1
|
Jin Y, Liu H, Wang Y, Zhang R, Wang Q, Wang Y, Cui H, Wang X, Bian Y. Pathogenesis and treatment of colitis-associated colorectal cancer: Insights from Traditional Chinese Medicine. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119096. [PMID: 39532222 DOI: 10.1016/j.jep.2024.119096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/11/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammatory Bowel Disease (IBD) is an inflammatory intestinal disease, and with prolonged illness duration, the annual risk of IBD progressing to colitis-associated colorectal cancer (CAC) gradually increases. In recent years, there has been a noticeable trend towards the application of traditional Chinese medicine (TCM) in the treatment of CAC. AIM OF THIS REVIEW This comprehensive review summarizes the pathogenesis of CAC and details the therapeutic benefits of TCM in treating CAC, including various TCM prescriptions and ingredients, establishing the theoretical foundation for the application of TCM in CAC treatment. METHODS We assessed literature published before March 24, 2024, from several databases, including Web of Science, PubMed, Scopus and Google Scholar. The keywords used include "traditional Chinese medicine", "traditional Chinese medicine prescriptions", "traditional Chinese medicine ingredients", "herbal medicine", "colitis-associated colorectal cancer", "inflammatory bowel disease", "colorectal cancer" and "colitis-cancer transformation". We conducted a comprehensive collection and collation of pertinent scientific articles from various databases, focusing on the efficacy of TCM in the prevention and treatment of "colitis-cancer transformation". RESULTS This paper provides a concise summary and thorough analysis of twenty-eight prescriptions and ingredients of TCM for the prevention and treatment of CAC, based on existing experimental and clinical research. There are positive signs that TCM can effectively prevent and treat the "colitis-cancer transformation" through repairing the intestinal mucosal barrier, correcting intestinal flora imbalance, and regulating intestinal immune responses. CONCLUSION TCM possesses comprehensive regulatory advantages that are multifaceted, multilevel, and multitarget. It has a definite curative effect in the prevention and treatment of CAC. It is essential to enhance the clinical efficacy of TCM in the prevention and treatment of CAC based on syndrome differentiation and treatment, with the assistance of modern medicine.
Collapse
Affiliation(s)
- Yutong Jin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haizhao Liu
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300192, China
| | - Yuhui Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ruixuan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qiaochu Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300073, China
| | - Yao Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Xiangling Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
2
|
Wang D, Zhang T, Qiu L, Zhao C. The Potential of the Probiotic Isolate Lactobacillus plantarum SS18-50 to Prevent Colitis in Mice. Food Sci Nutr 2025; 13:e4657. [PMID: 39803293 PMCID: PMC11717018 DOI: 10.1002/fsn3.4657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/13/2024] [Accepted: 11/23/2024] [Indexed: 01/16/2025] Open
Abstract
The objective of this study was to investigate the effect of the Lactobacillus plantarum (L. plantarum) SS18-50 (an isolate with favorable probiotic properties following space traveling) on dextran sulfate sodium (DSS)-induced colitis in mice. Male ICR mice were randomly assigned to one of six groups: a control group, a model group, and four intervention groups comprising the isolate (SS18-50-L and SS18-50-H) and the wild type (GS18-L and GS18-H) strains. The model group and the intervention groups were administered a 3.5% DSS (w/v) solution to induce acute enteritis. The four intervention groups were administered the corresponding bacterial suspensions, SS18-50-L (1.0 × 107 CFU/mL), SS18-50-H (1.0 × 109 CFU/mL), GS18-L (1.0 × 107 CFU/mL), and GS18-H (1.0 × 109 CFU/mL). The results demonstrated that the disease activity index (DAI) score of the SS18-50-H was markedly lower than that of the CON. Subsequently, the colon tissue of mice was analyzed to determine the levels of myeloperoxidase (MPO), superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA). The results demonstrated that all strains within the intervention groups exhibited good performance to prevent colitis. Particularly, the SS18-50-H strain exhibited a pronounced stimulative effect on GSH, an increase in SOD activity, and a decrease in MPO activity and MDA content. The SS18-50-H treatment resulted in a notable elevation in serum somatostatin (SS) levels and a concomitant reduction in endothelin (ET) and substance P (SP) levels, which approached normal ranges. The results of the RT-qPCR analysis demonstrated that the mRNA expression levels of tumor necrosis factor (TNF-α), cyclooxygenase (COX-2), interleukin (IL-10), and interleukin (IL-6) in the SS18-50-H were significantly reduced to levels comparable to those observed in the CON. In conclusion, L. plantarum SS18-50 has been demonstrated to inhibit the development of colitis in a dose-dependent manner, thereby establishing it as a high-quality lactic acid bacterium with a colitis inhibitory effect.
Collapse
Affiliation(s)
- Dan Wang
- Changchun PolytechnicChangchunChina
- College of Food Science and EngineeringJilin UniversityChangchunChina
| | - Tiehua Zhang
- College of Food Science and EngineeringJilin UniversityChangchunChina
| | - Luxin Qiu
- College of Food Science and EngineeringJilin UniversityChangchunChina
| | - Changhui Zhao
- College of Food Science and EngineeringJilin UniversityChangchunChina
| |
Collapse
|
3
|
Hu Y, Chen LL, Ye Z, Li LZ, Qian HZ, Wu MQ, Wang J, Qin KH, Ye QB. Indigo naturalis as a potential drug in the treatment of ulcerative colitis: a comprehensive review of current evidence. PHARMACEUTICAL BIOLOGY 2024; 62:818-832. [PMID: 39475104 PMCID: PMC11533244 DOI: 10.1080/13880209.2024.2415652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/25/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024]
Abstract
CONTEXT Ulcerative colitis (UC) is an intractable inflammatory bowel disease that threatens the health of patients. The limited availability of therapeutic strategies makes it imperative to explore more efficient and safer drugs. Indigo naturalis (IN) is a traditional Chinese medicine that possesses many pharmacological activities, including anti-inflammatory, antioxidant, and immunomodulatory activities. The treatment potential of IN for UC has been proven by numerous preclinical and clinical studies in recent years. OBJECTIVE This article provides a comprehensive review of the utility and potential of IN in the treatment of UC. METHODS 'Indigo naturalis' 'Qing dai' 'Qingdai' 'Ulcerative colitis' and 'UC' are used as the keywords, and the relevant literature is collected from online databases (Elsevier, PubMed, and Web of Science). RESULTS AND CONCLUSION Indirubin, indigo, isatin, tryptanthrin, and β-sitosterol are considered the key components in the treatment of UC with IN. Both preclinical and clinical studies support the efficacy of IN for UC, especially in severe UC or in those who do not respond to or have poor efficacy with existing therapies. The mechanisms of IN for UC are associated with the aryl hydrocarbon receptor pathway activation, immune regulation, oxidative stress inhibition, and intestinal microbial modulation. However, the clinical use of IN has the risks of adverse events such as pulmonary hypertension, which suggests the necessity for its rational application. As a potential therapeutic agent for UC that is currently receiving more attention, the clinical value of IN has been initially demonstrated and warrants further evaluation.
Collapse
Affiliation(s)
- Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liu-lin Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin-zhen Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan-zhu Qian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming-quan Wu
- Department of Pharmacy, Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Juan Wang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai-hua Qin
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiao-bo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Chuang HC, Chuang KJ, Cheng PC, Hsieh CL, Fan YY, Lee YL. Indirubin induces tolerogenic dendritic cells via aryl hydrocarbon receptor activation and ameliorates allergic asthma in a murine model by expanding Foxp3-expressing regulatory T cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156013. [PMID: 39270571 DOI: 10.1016/j.phymed.2024.156013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Allergic asthma is a chronic bronchial inflammatory disease closely associated with abnormal immune responses of dendritic cells (DCs) and allergen-specific type 2 T helper (Th2) cells. Indirubin (IR), a natural aryl hydrocarbon receptor (AhR) ligand, exerts anti-inflammatory and immunomodulatory properties. PURPOSE In this study, we aimed to clarify whether IR exhibits immunomodulatory action on DCs via AhR activation and investigated the antiallergic effects of IR in a mouse model of allergic asthma. METHODS Lipopolysaccharide (LPS)-activated bone marrow-derived DCs were treated with IR. Their mRNA expressions, cytokine production, and phenotype patterns were determined by a quantitative real-time PCR, ELISA, flow cytometry, and RNA sequencing. The mixed lymphocyte reaction was utilized to evaluate the regulatory function of IR-treated DCs on T-cell differentiation. Moreover, mice with ovalbumin (OVA)-induced allergic asthma were treated with IR. Thereafter, the airway hyperresponsiveness (AHR), allergen-specific IgE production, cytokine levels, airway inflammation, and T-cell responses were evaluated. RESULTS Treatment of LPS-stimulated DCs with 20 μM IR significantly reduced IL-12 and TNF-α production while increasing IL-10 secretion. Meanwhile, these DCs expressed decreased levels of CD80 but increased levels of Jagged 1 surface molecules. However, the effects of IR on DCs were reversed by pretreatment with the AhR antagonist, CH223191. Additionally, the coculture of these tolerogenic-like DCs with allogeneic CD4+T cells promoted the generation of Foxp3+ regulatory T (Treg) cells. A transcriptomic analysis identified several downregulated genes that are involved in regulating cell migration, cytokine secretion, and inflammatory responses in DCs after IR treatment. In an asthmatic murine model, oral administration of 25 mg kg-1 body weight of IR efficiently alleviated the development of AHR, OVA-specific IgE production, and levels of Th2-type cytokines (IL-4, IL-5, and IL-13) and the CCL11 chemokine. IR treatment also attenuated inflammatory cell recruitment and mucus production in the lungs. Notably, an enhanced frequency of Foxp3+ Treg cells and reduced effector T-cell proliferation associated with increased levels of IL-10 and TGF-β were observed in IR-treated mice. CONCLUSION IR can induce tolerogenic-like BMDCs which promote the differentiation of Treg cells. Importantly, the expansion of Foxp3+ Treg cells contributed to the therapeutic efficacy of IR against allergic asthma.
