, OGG1 and GFAP immunoreactivity in the central nervous system. Histologically, they caused several brain tissue alterations. CONCLUSION The exposure to Pb and/or Al could be key candidates for neurodegenerative changes in the brain of rats via oxidative, apoptotic, and DNA damaging pathways. Besides, according to our findings, exposure to both Pb acetate and Aluminium chloride have synergistic damaging effects on the central nervous system of rats. Also, they have opposing effects on the secretion of monoamine neurotransmitters DA and 5 H T.
Collapse
Affiliation(s)
- Eman S El-Shetry
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Amany Abdel-Rahman Mohamed
- Departments of Forensic Medicine and Toxicology and Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | - Safaa I Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 4511, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Mohamed A Nassan
- Department of clinical laboratory sciences, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shimaa Shalaby
- Department of Physiology, Faculty of Vet. Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Shefaa A M El-Mandrawy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Heba M Abdel-Ghany
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
4
|
Tamegart L, Abbaoui A, El Khiat A, Bouyatas MM, Gamrani H. Lead (Pb) exposure induces physiological alterations in the serotoninergic and vasopressin systems causing anxiogenic-like behavior in Meriones shawi: Assessment of BDMC as a neuroprotective compound for Pb-neurotoxicity and kidney damages. J Trace Elem Med Biol 2021; 65:126722. [PMID: 33524682 DOI: 10.1016/j.jtemb.2021.126722] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/25/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Studies have shown that lead (Pb) is one of hazardous heavy metals with various adverse effects on human health including mental health; Pb can induce psychiatric disorders like anxiety. In the present work, we examined the potential of bisdemethoxycurcumin (BDMC) as a neuroprotective agent against lead induced anxiety inMeriones shawi (M. shawi). METHODS We asses, the potential of three consecutive day exposure to Pb (25 mg/kg body weight) in inducing anxiogenic effect, serotoninergic and vasopressinergic disruptions inM. shawi. This was done using neurobehavioral tests (open field, elevated plus maze), immunohistochemestry by anti-serotonin (5-HT), and anti-vasopressin (AVP) antibodies. We also measured the possible restorative potential of BDMC (30 mg/kg body weight), delivered by oral gavage. After that, a biochemical and histopathological studies were done. RESULTS Our results showed that lead exposure for three consecutive days increases significantly the 5-HT-immunoreactivity in dorsal raphe nucleus (DRN) accompanied with a significant enhancement of AVP-immunoreactivity in the cell bodies and fibers in the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus. In the collecting tube, AVP binds to the V2 receptor of the epithelial cells and increases the water permeability. Our results showed clearly the epithelial cells degeneration after lead exposure, then we suggest that the increased AVP could be a response to the hydric balance disrupted after degenerative effect of lead exposure on epithelial cells. BDMC produced an anxiolytic effect in meriones. Moreover, it restored 5-HT and AVP immunoreactivity within studying nuclei. The biochemical and histopathological studies showed that Pb induced renal damages. In addition, BDMC restored the renal alterations. CONCLUSION According to the obtained results, we suggest new pharmacological effects of BDMC; while it has an anxiolytic effect against Pb-induced anxiety by working on serotoninergic and vasopressinergic systems with an obvious restoration of the renal injuries induced by lead exposure.
Collapse
Affiliation(s)
- Lahcen Tamegart
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Abdellatif Abbaoui
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Abdelaati El Khiat
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Moulay Mustapha Bouyatas
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco; Cadi Ayyad University, Multidisciplinary Faculty of Safi, Department of Biology, Morocco
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco.
| |
Collapse
|
5
|
Evaluation of Analytes Characterized with Potential Protective Action after Rat Exposure to Lead. Molecules 2021; 26:molecules26082163. [PMID: 33918725 PMCID: PMC8069014 DOI: 10.3390/molecules26082163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Lead (Pb) was revealed for its role as a neurodevelopmental toxin. The determination of neurotransmitters (NTs) in particular brain regions could ameliorate the precise description and optimization of therapeutic protocols able to restore the harmony of signaling pathways in nervous and immune systems. The determination of selected analytes from the group of NTs based on the liquid chromatography (LC)-based method was carried out to illustrate the changes of amino acid (AA) and biogenic amine (BA) profiles observed in chosen immune and nervous systems rat tissues after Pb intoxication. Also, a protective combination of AA was proposed to correct the changes caused by Pb intoxication. After the administration of Pb, changes were observed in all organs studied and were characterized by a fluctuation of NT concentrations in immune and nervous systems (hypothalamus samples). Using a protective mixture of bioactive compounds prevented numerous changes in the balance of NT. The combined analysis of the immune and nervous system while the normalizing effect of curative agents on the level of differentially secreted NTs and AA is studied could present a new approach to the harmonization of those two essential systems after Pb intoxication.
Collapse
|
6
|
Hernández-Coro A, Sánchez-Hernández BE, Montes S, Martínez-Lazcano JC, González-Guevara E, Pérez-Severiano F. Alterations in gene expression due to chronic lead exposure induce behavioral changes. Neurosci Biobehav Rev 2021; 126:361-367. [PMID: 33819547 DOI: 10.1016/j.neubiorev.2021.03.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/15/2020] [Accepted: 03/27/2021] [Indexed: 02/01/2023]
Abstract
Lead (Pb) is a pollutant commonly found in the environment, despite the implementation of public health policies intended to remove it. Due to its chemical characteristics as a divalent ion, Pb interacts with cells, enzymes, and tissues, causing pathological, physical, and behavioral alterations. Recent biotechnological advances have helped us to understand the mechanisms underlying the damage caused by Pb in human populations and in experimental models, and new evidence on the epigenetic alterations caused by exposition to environmental Pb is available. It is known that Pb exposure impacts on behavior (causing aggressiveness, anxiety, and depression), leading to learning deficit and locomotor activity alterations, and its presence has been linked with the abnormal release of neurotransmitters and other biochemical changes involved in these disorders. Still, further reductionist studies are required to determine the effects of Pb exposure on DNA and protein expression and understand the processes underlying the diseases caused by Pb. This will also indicate possible therapeutic targets to offset the negative effects of the heavy metal. By elucidating the epigenetic changes involved, it would be possible to manipulate them and propose novel therapeutic approaches in this area. This review is aimed to provide an overview of studies that link Pb exposure to behavioral changes, as well as biochemical and epigenetic alterations at a neurotransmitter level, considering the importance of this metal in behavior abnormalities.
