1
|
Moslemi M, Jannat B, Mahmoudzadeh M, Ghasemlou M, Abedi A. Detoxification activity of bioactive food compounds against ethanol-induced injuries and hangover symptoms: A review. Food Sci Nutr 2023; 11:5028-5040. [PMID: 37701198 PMCID: PMC10494618 DOI: 10.1002/fsn3.3520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/08/2023] [Accepted: 06/08/2023] [Indexed: 09/14/2023] Open
Abstract
Alcohol drinking is a popular activity among adolescents in many countries, largely due to its pleasant, relaxing effects. As a major concern, ethanol consumption put the drinkers at risk of nutrients' deficiency due to the disordered eating, anorexia, and malabsorption of nutrients. Moreover, alcohol drinking may lead to the development of hangover symptoms including diarrhea, thirsty, fatigue, and oxidative stress. A broad range of functional food components with antioxidant and/or anti-inflammatory properties including pectin, aloe vera polysaccharides, chito-oligosaccharides, and other herbal components have been explored due to their detoxification effects against ethanol. The underlying anti-hangover mechanisms include reducing the intestinal absorption of ethanol or its metabolites, increasing the activity of ethanol metabolizing enzymes, development of fatty acid β-oxidation in mitochondria, inhibition of inflammatory response, blocking the target receptors of ethanol in the body, and possession of antioxidant activity under the oxidative stress developed by ethanol consumption. Therefore, the development of bioactive food-based therapeutic formula can assist clinicians and also drinkers in the alleviation of alcohol side effects.
Collapse
Affiliation(s)
- Masoumeh Moslemi
- Halal Research Center of IRIMinistry of Health and Medical EducationTehranIran
| | - Behrooz Jannat
- Halal Research Center of IRIMinistry of Health and Medical EducationTehranIran
| | - Maryam Mahmoudzadeh
- Nutrition Research Center and Department of Food Science and Technology, Faculty of Nutrition and Food ScienceTabriz University of Medical SciencesTabrizIran
| | - Mehran Ghasemlou
- School of ScienceSTEM College, RMIT UniversityMelbourneVictoriaAustralia
| | - Abdol‐Samad Abedi
- Department of Research Deputy, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
2
|
Cheng Z, Wang Y, Li B. Dietary Polyphenols Alleviate Autoimmune Liver Disease by Mediating the Intestinal Microenvironment: Challenges and Hopes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10708-10737. [PMID: 36005815 DOI: 10.1021/acs.jafc.2c02654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Autoimmune liver disease is a chronic liver disease caused by an overactive immune response in the liver that imposes a significant health and economic cost on society. Due to the side effects of existing medicinal medications, there is a trend toward seeking natural bioactive compounds as dietary supplements. Currently, dietary polyphenols have been proven to have the ability to mediate gut-liver immunity and control autoimmune liver disease through modulating the intestinal microenvironment. Based on the preceding, this Review covers the many forms of autoimmune liver illnesses, their pathophysiology, and the modulatory effects of polyphenols on immune disorders. Finally, we focus on how polyphenols interact with the intestinal milieu to improve autoimmune liver disease. In conclusion, we suggest that dietary polyphenols have the potential as gut-targeted modulators for the prevention and treatment of autoimmune liver disease and highlight new perspectives and critical issues for future pharmacological applications.
Collapse
Affiliation(s)
- Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning 110866, China
| |
Collapse
|
3
|
Liao C, Zhang L, Jiang R, Hu D, Xu J, Hu K, Jiang S, Li L, Yang Y, Huang J, Tang L, Li L. Nicotinamide adenine dinucleotide attenuates acetaminophen-induced acute liver injury via activation of PARP1, Sirt1, and Nrf2 in mice. Can J Physiol Pharmacol 2022; 100:796-805. [PMID: 35983933 DOI: 10.1139/cjpp-2022-0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the protective effect of nicotinamide adenine dinucleotide (NAD+) against acute liver injury (ALI) induced by acetaminophen (APAP) overdose in mice. First, serum transaminases were used to assess the protective effect of NAD+, and the data revealed that NAD+ mitigated the APAP-induced ALI in a dose-dependent manner. Then, we performed hematoxylin-eosin staining of liver tissues and found that NAD+ alleviated the abnormalities of histopathology. Meanwhile, increase in the malondialdehyde content and decrease in glutathione, superoxide dismutase (SOD), and glutathione peroxidase were identified in the APAP group, which were partially prevented by the NAD+ pretreatment. Moreover, compared with the mice treated with APAP only, the expression of poly ADP-ribose polymerase 1 (PARP1), Sirtuin1 (Sirt1), SOD2, nuclear factor erythroid 2-related factor 2 (Nrf2), and hemoxygenase-1 was upregulated, while Kelch-like ECH-associated protein 1 and histone H2AX phosphorylated on Ser-139 were downregulated by NAD+ in NAD+ + APAP group. Conversely, NAD+ could not correct the elevated expression of phospho-Jun N-terminal kinase and phospho-extracellular signal-regulated kinase induced by APAP. Taken together, these findings suggest that NAD+ confers an anti-ALI effect to enhance the expression of PARP1 and Sirt1, and to simultaneously stimulate the Nrf2 anti-oxidant signaling pathway.
Collapse
Affiliation(s)
- Cuiting Liao
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Li Zhang
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Rong Jiang
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Da Hu
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Juanjuan Xu
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Kai Hu
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Shifang Jiang
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Longhui Li
- Center of Health Management, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400000, China
| | - Yongqiang Yang
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jiayi Huang
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Li Tang
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Longjiang Li
- Department of Pathophysiology, Basic Medicine College, Chongqing Medical University, Chongqing 400016, China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
4
|
BEYAZ S, GÖK Ö, ASLAN A. The therapeutic effects and antioxidant properties of epigallocatechin-3 gallate: A new review. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.1017559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Das R, Mitra S, Tareq AM, Emran TB, Hossain MJ, Alqahtani AM, Alghazwani Y, Dhama K, Simal-Gandara J. Medicinal plants used against hepatic disorders in Bangladesh: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114588. [PMID: 34480997 DOI: 10.1016/j.jep.2021.114588] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/19/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver disease is a major cause of illness and death worldwide which accounts for approximately 2 million deaths per year worldwide, 1 million due to complications of cirrhosis and 1 million due to viral hepatitis and hepatocellular carcinoma. That's why it is seeking the researchers' attention to find out the effective treatment strategies. Phytochemicals from natural resources are the main leads for the development of noble hepatoprotective drugs. The majority of the natural sources whose active compounds are currently employed actually have an ethnomedical use. Ethnopharmacological research is essential for the development of these bioactive compounds. These studies not only provide scientific evidence on medicinal plants utilized for particular therapeutic purposes, but they also ensure cultural heritage preservation. Plenty of experimental studies have been well-documented that the ethnomedicinal plants are of therapeutics' interest for the advanced pharmacological intervention in terms of hepatic disorders. AIM OF THE STUDY This study summarizes the processes of hepatotoxicity induced by various toxins and explores identified hepatoprotective plants and their phytoconstituents, which can guide the extraction of novel phytochemical constituents from plants to treat liver injury. This review aimed to summarize the hepatoprotective activity of Bangladeshi medicinal plants where the bioactive compounds may be leads for the drug discovery in future. MATERIALS AND METHODS Literature searches in electronic databases, such as Web of Science, Science Direct, SpringerLink, PubMed, Google Scholar, Semantic Scholar, Scopus, BanglaJOL, and so on, were performed using the keywords 'Bangladesh', 'ethnomedicinal plants', 'Hepatoprotective agents' as for primary searches, and secondary search terms were used as follows, either alone or in combination: traditional medicine, medicinal plants, folk medicine, liver, hepatitis, therapeutic uses, and anti-inflammatory. Besides, several books, including the book entitled "Medicinal plants of Bangladesh: chemical constituents and uses" authored by Abdul Ghani, were carefully considered, which contained pharmacological properties and phytoconstituents of many medicinal plants growing and traditionally available in Bangladesh. Among them, the most promising plant species with their latest therapeutic effects against hepatic disorders were deeply considered in this review. RESULTS The results of this study revealed that in most cases, therapy using plant extracts stabilized altered hepatic biochemical markers induced by hepatotoxins. Initially, we investigated 32 plant species for hepatoprotective activity, however after extensive literature searching; we observed that 20 plants offer good pharmacological evidence of hepatoprotective function. Consequently, most bioactive compounds derived from the herbs including berberine, thymoquinone, andrographolide, ursolic acid, luteolin, naringenin, genistein, quercetin, troxerutin, morin, epigallocatechin-3-gallate, chlorogenic acid, emodin, curcumin, resveratrol, capsaicin, ellagic acid, etc. are appeared to be effective against hepatic disorders. CONCLUSIONS Flavonoids, phenolic acids, monoterpenoids, diterpenoids, triterpenoids, alkaloids, chromenes, capsaicinoids, curcuminoids, and anthraquinones are among the phytoconstituents were appraised to have hepatoprotective activities. All the actions displayed by these ethnomedicinal plants could make them serve as leads in the formulation of drugs with higher efficacy to treat hepatic disorders.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareil-ly, 243122, Uttar Pradesh, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E32004, Ourense, Spain.