Collapse
Affiliation(s)
- Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Kai-Jen Chuang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Po-Ching Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Laboratory of Translational Medicine, Development Center for Biotechnology, Taipei, Taiwan
| | - Yen-Yi Fan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Xu Y, Lin C, Tan HY, Bian ZX. The double-edged sword effect of indigo naturalis. Food Chem Toxicol 2024; 185:114476. [PMID: 38301993 DOI: 10.1016/j.fct.2024.114476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Indigo naturalis (IN) is a dried powder derived from plants such as Baphicacanthus cusia (Neeks) Bremek., Polygonum tinctorium Ait. and Isatis indigotica Fork. It has a historical application as a dye in ancient India, Egypt, Africa and China. Over time, it has been introduced to China and Japan for treatment of various ailments including hemoptysis, epistaxis, chest discomfort, and aphtha. Clinical and pre-clinical studies have widely demonstrated its promising effects on autoimmune diseases like psoriasis and Ulcerative colitis (UC). Despite the documented efficacy of IN in UC patients, concerns have been raised on the development of adverse effects with long term consumption, prompting a closer examination of its safety and tolerability in these contexts. This review aims to comprehensively assess the efficacy of IN in both clinical and pre-clinical settings, with a detailed exploration of the mechanisms of action involved. Additionally, it summarizes the observed potential toxicity of IN in animal and human settings was summarized. This review will deepen our understanding on the beneficial and detrimental effects of IN in UC, providing valuable insights for its future application in patients with this condition.
Collapse
Affiliation(s)
- Yiqi Xu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Zhao-Xiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
6
|
Baral KC, Lee SH, Song JG, Jeong SH, Han HK. Improved Therapeutic Efficacy of MT102, a New Anti-Inflammatory Agent, via a Self-Microemulsifying Drug Delivery System, in Ulcerative Colitis Mice. Pharmaceutics 2023; 15:2720. [PMID: 38140061 PMCID: PMC10747691 DOI: 10.3390/pharmaceutics15122720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
MT-102 is a new anti-inflammatory agent derived from Juglans mandshurica and Isatis indigotica. Its therapeutic potential is hindered by low aqueous solubility, impacting its in vivo efficacy. Therefore, this study aimed to develop a self-microemulsifying drug delivery system (SMEDDS) for MT-102 to enhance its oral efficacy in treating ulcerative colitis. Solubility assessment in different oils, surfactants, and cosurfactants led to a SMEDDS formulation of MT-102 using Capmul MCM, Tween 80, and propylene glycol. Based on a pseudoternary phase diagram, the optimal SMEDDS composition was selected, which consisted of 15% Capmul MCM, 42.5% Tween 80, and 42.5% propylene glycol. The resulting optimized SMEDDS (SMEDDS-F1) exhibited a narrow size distribution (177.5 ± 2.80 nm) and high indirubin content (275 ± 5.58 µg/g, a biomarker). Across an acidic to neutral pH range, SMEDDS-F1 showed rapid and extensive indirubin release, with dissolution rates approximately 15-fold higher than pure MT-102. Furthermore, oral administration of SMEDDS-F1 effectively mitigated inflammatory progression and symptoms in a mouse model of ulcerative colitis, whereas pure MT-102 was ineffective. SMEDDS-F1 minimized body weight loss (less than 5%) without any significant change in colon length and the morphology of colonic tissues, compared to those of the healthy control group. In addition, oral administration of SMEDDS-F1 significantly inhibited the secretion of pro-inflammatory cytokines such as IL-6 and TNF-α. In conclusion, the SMEDDS-F1 formulation employing Capmul MCM, Tween 80, and propylene glycol (15:42.5:42.5, w/w) enhances the solubility and therapeutic efficacy of MT-102.
Collapse
Affiliation(s)
| | | | | | | | - Hyo-Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| |
Collapse
|
7
|
Zong Y, Meng J, Mao T, Han Q, Zhang P, Shi L. Repairing the intestinal mucosal barrier of traditional Chinese medicine for ulcerative colitis: a review. Front Pharmacol 2023; 14:1273407. [PMID: 37942490 PMCID: PMC10628444 DOI: 10.3389/fphar.2023.1273407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Damage to the intestinal mucosal barrier play an important role in the pathogenesis of ulcerative colitis (UC). Discovering the key regulators and repairing the disturbed barrier are crucial for preventing and treating UC. Traditional Chinese medicine (TCM) has been proved to be effective on treating UC and has exhibited its role in repairing the intestinal mucosal barrier. We summarized the evidence of TCM against UC by protecting and repairing the physical barrier, chemical barrier, immune barrier, and biological barrier. Mechanisms of increasing intestinal epithelial cells, tight junction proteins, and mucins, promoting intestinal stem cell proliferation, restoring the abundance of the intestinal microbiota, and modulating the innate and adaptive immunity in gut, were all involved in. Some upstream proteins and signaling pathways have been elucidated. Based on the existing problems, we suggested future studies paying attention to patients' samples and animal models of UC and TCM syndromes, conducting rescue experiments, exploring more upstream regulators, and adopting new technical methods. We hope this review can provide a theoretical basis and novel ideas for clarifying the mechanisms of TCM against UC via repairing the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Yichen Zong
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Meng
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| | - Tangyou Mao
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| | - Qiang Han
- Department of Traditional Chinese Medicine, Health Service Center of Beiyuan Community, Beijing, China
| | - Peng Zhang
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| | - Lei Shi
- Department of Gastroenterology and Hepatology, Beijing University of Chinese Medicine Affiliated Dongfang Hospital, Beijing, China
| |
Collapse
|
8
|
Shan J, Liu S, Liu H, Yuan J, Lin J. Mechanism of Qingchang Suppository on repairing the intestinal mucosal barrier in ulcerative colitis. Front Pharmacol 2023; 14:1221849. [PMID: 37675045 PMCID: PMC10478270 DOI: 10.3389/fphar.2023.1221849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Ulcerative colitis (UC) is a refractory inflammatory bowel disease, and the outcomes of conventional therapies of UC, including 5-aminosalicylic acid, glucocorticoids, immunosuppressants, and biological agents, are not satisfied with patients and physicians with regard to adverse reactions and financial burden. The abnormality of the intestinal mucosal barrier in the pathogenesis of UC was verified. Qingchang Suppository (QCS) is an herbal preparation and is effective in treating ulcerative proctitis. The mechanism of QCS and its active ingredients have not been concluded especially in mucosal healing. This review elucidated the potential mechanism of QCS from the intestinal mucosal barrier perspective to help exploring future QCS research directions.
Collapse
Affiliation(s)
- Jingyi Shan
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Suxian Liu
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haoyue Liu
- Department of Intensive Care Unit, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Yuan
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiang Lin
- Department of Gastroenterology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Zhou Y, Wang D, Yan W. Treatment Effects of Natural Products on Inflammatory Bowel Disease In Vivo and Their Mechanisms: Based on Animal Experiments. Nutrients 2023; 15:nu15041031. [PMID: 36839389 PMCID: PMC9967064 DOI: 10.3390/nu15041031] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory disease of the intestine that can be classified as ulcerative colitis (UC) and Crohn's disease (CD). Currently, the incidence of IBD is still increasing in developing countries. However, current treatments for IBD have limitations and do not fully meet the needs of patients. There is a growing demand for new, safe, and highly effective alternative drugs for IBD patients. Natural products (NPs) are used in drug development and disease treatment because of their broad biological activity, low toxicity, and low side effects. Numerous studies have shown that some NPs have strong therapeutic effects on IBD. In this paper, we first reviewed the pathogenesis of IBD as well as current therapeutic approaches and drugs. Further, we summarized the therapeutic effects of 170 different sources of NPs on IBD and generalized their modes of action and therapeutic effects. Finally, we analyzed the potential mechanisms of NPs for the treatment of IBD. The aim of our review is to provide a systematic and credible summary, thus supporting the research on NPs for the treatment of IBD and providing a theoretical basis for the development and application of NPs in drugs and functional foods.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China
- Correspondence: ; Tel.: +86-010-6238-8926
| |
Collapse
|
10
|
Combination Therapy with Indigo and Indirubin for Ulcerative Colitis via Reinforcing Intestinal Barrier Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2894695. [PMID: 36825081 PMCID: PMC9943625 DOI: 10.1155/2023/2894695] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 02/16/2023]
Abstract
Indigo and indirubin, the active molecules of traditional Chinese medicine indigo naturalis, exert therapeutic activity for ulcerative colitis (UC). Indigo and indirubin are isomers and have distinctive profiles in anti-inflammation, immune regulation, intestinal microbiota regulation, oxidative stress regulation, and intestinal mucosal repair for UC treatment. Thus, exploring its combined administration's integrated advantages for UC is critical. This study is aimed at clarifying the effect and mechanisms of the combined administration of indigo and indirubin on colitis mouse models. The results showed that all the treatment groups could improve the disease symptoms, and the combined administration showed the best effect. Additionally, compared with indigo and indirubin alone, the combination group could significantly reinforce intestinal barrier function by increasing the expression of E-cadherin, occludin, ZO-1, and MUC2 and improving intestinal permeability. The treatment groups significantly improved the expression of cytokines, including TNF-α, IFN-γ, IL-12, IL-23, and IL-17A, and indirubin presented the most potent anti-inflammatory effect. Furthermore, all the treatment groups reduced the infiltration of the immune cells in intestinal lamina propria and the production of ROS/RNS. Notably, indigo exhibited a more substantial capacity to regulate natural killer (NK) cells, ILC3, neutrophils, and dendritic cells, followed by the combination group and indirubin alone. Finally, all the treatment groups modulated intestinal microbiota composition, increased the proportion of beneficial microbiota, and decreased the proportion of microbiota. Our results indicated that indigo and indirubin synergistically reinforced the intestinal barrier function, which may be associated with integrating the indirubin anti-inflammatory and intestinal microbiota regulating strength and indigo immune and ROS/RNS regulation advantage.