Collapse
Affiliation(s)
- Abraham Hernández-Coro
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, La Fama, 14269, Mexico City, Mexico
| | - Beatriz Eugenia Sánchez-Hernández
- Departamento de Genética, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga #15, Col. Belisario Domínguez Sección 16, Tlalpan, 14080, Mexico City, Mexico
| | - Sergio Montes
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur # 3877, La Fama, 14269. Mexico City, Mexico
| | - Juan Carlos Martínez-Lazcano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, La Fama, 14269, Mexico City, Mexico
| | - Edith González-Guevara
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, La Fama, 14269, Mexico City, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Insurgentes Sur #3877, La Fama, 14269, Mexico City, Mexico.
| |
Collapse
|
7
|
Neurobehavioral effects of acute and chronic lead exposure in a desert rodent Meriones shawi: Involvement of serotonin and dopamine. J Chem Neuroanat 2019; 102:101689. [PMID: 31580902 DOI: 10.1016/j.jchemneu.2019.101689] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 11/22/2022]
Abstract
Lead (Pb) is a non physiological metal that has been implicated in toxic processes affecting several organs and biological systems, including the central nervous system. Several studies have focused on changes in lead-associated neurobehavioral and neurochemical alterations that occur due to Pb exposure. The present study evaluates the effects of acute and chronic Pb acetate exposure on serotoninergic and dopaminergic systems within the dorsal raphe nucleus, regarding motor activity and anxiety behaviours. Experiments were carried out on adult male Meriones shawi exposed to acute lead acetate intoxication (25 mg/kg b.w., 3 i.p. injections) or to a chronic lead exposure (0,5%) in drinking water from intrauterine age to adult age. Immunohistochemical staining demonstrated that both acute and chronic lead exposure increased anti-serotonin (anti-5HT) and tyrosine hydroxylase (anti-TH) immuno-reactivities in the dorsal raphe nucleus. In parallel, our results demonstrated that a long term Pb-exposure, but not an acute lead intoxication, induced behavioural alterations including, hyperactivity (open field test), and anxiogenic like-effects. Such neurobehavioral impairments induced by Pb-exposure in Meriones shawi may be related to dopaminergic and serotoninergic injuries identified in the dorsal raphe nucleus.
Collapse
|
8
|
Miroshnikov S, Zavyalov O, Frolov A, Sleptsov I, Sirazetdinov F, Poberukhin M. The content of toxic elements in hair of dairy cows as an indicator of productivity and elemental status of animals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18554-18564. [PMID: 31054054 DOI: 10.1007/s11356-019-05163-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
The study was conducted on a model of dairy cows of the Holstein breed. At the first stage of research, the elemental composition of cow hair was studied (n = 198). Based on this study, the percentile intervals of chemical elements concentrations in hair were established; values of 25 and 75 percentiles were determined, and they were considered as "physiological standard." At the second stage, the elemental composition of hair from the upper part of withers of highly productive Holstein cows during the period of increasing milk yield was analyzed (n = 47). The elemental composition of biological substrates was studied according to 25 indicators, using the methods of atomic emission and mass spectrometry (AES-ICP and MS-ICP). An assessment of productivity parameters of cows depending on the level of toxic elements in hair revealed a negative statistically significant relationship with the level of lead. Lead content in hair was negatively correlated with the yield of fat (r = - 0.50), protein (r = - 0.37), and dry matter (r = - 0.48) in milk. Based on these data, cows were divided into three groups: group I, with Pb concentration in hair 0.0245-0.0449 mg/g, group II-between 0.0495 and 0.141 mg/kg, and in group III-between 0.145 and 0.247 mg/g. It was established that increasing Pb content decreases daily production of milk fat by 18.8 (P ≤ 0.05) and 25.3% (P ≤ 0.05), protein by 9.7 (P ≤ 0.05) and 10.7% (P ≤ 0.05), and dry matter by 8.0 and 13.0% (P ≤ 0.05) in cows. Average daily milk yield, adjusted for 1% of fat, decreased by 19.2 (P ≤ 0.05) and 25.3% (P ≤ 0.05), respectively. As the concentration of lead in hair increased, the content of toxic elements (Al, As, Cd, Hg, Pb, Sn, Sr) increased from 0.07 to 0.235 mmol/kg in group I, in group II from 0.082 to 0.266 mmol/kg, and in group III-from 0.126 to 0.337 mmol/kg. It was concluded that it is necessary to further study the use of physiological standard indicators of the content of toxic chemical elements in hair of dairy cows to increase productivity and maintain animal health and to create an effective system of individual health monitoring of highly productive cattle.
Collapse
Affiliation(s)
- Sergey Miroshnikov
- Federal State Budget Scientific Institution, "Federal Scientific Center for Biological Systems and Agricultural Technologies of the Russian Academy of Sciences", Orenburg, Russia
- FSBEI HPE "Orenburg State University", Orenburg, Russia
| | - Oleg Zavyalov
- Federal State Budget Scientific Institution, "Federal Scientific Center for Biological Systems and Agricultural Technologies of the Russian Academy of Sciences", Orenburg, Russia
| | - Alexey Frolov
- Federal State Budget Scientific Institution, "Federal Scientific Center for Biological Systems and Agricultural Technologies of the Russian Academy of Sciences", Orenburg, Russia.