| |
Collapse
|
6
|
Mahmoud AM, Sayed AM, Ahmed OS, Abdel-Daim MM, Hassanein EHM. The role of flavonoids in inhibiting IL-6 and inflammatory arthritis. Curr Top Med Chem 2022; 22:746-768. [PMID: 34994311 DOI: 10.2174/1568026622666220107105233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the synovial joints. RA has well-known clinical manifestations and can cause progressive disability and premature death along with socioeconomic burdens. Interleukin-6 (IL-6) has been implicated in the pathology of RA where it can stimulate pannus formation, osteoclastogenesis, and oxidative stress. Flavonoids are plant metabolites with beneficial pharmacological effects, including anti-inflammatory, antioxidant, antidiabetic, anticancer, and others. Flavonoids are polyphenolic compounds found in a variety of plants, vegetables, and fruits. Many flavonoids have demonstrated anti-arthritic activity mediated mainly through the suppression of pro-inflammatory cytokines. This review thoroughly discusses the accumulate data on the role of flavonoids on IL-6 in RA.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| |
Collapse
|
7
|
Sun Y, Kang K, Li YL, Sang LX, Chang B. Tea polyphenols protect mice from acute ethanol-Induced liver injury by modulating the gut microbiota and short-chain fatty acids. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
8
|
Summary of Natural Products Ameliorate Concanavalin A-Induced Liver Injury: Structures, Sources, Pharmacological Effects, and Mechanisms of Action. PLANTS 2021; 10:plants10020228. [PMID: 33503905 PMCID: PMC7910830 DOI: 10.3390/plants10020228] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
Liver diseases represent a threat to human health and are a significant cause of mortality and morbidity worldwide. Autoimmune hepatitis (AIH) is a progressive and chronic hepatic inflammatory disease, which may lead to severe complications. Concanavalin A (Con A)-induced hepatic injury is regarded as an appropriate experimental model for investigating the pathology and mechanisms involved in liver injury mediated by immune cells as well as T cell-related liver disease. Despite the advances in modern medicine, the only available strategies to treat AIH, include the use of steroids either solely or with immunosuppressant drugs. Unfortunately, this currently available treatment is associated with significant side-effects. Therefore, there is an urgent need for safe and effective drugs to replace and/or supplement those in current use. Natural products have been utilized for treating liver disorders and have become a promising therapy for various liver disorders. In this review, the natural compounds and herbal formulations as well as extracts and/or fractions with protection against liver injury caused by Con A and the underlying possible mechanism(s) of action are reviewed. A total of 53 compounds from different structural classes are discussed and over 97 references are cited. The goal of this review is to attract the interest of pharmacologists, natural product researchers, and synthetic chemists for discovering novel drug candidates for treating immune-mediated liver injury.
Collapse
|
9
|
Wang J, Chen Y, Chen L, Duan Y, Kuang X, Peng Z, Li C, Li Y, Xiao Y, Jin H, Tan Q, Zhang S, Zhu B, Tang Y. EGCG modulates PKD1 and ferroptosis to promote recovery in ST rats. Transl Neurosci 2020; 11:173-181. [PMID: 33335755 PMCID: PMC7712186 DOI: 10.1515/tnsci-2020-0119] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
Background Spinal cord injury (SCI) causes devastating loss of function and neuronal death without effective treatment. (−)-Epigallocatechin-3-gallate (EGCG) has antioxidant properties and plays an essential role in the nervous system. However, the underlying mechanism by which EGCG promotes neuronal survival and functional recovery in complete spinal cord transection (ST) remains unclear. Methods In the present study, we established primary cerebellar granule neurons (CGNs) and a T10 ST rat model to investigate the antioxidant effects of EGCG via its modulation of protein kinase D1 (PKD1) phosphorylation and inhibition of ferroptosis. Results We revealed that EGCG significantly increased the cell survival rate of CGNs and PKD1 phosphorylation levels in comparison to the vehicle control, with a maximal effect observed at 50 µM. EGCG upregulated PKD1 phosphorylation levels and inhibited ferroptosis to reduce the cell death of CGNs under oxidative stress and to promote functional recovery and ERK phosphorylation in rats following complete ST. Conclusion Together, these results lay the foundation for EGCG as a novel strategy for the treatment of SCI related to PKD1 phosphorylation and ferroptosis.
Collapse
Affiliation(s)
- Jianjun Wang
- Affiliated Hospital, Xiangnan University, Chenzhou 423000, Hunan Province, China.,Department of Clinical, Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Ying Chen
- Jilong Union School of Hengnan County, Hengyang 421000, Hunan Province, China
| | - Long Chen
- Department of Clinical, Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Yanzhi Duan
- Department of Clinical, Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Xuejun Kuang
- Affiliated Hospital, Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Zhao Peng
- Affiliated Hospital, Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Conghui Li
- Affiliated Hospital, Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Yuanhao Li
- Department of Clinical, Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Yang Xiao
- Department of Clinical, Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Hao Jin
- Department of Clinical, Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Quandan Tan
- Department of Clinical, Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Shaofeng Zhang
- Department of Clinical, Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Bopei Zhu
- Department of Clinical, Xiangnan University, Chenzhou 423000, Hunan Province, China
| | - Yinjuan Tang
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou 423000, Hunan Province, China
| |
Collapse
|
10
|
Wang J, Kuang X, Peng Z, Li C, Guo C, Fu X, Wu J, Luo Y, Rao X, Zhou X, Huang B, Tang W, Tang Y. EGCG treats ICH via up-regulating miR-137-3p and inhibiting Parthanatos. Transl Neurosci 2020; 11:371-379. [PMID: 33335777 PMCID: PMC7718614 DOI: 10.1515/tnsci-2020-0143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Intracranial hemorrhage (ICH) causes high mortality and disability without effective treatment in the clinical setting. (-)-Epigallocatechin-3-gallate (EGCG) exerts an essential role in the central nervous system and offers a promising therapeutic agent for the treatment of oxidative damage-related diseases. MiR-137 can inhibit the oxidative stress and apoptosis to attenuate neuronal injury. However, the role of EGCG in regulating miR-137-3p and neuronal Parthanatos remains to be unclear. In the present study, we build the ICH mice model to investigate the antioxidant effects of EGCG via upregulating miR-137-3p and inhibiting neuronal Parthanatos. We revealed that EGCG upregulated miR-137-3p and inhibited neuronal Parthanatos, and promoted the functional recovery, alleviated ICH-induced brain injury, and reduced oxidative stress in mice following ICH. However, following the inhibition of miR-137-3p and activation of Parthanatos, EGCG was unable to exert neuroprotective roles. These combined results suggest that EGCG may upregulate miR-137-3p and inhibit neuronal Parthanatos to accelerate functional recovery in mice after ICH, laying the foundation for EGCG to be a novel strategy for the treatment of neuronal injuries related to Parthanatos.