Collapse
|
11
|
Zhao M, Liu L, Liu F, Liu L, Liu Z, Gao Y, Cao J. Traditional Chinese medicine improves myasthenia gravis by regulating the symbiotic homeostasis of the intestinal microbiota and host. Front Microbiol 2023; 13:1082565. [PMID: 36687653 PMCID: PMC9852828 DOI: 10.3389/fmicb.2022.1082565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease caused by autoantibodies that is dependent on T-cell immunity and complement participation and mainly involves neuromuscular junctions. In this study, 30 patients with myasthenia gravis were selected and divided into pretreatment (Case group) and posttreatment (Treatment group) and 30 healthy volunteers (CON group) were included. Among them, the treatment group was treated with Modified Buzhong Yiqi Decoction (MBZYQD), and the levels of antibodies such as AChR, Musk and Titin in blood and intestinal microbiota were compared before treatment (Case group), after treatment (Treatment group) and in healthy volunteers (CON group). The results showed that after treatment with MBZYQD, the antibody levels of AChR, MuSK, and Titin and the inflammatory factor level of IL-6, IL-1β, and IL-22 in MG patients decreased significantly and nearly returned to a healthy level. In addition, after treatment with MBZYQD, the diversity, structure and function of intestinal microorganisms in MG patients also recovered to a healthy level. At the phylum level, the relative abundance of Proteobacteria in the Case group increased significantly, accompanied by a significant decrease in the relative abundance of Bacteroides compared with that in the CON group, the relative abundance of Proteobacteria and Bacteroides in the Treatment group was similar to that in the CON group. At the genus level, the relative abundance of Shigella in the Case group was significantly increased, accompanied by a significant decrease in the relative abundance of Prevotella, and the relative abundance of Shigella and Prevotella in Treatment group was similar to that in the CON group. Moreover, the fluorobenzoate degradation pathway (KO00364) was significantly increased in the Case group, while this pathway was significantly decreased in the Treatment group. In conclusion, MBZYQD can improve the immune function of the host by regulating the diversity, structure and function of the intestinal microbiota to treat myasthenia gravis.
Collapse
Affiliation(s)
- Mingli Zhao
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Li Liu
- Department of Thoracic Surgery, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Fanzhao Liu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Lei Liu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Zhijuan Liu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yanli Gao
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Jianxi Cao
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China,*Correspondence: Jianxi Cao,
| |
Collapse
|
12
|
Zhang T, Peng H, Li Y, Zhou X, Pu W, Zhang Y, Du Z, Wei F, Li S, Zhou Q. Indirubin regulates T cell differentiation by promoting αVβ8 expression in bone marrow-derived dendritic cells to alleviate inflammatory bowel disease. Phytother Res 2023; 37:89-100. [PMID: 36161389 DOI: 10.1002/ptr.7595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 01/19/2023]
Abstract
Inflammatory bowel disease is a disease that can invade the whole digestive tract and is accompanied by immune abnormalities. Immune dysfunction involving dendritic cells (DCs) and T cells is recognized as a key factor in diseases. Indirubin (IDRB) exerts antiinflammatory effects and can help in treating immune diseases. This study aimed to isolate bone marrow-derived dendritic cells (BMDCs) using lipopolysaccharide (LPS) to obtain mature DCs (mDCs). The expression of CD80, CD86, CD40, and MHC-II was detected using flow cytometry after treatment with IDRB. αVβ8 siRNA was used to knock down αVβ8 in mDCs, and the expression of CD80, CD86, CD40, and MHC-II was detected. Meanwhile, DCs were co-cultured with T cells. Then, T cell differentiation was detected using flow cytometry, and the cytokine levels were detected using enzyme-linked immunosorbent assay. The animal model of dextran sulfate sodium (DSS)-induced inflammatory bowel disease was established in mice. After intervention with IDRB and αVβ8 shRNA, the intestinal tissues were evaluated using H&E staining, disease activity index (DAI) score, and histological damage index, and the corresponding factors and cytokines to regulatory T cells (Treg) and Th17 were measured. The results showed that αVβ8 was expressed in immature DCs and mDCs. CD80, CD86, CD40, and MHC-II expression decreased after IDRB treatment in mDCs. Meanwhile, the expression of TNF-α and TGF-β also decreased after IDRB treatment. The effect of IDRB on the expression of CD80, CD86, CD40, MHC-II, TNF-α, and TGF-β in mDCs was reversed by αVβ8 siRNA. The Treg differentiation increased after IDRB treatment, while the differentiation of Th17 cells was inhibited. This effect of IDRB was reversed by mDCs after treatment with αVβ8 siRNA. In vivo experiments showed that IDRB alleviated the symptoms of inflammatory bowel disease in animals. Enteritis significantly reduced, and the effect of IDRB was reversed by αVβ8 shRNA. The results suggested that IDRB regulated the differentiation of T cells by mediating the maturation of BMDCs through αVβ8. This study confirmed the therapeutic effect of IDRB in inflammatory bowel disease and suggested that IDRB might serve as a potential drug.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Hong Peng
- Department of Anorectal Surgery, Nanchong Central Hospital, The Second clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yunxiang Li
- Department of Urology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaoqing Zhou
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Wenfeng Pu
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Zhang
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zhonghan Du
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Fuxia Wei
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Siqing Li
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qian Zhou
- Department of Gastroenterology, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
13
|
Xu L, Song X, Zhang Y, Lin N, Wang J, Dai Q. Investigation of the mechanism of action of Shengxuexiaoban Capsules against primary immune thrombocytopenia using network pharmacology and experimental validation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154413. [PMID: 36037773 DOI: 10.1016/j.phymed.2022.154413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/11/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Shengxuexiaoban Capsules (SC) is a classical prescription in traditional Chinese medicine (TCM) and has been clinically adopted in the treatment of primary immune thrombocytopenia (ITP) in China. However, the underlying mechanisms of the actions of SC on ITP remain clear. METHODS A network pharmacology approach was adopted to investigate the underlying molecular mechanism of SC in treating ITP, and the effects of SC on the proliferation, differentiation, and apoptosis of megakaryocyte (MK) and on the ITP animal model were investigated. RESULTS Network pharmacology analysis found 128 active compounds and 268 targets of these compounds in SC, as well as 221 ITP-related targets. The topological analysis found a central network containing 82 genes, which were significantly associated with the regulation of transcription, cell proliferation, apoptosis processes, the PI3K-AKT signaling pathway, the MAPK signaling pathway, and the ERK1 and ERK2 cascades. It showed that SC increased the proliferation and differentiation of MK, but had no significant impact on MK apoptosis in vivo. The addition of SC increased the gene expression of several potential targets, including STAT3, KDR, CASP3, and TGFB1. In addition, SC administration elevated the protein expression of p-AKT and inhibit the protein expression of p-ERK, but has no impact on the protein expression of p-P38. Moreover, SC could improve haemogram parameters, coagulation indicators, and the proliferation and differentiation of MK in the ITP animal model. CONCLUSIONS The present study systematically elucidated the underlying mechanisms of SC against ITP and provided an efficient strategy to discover the pharmacological mechanism of TCM. It may strengthen the understanding of SC and facilitate more application of this formula in the treatment of ITP.
Collapse
Affiliation(s)
- Liping Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xinwei Song
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yan Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Na Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Jian Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Qiaoding Dai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China.
| |
Collapse
|
14
|
Yuan S, Li Y, Li J, Xue JC, Wang Q, Hou XT, Meng H, Nan JX, Zhang QG. Traditional Chinese Medicine and Natural Products: Potential Approaches for Inflammatory Bowel Disease. Front Pharmacol 2022; 13:892790. [PMID: 35873579 PMCID: PMC9301246 DOI: 10.3389/fphar.2022.892790] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a rare, recurrent, and intractable inflammation obstruction of the stomach tract, usually accompanied by inflammation of cell proliferation and inflammation of the colon and carries a particular cause of inflammation. The clinical use of drugs in western countries affects IBD treatment, but various adverse effects and high prices limit their application. For these reasons, Traditional Chinese Medicine (TCM) is more advantageous in treating IBD. This paper reviews the mechanism and research status of TCM and natural products in IBD treatment by analyzing the relevant literature to provide a scientific and theoretical basis for IBD treatment.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Jiao Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| | - Jia-Chen Xue
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Chronic Disease Research Center, Medical College, Dalian University, Dalian, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| |
Collapse
|
15
|
Pharmacological properties of indirubin and its derivatives. Biomed Pharmacother 2022; 151:113112. [PMID: 35598366 DOI: 10.1016/j.biopha.2022.113112] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/23/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Indirubin is the main bioactive component of the traditional Chinese medicine Indigo naturalis and is a bisindole alkaloid. Multiple studies have shown that indirubin exhibits good anticancer, anti-inflammatory and neuroprotective properties. METHODS The purpose of this review is to provide a summary of the pharmacological mechanisms of indirubin and its derivatives. RESULTS Indirubin and its derivatives exert anticancer effects by regulating the expression of cyclin-dependent kinases (CDKs), GSK-3β, Bax, Bcl-2, C-MYC, matrix metalloproteinases (MMPs), and focal adhesion kinase (FAK) through the PI3K/AKT/mTOR, nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK), JAK/signal transducer and activator of transcription 3 (STAT3) pathways and other signaling pathways. We also reviewed the anti-inflammatory and neuroprotective properties of indirubin and its derivatives. CONCLUSION The findings of recent studies assessing indirubin and its derivatives suggest that these compounds can be used as potential drugs to treat tumors, inflammation, neuropathy and bacterial infection.