| | - Ivan Sleptsov
- FSBEI HE "Yakut State Agricultural Academy", Yakutsk, Russia
| | | | - Mikhail Poberukhin
- Federal State Budget Scientific Institution, "Federal Scientific Center for Biological Systems and Agricultural Technologies of the Russian Academy of Sciences", Orenburg, Russia
| |
Collapse
|
9
|
Obvious anxiogenic-like effects of subchronic copper intoxication in rats, outcomes on spatial learning and memory and neuromodulatory potential of curcumin. J Chem Neuroanat 2019; 96:86-93. [DOI: 10.1016/j.jchemneu.2019.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 12/16/2022]
|
10
|
Tamegart L, Abbaoui A, Makbal R, Zroudi M, Bouizgarne B, Bouyatas MM, Gamrani H. Crocus sativus restores dopaminergic and noradrenergic damages induced by lead in Meriones shawi: A possible link with Parkinson's disease. Acta Histochem 2019; 121:171-181. [PMID: 30573341 DOI: 10.1016/j.acthis.2018.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/20/2018] [Accepted: 12/12/2018] [Indexed: 01/08/2023]
Abstract
Lead (Pb) is a metal element released into the atmosphere and a major source of environmental contamination. The accumulation and concentration of this metal in a food web may lead to the intoxication of the body, more precisely, the nervous system (NS). In addition, Pb-exposure can cause structural and functional disruption of the NS. Studies have shown that Pb-exposure could be a risk factor in the development of Parkinson's disease (PD). The latter is related to dopaminergic deficiency that may be triggered by genetic and environmental factors such as Pb intoxication. In this study, we have evaluated, in one hand, the neurotoxic effect of Pb (25 mg / kg B.W i.p) for three consecutive days on dopaminergic system and locomotor performance in Merione shawi. In the other hand, the possible restorative potential of C. sativus (CS) (50 mg / kg BW) by oral gavage. The immunohistochemical approach has revealed that Pb-intoxicated Meriones show a significant increase of Tyrosine Hydroxylase (TH) levels within the Substantia Nigra compacta (SNc), Ventral Tegmental Area (VTA), Locus Coeruleus (LC), Dorsal Striatum (DS) and Medial Forebrain Bundle (MFB), unlike the control meriones, a group intoxicated and treated with Crocus sativus hydroethanolic extract (CSHEE) and treated group by CSHEE. Treatment with CSHEE, has shown a real potential to prevent all Pb-induced damages. In fact, restores the TH levels by 92%, 90%, 88%, 90% and 93% in SNc, VTA, LC, DS and MFB respectively, similarly, locomotor activity dysfunction in Pb-intoxicaed meriones was reinstated by 90%. In this study, we have revealed a new pharmacological potential of Crocus sativus that can be used as a neuroprotective product for neurodegenerative disorders, especially, which implying dopaminergic and noradrenergic injuries, like PD, trigged by heavy metals.
Collapse
Affiliation(s)
- Lahcen Tamegart
- Cadi Ayyad University, Faculty of Sciences Semlalia, Neurosciences, Pharmacology and Environment Unit, Marrakesh, Morocco
| | - Abdellatif Abbaoui
- Cadi Ayyad University, Faculty of Sciences Semlalia, Neurosciences, Pharmacology and Environment Unit, Marrakesh, Morocco
| | - Rachida Makbal
- Cadi Ayyad University, Faculty of Sciences Semlalia, Marrakesh, Morocco
| | - Mohamed Zroudi
- Cadi Ayyad University, Faculty of Sciences Semlalia, Neurosciences, Pharmacology and Environment Unit, Marrakesh, Morocco
| | - Brahim Bouizgarne
- Ibn Zohr University, Faculty of Sciences, Plant and Soil microbiology, Microbial Biotechnology, Department of Biology, Morocco
| | - My Mustapha Bouyatas
- Cadi Ayyad University, Faculty of Sciences Semlalia, Neurosciences, Pharmacology and Environment Unit, Marrakesh, Morocco; Cadi Ayyad University, Multidisciplinary Faculty of Safi, Department of Biology, Morocco
| | - Halima Gamrani
- Cadi Ayyad University, Faculty of Sciences Semlalia, Neurosciences, Pharmacology and Environment Unit, Marrakesh, Morocco.
| |
Collapse
|
11
|
Galal MK, Elleithy EMM, Abdrabou MI, Yasin NAE, Shaheen YM. Modulation of caspase-3 gene expression and protective effects of garlic and spirulina against CNS neurotoxicity induced by lead exposure in male rats. Neurotoxicology 2019; 72:15-28. [PMID: 30703413 DOI: 10.1016/j.neuro.2019.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/04/2019] [Accepted: 01/24/2019] [Indexed: 01/06/2023]
Abstract
Lead (Pb) is a ubiquitous environmental and industrial pollutant with worldwide health problems. The present study was designed to investigate the neurotoxic effects of Pb in albino rats and to evaluate the ameliorative role of garlic as well as Spirulina maxima against such toxic effects. Forty adult male rats were used in this investigation (10 rats/group). Group I: served as control, Group II: rats received lead acetate (100 mg/kg), Group III: rats received both lead acetate (100 mg/kg) and garlic (600 mg/kg) and Group IV: rats received both lead acetate (100 mg/kg) and spirulina (500 mg/kg) daily by oral gavage for one month. Exposure to Pb acetate adversely affected the measured acetyl cholinesterase enzyme activity, oxidative stress and lipid peroxidation parameters as well as caspase-3 gene expression in brain tissue (cerebrum and cerebellum). Light and electron microscopical examination of the cerebrum and cerebellum showed various lesions after exposure to Pb which were confirmed by immunohistochemistry. On the other hand, administration of garlic and spirulina concomitantly with lead acetate ameliorated most of the undesirable effects. It could be concluded that, the adverse effects induced by lead acetate, were markedly ameliorated by co-treatment with S. maxima more than garlic.
Collapse
Affiliation(s)
- Mona K Galal
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ebtihal M M Elleithy
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed I Abdrabou
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Noha A E Yasin
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Youssef M Shaheen
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
12
|
Abbaoui A, Tamegart L, Gamrani H. Animal Models of Intoxication by Metal Elements: A Focus on Neurobehavioral Injuries. Methods Mol Biol 2019; 2011:133-142. [PMID: 31273698 DOI: 10.1007/978-1-4939-9554-7_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Well-functioning of fundamental life processes and human body required metal elements especially essential elements like copper, zinc, magnesium, etc. However, other elements are very toxic for physiological functions including lead (Pb) and cadmium (Cd). Recently, cumulative investigations have interested in the role of metal elements in neurodegenerative diseases and psychiatric disorders especially anxiety and depression. Models of intoxication have been established to evaluate the neurobehavioral effects of metal element exposure via acute and chronic intoxication by metals levels in rats. This method makes available a means to recognize the association between the element level in water, diet, or serum and psychiatric dysfunctions. It allows also to assess the neurobehavioral injuries of metals in animal models and may provide a new window to understand the role metals play in the development of mood and psychiatric disorders.the role metals play in the development of mood and psychiatric disorders.