Collapse
Affiliation(s)
- Jianjun Wang
- Affiliated hospital, Xiangnan University, Chenzhou, 423000, Hunan Province, China
- Department of Clinical, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Xuejun Kuang
- Affiliated hospital, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Zhao Peng
- Affiliated hospital, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Conghui Li
- Affiliated hospital, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Chengwu Guo
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Xi Fu
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Junhong Wu
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Yang Luo
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Xiaolin Rao
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Xiangjuan Zhou
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Bin Huang
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Weijun Tang
- Department of Pharmacy, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| | - Yinjuan Tang
- Department of Basic Medical Sciences, Xiangnan University, Chenzhou, 423000, Hunan Province, China
| |
Collapse
|
11
|
Sayed AM, Hassanein EH, Salem SH, Hussein OE, Mahmoud AM. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life Sci 2020; 259:118173. [DOI: 10.1016/j.lfs.2020.118173] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
|
12
|
Green tea polyphenols mitigate the plant lectins-induced liver inflammation and immunological reaction in C57BL/6 mice via NLRP3 and Nrf2 signaling pathways. Food Chem Toxicol 2020; 144:111576. [DOI: 10.1016/j.fct.2020.111576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022]
|
13
|
Hodges JK, Sasaki GY, Bruno RS. Anti-inflammatory activities of green tea catechins along the gut-liver axis in nonalcoholic fatty liver disease: lessons learned from preclinical and human studies. J Nutr Biochem 2020; 85:108478. [PMID: 32801031 DOI: 10.1016/j.jnutbio.2020.108478] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/02/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which is the most prevalent hepatic disorder worldwide, affecting 25% of the general population, describes a spectrum of progressive liver conditions ranging from relatively benign liver steatosis and advancing to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Hallmark features of NASH are fatty hepatocytes and inflammatory cell infiltrates in association with increased activation of hepatic nuclear factor kappa-B (NFκB) that exacerbates liver injury. Because no pharmacological treatments exist for NAFLD, emphasis has been placed on dietary approaches to manage NASH risk. Anti-inflammatory bioactivities of catechin-rich green tea extract (GTE) have been well-studied, especially in preclinical models that have detailed its effects on inflammatory responses downstream of NFκB activation. This review will therefore discuss the experimental evidence that has advanced an understanding of the mechanisms by which GTE, either directly through its catechins or potentially indirectly through microbiota-derived metabolites, limits NFκB activation and NASH-associated liver injury. Specifically, it will describe the hepatic-level benefits of GTE that attenuate intracellular redox distress and pro-inflammatory signaling from extracellular receptors that otherwise activate NFκB. In addition, it will discuss the anti-inflammatory activities of GTE on gut barrier function as well as prebiotic and antimicrobial effects on gut microbial ecology that help to limit the translocation of gut-derived endotoxins (e.g. lipopolysaccharides) to the liver where they otherwise upregulate NFκB activation by Toll-like receptor-4 signaling. This summary is therefore expected to advance research translation of the hepatic- and intestinal-level benefits of GTE and its catechins to help manage NAFLD-associated morbidity.
Collapse
Affiliation(s)
- Joanna K Hodges
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210
| | - Geoffrey Y Sasaki
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210.
| |
Collapse
|
14
|
Tang H, Hao S, Chen X, Li Y, Yin Z, Zou Y, Song X, Li L, Ye G, Zhao L, Guo H, He R, Lv C, Lin J, Shi F. Epigallocatechin-3-gallate protects immunity and liver drug-metabolism function in mice loaded with restraint stress. Biomed Pharmacother 2020; 129:110418. [PMID: 32570121 DOI: 10.1016/j.biopha.2020.110418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/07/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenolic compound present in green tea and has been shown to possess bio-activities. In this study, we investigated the protective effects of EGCG against restraint stress (RS)-induced liver injury and immunosuppression. EGCG (10, 20 and 40 mg/kg) was orally administered to mice daily for 7 days before modeling the restraint stress. lood, liver and broncho-alveolar lavage fluid (BALF) samples were collected and tested. We found that EGCG significantly reduced the release of stress hormones to weak restraint stress response. EGCG effectively improved hepatic damage by decreas the serum levels of alanine aminotransaminase (ALT) and aspartate transaminase (AST) in restraint-challenged mice. Furthermore, EGCG also significantly prevented the release of H2O2, NOS and 8-isoprostane, and reduced the levels of interleukin (IL)-1β, IL-2,and IL-6 restrained mice. EGCG can normal the level of cytochrome P450 (CYP450) 1A2, 2D22, 2E1 and 3A11 that induced by restraint stress., the inhibition status of T cells subsets in serum and gA in BALF were significantly relieved EGCG pretreatment. Taken together, our data suggest that EGCG possesse hepatic- and immune-protective properties against restraint stress through its anti-oxidant, anti-inflammatory and immunomodulatory activities.
Collapse
Affiliation(s)
- Huaqiao Tang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Suqi Hao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xingying Chen
- College of Medicine, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Yinglun Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Zhongqiong Yin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Yuanfeng Zou
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xu Song
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Lixia Li
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Gang Ye
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Ling Zhao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Hongrui Guo
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Ran He
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Cheng Lv
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Juchun Lin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Fei Shi
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| |
Collapse
|
15
|
Wang J, Li P, Qin T, Sun D, Zhao X, Zhang B. Protective effect of epigallocatechin-3-gallate against neuroinflammation and anxiety-like behavior in a rat model of myocardial infarction. Brain Behav 2020; 10:e01633. [PMID: 32304289 PMCID: PMC7303397 DOI: 10.1002/brb3.1633] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Individuals who experience myocardial infarction (MI) often experience anxiety. Green tea has potent antioxidative properties and, epigallocatechin-3-gallate (EGCG), which is a primary component of tea polyphenols, has advantageous effects on anxiety and depression. However, its mechanism of action regarding the inhibition of anxiety-like symptoms after MI remains unclear. This study examined whether EGCG alleviated anxiety-like behavior in MI rats and its possible mechanism. MATERIAL AND METHODS Rats were administered a daily gavage of EGCG (50 mg/kg) 7 days before and 14 consecutive days after the MI procedure. The open-field test and light/dark shuttle box were performed to evaluate anxiety-like behavior. Serum and hippocampus interleukin (IL)-6 levels were tested using ELISA. Caspase 3, caspase 8, caspase 9 and bcl-2 messenger RNA levels in the hippocampus were determined using quantitative polymerase chain reaction, and STAT3 protein was detected by Western blot. RESULTS Results of the open field test and light/dark shuttle box task demonstrated that the MI procedure induced anxiety-like behavior in the animals, and this impairment was improved by EGCG. Daily EGCG administration significantly decreased the level of IL-6 both in serum and hippocampus after MI. The administration of EGCG also significantly moderated the expression of caspases 3, 8, and 9 mRNA, which was related to apoptosis in the hippocampus. Furthermore, EGCG also downregulated the expression of STAT3, which was related to the activity of IL-6. These results suggest that EGCG alleviated anxiety-like behavior by inhibiting increases in neuroinflammation and apoptosis in the rat hippocampus. In addition, EGCG reversed alterations of IL-6 and STAT3 in the brain to alleviate apoptosis in the hippocampus. CONCLUSIONS Thus, EGCG reversed anxiety-like behavior through an anti-inflammation effect to alleviate apoptosis in neurons and may be a useful therapeutic material for anxiety-like behavior after MI.