Collapse
|
16
|
Yu GM, Zhou LF, Liu XM, Liu B, Lai XY, Xu CL, Long MY, Zhu YM, Wang JD, Li MS. Therapeutic effect of indirubin-loaded bovine serum albumin nanoparticules on ulcerative colitis. Biomater Sci 2022; 10:2215-2223. [PMID: 35322266 DOI: 10.1039/d1bm01896e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Indirubin is considered to have promising potential in the treatment of ulcerative colitis (UC). However, poor aqueous solubility and low bioavailability limit its clinical application. We produced indirubin-loaded bovine serum albumin nanoparticles (INPs) and characterized their drug encapsulation efficiency, drug-loading capacity, capacity to release indirubin in vitro and short-term physical stability. We also investigated the pharmacokinetics of INPs in mice. We then compared the curative effects of INPs and indirubin against dextran sulfate sodium-induced colitis in mice and 3D cultured biopsies from patients with UC. In the mouse model, the outcomes of INP treatment, including the disease activity index and serous levels of interleukin (IL)-1β and IL-10, were significantly different from those of indirubin treatment. Similarly, when we administered INPs and indirubin to the ex vivo colonic tissues of patients with UC, the effect of INPs was stronger than that of indirubin for most antioxidant and anti-inflammatory biomarkers. The results of both the animal trial and ex vivo experiment indicate that the therapeutic effect of indirubin was further enhanced by the carrier system, making it a highly promising medical candidate for UC.
Collapse
Affiliation(s)
- Guang-Min Yu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.,Department of Gastroenterology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| | - Li-Feng Zhou
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Xiao-Ming Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Bin Liu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xue-Ying Lai
- The Third Department of Digestion Center, Panyu Central Hospital, Guangzhou 511400, China
| | - Chu-Lan Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Ming-Yi Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yan-Ming Zhu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Ji-De Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Ming-Song Li
- Department of Gastroenterology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| |
Collapse
|
17
|
Hu Y, Ye Z, She Y, Li L, Wu M, Qin K, Li Y, He H, Hu Z, Yang M, Lu F, Ye Q. Efficacy and Safety of Probiotics Combined With Traditional Chinese Medicine for Ulcerative Colitis: A Systematic Review and Meta-Analysis. Front Pharmacol 2022; 13:844961. [PMID: 35321324 PMCID: PMC8936956 DOI: 10.3389/fphar.2022.844961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The combination of probiotics and traditional Chinese medicine (TCM) is a prospective therapy for ulcerative colitis (UC), and its efficacy and safety need to be urgently evaluated. Objective: This study aims to comprehensively assess the efficacy and safety of probiotics combined with TCM for the treatment of UC. Methods: The Pubmed, EMBASE, Cochrane library, China Academic Journals (CNKI), Wan-fang database, Chinese biomedical literature service system (CBM), and Chinese Science and Technology Journals (CQVIP) were searched. Subgroup analysis were designed in accordance with different control drugs, treatment courses, and types of probiotics. The Review Manager software (version 5.4.1) was utilized for statistical analysis. Results: 14 original studies containing 1,154 patients were analyzed and showed that probiotics with TCM was more effective than 5-aminosalicylic acid (5-ASA), probiotics or TCM used individually. Moreover, probiotics combined with TCM could inhibit the intestinal inflammation, reduce the recurrence rate and the incidence of adverse events. The subgroup analysis showed that a mixture of different probiotics was more effective than a single strain. Conclusion: It is suggested that probiotics combined with TCM could effectively control clinical symptoms, inhibit intestinal inflammatory response, and finally slow down the disease progress and reduce the disease recurrence with less adverse events. The mixture of different probiotics used in conjunction with individually tailored TCM is a potential clinical strategy for UC.
Collapse
Affiliation(s)
- Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingqi She
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linzhen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Kaihua Qin
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzheng Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haiqing He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhipeng Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fating Lu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaobo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Qiaobo Ye,
| |
Collapse
|
18
|
Peng J, Li X, Zheng L, Duan L, Gao Z, Hu D, Li J, Li X, Shen X, Xiao H. Ban-Lan-Gen Granule Alleviates Dextran Sulfate Sodium-Induced Chronic Relapsing Colitis in Mice via Regulating Gut Microbiota and Restoring Gut SCFA Derived-GLP-1 Production. J Inflamm Res 2022; 15:1457-1470. [PMID: 35250294 PMCID: PMC8896204 DOI: 10.2147/jir.s352863] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/18/2022] [Indexed: 01/14/2023] Open
Abstract
Purpose GLP-1 based therapy represents a new treatment option for inflammatory bowel disease. Ban-Lan-Gen (BLG) granule, a known anti-viral TCM formulation, exhibits potential anti-inflammatory activities in treating various kinds of inflammation. However, its anti-inflammatory effect on colitis and the underlying mechanisms remain unknown. Methods Dextran sulfate sodium (DSS)-induced chronic relapsing colitis in mice was established. The disease activity index, histological sign of damage, and levels of proinflammatory cytokines were performed to assess the protective effects of BLG. Serum GLP-1 level and colonic Gcg, GPR41 and GRP43 expression, the community compositions of gut microbiota, the levels of SCFAs in the feces and GLP-1 release from primary murine colon epithelial cells were performed to characterize the effects of BLG on gut microbiota and gut SCFA derived-GLP-1 production. Results BLG treatment significantly alleviated body weight loss, DAI, colon shortening, colon tissue damage, and pro-inflammatory cytokine levels of TNF-α, IL-1β and IL-6 in the colon tissues. Moreover, BLG treatment could observably restore colonic Gcg, GPR41 and GRP43 expression and serum GLP-1 level of colitic mice, as well as correct the alteration of gut microbiota in colitic mice by increasing the abundances of SCFA-producing bacteria, eg, Akkermansia and Prevotellaceae_UCG-001, and decreasing the abundances of bacteria, eg, Eubacterium_xylanophilum_group, Ruminococcaceae_UCG-014, Intestinimonas, and Oscillibacter. Furthermore, BLG treatment could markedly increase the levels of SCFAs in feces of colitic mice. In parallel, ex vivo assay also showed that and the extract of feces from BLG-treatment mice could greatly stimulate the secretion of GLP-1 from primary murine colon epithelial cells. Conclusion These findings suggest that the anti-colitis effects of BLG are achieved at least partly by regulating gut microbiota and restoring gut SCFA derived-GLP-1 production, and BLG has the potential to be developed as a promising agent for the treatment of chronic relapsing colitis.
Collapse
Affiliation(s)
- Jiao Peng
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Xi Li
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Lin Zheng
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, People’s Republic of China
- School of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Lifang Duan
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Zhengxian Gao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
- School of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Die Hu
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Jie Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Xiaofeng Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Xiangchun Shen
- School of Pharmacy, State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People’s Republic of China
- Xiangchun Shen, School of Pharmacy, Guizhou Medical University, Guizhou, 550004, People’s Republic of China, Email
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
- Correspondence: Haitao Xiao, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, People’s Republic of China, Email
| |
Collapse
|
19
|
Hu Y, Ye Z, Wu M, She Y, Li L, Xu Y, Qin K, Hu Z, Yang M, Lu F, Ye Q. The Communication Between Intestinal Microbiota and Ulcerative Colitis: An Exploration of Pathogenesis, Animal Models, and Potential Therapeutic Strategies. Front Med (Lausanne) 2021; 8:766126. [PMID: 34966755 PMCID: PMC8710685 DOI: 10.3389/fmed.2021.766126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Ulcerative Colitis (UC) is a chronic inflammatory bowel disease. The prolonged course of UC and the lack of effective treatment management make it difficult to cure, affecting the health and life safety of patients. Although UC has received more attention, the etiology and pathogenesis of UC are still unclear. Therefore, it is urgent to establish an updated and comprehensive understanding of UC and explore effective treatment strategies. Notably, sufficient evidence shows that the intestinal microbiota plays an important role in the pathogenesis of UC, and the treating method aimed at improving the balance of the intestinal microbiota exhibits a therapeutic potential for UC. This article reviews the relationship between the genetic, immunological and microbial risk factors with UC. At the same time, the UC animal models related to intestinal microbiota dysbiosis induced by chemical drugs were evaluated. Finally, the potential value of the therapeutic strategies for restoring intestinal microbial homeostasis and treating UC were also investigated. Comprehensively, this study may help to carry out preclinical research, treatment theory and methods, and health management strategy of UC, and provide some theoretical basis for TCM in the treatment of UC.