Collapse
Affiliation(s)
- Abdellatif Abbaoui
- Neurosciences, Pharmacology and Environment Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Lahcen Tamegart
- Neurosciences, Pharmacology and Environment Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Unit, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco.
| |
Collapse
|
13
|
Martínez-Lazcano JC, López-Quiroz A, Alcantar-Almaraz R, Montes S, Sánchez-Mendoza A, Alcaraz-Zubeldia M, Tristán-López LA, Sánchez-Hernández BE, Morales-Martínez A, Ríos C, Pérez-Severiano F. A Hypothesis of the Interaction of the Nitrergic and Serotonergic Systems in Aggressive Behavior Induced by Exposure to Lead. Front Behav Neurosci 2018; 12:202. [PMID: 30233338 PMCID: PMC6129586 DOI: 10.3389/fnbeh.2018.00202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/16/2018] [Indexed: 11/18/2022] Open
Abstract
The effects caused by exposure to lead (Pb) are still considered as a relevant health risk despite public policies aimed to restricting the use of this element. The toxicity limit in the blood (10 μg/dL, established by the Center for Disease Control and Prevention) has been insufficient to prevent adverse effects and even lower values have been related to neurobehavioral dysfunctions in children. Currently, there is not a safe limit of exposure to Pb. A large body of evidence points to environmental pollutant exposure as the cause of predisposition to violent behavior, among others. Considering the evidence by our group and others, we propose that Pb exposure induces alterations in the brain vasculature, specifically in nitric oxide synthases (NOS), affecting in turn the serotonergic system and leading to heightened aggressive behavior in the exposed individuals. This review article describes the consequences of Pb exposure on the nitrergic and serotonergic systems as well as its relationship with aggressive behavior. In addition, it summarizes the available therapy to prevent damage in gestation and among infants.
Collapse
Affiliation(s)
- Juan Carlos Martínez-Lazcano
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico.,Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico
| | - Alfredo López-Quiroz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico
| | - Rocío Alcantar-Almaraz
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico
| | - Sergio Montes
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico
| | - Alicia Sánchez-Mendoza
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Mireya Alcaraz-Zubeldia
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico
| | - Luis Antonio Tristán-López
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico
| | | | - Adriana Morales-Martínez
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico
| | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico
| | - Francisca Pérez-Severiano
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Mexico
| |
Collapse
|
14
|
Intermittent low-level lead exposure provokes anxiety, hypertension, autonomic dysfunction and neuroinflammation. Neurotoxicology 2018; 69:307-319. [PMID: 30098355 DOI: 10.1016/j.neuro.2018.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/31/2018] [Accepted: 08/04/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Exposures to lead (Pb) during developmental phases can alter the normal course of development, with lifelong health consequences. Permanent Pb exposure leads to behavioral changes, cognitive impairment, sympathoexcitation, tachycardia, hypertension and autonomic dysfunction. However, the effects of an intermittent lead exposure are not yet studied. This pattern of exposure has been recently increasing due to migrations, implementation of school exchange programs and/or residential changes. OBJECTIVE To determine and compare lead effects on mammal's behavior and physiology, using a rat model of intermittent and permanent Pb exposures. METHODS Fetuses were intermittently (PbI) or permanently (PbP) exposed to water containing lead acetate (0.2% w/v) throughout life until adulthood (28 weeks of age). A control group (CTL) without any exposure to lead was also used. Anxiety was assessed by elevated plus maze (EPM) and locomotor activity and exploration by open field test (OFT). Blood pressure (BP), electrocardiogram (ECG), heart rate (HR), respiratory frequency (RF), sympathetic and parasympathetic activity and baro- and chemoreceptor reflex profiles were evaluated. Immunohistochemistry protocol for the assessment of neuroinflammation, neuronal loss (NeuN), gliosis and synaptic alterations (Iba-1, GFAP, Syn), were performed at the hippocampus. One-way ANOVA with Tukey's multiple comparison between means were used (significance p < 0.05) for statistical analysis. RESULTS The intermittent lead exposure produced a significant increase in diastolic and mean BP values, concomitant with a tendency to sympathetic overactivity (estimated by increased low-frequency power) and without significant changes in systolic BP, HR and RF. A chemoreceptor hypersensitivity and a baroreflex impairment were also observed, however, less pronounced when compared to the permanent exposure. Regarding behavioral changes, both lead exposure profiles showed an anxiety-like behavior without changes in locomotor and exploratory activity. Increase in GFAP and Iba-1 positive cells, without changes in NeuN positive cells were found in both exposed groups. Syn staining suffered a significant decrease in PbI group and a significant increase in PbP group. CONCLUSION This study is the first to show that developmental Pb exposure since fetal period can cause lasting impairments in physiological parameters. The intermittent lead exposure causes adverse health effects, i.e, hypertension, increased respiratory frequency and chemoreflex sensitivity, baroreflex impairment, anxiety, decreased synaptic activity, neuroinflammation and reactive gliosis, in some ways similar to a permanent exposure, however some are lower-grade, due to the shorter duration of exposure. This study brings new insights on the environmental factors that influence autonomic and cardiovascular systems during development, which can help in creating public policy strategies to prevent and control the adverse effects of Pb toxicity.
Collapse
|
15
|
Muhammad Z, Ramzan R, Zhang S, Hu H, Hameed A, Bakry AM, Dong Y, Wang L, Pan S. Comparative Assessment of the Bioremedial Potentials of Potato Resistant Starch-Based Microencapsulated and Non-encapsulated Lactobacillus plantarum to Alleviate the Effects of Chronic Lead Toxicity. Front Microbiol 2018; 9:1306. [PMID: 29971052 PMCID: PMC6018469 DOI: 10.3389/fmicb.2018.01306] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/29/2018] [Indexed: 12/30/2022] Open
Abstract
Lead (Pb) is a well-recognized and potent heavy metal with non-biodegradable nature and can induce the oxidative stress, degenerative damages in tissues, and neural disorders. Certain lactic acid bacterial strains retain the potential to mitigate the lethal effects of Pb. The present work was carried out to assess the Pb bio-sorption and tolerance capabilities of Lactobacillus plantarum spp. Furthermore, potato resistant starch (PRS)-based microencapsulated and non-encapsulated L. plantarum KLDS 1.0344 was utilized for bioremediation against induced chronic Pb toxicity in mice. The experimental mice were divided into two main groups (Pb exposed and non-Pb exposed) and, each group was subsequently divided into three sub groups. The Pb exposed group was exposed to 100 mg/L Pb(NO3)2 via drinking water, and non-Pb exposed group was supplied with plain drinking water during 7 weeks prolonged in vivo study. The accumulation of Pb in blood, feces, renal, and hepatic tissues and its pathological damages were analyzed. The effect of Pb toxicity on the antioxidant enzyme capabilities in blood, serum, as well as, on levels of essential elements in tissues was also calculated. Moreover, KLDS 1.0344 displayed remarkable Pb binding capacity 72.34% and Pb tolerance (680 mg/L). Oral administration of both non- and PRS- encapsulated KLDS 1.0344 significantly provided protection against induced chronic Pb toxicity by increasing fecal Pb levels (445.65 ± 22.28 μg/g) and decreasing Pb in the blood up to 137.63 ± 2.43 μg/L, respectively. KLDS 1.0344 microencapsulated with PRS also relieved the renal and hepatic pathological damages and improved the antioxidant index by inhibiting changes in concentrations of glutathione peroxidase, glutathione, superoxide dismutase, malondialdehyde, and activated oxygen species, which were affected by the Pb exposure. Overall, our results suggested that L. plantarum KLDS 1.0344 either in free or encapsulated forms hold the potentiality to deliver a dietetic stratagem against Pb lethality.