Collapse
Affiliation(s)
- Jinpeng Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Paediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Tian Qin
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dongjie Sun
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xin Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Beilin Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
16
|
Oketch-Rabah HA, Roe AL, Rider CV, Bonkovsky HL, Giancaspro GI, Navarro V, Paine MF, Betz JM, Marles RJ, Casper S, Gurley B, Jordan SA, He K, Kapoor MP, Rao TP, Sherker AH, Fontana RJ, Rossi S, Vuppalanchi R, Seeff LB, Stolz A, Ahmad J, Koh C, Serrano J, Low Dog T, Ko R. United States Pharmacopeia (USP) comprehensive review of the hepatotoxicity of green tea extracts. Toxicol Rep 2020; 7:386-402. [PMID: 32140423 PMCID: PMC7044683 DOI: 10.1016/j.toxrep.2020.02.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
As part of the United States Pharmacopeia's ongoing review of dietary supplement safety data, a new comprehensive systematic review on green tea extracts (GTE) has been completed. GTEs may contain hepatotoxic solvent residues, pesticide residues, pyrrolizidine alkaloids and elemental impurities, but no evidence of their involvement in GTE-induced liver injury was found during this review. GTE catechin profiles vary significantly with manufacturing processes. Animal and human data indicate that repeated oral administration of bolus doses of GTE during fasting significantly increases bioavailability of catechins, specifically EGCG, possibly involving saturation of first-pass elimination mechanisms. Toxicological studies show a hepatocellular pattern of liver injury. Published adverse event case reports associate hepatotoxicity with EGCG intake amounts from 140 mg to ∼1000 mg/day and substantial inter-individual variability in susceptibility, possibly due to genetic factors. Based on these findings, USP included a cautionary labeling requirement in its Powdered Decaffeinated Green Tea Extract monograph that reads as follows: "Do not take on an empty stomach. Take with food. Do not use if you have a liver problem and discontinue use and consult a healthcare practitioner if you develop symptoms of liver trouble, such as abdominal pain, dark urine, or jaundice (yellowing of the skin or eyes)."
Collapse
Key Words
- ADME, Absorption, distribution, metabolism, and excretion
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- AUC, area under the curve
- Bw, body weight
- C, Catechin
- CAM, causality assessment method
- CG, (+)‐catechin‐3‐gallate
- CIH, Concanavalin A-induced hepatitis
- CMC, chemistry, manufacturing, and controls
- COMT, catechol‐O‐methyltransferase
- Camellia sinensis
- ConA, Concanavalin A
- DILI, drug‐induced liver injury
- DILIN, Drug‐Induced Liver Injury Network
- DO, Diversity Outbred
- DS, Dietary Supplement
- DSAE, JS3 USP Dietary Supplements Admission Evaluations Joint Standard-Setting Subcommittee
- Dietary supplements
- EC, (–)‐epicatechin
- ECG, (‐)‐epicatechin‐3‐gallate
- EFSA, European Food Safety Authority
- EGC, (–)‐epigallocatechin
- EGCG, (–)‐epigallocatechin‐3‐gallate
- FDA, United States Food and Drug Administration
- GC, (+)‐gallocatechin
- GCG, (–)‐gallocatechin‐3‐gallate
- GT(E), green tea or green tea extract
- GT, green tea
- GTE, green tea extract
- GTEH, EP Green Tea Extract Hepatotoxicity Expert Panel
- Green tea
- Green tea extract
- HDS, herbal dietary supplement
- HPMC, Hydroxypropyl methylcellulose
- Hepatotoxicity
- LD50, lethal dose, median
- LFT(s), liver function test(s)
- LT(s), Liver test(s)
- Liver injury
- MGTT, Minnesota Green Tea Trial
- MIDS, multi-ingredient dietary supplement
- MRL, maximum residue limit
- NAA, N-acetyl aspartate
- NIDDK, National Institute of Diabetes and Digestive and Kidney Diseases
- NIH, National Institutes of Health
- NOAEL, no observed adverse effect level
- NTP, National Toxicology Program
- OSM, online supplementary material
- PAs, Pyrrolizidine Alkaloids
- PD-1, Programmed death domain-1
- PDGTE, powdered decaffeinated green tea extract
- PK/PD, pharmacokinetics and pharmacodynamics
- RUCAM, Roussel Uclaf Causality Assessment Method
- SIDS, single-ingredient dietary supplement
- TGF-beta, Transforming growth factor beta
- USP, United States Pharmacopeia
- γ-GT, Gamma-glutamyl transferase
Collapse
Affiliation(s)
- Hellen A. Oketch-Rabah
- U.S. Pharmacopeial Convention, Rockville, MD, USA
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Amy L. Roe
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Vice Chair, (USP GTEH EP, 2015-2020 cycle)
| | - Cynthia V. Rider
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Herbert L. Bonkovsky
- U.S. FDA Liaison to the USP GTEH EP (2015-2020 cycle)
- Section on Gastroenterology & Hepatology, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Gabriel I. Giancaspro
- U.S. Pharmacopeial Convention, Rockville, MD, USA
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Victor Navarro
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Mary F. Paine
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Joseph M. Betz
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Robin J. Marles
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Steven Casper
- U.S. FDA Liaison to the USP GTEH EP (2015-2020 cycle)
| | - Bill Gurley
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Scott A. Jordan
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Kan He
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Mahendra P. Kapoor
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Theertham P. Rao
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Averell H. Sherker
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Liver Diseases Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6707 Democracy Blvd., Bethesda, MD, USA
| | - Robert J. Fontana
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Simona Rossi
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | | | - Leonard B. Seeff
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Andrew Stolz
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Jawad Ahmad
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
| | - Christopher Koh
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Liver Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, 10 Center Drive, Building 10, Rm 9B-16, Bethesda, MD, 20892,USA
| | - Jose Serrano
- Expert Members of the Drug Induced Liver Injury Network (DILIN), USA
- Liver Diseases Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6707 Democracy Blvd., Bethesda, MD, USA
| | - Tieraona Low Dog
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
| | - Richard Ko
- United States Pharmacopeia Green Tea Hepatotoxicity Expert Panel (USP GTEH EP, 2015-2020 cycle), Rockville, MD, USA
- Chair (USP GTEH EP, 2015-2020 cycle)
| |
Collapse
|
17
|
Mycophenolate mofetil attenuates concanavalin A-induced acute liver injury through modulation of TLR4/NF-κB and Nrf2/HO-1 pathways. Pharmacol Rep 2020; 72:945-955. [PMID: 32048261 DOI: 10.1007/s43440-019-00055-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/24/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Acute liver injury (ALI) is a serious health condition associated with rising morbidity and sudden progression. This study was designed to investigate the possible hepatocurative potential of two dose levels (30 and 60 mg/kg) of Mycophenolate mofetil (MMF), an immune-suppressant agent, against Concanavalin A (Con A)-induced ALI in mice. METHOD A single dose of Con A (20 mg/kg, IV) was used to induce ALI in mice. MMF (30 mg/kg and 60 mg/kg) was administered orally for 4 days post Con A injection. RESULTS MMF (30 mg/kg) failed to cause significant amelioration in Con A-induced ALI while MMF (60 mg/kg) significantly alleviated Con A-induced ALI. Administration of MMF (60 mg/kg) significantly decreased Con A-induced increase in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Additionally, MMF significantly restored the disrupted oxidant/antioxidants status induced by Con A. MMF caused marked increase in hepatic nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) levels. Moreover, MMF significantly reduced Con A-induced increase in the expression of hepatic toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ) and interleukin-1β (Il-1β). Also, MMF administration significantly decreased Con A-induced increase in the immune-expression of pro-apoptotic Bcl-2-associated X protein (Bax) and markedly increased Con A-induced decrease in the anti-apoptotic B-cell lymphoma 2 protein (Bcl2). CONCLUSION The observed ameliorative effect of MMF against Con A-induce ALI may be contributed to its anti-inflammatory, anti-oxidant and anti-apoptotic potentials taking into consideration that TLR4/NF-κB and Nrf2/HO-1 are the main implicated pathways. Schematic diagram summarizing the possible mechanisms underlying the ameliorative potential of Mycophenolate Mofetil against Con A-induced acute liver injury. Bax Bcl-2-associated X protein, Bcl2 B-cell lymphoma 2, MMF Mycophenolate mofetil, Con A Concanavalin A, GSH reduced glutathione, HO-1 Heme oxygenase-1, IL-1β Interleukin-1β, IFN-γ Interferon-γ, MDA Malondialdehyde, NF-κB Nuclear Factor Kappa B, Nrf2 Nuclear factor erythroid 2-related factor 2, NO Nitric Oxide, SOD Superoxide Dismutase, TLR4 Toll-like receptor 4, TNF-α tumor necrosis factor-α.