Collapse
Affiliation(s)
- Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Provincial Orthopedic Hospital, Chengdu, China
| | - Yingqi She
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linzhen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujie Xu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaihua Qin
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhipeng Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fating Lu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaobo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
Li C, Wang J, Ma R, Li L, Wu W, Cai D, Lu Q. Natural-derived alkaloids exhibit great potential in the treatment of ulcerative colitis. Pharmacol Res 2021; 175:105972. [PMID: 34758401 DOI: 10.1016/j.phrs.2021.105972] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease of colon and rectum with unknown etiology, and the lesions are mainly confined to the mucosa and submucosa of large intestine. The main clinical features of UC include diarrhea, abdominal pain, bloody purulent stool and tenesmus, which seriously affect patients' quality of life. Most of UC patients would receive drug therapy with the exception of surgery for some severe cases. However, current drugs for the treatment of UC have certain limitations including difficulty of radical treatment, adverse reactions and drug resistance after long-term use and exorbitant price of some drugs. The research and development of new drugs for the treatment of UC is urgent, and natural alkaloids are an important source. This research paid close attention to the progress of natural alkaloids from diverse medicinal plants for treating UC in the last twenty years. The potential mechanisms for the natural alkaloids in the treatment of UC was closely related to its modulation of oxidative stress, immune response, intestinal flora and improvement of the gut barrier function. Remarkable effectiveness and safety of natural-derived alkaloids make them potential candidates of UC therapy.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Jiahao Wang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Runfang Ma
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Luhao Li
- Health Service Center of Dengfeng Street Community, Yuexiu District, Guangzhou 510091, PR China
| | - Wenfeng Wu
- Laboratory of Herbal Pharmacology, GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou 510095, PR China
| | - Dake Cai
- Laboratory of Herbal Pharmacology, GuangDong Second Traditional Chinese Medicine Hospital, Guangzhou 510095, PR China
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China.
| |
Collapse
|
21
|
Yang QY, Ma LL, Zhang C, Lin JZ, Han L, He YN, Xie CG. Exploring the Mechanism of Indigo Naturalis in the Treatment of Ulcerative Colitis Based on TLR4/MyD88/NF-κB Signaling Pathway and Gut Microbiota. Front Pharmacol 2021; 12:674416. [PMID: 34366843 PMCID: PMC8339204 DOI: 10.3389/fphar.2021.674416] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Clinical trials have proven that indigo naturalis is a candidate drug for treating ulcerative colitis (UC), but its therapeutic mechanism is still unclear. Purpose: This study aimed to evaluate the protective effect and mechanism of indigo naturalis to treat mice with dextran sulfate sodium (DSS)-induced UC. Methods: DSS-induced UC mice were treated with indigo naturalis (200 mg/kg), indigo (4.76 mg/kg), and indirubin (0.78 mg/kg) for 1 week. The anti-UC mechanism of indigo naturalis was studied by pathological section, inflammatory factor, western blot, and 16S rRNA sequencing. Results: According to body weight change, disease activity index, and colon length, indigo naturalis had the strongest anti DSS-induced UC effect, followed by indirubin and indigo. Pathological section showed that indigo naturalis, indigo, and indirubin could reduce the infiltration of inflammatory cells, increase the secretion of intestinal mucus, and repair the intestinal mucosa. Indigo naturalis, indigo, and indirubin could reduce IL-1β,IL-6, and TNF-α by inhibiting TLR4/MyD88/NF-κB signal transduction. Indigo naturalis and indigo could also reduce IgA and IgG both in serum and colon tissue. In addition, indigo naturalis, indigo, and indirubin could adjust the gut microbiota structure of DSS-induced UC mice, reducing the ratio of Firmicutes/Bacteroidetes and increasing the abundance of probiotics. Conclusion: Indigo and indirubin are one of the main anti-UC components of indigo naturalis. INN could regulate intestinal flora, reduce inflammation, repair intestinal mucosa, and improve the physiological status of DSS-induced UC mice and its anti-UC mechanism may be involved in inhibiting TLR4/MyD88/NF-κB signal transduction.
Collapse
Affiliation(s)
- Qi-Yue Yang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Le-le Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun-Zhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Han
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya-Nan He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun-Guang Xie
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Shimizu T, Takagi C, Sawano T, Eijima Y, Nakatani J, Fujita T, Tanaka H. Indigo enhances wound healing activity of Caco-2 cells via activation of the aryl hydrocarbon receptor. J Nat Med 2021; 75:833-839. [PMID: 33963491 DOI: 10.1007/s11418-021-01524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Indigo Naturalis, also known as Qing Dai (QD) is a compound obtained from Indigofera tinctoria, Isatis tinctoria, and Polygonum tinctoria and is known to ameliorate refractory ulcerative colitis (UC) by an unknown mechanism. QD maintains both homeostasis and the integrity of colon epithelia in mice that have experimentally induced colitis. The primary component of QD, indigo, comprises 42.4% of the compound. Indigo efficiently suppresses rectal bleeding and reduces the erosion of the colon epithelium, whereas it does not reduce weight loss or increase survival in a certain condition. Indigo is a ligand of the aryl hydrocarbon receptor (AhR), which is involved in the anti-colitis activity of QD. Here we investigate the effects of indigo on wound (erosion) closure in colon epithelial cells. Oral administration of indigo induced expression of Cytochrome P450 1A1 (Cyp1a1) in the colon but not in the liver, suggesting that indigo stimulates AhR from the luminal side of the colon. The erosion-closure activity tested in the scratch assays using Caco-2 cells was accelerated by addition of QD and indigo to the culture medium. QD and indigo also induced nuclear localization of AhR and expression of CYP1A1 in the Caco-2 cells. Acceleration of scratch wound closure was abolished by addition of the AhR-antagonist CH223191. Cell proliferation and actin polymerization were also shown to contribute to erosion closure. The results suggest that indigo exerts its erosion-healing effects by increasing proliferation and migration of colon epithelial cells via activation of AhR in intestinal epithelia.
Collapse
Affiliation(s)
- Takaaki Shimizu
- Pharmacology Laboratory, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Chisa Takagi
- Pharmacology Laboratory, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Toshinori Sawano
- Pharmacology Laboratory, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yuto Eijima
- Pharmacology Laboratory, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Jin Nakatani
- Pharmacology Laboratory, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Hidekazu Tanaka
- Pharmacology Laboratory, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
23
|
Yu H, Li TN, Ran Q, Huang QW, Wang J. Strobilanthes cusia (Nees) Kuntze, a multifunctional traditional Chinese medicinal plant, and its herbal medicines: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113325. [PMID: 32889034 DOI: 10.1016/j.jep.2020.113325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Strobilanthes cusia (Nees) Kuntze (SCK, Malan), a traditional Chinese medicinal plant, has long applied to detoxification, defervescence, detumescence and antiphlogosis. "Southern Banlangen" (Rhizoma et Radix Baphicacanthis Cusiae, RRBC), root and rhizome of SCK, is widely used for treatment of many epidemic diseases. Malanye (Southern Daqingye), stem and leaf of SCK, is an antipyretic-alexipharmic drug frequently-used in southern China. Qingdai (Indigo Naturalis, IN), a processed product of SCK, is always applied to dermatoses in the folk. AIM OF THE REVIEW In order to elucidate the historical uses, recent advances and pharmaceutical prospects of SCK, we summarized roundly in aspects of history, processing method, chemical constitution, quality control, pharmacological activity and toxicity. Some deficiencies in current studies and research directions in the future are also discussed. This is the first comprehensive review of SCK and its herbal medicines, which may be of some help for further research. METHODOLOGY Comprehensive analysis was conducted on the basis of academic papers, pharmaceutical monographs, ancient medicinal works, and drug standards of China. All available information on SCK and its herbal medicines was collected by using the keywords such as "Strobilanthes cusia", "Southern Banlangen", "indirubin", "tryptanthrin" through different electronic databases including NCBI Pubmed, Google Scholar, Chinese National Knowledge Infrastructure and so on. Pharmacopoeia of China and some ancient works were obtained from National Digital Library of China. RESULT Medicinal uses of SCK were already described by famous ancient researchers. Because of vague description, plant species in some works cannot be confirmed. Literature demonstrated that multiple components including total 36 alkaloids and 35 glycosides, the main bioactive components of SCK, were found in SCK and its herbal medicines. Modern studies indicated that SCK and some of its components had multiple pharmacological effects including resistance to cancer, remission of inflammation, suppression of microorganisms, relief of dermatoses, and so on. However, studies on pharmacology, pharmacokinetics, and quality control are still not enough. CONCLUSION A number of reports suggested that SCK and its processed medicines could be promising drug candidates for multiple diseases especially promyelocytic leukemia, ulcerative colitis (UC) and psoriasis. However, bioactive activities of most components, especially glycosides should still be explored further. It is crucial to elucidate the in-depth molecular mechanisms, and pharmacokinetic characteristics of main components in those herbal medicines. Moreover, to ensure the effectiveness of clinical medication, future studies should undoubtedly give the priority to clarifying the effective compositions of SCK, and then a measurement standard of those indicators should be protocolled to establish a comprehensive quality evaluation mode.
Collapse
Affiliation(s)
- Han Yu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, China.
| | - Ting-Na Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, China.
| | - Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, China.
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, China.