Collapse
Affiliation(s)
- Zafarullah Muhammad
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Food Biotechnology and Food Safety Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Rabia Ramzan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Food Biotechnology and Food Safety Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shanshan Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Haijuan Hu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Ahsan Hameed
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Amr M Bakry
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yongzhen Dong
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Lufeng Wang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Russell VA. Notes on the Recent History of Neuroscience in Africa. Front Neuroanat 2017; 11:96. [PMID: 29163069 PMCID: PMC5681988 DOI: 10.3389/fnana.2017.00096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/16/2017] [Indexed: 01/16/2023] Open
Abstract
Neuroscience began with neuroanatomy and neurosurgery in Egypt more than 5000 years ago. Knowledge grew over time and specialized neurosurgery centers were established in north Africa in the eleventh century. However, it was not until the twentieth century that neuroscience research became established in sub-Saharan Africa. In most African countries, clinical research focused on understanding the rationale and improving treatment of epilepsy, infections, nutritional neuropathies, stroke and tumors. Significant advances were made. In the twenty-first century, African knowledge expanded to include all branches of neuroscience, contributing to genetic, biochemical and inflammatory determinants of brain disorders. A major focus of basic neuroscience research has been, and is, investigation of plant extracts, drugs and stress in animal models, providing insight and identifying potential novel therapies. A significant event in the history of African neuroscience was the founding of the Society of Neuroscientists of Africa (SONA) in 1993. The International Brain Research Organization (IBRO) supported SONA conferences, as well as workshops and neuroscience training schools in Africa. Thanks to their investment, as well as that of funding agencies, such as the National Institutes of Health (NIH), International Society for Neurochemistry (ISN), World Federation of Neurosurgical Societies (WFNS), World Federation of Neurology (WFN) and the International League Against Epilepsy (ILAE), neuroscience research is well-established in Africa today. However, in order to continue to develop, African neuroscience needs continued international support and African neuroscientists need to engage in policy and decision-making to persuade governments to fund studies that address the unique regional needs in Africa.
Collapse
Affiliation(s)
- Vivienne A Russell
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa.,School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
In Vitro and In Vivo Evaluation of Lactobacillus delbrueckii subsp. bulgaricus KLDS1.0207 for the Alleviative Effect on Lead Toxicity. Nutrients 2017; 9:nu9080845. [PMID: 28786945 PMCID: PMC5579638 DOI: 10.3390/nu9080845] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/30/2017] [Accepted: 08/03/2017] [Indexed: 11/17/2022] Open
Abstract
Lead (Pb) is a toxic contaminating heavy metal that can cause a variety of hazardous effects to both humans and animals. In the present study, Lactobacillus delbrueckii subsp. bulgaricus KLDS1.0207 (L. bulgaricus KLDS1.0207), which has a remarkable Pb binding capacity and Pb tolerance, was selected for further study. It was observed that the thermodynamic and kinetic model of L. bulgaricus KLDS1.0207 Pb binding respectively fit with the Langmuir-Freundlich model and the pseudo second-order kinetic model. Scanning electron microscopy and energy dispersive spectroscopy analysis disclosed that the cell surfaces were covered with Pb and that carbon and oxygen elements were chiefly involved in Pb binding. Combined with Fourier transform infrared spectroscopy analysis, it was revealed that the carboxyl, phosphoryl, hydroxyl, amino and amide groups were the main functional groups involved in the Pb adsorption. The protective effects of L. bulgaricus KLDS1.0207 against acute Pb toxicity in mice was evaluated by prevention and therapy groups, the results in vivo showed that L. bulgaricus KLDS1.0207 treatment could reduce mortality rates, effectively increase Pb levels in the feces, alleviate tissue Pb enrichment, improve the antioxidant index in the liver and kidney, and relieve renal pathological damage. Our findings show that L. bulgaricus KLDS1.0207 can be used as a potential probiotic against acute Pb toxicity.
Collapse
|
18
|
Neuroprotective potential of Aloe arborescens against copper induced neurobehavioral features of Parkinson's disease in rat. Acta Histochem 2017; 119:592-601. [PMID: 28619286 DOI: 10.1016/j.acthis.2017.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/29/2017] [Accepted: 06/07/2017] [Indexed: 02/07/2023]
Abstract
Copper (Cu) is an important trace element for the organism survival, which ensures the normal functioning of different biosystems. However, excessive levels of this heavy metal are responsible for profound physiological alterations including the central nervous system. Numerous findings sustain the involvement of heavy metals, as an environmental risk factor such as copper (Cu), in the neuropathology of Parkinson's disease (PD) which is a chronic neurodegenerative disorder that principally affects the motor system. The classic and evident symptoms of PD namely rigidity, tardiness of movement, and difficulty with walking, result from progressive dopaminergic neurons death within substantia nigra. Whereas, few pharmacological trials have shown a beneficial role against Cu neurotoxicity, Aloe arborescens is one of the powerful medicinal plants with an array of therapeutic effects. Thus, we aimed through the present study, to evaluate the impact of acute Cu intoxication (10μg/g B.W. i.p) for 3days on the dopaminergic system and locomotor performance, together with the possible restorative effect of oral administration of aqueous extract of Aloe arborescens gel (AEAAG) (200mg/kg B.W.). By means of immunohistochemistry, we noted, in the Cu intoxicated rats, a significant loss of TH (tyrosine hydroxylase) expression within substantia nigra compacta (SNc), ventral tegmental area (VTA) and the subsequent striatal outputs, those alterations were correlated to behavioral abnormalities such as a severe drop of locomotor performance. While AEAAG administration to Cu intoxicated rats showed a noticeable beneficial effect; this potential was featured by a complete recovery of the TH expression and locomotor behavior deficiencies in the intoxicated rats. The present investigation have brought, on the one hand, an experimental evidence of an altered dopaminergic innervations following Cu intoxication and on the other hand, a new pharmacological property of Aloe arborescens that may be used as a neuroprotective plant for neurodegenerative disorders, such as PD, touching the dopaminergic system trigged by heavy metals.