Collapse
|
18
|
The chemical character of polysaccharides from processed Morindae officinalis and their effects on anti-liver damage. Int J Biol Macromol 2019; 141:410-421. [DOI: 10.1016/j.ijbiomac.2019.08.213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/21/2019] [Accepted: 08/24/2019] [Indexed: 02/08/2023]
|
19
|
Pedro AC, Maciel GM, Rampazzo Ribeiro V, Haminiuk CWI. Fundamental and applied aspects of catechins from different sources: a review. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alessandra Cristina Pedro
- Programa de Pós‐Graduação em Engenharia de Alimentos (PPGEAL) Universidade Federal do Paraná Curitiba CEP (81531‐980) PR Brasil
| | - Giselle Maria Maciel
- Departamento de Química e Biologia (DAQBi) Programa de Pós‐Graduação em Ciência e Tecnologia Ambiental (PPGCTA) Universidade Tecnológica Federal do Paraná Câmpus Curitiba CEP (81280‐340) PR Brasil
| | - Valéria Rampazzo Ribeiro
- Programa de Pós‐Graduação em Engenharia de Alimentos (PPGEAL) Universidade Federal do Paraná Curitiba CEP (81531‐980) PR Brasil
| | - Charles Windson Isidoro Haminiuk
- Departamento de Química e Biologia (DAQBi) Programa de Pós‐Graduação em Ciência e Tecnologia Ambiental (PPGCTA) Universidade Tecnológica Federal do Paraná Câmpus Curitiba CEP (81280‐340) PR Brasil
| |
Collapse
|
20
|
Abdel-Ghaf O, Hegab AM, Rayan EI. Evaluation of Antioxidative Effect of Green Tea Catechins Against Isoniazid-induced Biochemical Alterations in Rats. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.777.789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Luangmonkong T, Suriguga S, Mutsaers HAM, Groothuis GMM, Olinga P, Boersema M. Targeting Oxidative Stress for the Treatment of Liver Fibrosis. Rev Physiol Biochem Pharmacol 2019; 175:71-102. [PMID: 29728869 DOI: 10.1007/112_2018_10] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress is a reflection of the imbalance between the production of reactive oxygen species (ROS) and the scavenging capacity of the antioxidant system. Excessive ROS, generated from various endogenous oxidative biochemical enzymes, interferes with the normal function of liver-specific cells and presumably plays a role in the pathogenesis of liver fibrosis. Once exposed to harmful stimuli, Kupffer cells (KC) are the main effectors responsible for the generation of ROS, which consequently affect hepatic stellate cells (HSC) and hepatocytes. ROS-activated HSC undergo a phenotypic switch and deposit an excessive amount of extracellular matrix that alters the normal liver architecture and negatively affects liver function. Additionally, ROS stimulate necrosis and apoptosis of hepatocytes, which causes liver injury and leads to the progression of end-stage liver disease. In this review, we overview the role of ROS in liver fibrosis and discuss the promising therapeutic interventions related to oxidative stress. Most importantly, novel drugs that directly target the molecular pathways responsible for ROS generation, namely, mitochondrial dysfunction inhibitors, endoplasmic reticulum stress inhibitors, NADPH oxidase (NOX) inhibitors, and Toll-like receptor (TLR)-affecting agents, are reviewed in detail. In addition, challenges for targeting oxidative stress in the management of liver fibrosis are discussed.
Collapse
Affiliation(s)
- Theerut Luangmonkong
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.,Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Su Suriguga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Henricus A M Mutsaers
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Geny M M Groothuis
- Department of Pharmacokinetics, Toxicology and Targeting, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands.
| | - Miriam Boersema
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Zingue S, Kamga Silihe K, Fouba Bourfane I, Boukar A, Tueche AB, Njuh AN, Njamen D. Potential of Regular Consumption of Cameroonian Neem ( Azadirachta indica L.) Oil for Prevention of the 7,12-Dimethylbenz(a)anthracene-Induced Breast Cancer in High-Fat/Sucrose-Fed Wistar Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:2031460. [PMID: 31080481 PMCID: PMC6475536 DOI: 10.1155/2019/2031460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022]
Abstract
Neem (Azadirachta indica) is a tree from the Meliaceae family native to India, where it is considered as one of the most important plants worldwide. The anticancer effects of neem oil on breast cancer cells have been recently reported; however, its in vivo effects have not been studied. This prompted us to investigate the protective effects of neem oil on 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer in high-fat/sucrose-fed Wistar rats. Juvenile female Wistar rats were treated either with neem oil at a dose of 3 mL/kg body weight at 3 different frequencies, 2 times/week (Neem 1), 4 times/week (Neem 2), and every day (Neem 3), or with tamoxifen (3.3 mg/kg body weight), starting 1 week prior to DMBA treatment and lasting 12 weeks. Incidence, burden, volume, and histological analysis of mammary tumors were measured. Further toxicological parameters have been assessed. No tumors were detected in rats from the normal group, while all the rats from the negative control group (100%) developed mammary tumors. The regular consumption of neem oil at a dose of 3 mL/kg (2 or 4 times/week) significantly (p < 0.01) and in a dose-dependent manner reduced tumor incidence (80%), burden [35.78% (2 times/week) and 36.09% (4 times/week)], and weight. Neem consumption protected rats against DMBA-induced breast hyperplasia, with an optimal effect when taken 4 times weekly. Interestingly, all the animals that received a daily dose of 3 mL/kg died at the third week of the experiment. Further, animals that took the neem oil 4 times per week developed hepatotoxicity, evidenced by an increase of liver wet weight, transaminase (ALT and AST) activity, and histological abnormalities in liver. This study brings insight into the use of neem oil, which is greatly appreciated in traditional medicine. In summary, we demonstrated for the first time that the regular consumption of neem oil prevents breast cancer, but its excessive consumption is toxic.