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, China.
| |
Collapse
|
24
|
Wu H, Chen QY, Wang WZ, Chu S, Liu XX, Liu YJ, Tan C, Zhu F, Deng SJ, Dong YL, Yu T, Gao F, He HX, Leng XY, Fan H. Compound sophorae decoction enhances intestinal barrier function of dextran sodium sulfate induced colitis via regulating notch signaling pathway in mice. Biomed Pharmacother 2021; 133:110937. [PMID: 33217689 DOI: 10.1016/j.biopha.2020.110937] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/18/2020] [Accepted: 10/25/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Compound sophorae decoction (CSD), a Chinese Herbal decoction, is frequently clinically prescribed for patients suffered from ulcerative colitis (UC) characterized by bloody diarrhea. Yet, the underlying mechanism about how this formulae works is remain elusive. METHODS In the present study, the experimental colitis in C57BL/6 J mice was induced by oral administration of standard diets containing 3% dextran sodium sulfate (DSS), and CSD was given orally for treatment at the same time. The clinical symptoms including stool and body weight were recorded each day, and colon length and its histopathological changes were observed. Apoptosis of colonic epithelium was studied by detecting protein expression of cleaved caspase-3, and cell proliferation by Ki-67 immunohistochemistry. Tight junction complex like ZO-1 and occludin were also determined by transmission electron microscope and immunofluorescence. The concentration of FITC-dextran 4000 was measured to evaluate intestinal barrier permeability and possible signaling pathway was investigated. Mucin2 (MUC2) and notch pathway were tested through western blot. The M1/M2 ratio in spleen and mesenteric lymph nodes were detected by flow cytometry. And the mRNA levels of iNOS and Arg1 were examined by qRT-PCR. RESULTS CSD could significantly alleviate the clinical manifestations and pathological damage. Body weight loss and DAI score of mice with colitis were improved and shortening of colon was inhibited. The administration of CSD was able to reduce apoptotic epithelial cells and facilitate epithelial cell regeneration. Increased intestinal permeability was reduced in DSS-induced colitis mice. In addition, CSD treatment obviously up-regulated the expression of ZO-1 and occludin and the secretion of MUC2, regulated notch signaling, and decreased the ratio of M1/M2. CONCLUSIONS These data together suggest that CSD can effectively mitigate intestinal inflammation, promote phenotypic change in macrophage phenotype and enhance colonic mucosal barrier function by, at least in part, regulating notch signaling in mice affected by DSS-induced colitis.
Collapse
Affiliation(s)
- Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qian-Yun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen-Zhu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Si Chu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xing-Xing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Jin Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Tan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuang-Jiao Deng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ya-Lan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fei Gao
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong-Xia He
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xue-Yuan Leng
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Qi-Yue Y, Ting Z, Ya-Nan H, Sheng-Jie H, Xuan D, Li H, Chun-Guang X. From natural dye to herbal medicine: a systematic review of chemical constituents, pharmacological effects and clinical applications of indigo naturalis. Chin Med 2020; 15:127. [PMID: 33317592 PMCID: PMC7734464 DOI: 10.1186/s13020-020-00406-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
Background Indigo naturalis is a blue dye in ancient, as well as an extensive used traditional Chinese medicine. It has a wide spectrum of pharmacological properties and can be used to treat numerous ailments such as leukemia, psoriasis, and ulcerative colitis. This article aims to expand our understanding of indigo naturalis in terms of its chemical constituents, pharmacological action and clinical applications. Methods We searched PubMed, web of science, CNKI, Google academic, Elsevier and other databases with the key words of “Indigo naturalis”, and reviewed and sorted out the modern research of indigo naturalis based on our research results. Results We outlined the traditional manufacturing process, chemical composition and quality control of indigo naturalis, systematically reviewed traditional applictions, pharmacological activities and mechanism of indigo naturalis, and summarized its clinical trials about treatment of psoriasis, leukemia and ulcerative colitis. Conclusions Indigo naturalis has a variety of pharmacological activities, such as anti-inflammatory, antioxidant, antibacterial, antiviral, immunomodulatory and so on. It has very good clinical effect on psoriasis, leukemia and ulcerative colitis. However, it should be noted that long-term use of indigo naturalis may produce some reversible adverse reactions. In summarize, indigo naturalis is an extremely important drug with great value and potential.![]()
Collapse
Affiliation(s)
- Yang Qi-Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Chengdu, 610075, People's Republic of China
| | - Zhang Ting
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - He Ya-Nan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Huang Sheng-Jie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Deng Xuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Han Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China. .,Chengdu University of Traditional Chinese Medicine, No. 1188 Liutai Avenue, Chengdu, 611137, China.
| | - Xie Chun-Guang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Chengdu, 610075, People's Republic of China.
| |
Collapse
|
26
|
Ruiz Castro PA, Kogel U, Lo Sasso G, Phillips BW, Sewer A, Titz B, Garcia L, Kondylis A, Guedj E, Peric D, Bornand D, Dulize R, Merg C, Corciulo M, Ivanov NV, Peitsch MC, Hoeng J. Anatabine ameliorates intestinal inflammation and reduces the production of pro-inflammatory factors in a dextran sulfate sodium mouse model of colitis. JOURNAL OF INFLAMMATION-LONDON 2020; 17:29. [PMID: 32855621 PMCID: PMC7446176 DOI: 10.1186/s12950-020-00260-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Background Inflammatory bowel disease (IBD) is the collective term for chronic immune-mediated diseases of unknown, multifactorial etiology, arising from the interplay between genetic and environmental factors and including two main disease manifestations: ulcerative colitis (UC) and Crohn’s disease. In the last few decades, naturally occurring alkaloids have gained interest because of their substantial anti-inflammatory effects in several animal models of disease. Studies on mouse models of IBD have demonstrated the anti-inflammatory action of the main tobacco alkaloid, nicotine. In addition, anatabine, a minor tobacco alkaloid also present in peppers, tomato, and eggplant presents anti-inflammatory properties in vivo and in vitro. In this study, we aimed to evaluate the anti-inflammatory properties of nicotine and anatabine in a dextran sulfate sodium (DSS) mouse model of UC. Results Oral administration of anatabine, but not nicotine, reduced the clinical symptoms of DSS-induced colitis. The result of gene expression analysis suggested that anatabine had a restorative effect on global DSS-induced gene expression profiles, while nicotine only had limited effects. Accordingly, MAP findings revealed that anatabine reduced the colonic abundance of DSS-associated cytokines and increased IL-10 abundance. Conclusions Our results support the amelioration of inflammatory effects by anatabine in the DSS mouse model of UC, and suggest that anatabine constitutes a promising therapeutic agent for IBD treatment.
Collapse
Affiliation(s)
- Pedro A Ruiz Castro
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Ulrike Kogel
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Giuseppe Lo Sasso
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Blaine W Phillips
- Philip Morris International Research Laboratories Pte Ltd, 50 Science Park Road, The Kendall #02-07, Science Park II, Singapore, 117406 Singapore
| | - Alain Sewer
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Bjorn Titz
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Llenalia Garcia
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Athanasios Kondylis
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Dariusz Peric
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - David Bornand
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Remi Dulize
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Celine Merg
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Maica Corciulo
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
27
|
Cheng F, Zhang Y, Li Q, Zeng F, Wang K. Inhibition of Dextran Sodium Sulfate-Induced Experimental Colitis in Mice by Angelica Sinensis Polysaccharide. J Med Food 2020; 23:584-592. [PMID: 32282259 DOI: 10.1089/jmf.2019.4607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Studies have confirmed that Angelica sinensis, which is a famous medicinal food in China, can effectively alleviate the symptoms of ulcerative colitis (UC) in rats. However, as the major water-soluble ingredient, the specific effects of A. sinensis polysaccharide (ASP) on UC and potential mechanisms were uncertain. In this study, we aimed to elucidate the protective effects of ASP on dextran sulfate sodium (DSS)-induced UC and to further explore the mechanisms. ASP could significantly ameliorate the symptoms of weight loss, disease activity index score, and colon shortening caused by DSS. ASP treatment also significantly suppressed the myeloperoxidase activity in colon tissues. Furthermore, after ASP administration, the expression of the proinflammatory cytokines (interleukin [IL]-6, IL-1β, and tumor necrosis factor alpha) induced by DSS was remarkably suppressed, and there was a definite improvement in the expressions of tight junction proteins, such as zona occludens 1, occludin, and claudin-1. In addition, the results of apoptosis experiments showed that the apoptotic events were noticeably reduced after ASP treatment. Taken together, these results suggested that ASP may be a potential natural agent against UC.
Collapse
Affiliation(s)
- Fang Cheng
- Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhang
- Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Li
- Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zeng
- Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
28
|
Lu PD, Zhao YH. Targeting NF-κB pathway for treating ulcerative colitis: comprehensive regulatory characteristics of Chinese medicines. Chin Med 2020; 15:15. [PMID: 32063999 PMCID: PMC7011253 DOI: 10.1186/s13020-020-0296-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor-kappa B (NF-κB) is a kind of multi-functional nuclear transcription factor involved in regulating gene transcription to influence pathological evolution of inflammatory and immune diseases. Numerous literature evidence that NF-κB pathway plays an essential role in pathogenic development of ulcerative colitis (UC). UC is a chronic non-specific inflammatory bowel disease, and until now, therapeutic agents for UC including aminosalicylates, corticosteroids and immune inhibitors still cannot exert satisfied effects on patients. In recent years, Chinese medicines suggest the advantages of alleviating symptoms and signs, decreasing side-effects and recurrence, whose one of mechanisms is related to regulation of NF-κB pathway. In this review, we categorize Chinese medicines according to their traditional therapeutic functions, and summarize the characteristics of Chinese medicines targeting NF-κB pathway in UC treatment. It indicates that 85 kinds of Chinese medicines’ compounds and formulae can directly act on NF-κBp65; while 58 Chinese medicines’ ingredients and formulae indirectly suppress NF-κBp65 by regulation of its upstream or other related pathways. Moreover, by the analysis of Chinese medicines’ category based on their traditional functions, we conclude the category of dampness-drying and detoxificating medicine targeting NF-κB pathway accounts for primary status for amelioration of UC. Simultaneously, this review also contributes to the choices of Chinese medicine category and provides curative potential of Chinese medicines for clinical UC treatment.