Collapse
|
19
|
Benammi H, Erazi H, El Hiba O, Vinay L, Bras H, Viemari JC, Gamrani H. Disturbed sensorimotor and electrophysiological patterns in lead intoxicated rats during development are restored by curcumin I. PLoS One 2017; 12:e0172715. [PMID: 28267745 PMCID: PMC5340392 DOI: 10.1371/journal.pone.0172715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/08/2017] [Indexed: 01/01/2023] Open
Abstract
Lead poisoning is one of the most significant health problem of environmental origin. It is known to cause different damages in the central and peripheral nervous system which could be represented by several neurophysiological and behavioral symptoms. In this study we firstly investigated the effect of lead prenatal exposure in rats to (3g/L), from neonatal to young age, on the motor/sensory performances, excitability of the spinal cord and gaits during development. Then we evaluated neuroprotective effects of curcumin I (Cur I) against lead neurotoxicity, by means of grasping and cliff avoidance tests to reveal the impairment of the sensorimotor functions in neonatal rats exposed prenatally to lead. In addition, extracellular recordings of motor output in spinal cord revealed an hyper-excitability of spinal networks in lead treated rats. The frequency of induced fictive locomotion was also increased in treated rats. At the young age, rats exhibited an impaired locomotor gait. All those abnormalities were attenuated by Cur I treatment at a dose of 16g/kg. Based on our finding, Cur I has shown features of a potent chemical compound able to restore the neuronal and the relative locomotor behaviors disturbances induced by lead intoxication. Therefore, this chemical can be recommended as a new therapeutic trial against lead induced neurotoxicity.
Collapse
Affiliation(s)
- Hind Benammi
- Neuroscience, Pharmacology and Environment Team, faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Hasna Erazi
- Neuroscience, Pharmacology and Environment Team, faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco
| | - Omar El Hiba
- Neuroscience, Pharmacology and Environment Team, faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco
- Department of Biology, faculty of Sciences, Chouaib Doukkali University, EL Jadida, Morocco
| | - Laurent Vinay
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, CNRS, Université Aix-Marseille, Marseille, France
| | - Hélène Bras
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, CNRS, Université Aix-Marseille, Marseille, France
| | - Jean-Charles Viemari
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, CNRS, Université Aix-Marseille, Marseille, France
- * E-mail: (HG); (JCV)
| | - Halima Gamrani
- Neuroscience, Pharmacology and Environment Team, faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco
- * E-mail: (HG); (JCV)
| |
Collapse
|
20
|
Abdellatif A, Omar EH, Halima G. The neuronal basis of copper induced modulation of anxiety state in rat. Acta Histochem 2017; 119:10-17. [PMID: 27863709 DOI: 10.1016/j.acthis.2016.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
Abstract
Recently, studies have provided strong evidence indicating the involvement of trace elements in the physiopathology of psychiatric disorders, particularly anxiety. We aimed, through the present study, to describe the effect of acute exposure to Cu (10mg/kg BW) on anxiety state together with the serotoninergic and dopaminergic systems in rat by means of neurobehavioral tests (elevated plus maze, dark light box) and immunohistochemistry using anti-serotonin (5HT) and anti-tyrosine hydroxylase (TH). Our data report that Cu enhanced 5HT innervation in the dorsal raphe nucleus (DRN) together with a loss of TH expression within the ventral tegmental area (VTA), Substantia nigra compacta (SNc) and their subsequent outputs including the medial forebrain bundle (MFB) and striatum. In the elevated plus maze Cu significantly increased the time and the number of entries into the open arms, and raised the time spent in the Dark Box indicating a clear reduced anxiety state induced by Cu. The present data show for the first time a powerful neuro-modulatory potential of Cu in rat which involves primarily a dysfunction of 5HT and DA neurotransmissions.
Collapse
|
21
|
Li S, Xu J, Liu Z, Yan CH. The non-linear association between low-level lead exposure and maternal stress among pregnant women. Neurotoxicology 2016; 59:191-196. [PMID: 27397901 DOI: 10.1016/j.neuro.2016.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/16/2016] [Accepted: 07/07/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Neuro-developmental impairments in the developing fetus due to exposure to low-level lead have been well documented. However, few studies have investigated the relation between maternal stress levels and low-level lead exposure among pregnant women. OBJECTIVES To investigate the relation between maternal blood lead and stress levels during index pregnancy. METHODS 1931 pregnant women (gestational week 28-36) were investigated using stratified-cluster-sampling in Shanghai in 2010. Maternal life event stress and emotional stress were assessed using "Life-Event-Stress-Scale-for-Pregnant-Women" (LESPW) and "Symptom-Checklist-90-Revised" (SCL-90-R), respectively. Maternal whole blood lead levels were determined, and other data on covariates were obtained from maternal interviews and medical records. Two piecewise linear regression models were applied to assess the relations between blood lead and stress levels using a data-driven approach according to spline smoothing fitting of the data. RESULTS Maternal blood lead levels ranged from 0.80 to 14.84μg/dL, and the geometric mean was 3.97μg/dL. The P-values for the two piecewise linear models against the single linear regression models were 0.010, 0.003 and 0.017 for models predicting GSI, depression and anxiety symptom scores, respectively. When blood lead levels were below 2.57μg/dL, each unit increase in log10 transformed blood lead levels (μg/dL) was associated with about 18% increase in maternal GSI, depression and anxiety symptom scores (PGSI=0.013, Pdepression=0.002, Panxiety=0.019, respectively). However, no significant relation was found when blood lead levels were above 2.57μg/dL (all P-values>0.05). CONCLUSION Our findings suggested a nonlinear relationship between blood lead and emotional stress levels among pregnant women. Emotional stress increased along with blood lead levels, and appeared to be plateaued when blood lead levels reached 2.57μg/dL.