Collapse
Affiliation(s)
- Stephane Zingue
- Department of Life and Earth Sciences, Higher Teachers' Training College, University of Maroua, P.O. Box 55, Maroua, Cameroon
- Department of Biochemistry, Faculty of Sciences, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
| | - Kevine Kamga Silihe
- Department of Biochemistry, Faculty of Sciences, University of Yaounde 1, P.O. Box 812, Yaounde, Cameroon
| | - Innocent Fouba Bourfane
- Department of Life and Earth Sciences, Higher Teachers' Training College, University of Maroua, P.O. Box 55, Maroua, Cameroon
| | - Ali Boukar
- Department of Life and Earth Sciences, Higher Teachers' Training College, University of Maroua, P.O. Box 55, Maroua, Cameroon
| | - Alain Brice Tueche
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Amstrong Nang Njuh
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Dieudonné Njamen
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon
| |
Collapse
|
23
|
Protective effects of polydatin against sulfur mustard-induced hepatic injury. Toxicol Appl Pharmacol 2019; 367:1-11. [DOI: 10.1016/j.taap.2019.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 12/17/2022]
|
24
|
Aydogan İ, Karslı MA, Başalan M, Yıldırım E, Çınar M, Şen G, Sümer T. Effects of Supplemental Epigallocatechin Gallate in the Diet of Broilers Exposed to Fluoride Intoxication. Biol Trace Elem Res 2018; 186:258-266. [PMID: 29549531 DOI: 10.1007/s12011-018-1306-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/11/2018] [Indexed: 11/25/2022]
Abstract
We evaluated the effects of dietary epigallocatechin gallate (EGCG) on the performance, biochemical parameters, and liver histopathology of fluoride-intoxicated broiler chickens. In total, 160 1-day-old male broiler chicks (Ross PM3 strain) were collected and assigned to four groups (40 animals each), with four replicates. The control group received a basal diet; the F group received 800 mg/kg fluoride; the EGCG group received 400 mg/kg EGCG; and the EGCG+F group received 400 mg/kg EGCG and 800 mg/kg fluoride. The live weight (LW) of F-treated chicks was significantly lower than that of the controls. In the F-treated groups, feed intake (FI) and LW values were lower, but the feed conversion ratio (FCR) was higher than those of the controls. The ratio of heart weight to LW was found to be the highest in the F-treated groups. Alkaline phosphatase (ALP), aspartate aminotransferase (AST), and total oxidant status (TOS) levels in the F-treated groups were significantly higher, whereas the increase in total cholesterol levels was insignificant than those in the control group. In the EGCG+F group, AST, total cholesterol, and TOS levels decreased to a level comparable to those in the control group. Histopathological evaluation revealed that there were mild changes in the portal region in the EGCG+F group; additionally, there was an improvement in liver morphology in the EGCG+F group compared to that in the F group. Thus, EGCG has potent antioxidant and regenerative effects that can ameliorate the detrimental effects of fluoride toxicity on blood parameters and the liver.
Collapse
Affiliation(s)
- İlkay Aydogan
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Kırıkkale University, 71450, Kırıkkale, Turkey.
| | - Mehmet Akif Karslı
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Kırıkkale University, 71450, Kırıkkale, Turkey
| | - Mehmet Başalan
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Kırıkkale University, 71450, Kırıkkale, Turkey
| | - Ebru Yıldırım
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Kırıkkale University, 71450, Kırıkkale, Turkey
| | - Miyase Çınar
- Department of Biochemistry, Faculty of Veterinary Medicine, Kırıkkale University, 71450, Kırıkkale, Turkey
| | - Gökhan Şen
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Kırıkkale University, 71450, Kırıkkale, Turkey
| | - Tugce Sümer
- Department of Pathology, Faculty of Veterinary Medicine, Kırıkkale University, 71450, Kırıkkale, Turkey
| |
Collapse
|
25
|
Zhang Q, Yuan H, Zhang C, Guan Y, Wu Y, Ling F, Niu Y, Li Y. Epigallocatechin gallate improves insulin resistance in HepG2 cells through alleviating inflammation and lipotoxicity. Diabetes Res Clin Pract 2018; 142:363-373. [PMID: 29940201 DOI: 10.1016/j.diabres.2018.06.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/07/2018] [Accepted: 06/19/2018] [Indexed: 12/30/2022]
Abstract
AIMS High levels of circulating free fatty acids (FFAs), inflammation and oxidative stress are important causes for insulin resistance (IR) and type 2 diabetes mellitus. The aim of this study was to investigate the mechanisms of EGCG in alleviating IR in HepG2 cells. METHODS HepG2 cells were treated with 25 mM glucose, 0.25 mM palmitic acid (PA), or 50 μM EGCG for 24 h. RESULTS EGCG increased glucose uptake and decreased glucose content. EGCG markedly decreased the levels of inflammatory and oxidative stress factors including nuclear factor κB (NF-κB), tumor necrosis factor-α, interleukin-6, reactive oxygen species, malondialdehyde and p53 protein, and markedly increased superoxide dismutases (SOD), glutathione peroxidase and SOD2 protein. EGCG significantly downregulated the levels of FFAs, triacylglycerol and cholesterol in HepG2 cells. The glucose transporter 2 (GLUT2) protein and its downstream proteins peroxisome proliferator-activated receptor γ coactivator (PGC)-1β were significantly increased, and sterol regulatory element-binding-1c (SREBP-1c) protein, and fatty acid synthase (FAS) were significantly decreased by EGCG in HepG2. Moreover, the foregoing effects were reversed by siRNA-mediated knockdown of GLUT2. CONCLUSION Our data demonstrated that EGCG improved IR, possibly through ameliorating glucose (25 mM) and PA (0.25 mM)-induced inflammation, oxidative stress, and FFAs via the GLUT2/PGC-1β/SREBP-1c/FAS pathway in HepG2 cells.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China
| | - Hang Yuan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China
| | - Cong Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China
| | - Yue Guan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China
| | - Yuqing Wu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China
| | - Fan Ling
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China
| | - Yucun Niu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China.
| | - Ying Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
26
|
Fayed MR, El-Naga RN, Akool ES, El-Demerdash E. The potential antifibrotic impact of apocynin and alpha-lipoic acid in concanavalin A-induced liver fibrosis in rats: Role of NADPH oxidases 1 and 4. Drug Discov Ther 2018; 12:58-67. [DOI: 10.5582/ddt.2017.01065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mostafa R. Fayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Kafrelsheikh University
| | - Reem N. El-Naga
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University
| | - El-Sayed Akool
- Pharmacology and Toxicology Department, Faculty of Pharmacy, El-Azhar University
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University
| | - Ebtehal El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University
| |
Collapse
|
27
|
Neoboutonia melleri var velutina Prain: in vitro and in vivo hepatoprotective effects of the aqueous stem bark extract on acute hepatitis models. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:24. [PMID: 29357846 PMCID: PMC5778785 DOI: 10.1186/s12906-018-2091-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/15/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hepatitis is a liver inflammation caused by different agents and remains a public health problem worldwide. Medicinal plants are an important source of new molecules being considered for treatment of this disease. Our work aims at evaluating the hepatoprotective properties of Neoboutonia velutina, a Cameroonian medicinal plant. METHODS The aqueous extract has been prepared using phytochemical methods. HepG2 cells were used to assess anti-inflammatory properties of the extract at different concentrations. Acute hepatitis models (Carbon tetrachloride and Concanavalin A) were performed in mice receiving or not receiving, different extract doses by gavage. Liver injury was assessed using histology, transaminases and pro-inflammatory markers. Extract antioxidant and radical scavenging capacities were evaluated. RESULTS The extract led to a significant decrease in pro-inflammatory cytokine expression in vitro and to a remarkable protection of mice from carbon tetrachloride-induced liver injury, as shown by a significant decrease in dose-dependent transaminases level. Upon extract treatment, inflammatory markers were significantly decreased and liver injuries were limited as well. In the Concanavalin A model, the extract displayed weak effects. CONCLUSIONS Taking into account underlying mechanisms in both hepatitis models, we demonstrate the extract's radical scavenging capacity. Neoboutonia velutina displays a potent hepatoprotective effect mediated through radical scavenging properties.