Collapse
Affiliation(s)
- Peng-De Lu
- 1School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong-Hua Zhao
- 2State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078 Macao, Special Administrative Region of China
| |
Collapse
|
29
|
Comparison of the anti-colitis activities of Qing Dai/Indigo Naturalis constituents in mice. J Pharmacol Sci 2020; 142:148-156. [PMID: 32033881 DOI: 10.1016/j.jphs.2020.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Qing Dai/Indigo Naturalis (QD) has been shown to ameliorate ulcerative colitis (UC) in clinical trials; however, its mechanism remains elusive. This study investigates the effects of QD on murine dextran sulfate sodium salt-induced colitis. Oral administration of QD protected the animals from colitis as manifested by weight loss, diarrhea, and rectal bleeding. QD was distinguishingly more effective than 5-aminosalicylate. Focused microarray analysis of genes expressed in the distal colon suggested that QD influences the inflammatory pathway. Anti-inflammatory activity of QD was confirmed by the suppression of nitric oxide (NO) production in response to interleukin-1β in cultured hepatocytes. Some of the constituents in QD, such as tryptanthrin (TRYP) and indigo, suppressed NO production. TRYP maintained body weight but did not inhibit bleeding. Indigo, on the other hand, partially ameliorated bleeding, but did not maintain body weight. The combination of TRYP and indigo did not show additive ameliorating activity. The methanol extract of QD showed an anti-colitis activity like that of TRYP. In contrast, the methanol-insoluble QD fraction moderately ameliorated diarrhea and bleeding. Combining these two fractions resulted in full anti-colitis activity. Further clarification of the active constituents will help in the discovery of a safe and potent prescription for UC.
Collapse
|
30
|
Shriver JA, Wang KR, Patterson AC, DeYoung JR, Lipsius RJ. Exploring an anomaly: the synthesis of 7,7′-diazaindirubin through a 7-azaindoxyl intermediate. RSC Adv 2020; 10:36849-36852. [PMID: 35517962 PMCID: PMC9057083 DOI: 10.1039/d0ra07144g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
Generation of 7-azaindoxyl under acidic conditions leads exclusively to 7,7′-diazaindirubin over 7,7′-diazaindigo through a condensation pathway.
Collapse
|
31
|
Sugai T, Hanaya K, Higashibayashi S. Syntheses of Indirubins by Aldol Condensation of Isatins with Indoxyl Anion Generated in situ by Lipase-Catalyzed Deacetylation of Indoxyl Acetate. HETEROCYCLES 2020. [DOI: 10.3987/com-19-14118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Ye Y, Jin T, Zhang X, Zeng Z, Ye B, Wang J, Zhong Y, Xiong X, Gu L. Meisoindigo Protects Against Focal Cerebral Ischemia-Reperfusion Injury by Inhibiting NLRP3 Inflammasome Activation and Regulating Microglia/Macrophage Polarization via TLR4/NF-κB Signaling Pathway. Front Cell Neurosci 2019; 13:553. [PMID: 31920554 PMCID: PMC6930809 DOI: 10.3389/fncel.2019.00553] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
Ischemic stroke is a devastating disease with long-term disability. However, the pathogenesis is unclear and treatments are limited. Meisoindigo, a second-generation derivative of indirubin, has general water solubility and is well-tolerated. Previous studies have shown that meisoindigo reduces inflammation by inhibiting leukocyte chemotaxis and migration. In the present study, we investigated the hypothesis that meisoindigo was also protective against ischemic stroke, then evaluated its underlying mechanisms. In vivo, adult male C57BL/6J wild-type mice were used to produce a middle cerebral artery occlusion (MCAO) stroke model. On day three after reperfusion, obvious improvement in neurological scores, infarct volume reduction and cerebral edema amelioration were observed in meisoindigo treatment. Moreover, immunofluorescence staining and western-blot showed that the expression of NLRP3 inflammasome and its associated proteins in neurons and microglia was inhibited by meisoindigo. The effects of Meisoindigo on NLRP3 inflammasome inactivation and increased the M2 phenotype of microglia/macrophage through shifting from a M1 phenotype, which was possibly mediated by inhibition of TLR4/NF-κB. Furthermore, we verified the inhibitory effect of meisoindigo on TLR4/NF-κB signaling pathway, and found that meisoindigo treatment could significantly suppressed the expression of TLR4/NF-κB pathway-associated proteins in a dose-dependent manner, meanwhile, which resulted in downregulation of HMGB1 and IL-1β. Next, we established an in vitro oxygen glucose deprivation/Reperfusion (OGD/R) model in HT-22 and BV2 cells to simulate ischemic conditions. Cytotoxicity assay showed that meisoindigo substantially improved relative cell vitality and in HT-22 and BV2 cells following OGD/R in vitro. After suffering OGD/R, the TLR4/NF-κB pathway was activated, the expression of NLRP3 inflammasome-associated proteins and M1 microglia/macrophage were increased, but meisoindigo could inhibit above changes in both HT-22 and BV2 cells. Additionally, though lipopolysaccharide stimulated the activation of TLR4 signaling in OGD/R models, meisoindigo co-treatment markedly reversed the upregulation of TLR4 and following activation of NLRP3 inflammasome and polarization of M1 microglia/macrophages mediated by TLR4. Overall, we demonstrate for the first time that meisoindigo post-treatment alleviates brain damage induced by ischemic stroke in vivo and in vitro experiments through blocking activation of the NLRP3 inflammasome and regulating the polarization of microglia/macrophages via inhibition of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tong Jin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baixin Ye
- Department of Hematopathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinchen Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Tanaka Y, Uchi H, Ito T, Furue M. Indirubin-pregnane X receptor-JNK axis accelerates skin wound healing. Sci Rep 2019; 9:18174. [PMID: 31796845 PMCID: PMC6890704 DOI: 10.1038/s41598-019-54754-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
Indirubin is a potent anti-inflammatory phytochemical derived from indigo naturalis. It is also endogenously produced in the intestine and detected in the circulation in mammals. Indirubin exerts its biological functions via two xenobiotic receptor systems: aryl hydrocarbon receptor (AHR) and pregnane X receptor (PXR); however, its effects on wound healing remain elusive. To investigate whether indirubin promotes wound healing, we utilized an in vitro scratch injury assay and in vivo full-thickness mouse skin ulcer model and assessed wound closure. Indirubin significantly accelerated wound closure in both the scratch assay and the skin ulcer model. Using inhibitors of cell proliferation or migration, indirubin was found to upregulate the migratory but not the proliferative capacity of keratinocytes. Activation of AHR/PXR by indirubin was confirmed by their nuclear translocation and subsequent upregulation of CYP1A1 (AHR), or UGT1A1 mRNA (PXR) and also by luciferase reporter assay (PXR). Although both AHR and PXR were activated by indirubin, its pro-migratory capacity was canceled by PXR inhibition but not by AHR inhibition and was dependent on the JNK pathway. Moreover, activated PXR was detected in the nuclei of re-epithelialized keratinocytes in human skin ulcers. In conclusion, this study shows that the indirubin-PXR-JNK pathway promotes skin wound healing.
Collapse
Affiliation(s)
- Yuka Tanaka
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Hiroshi Uchi
- Department of Dermatology, National Hospital Organization Kyushu Cancer Center, Fukuoka, 811-1395, Japan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan. .,Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka, 812-8582, Japan. .,Division of Skin Surface Sensing, Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
34
|
Peng J, Zheng TT, Li X, Liang Y, Wang LJ, Huang YC, Xiao HT. Plant-Derived Alkaloids: The Promising Disease-Modifying Agents for Inflammatory Bowel Disease. Front Pharmacol 2019; 10:351. [PMID: 31031622 PMCID: PMC6473079 DOI: 10.3389/fphar.2019.00351] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) represents a group of intestinal disorders with self-destructive and chronic inflammation in the digestive tract, requiring long-term medications. However, as many side effects and drug resistance are frequently encountered, safer and more effective agents for IBD treatment are urgently needed. Over the past few decades, a variety of natural alkaloids made of plants or medicinal herbs have attracted considerable interest because of the excellent antioxidant and anti-inflammatory properties; additionally, these alkaloids have been reported to reduce the colonic inflammation and damage in a range of colitic models. In this review paper, we summarize the recent findings regarding the anti-colitis activity of plant-derived alkaloids and emphasize their therapeutic potential for the treatment of IBD; obvious improvement of the colonic oxidative and pro-inflammatory status, significant preservation of the epithelial barrier function and positive modulation of the gut microbiota are the underlying mechanisms for the plant-derived alkaloids to treat IBD. Further clinical trials and preclinical studies to unravel the molecular mechanism are essential to promote the clinical translation of plant-derived alkaloids for IBD.
Collapse
Affiliation(s)
- Jiao Peng
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
- The Key Laboratory of Pharmacology and Druggability for Natural Medicines, Department of Education, Guizhou Medical University, Guiyang, China
| | - Ting-Ting Zheng
- Shenzhen Key Laboratory for Drug Addiction and Medication Safety, Peking University Shenzhen Hospital, Shenzhen Peking University–The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Department of Ultrasound Imaging, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xi Li
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yue Liang
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China
| | - Li-Jun Wang
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Orthopaedic Research Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hai-Tao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
- The Key Laboratory of Pharmacology and Druggability for Natural Medicines, Department of Education, Guizhou Medical University, Guiyang, China
| |
Collapse
|
35
|
Cao SY, Ye SJ, Wang WW, Wang B, Zhang T, Pu YQ. Progress in active compounds effective on ulcerative colitis from Chinese medicines. Chin J Nat Med 2019; 17:81-102. [PMID: 30797423 DOI: 10.1016/s1875-5364(19)30012-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Indexed: 02/09/2023]
Abstract
Ulcerative colitis (UC), a chronic inflammatory disease affecting the colon, has a rising incidence worldwide. The known pathogenesis is multifactorial and involves genetic predisposition, epithelial barrier defects, dysregulated immune responses, and environmental factors. Nowadays, the drugs for UC include 5-aminosalicylic acid, steroids, and immunosuppressants. Long-term use of these drugs, however, may cause several side effects, such as hepatic and renal toxicity, drug resistance and allergic reactions. Moreover, the use of traditional Chinese medicine (TCM) in the treatment of UC shows significantly positive effects, low recurrence rate, few side effects and other obvious advantages. This paper summarizes several kinds of active compounds used in the experimental research of anti-UC effects extracted from TCM, mainly including flavonoids, acids, terpenoids, phenols, alkaloids, quinones, and bile acids from some animal medicines. It is found that the anti-UC activities are mainly focused on targeting inflammation or oxidative stress, which is associated with increasing the levels of anti-inflammatory cytokine (IL-4, IL-10, SOD), suppressing the levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-23, NF-κB, NO), reducing the activity of MPO, MDA, IFN-γ, and iNOS. This review may offer valuable reference for UC-related studies on the compounds from natural medicines.