Collapse
Affiliation(s)
- Shufang Li
- Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Children's HealthCare, Shanghai 200092, China
| | - Jian Xu
- Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Children's HealthCare, Shanghai 200092, China.
| | - Zhiwei Liu
- The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chong-Huai Yan
- Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine MOE-Shanghai Key Laboratory of Children's Environmental Health, Department of Children's HealthCare, Shanghai 200092, China
| |
Collapse
|
22
|
Abdulmajeed WI, Sulieman HB, Zubayr MO, Imam A, Amin A, Biliaminu SA, Oyewole LA, Owoyele BV. Honey prevents neurobehavioural deficit and oxidative stress induced by lead acetate exposure in male Wistar rats- a preliminary study. Metab Brain Dis 2016; 31:37-44. [PMID: 26435406 DOI: 10.1007/s11011-015-9733-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022]
Abstract
This research sought to investigate the possible neuroprotective effects of honey against lead (Pb)-induced neurotoxicity. Twenty four male Wistar rats were divided into four groups: Control group that received 1 ml/kg distilled orally for 28 days; while groups II-IV received 0.2% lead in drinking water and 1 ml/kg of distilled water, 1 ml/kg of honey, 1.5 ml/kg of honey respectively for 28 days. Anxiety and exploratory activities were determined in the open field test. Memory function was determined using Morris water maze after which the animals were sacrificed. The brains were then excised, homogenized and Lipid peroxidation (MDA), Superoxide dismutase (SOD), Catalase, Glutathione (GSH) and Glutathione -S- Transferase (GST) activities were determined in the brains. Results showed that lead exposure causes decrease in locomotor and exploratory activities; increase anxiety, memory impairment, lipid peroxidation and decrease antioxidant activities. However, co-administration of honey with lead inhibited neurotoxicity as indicated by the improvement in memory function as evidenced by decreased latency period and increased in time spent in target quadrant in honey-fed rats compared to the lead-exposed animals. Furthermore, honey increased locomotion, exploration and decreased anxiety in lead-exposed rats as indicated by the frequency of rearing, freezing duration and the number of line crossed by animals. Also administration of honey improves antioxidant activities as shown by increased brain SOD, GST and GSH activities compared to the lead-treated groups but no significant effect on MDA level. It can be concluded that honey has neuroprotective effects against lead-induced cognitive deficit probably by enhancing antioxidant activities.
Collapse
Affiliation(s)
- Wahab Imam Abdulmajeed
- Department of Physiology Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria.
| | - Habeeb Bolakale Sulieman
- Department of Physiology Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Aminu Imam
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Abdulbasit Amin
- Department of Physiology Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Sikiru Abayomi Biliaminu
- Department of Chemical Pathology and Immunology, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Lukuman Aboyeji Oyewole
- Department of Physiology Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Bamidele Victor Owoyele
- Department of Physiology Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
23
|
Liu J, Liu X, Wang W, McCauley L, Pinto-Martin J, Wang Y, Li L, Yan C, Rogan WJ. Blood lead concentrations and children's behavioral and emotional problems: a cohort study. JAMA Pediatr 2014; 168:737-45. [PMID: 25090293 PMCID: PMC4152857 DOI: 10.1001/jamapediatrics.2014.332] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
IMPORTANCE The association between lead exposure and children's IQ has been well studied, but few studies have examined the effects of blood lead concentrations on children's behavior. OBJECTIVE To evaluate the association between blood lead concentrations and behavioral problems in a community sample of Chinese preschool children with a mean blood lead concentration of less than 10 µg/dL. DESIGN, SETTING, AND PARTICIPANTS A prospective cohort study was conducted at 4 preschools in Jintan, Jiangsu province of China. Participants included 1341 children aged 3 to 5 years. EXPOSURES Lead. MAIN OUTCOMES AND MEASURES Blood lead concentrations were measured in children aged 3 to 5 years. Behavioral problems were assessed using Chinese versions of the Child Behavior Checklist and Caregiver-Teacher Report Form when children were aged 6 years. RESULTS The mean (SD) blood lead concentration was 6.4 (2.6) µg/dL, with the 75th and 90th percentiles being 7.5 and 9.4 µg/dL, respectively. General linear modeling showed significant associations between blood lead concentrations and increased scores for teacher-reported behavioral problems. A 1-µg/dL increase in the blood lead concentration resulted in a 0.322 (95% CI, 0.058 to 0.587), 0.253 (95% CI, 0.016 to 0.500), and 0.303 (95% CI, 0.046 to 0.560) increase of teacher-reported behavior scores on emotional reactivity, anxiety problems, and pervasive developmental problems, respectively (P < .05), with adjustment for parental and child variables. Spline modeling showed that mean teacher-reported behavior scores increased with blood lead concentrations, particularly for older girls. CONCLUSIONS AND RELEVANCE Blood lead concentrations, even at a mean concentration of 6.4 µg/dL, were associated with increased risk of behavioral problems in Chinese preschool children, including internalizing and pervasive developmental problems. This association showed different patterns depending on age and sex. As such, continued monitoring of blood lead concentrations, as well as clinical assessments of mental behavior during regular pediatric visits, may be warranted.
Collapse
Affiliation(s)
- Jianghong Liu
- University of Pennsylvania, School of Nursing, Philadelphia, PA, USA,Address correspondence to: Dr. Jianghong Liu, PhD, FAAN, University of Pennsylvania Schools of Nursing and Medicine, 418 Curie Blvd., Room 426, Claire M. Fagin Hall, Philadelphia, Pennsylvania 19104-6096, , Tel: (215) 898-8293, Fax: (215) 746-3374
| | - Xianchen Liu
- Indiana University, School of Medicine, Indianapolis, IN, USA,Shandong University School of Public Health, Jinan, China
| | - Wei Wang
- Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Linda McCauley
- Emory University, Nell Hodgson School of Nursing, Atlanta, GA, USA
| | | | - Yingjie Wang
- University of Pennsylvania, School of Nursing, Philadelphia, PA, USA
| | - Linda Li
- University of Pennsylvania, School of Nursing, Philadelphia, PA, USA
| | - Chonghuai Yan
- Xinhua Hospital, MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiaotong University School of Medicine, China
| | | |
Collapse
|
24
|
Benammi H, El Hiba O, Romane A, Gamrani H. A blunted anxiolytic like effect of curcumin against acute lead induced anxiety in rat: involvement of serotonin. Acta Histochem 2014; 116:920-5. [PMID: 24721902 DOI: 10.1016/j.acthis.2014.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 01/15/2023]
Abstract
Anxiety is one of the most common mental disorders sharing extreme or pathological anxiety states as the primary disturbance in mood or emotional tone, with increased fear and exaggerated acute stress responses. Medicinal plants are very variable, but some of them are used as a spice such as curcumin (Curcuma longa). Curcumin shows a wide range of pharmacological potentialities, however, little is known about its anxiolytic properties. The aim of our study was to assess the anti-anxiety potential of curcumin extract against experimental lead induced-anxiety in rats. Experiments were carried out on male Wistar rats intoxicated acutely with an intraperitoneal injection of Pb (25mg/kg B.W.) and/or concomitantly with administration of curcumin (30 mg/kg B.W.) for 3 days. Using immunohistochemistry and anxiety assessment tests (dark light box and elevated plus maze), we evaluated, respectively, the expression of serotonin (5HT) in the dorsal raphe nucleus (DRN) and the anxiety state in our animals. Our results showed, for the first time, a noticeable anxiolytic effect of curcumin against lead induced anxiety in rats and this may possibly result from modulation of central neuronal monoaminergic neurotransmission, especially serotonin, which has shown a significant reduction of the immunoreactivity within the DRN.