Collapse
|
28
|
Mounieb F, Ramadan L, Akool ES, Balah A. Propolis alleviates concanavalin A-induced hepatitis by modulating cytokine secretion and inhibition of reactive oxygen species. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:1105-1115. [DOI: 10.1007/s00210-017-1410-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/21/2017] [Indexed: 02/08/2023]
|
29
|
Yuan Y, Gong X, Zhang L, Jiang R, Yang J, Wang B, Wan J. Chlorogenic acid ameliorated concanavalin A-induced hepatitis by suppression of Toll-like receptor 4 signaling in mice. Int Immunopharmacol 2017; 44:97-104. [DOI: 10.1016/j.intimp.2017.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 12/25/2016] [Accepted: 01/10/2017] [Indexed: 01/16/2023]
|
30
|
Epigallocatechin-3-gallate alleviates paraquat-induced acute lung injury and inhibits upregulation of toll-like receptors. Life Sci 2017; 170:25-32. [DOI: 10.1016/j.lfs.2016.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022]
|
31
|
Kulandaivelu K, Mandal AKA. Positive regulation of biochemical parameters by tea polyphenol encapsulated solid lipid nanoparticles at in vitro and in vivo conditions. IET Nanobiotechnol 2016; 10:419-424. [PMID: 27906144 PMCID: PMC8676672 DOI: 10.1049/iet-nbt.2015.0113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/21/2016] [Accepted: 03/29/2016] [Indexed: 11/20/2022] Open
Abstract
Tea polyphenols (TPPs) comprise preventive and therapeutic potentials against cancer, cardiovascular and neurological disorders. Chemical instability of TPP which leads to low bioavailability is the major constrain to its use as therapeutic agent. The authors prepared TPP encapsulated solid lipid nanoparticles (TPP-SLNs) to increase its stability and bioefficacy. Comparison of Fourier transformed infrared spectra of unloaded SLN, free TPP and TPP-SLN indicated encapsulation of TPP. Sustained release of TPP from TP-SLN was observed. TPP-SLN showed prolonged free radical scavenging activity compared with free TPP indicating protection of TPP. TPP-SLN showed activation of Caspases-9 and -3 cascades in breast cancer cell line (Michigan cancer foundation (MCF)-7) at in vitro conditions. Biochemical parameters were altered in Ehrlich ascetic carcinoma (EAC) cell bearing mice compared with normal (uninduced) mice which were ameliorated significantly by oral feeding of TPP-SLN. Oral administration (pre- and post-treated) of TPP-SLN in EAC bearing mice resulted in significant increase of plasma haemoglobin, glucose, superoxide dismutase and catalase when compared with EAC bearing control mice. Other biochemical parameters (cholesterol, bilirubin, triglyceride, urea, total protein, alanine aminotransferase, alkaline phosphatase and aspertate transaminase were significantly decreased on oral administration (pre- and post-treated) of TPP-SLN in EAC bearing mice.
Collapse
Affiliation(s)
- Karikalan Kulandaivelu
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Abul Kalam Azad Mandal
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
32
|
Hepatoprotective effect of apple polyphenols against concanavalin A-induced immunological liver injury in mice. Chem Biol Interact 2016; 258:159-65. [DOI: 10.1016/j.cbi.2016.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/04/2016] [Accepted: 08/24/2016] [Indexed: 01/28/2023]
|
33
|
Li J, Sapper TN, Mah E, Rudraiah S, Schill KE, Chitchumroonchokchai C, Moller MV, McDonald JD, Rohrer PR, Manautou JE, Bruno RS. Green tea extract provides extensive Nrf2-independent protection against lipid accumulation and NFκB pro- inflammatory responses during nonalcoholic steatohepatitis in mice fed a high-fat diet. Mol Nutr Food Res 2016; 60:858-70. [PMID: 26679056 DOI: 10.1002/mnfr.201500814] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/24/2015] [Accepted: 11/29/2015] [Indexed: 12/11/2022]
Abstract
SCOPE Green tea extract (GTE) reduces liver steatosis and inflammation during nonalcoholic steatohepatitis (NASH). We hypothesized GTE would mitigate NASH in a nuclear factor erythroid-2-related-factor-2 (Nrf2)-dependent manner in a high fat (HF) induced model. METHODS AND RESULTS Nrf2-null and wild-type (WT) mice were fed an HF diet containing 0 or 2% GTE for eight weeks prior to assessing parameters of NASH. Compared to WT mice, Nrf2-null mice had increased serum alanine aminotransferase, hepatic triglyceride, expression of free fatty acid uptake and lipogenic genes, malondialdehyde and NFκB phosphorylation and expression of pro-inflammatory genes. In WT mice, GTE increased Nrf2 and NADPH:quinone oxidoreductase-1 mRNA, and lowered hepatic steatosis, lipid uptake and lipogenic gene expression, malondialdehyde, and NFκB-dependent inflammation. In Nrf2-null mice, GTE lowered NFκB phosphorylation and TNF-α and MCP1 mRNA to levels observed in WT mice fed GTE whereas hepatic triglyceride and lipogenic genes were lowered only to those of WT mice fed no GTE. Malondialdehyde was lowered in Nrf2-null mice fed GTE, but not to levels of WT mice, and without improving the hepatic antioxidants α-tocopherol, ascorbic acid and uric acid. CONCLUSION Nrf2 deficiency exacerbates NASH whereas anti-inflammatory and hypolipidemic activities of GTE likely occur largely independent of Nrf2 signaling.
Collapse
Affiliation(s)
- Jinhui Li
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Teryn N Sapper
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Eunice Mah
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA.,Biofortis, Inc, Addison, IL, USA
| | - Swetha Rudraiah
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Kevin E Schill
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | | | - Meredith V Moller
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Joshua D McDonald
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Philip R Rohrer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
34
|
Li S, Xia Y, Chen K, Li J, Liu T, Wang F, Lu J, Zhou Y, Guo C. Epigallocatechin-3-gallate attenuates apoptosis and autophagy in concanavalin A-induced hepatitis by inhibiting BNIP3. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:631-47. [PMID: 26929598 PMCID: PMC4760659 DOI: 10.2147/dddt.s99420] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Epigallocatechin-3-gallate (EGCG) is the most effective compound in green tea, and possesses a wide range of beneficial effects, including anti-inflammatory, antioxidant, antiobesity, and anticancer effects. In this study, we investigated the protective effects of EGCG in concanavalin A (ConA)-induced hepatitis in mice and explored the possible mechanisms involved in these effects. Methods Balb/C mice were injected with ConA (25 mg/kg) to induce acute autoimmune hepatitis, and EGCG (10 or 30 mg/kg) was administered orally twice daily for 10 days before ConA injection. Serum liver enzymes, proinflammatory cytokines, and other marker proteins were determined 2, 8, and 24 hours after the ConA administration. Results BNIP3 mediated cell apoptosis and autophagy in ConA-induced hepatitis. EGCG decreased the immunoreaction and pathological damage by reducing inflammatory factors, such as TNF-α, IL-6, IFN-γ, and IL-1β. EGCG also exhibited an antiapoptotic and antiautophagic effect by inhibiting BNIP3 via the IL-6/JAKs/STAT3 pathway. Conclusion EGCG attenuated liver injury in ConA-induced hepatitis by downregulating IL-6/JAKs/STAT3/BNIP3-mediated apoptosis and autophagy.
Collapse
Affiliation(s)
- Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
35
|
Angelica sinensis polysaccharide attenuates concanavalin A-induced liver injury in mice. Int Immunopharmacol 2016; 31:140-8. [DOI: 10.1016/j.intimp.2015.12.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/04/2015] [Accepted: 12/16/2015] [Indexed: 11/18/2022]
|
36
|
Yu SJ, Jiang R, Mazzu YZ, Wei CB, Sun ZL, Zhang YZ, Zhou LD, Zhang QH. Epigallocatechin-3-gallate Prevents Triptolide-Induced Hepatic Injury by Restoring the Th17/T reg Balance in Mice. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1221-1236. [PMID: 27744729 DOI: 10.1142/s0192415x16500683] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Drug-induced liver injury (DILI) is the most common cause of acute liver failure. Disruption of the Th17/Treg balance can lead to hepatic inflammation, which causes the main symptoms of DILI. Here we investigate the protective mechanisms of (-)-Epigallocatechin-3-gallate (EGCG) on triptolide (TP)-induced DILI that shows the Th17/Treg imbalance. Pretreatment with EGCG (5[Formula: see text]mg/kg) for 10 days before TP (0.5[Formula: see text]mg/kg) administration in mice significantly reduced the increased alanine aminotransferase (ALT) level ([Formula: see text]) induced by TP treatment. The hepatic histology analysis further proved that EGCG protected mice from TP-induced liver injury. The imbalance of Th17/Treg was induced by TP treatment, as shown by the upregulation of TLR4 and downregulation of Tim3 expression. EGCG pretreatment can maintain the expression of TLR4 and Tim3 at normal levels to restore the Th17/Treg imbalance. In addition, EGCG can block the TP-induced expression of the downstream targets of TLR4, including MyD88, NF[Formula: see text]B, and retinoid related orphan receptor (ROR-[Formula: see text]t), while EGCG can restore the TP inhibition of forkhead/winged-helix family transcriptional repressor p3 (FoxP3) that is the downstream target of Tim3. Consequently, EGCG pretreatment can effectively inhibit the Th17-related pro-inflammatory cytokine (e.g. IL-17 and IL-6) upregulation induced by TP treatment. However, TP inhibition of Treg-related anti-inflammatory cytokine IL-10 production was restored by EGCG pretreatment. Taken together, these results suggest that EGCG possesses significant protective properties against TP-induced hepatic inflammatory injury, and that these properties are carried out via the restoration of the Th17/Treg imbalance by the inhibition of the TLR4 signaling pathway and the enhanced activation of the Tim3 signaling pathway.
Collapse
Affiliation(s)
- Shu-Jing Yu
- * School of Chemistry and Chemical Engineering, Chongqing University, Shapingba District, Shazheng Avenue, No. 174, Chongqing 400044, P.R. China
| | - Rong Jiang
- † College of Basic Medical, Chongqing Medical University, Yuzhong District, Yixueyuan Avenue, No. 1, Chongqing 400016, P.R. China
| | - Ying Z Mazzu
- ‡ Department of Surgery, Memorial Sloan-Kettering Cancer Center, York Avenue, 1275, New York, NY 10065, USA
| | - Cai-Bing Wei
- † College of Basic Medical, Chongqing Medical University, Yuzhong District, Yixueyuan Avenue, No. 1, Chongqing 400016, P.R. China
| | - Zong-Liang Sun
- * School of Chemistry and Chemical Engineering, Chongqing University, Shapingba District, Shazheng Avenue, No. 174, Chongqing 400044, P.R. China
| | - Yu-Zhen Zhang
- * School of Chemistry and Chemical Engineering, Chongqing University, Shapingba District, Shazheng Avenue, No. 174, Chongqing 400044, P.R. China
| | - Lian-Di Zhou
- † College of Basic Medical, Chongqing Medical University, Yuzhong District, Yixueyuan Avenue, No. 1, Chongqing 400016, P.R. China
| | - Qi-Hui Zhang
- * School of Chemistry and Chemical Engineering, Chongqing University, Shapingba District, Shazheng Avenue, No. 174, Chongqing 400044, P.R. China
| |
Collapse
|
37
|
He R, Wang L, Zhu J, Fei M, Bao S, Meng Y, Wang Y, Li J, Deng X. Methane-rich saline protects against concanavalin A-induced autoimmune hepatitis in mice through anti-inflammatory and anti-oxidative pathways. Biochem Biophys Res Commun 2015; 470:22-28. [PMID: 26721437 DOI: 10.1016/j.bbrc.2015.12.080] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/18/2015] [Indexed: 11/16/2022]
Abstract
Methane is a common gas which has been reported to play a protective role in organ injury and presents an anti-inflammatory property. However, its effects on Concanavalin A (Con A)-induced autoimmune hepatitis (AIH) remain unknown. Thus, the aim of this study was to investigate the effects of methane on Con A-induced autoimmune hepatitis in mice and its underlying mechanism. Autoimmune hepatitis was induced by Con A (15 mg/kg) in healthy C57BL/6 mice and methane-rich saline (MS) (20 ml/kg) was intraperitoneally injected 30 min after the challenge with Con A. We found that methane treatment significantly reduced the elevated serum aminotransferase levels and ameliorated liver pathological damage. Furthermore, methane treatment obviously suppressed the secretion of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-6 (IL-6) and interleukin-1β (IL-1β) and increased anti-inflammatory cytokine interleukin-10 (IL-10). Moreover, we found that the levels of malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were highly increased while the activities of superoxide dismutase (SOD) and catalase (CAT) were decreased in liver with the injection of Con A, which was reversed by methane. Also, the data demonstrated that the phosphorylated IκB, NF-κB and P38 MAPK in liver were significantly down-regulated by methane. These results suggested that methane protected liver against Con A-induced injury through anti-inflammatory and anti-oxidative pathways.
Collapse
Affiliation(s)
- Rong He
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Anesthesia Application Technology, Xuzhou 221004, Jiangsu, China; Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Liping Wang
- Department of Anesthesiology, Fuzhou General Hospital of Nanjing Military Region, Fuzhou 350025, Fujian Province, China
| | - Jiali Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Miaomiao Fei
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Suhong Bao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Anesthesia Application Technology, Xuzhou 221004, Jiangsu, China
| | - Yan Meng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yuanyuan Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Anesthesia Application Technology, Xuzhou 221004, Jiangsu, China
| | - Jinbao Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Xiaoming Deng
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China; Jiangsu Province Key Laboratory of Anesthesia and Anesthesia Application Technology, Xuzhou 221004, Jiangsu, China; Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
38
|
Epigallocatechin-3-gallate enhances the therapeutic effects of leptomycin B on human lung cancer a549 cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:217304. [PMID: 25922640 PMCID: PMC4397486 DOI: 10.1155/2015/217304] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/20/2022]
Abstract
Our previous studies have shown Leptomycin B (LMB) is a promising antilung cancer drug. Epigallocatechin-3-gallate (EGCG) has antitumor properties but a debatable clinical application. The objective of this study is to evaluate the combination therapeutic effect of LMB and EGCG and its molecular mechanisms in human lung cancer A549 cells. Increased cytotoxicity was observed in LMB+EGCG-treated cells compared to LMB-treated cells. Elevated ROS was maximized 2 h after treatment, and LMB+EGCG-treated cells had higher ROS levels compared to LMB. N-Acetyl-L-cysteine (NAC) studies confirmed the oxidative role of LMB and/or EGCG treatment. In comparison to the control, CYP3A4, SOD, GPX1, and p21 mRNA expression levels were increased 7.1-, 2.0-, 4.6-, and 13.1-fold in LMB-treated cells, respectively, while survivin was decreased 42.6-fold. Additionally, these increases of CYP3A4, SOD, and GPX1 were significantly reduced, while p21 was significantly increased in LMB+EGCG-treated cells compared to LMB-treated cells. The qRT-PCR results for p21 and survivin were further confirmed by Western blot. Our study first shows that LMB produces ROS and is possibly metabolized by CYP3A4, GPX1, and SOD in A549 cells, and combination treatment of LMB and EGCG augments LMB-induced cytotoxicity through enhanced ROS production and the modulation of drug metabolism and p21/survivin pathways.
Collapse
|