Collapse
Affiliation(s)
- Hind Benammi
- Laboratoire Neurosciences, Pharmacology and Environment, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech BP 2390, Morocco
| | - Omar El Hiba
- Laboratoire Neurosciences, Pharmacology and Environment, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech BP 2390, Morocco
| | - Abderrahmane Romane
- Laboratoire de Chimie Organique Appliquée, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech, Morocco
| | - Halima Gamrani
- Laboratoire Neurosciences, Pharmacology and Environment, Faculté des Sciences Semlalia, Université Cadi Ayyad, Marrakech BP 2390, Morocco.
| |
Collapse
|
25
|
Stangherlin EC, Nogueira CW. Diphenyl ditelluride induces anxiogenic-like behavior in rats by reducing glutamate uptake. Biol Trace Elem Res 2014; 158:392-8. [PMID: 24715661 DOI: 10.1007/s12011-014-9960-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/26/2014] [Indexed: 01/22/2023]
Abstract
Anxiety-related disorders are a common public health issue. Several lines of evidence suggest that altered glutamatergic neurotransmission underlies anxiety. The present study evaluated the effect of diphenyl ditelluride [(PhTe)2] exposure on the behavioral performance of rats and examined whether the behavioral effects could be attributed to changes in the modulation of glutamatergic function. Rats were exposed to (PhTe)2 (subcutaneously) during 8 weeks-final dose one third LD50 (124 μg/kg). The testing schedule included elevated plus-maze, open-field, T-maze, rotorod, and Morris water maze tests. Synaptosomal basal [(3)H] glutamate release and uptake were also evaluated. The time spent in the open arm and the ratio of time spent in the open arm/total were decreased in the (PhTe)2 group. Furthermore, the [(3)H] glutamate uptake was decreased in this experimental group. The results suggest that exposure to (PhTe)2 did not change motor abilities whereas it may result in anxiogenic-like behavior, induced by changes in the glutamatergic system at the pre-synaptic level.
Collapse
Affiliation(s)
- Eluza Curte Stangherlin
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | | |
Collapse
|
26
|
Aprioku J, Obianime A. Evaluation of the Effects of Citrus aurantifolia (Lime) Juice in Lead-induced Hematological and Testicular Toxicity in Rats. ACTA ACUST UNITED AC 2014. [DOI: 10.5567/pharmacologia.2014.36.41] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Kaczyńska K, Walski M, Szereda-Przestaszewska M. Long-term ultrastructural indices of lead intoxication in pulmonary tissue of the rat. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:1410-1415. [PMID: 23985218 DOI: 10.1017/s1431927613013305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the present research long-term pulmonary toxicity of lead was investigated in rats treated by intraperitoneal administration of lead acetate for three consecutive days (25 mg/kg per day). Five weeks after treatment average lead content in the whole blood was 0.41 μg/dL ± 0.05, in the lung homogenates it measured 3.35 μg/g ± 0.54, as compared to the control values of 0.13 ± 0.07 μg/dL and 1.03 μg/g ± 0.59, respectively. X-ray microanalysis of lung specimens displayed lead localized mainly within type II pneumocytes and macrophages. At the ultrastructural level the effects of lead toxicity were found in lung capillaries, interstitium, epithelial cells, and alveolar lining. Alveolar septa showed intense fibrosis, consisting of collagen, elastin, and fibroblasts. Thinned alveolar septa had emphysematous tissue with some revealing signs of angiogenesis. Type II pneumocytes contained lamellar bodies with features of laminar destruction. Fragments of the surfactant layer were often detached from the alveolar epithelium. These findings indicate that 5 weeks after exposure, lead provokes reconstruction of the alveolar septa including fibrosis and emphysematous changes in the lung tissue.
Collapse
Affiliation(s)
- Katarzyna Kaczyńska
- Laboratory of Respiratory Reflexes, Polish Academy of Sciences Mossakowski Medical Research Centre, 02-106 Warsaw, 5 Pawińskiego Street, Poland
| | | | | |
Collapse
|
28
|
Tchernitchin AN, Gaete L, Bustamante R, Báez A. Effect of prenatal exposure to lead on estrogen action in the prepubertal rat uterus. ISRN OBSTETRICS AND GYNECOLOGY 2012; 2011:329692. [PMID: 22263113 PMCID: PMC3255308 DOI: 10.5402/2011/329692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/21/2011] [Indexed: 11/23/2022]
Abstract
Lead is a widely spread environmental pollutant known to affect both male and female reproductive systems in humans and experimental animals and causes infertility and other adverse effects. The present paper investigated the effects of prenatal exposure to lead on different parameters of estrogen stimulation in the uterus of the prepubertal rat. In prenatally and perinatally exposed rats, estrogen-induced endometrial eosinophilia, endometrial stroma edema, and eosinophil migration towards the endometrium, and uterine luminal epithelial hypertrophy are enhanced while several other responses to estrogen appear unchanged. These effects may contribute to decrease in fertility following prenatal exposure to lead. The striking difference between most of these effects of prenatal exposure and the previously reported effects of chronic exposure to lead suggests that prenatal exposure to lead may neutralize the effects of chronic exposure to lead, providing partial protection of cell function against the adverse effects of chronic exposure to lead. We propose that the mechanism involved, named imprinting or cell programming, persisted through evolution as a nongenetic adaptive mechanism to provide protection against long-term environmental variations that otherwise may cause the extinction of species not displaying this kind of adaptation.
Collapse
Affiliation(s)
- Andrei N Tchernitchin
- Laboratory of Experimental Endocrinology and Environmental Pathology (LEEPA), Institute of Biomedical Sciences (ICBM), University of Chile Medical School, P.O. Box 21104, Santiago 21, Chile
| | | | | | | |
Collapse
|