Collapse
Affiliation(s)
- Si-Yu Cao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sheng-Jie Ye
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei-Wei Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Qiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
36
|
Lin JC, Wu JQ, Wang F, Tang FY, Sun J, Xu B, Jiang M, Chu Y, Chen D, Li X, Su S, Zhang Y, Wu N, Yang S, Wu K, Liang J. QingBai decoction regulates intestinal permeability of dextran sulphate sodium-induced colitis through the modulation of notch and NF-κB signalling. Cell Prolif 2019; 52:e12547. [PMID: 30657238 PMCID: PMC6496276 DOI: 10.1111/cpr.12547] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/20/2018] [Accepted: 10/10/2018] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Chinese Herb QingBai decoction (QBD) has been approved affective in the treatment of IBD patients in clinic. However, the underlying mechanism remains unknown. We aim to investigate the effect of QBD on the mouse model of ulcerative colitis and its possible mechanism. METHODS C57/bL mice were given 5% DSS to induce colitis and were divided as QBD and mesalazine group. Weight, faeces and mental status were recorded each day and the histopathological changes (goblet cells etc) of the colon were observed after sacrificed. Fluorescein isothiocyanate-dextran 4000 was measured to reflect the intestinal mucosal permeability. In addition, cell junction-related proteins and possible signal pathways were investigated. RESULTS QingBai decoction could significantly alleviate the inflammation and the protection effect of colitis is comparable as those in mesalazine enema group. It was found that the permeability reduced significantly with QBD treatment vs the control group, while no significant difference between the mesalazine and QBD groups. QBD treatment could upregulate the expression of tight junction complex(ZO-1, claudin-1 and occludin)and muc-2 expression. It significantly reduced the production and secretion of serials proinflammatory cytokines (IL-1β, IL-6, Kc and TNF-α) compared with the control group. Meanwhile, NF-κB and Notch pathways were regulated. CONCLUSION QingBai decoction can effectively alleviate intestinal inflammation and mucosal barrier function in colitis mice, and the mechanism may be related to the inhibition of inflammatory cascade as well as enhanced mucus layer barrier and mechanical barrier function by NF-κB and Notch signalling.
Collapse
Affiliation(s)
- Jun-Chao Lin
- Department of Gastroenterology, Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Shanxi, China
| | - Jie-Qiong Wu
- Department of Gastroenterology, Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Shanxi, China
| | - Fang Wang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Feng-Ying Tang
- Department of Gastroenterology, Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Shanxi, China
| | - Jia Sun
- Department of Gastroenterology, Second Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Shanxi, China
| | - Bing Xu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Mingzuo Jiang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yi Chu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Di Chen
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaowei Li
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Song Su
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Gastroenterology, NO. 307 Hospital of PLA, Beijing, China
| | - Yujie Zhang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Nan Wu
- Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, China
| | - Shaoqi Yang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jie Liang
- State Key Laboratory of Cancer Biology and Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
37
|
Zhao Y, Han P, Liu L, Wang X, Xu P, Wang H, Yu T, Sun Y, Li L, Sun T, Liu X, Zhou H, Qiu J, Wang L, Peng J, Xu S, Hou M. Indirubin modulates CD4 + T-cell homeostasis via PD1/PTEN/AKT signalling pathway in immune thrombocytopenia. J Cell Mol Med 2019; 23:1885-1898. [PMID: 30609280 PMCID: PMC6378207 DOI: 10.1111/jcmm.14089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an acquired autoimmune disease characterized by an immune mediated decrease in platelet number. Disturbance of CD4+ T-cell homeostasis with simultaneous decrease of CD4+ CD25+ Foxp3+ regulatory T cells (Tregs) as well as unrestricted proliferation and activation of peripheral CD4+ effector T cells underpin the pathophysiology of ITP. Indirubin is an active ingredient of a traditional Chinese herb called Indigofera tinctoria L. which is clinically used for the treatment of ITP patients. Whether indirubin targets the Tregs/effector T cell-axis to restore platelet number is unknown. In our in vitro studies, Indirubin could significantly enhance the number and function of Tregs and meanwhile dampen the activation of effector T cells in a dose-dependent manner. Indirubin was observed to restore the expression of programmed cell-death 1 (PD1) and phosphatase and tensin homolog (PTEN) on the CD4+ T cells of ITP patients, leading to the subsequent attenuation of the AKT/mTOR pathway. Furthermore, these observations were recapitulated in an active murine model of ITP with a prominent platelet response. Thus, our results identified a potentially novel mechanism of the therapeutic action of indirubin in the treatment of ITP through regulating the homeostasis of CD4+ T cells in a PD1/PTEN/AKT signalling pathway.
Collapse
Affiliation(s)
- Yajing Zhao
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Panpan Han
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lei Liu
- Department of Urology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaojie Wang
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Pengcheng Xu
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Haoyi Wang
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Tianshu Yu
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yunqi Sun
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lizhen Li
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Tao Sun
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xinguang Liu
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Hai Zhou
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jihua Qiu
- Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Liang Wang
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Immunohaematology, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Shuqian Xu
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Ming Hou
- Department of Haematology, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Shandong Provincial Key Laboratory of Immunohaematology, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
38
|
Effect of compound sophorae decoction on dextran sodium sulfate (DSS)-induced colitis in mice by regulating Th17/Treg cell balance. Biomed Pharmacother 2019; 109:2396-2408. [DOI: 10.1016/j.biopha.2018.11.087] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/30/2018] [Accepted: 11/25/2018] [Indexed: 12/20/2022] Open
|
39
|
Sun B, Yuan J, Wang S, Lin J, Zhang W, Shao J, Wang R, Shi B, Hu H. Qingchang Suppository Ameliorates Colonic Vascular Permeability in Dextran-Sulfate-Sodium-Induced Colitis. Front Pharmacol 2018; 9:1235. [PMID: 30429788 PMCID: PMC6220057 DOI: 10.3389/fphar.2018.01235] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022] Open
Abstract
Ulcerative colitis (UC), with a long course and repeated attack, severely affects patient's life quality and increases economic burden all over the world. However, the concrete causes and mechanisms of UC are still unclear, but it is generally considered that many factors participate in this process. Qingchang Suppository (QCS) has been used in treating rectitis and colitis for about 30 years in Shanghai, China. Its satisfactory clinical effects have been proved. The aim of this study is to investigate the effect and mechanisms of QCS on colonic vascular endothelial barrier in dextran sulfate sodium (DSS)-induced colitis. The results indicated that increased vascular permeability (VP) appeared earlier than increased intestinal epithelial permeability (EP) in the process of DSS-induced colitis. QCS attenuated colonic tissue edema, vascular congestion and inflammatory cell infiltration. QCS inhibited the elevation of MPO, TNF-α, and IL-6 levels in colon tissues and alleviated the microvascular damage induced by DSS. QCS also improved colonic hypoxia and decreased the expression of VEGF, HIF-1α, and iNOS. These results revealed that QCS can reduce colonic VP and can improve vascular endothelial barrier function maybe by regulating the VEGF/HIF-1α signaling pathway.
Collapse
Affiliation(s)
- Boyun Sun
- Department of Gastroenterology, China-Canada Center of Research for Digestive Diseases, Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Yuan
- Department of Gastroenterology, China-Canada Center of Research for Digestive Diseases, Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shiying Wang
- Department of Gastroenterology, China-Canada Center of Research for Digestive Diseases, Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiang Lin
- Department of Gastroenterology, China-Canada Center of Research for Digestive Diseases, Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanjun Zhang
- Department of Gastroenterology, China-Canada Center of Research for Digestive Diseases, Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiadong Shao
- Department of Gastroenterology, China-Canada Center of Research for Digestive Diseases, Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruiqing Wang
- Department of Gastroenterology, China-Canada Center of Research for Digestive Diseases, Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei Shi
- Department of Gastroenterology, China-Canada Center of Research for Digestive Diseases, Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyi Hu
- Department of Gastroenterology, China-Canada Center of Research for Digestive Diseases, Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
40
|
Pan M, Pei W, Yao Y, Dong L, Chen J. Rapid and Integrated Quality Assessment of Organic-Inorganic Composite Herbs by FTIR Spectroscopy-Global Chemical Fingerprints Identification and Multiple Marker Components Quantification of Indigo Naturalis ( Qing Dai). Molecules 2018; 23:molecules23112743. [PMID: 30352981 PMCID: PMC6278429 DOI: 10.3390/molecules23112743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
This research aimed to develop an FTIR-based method for rapid and low-cost integrated quality assessment of organic-inorganic composite herbs, which are kinds of herbs composed of both organic and inorganic active ingredients or matrix components. A two-step quality assessment route was designed and verified using the example of Indigo Naturalis (Qing Dai). First, the FTIR spectra were used as global chemical fingerprints to identify the true and fake samples. Next, the contents of the organic and inorganic marker components were estimated by FTIR quantification models to assess the quality of the true samples. Using the above approaches, all the 56 true samples and five fake samples of Indigo Naturalis could be identified correctly by the correlation threshold of the FTIR chemical fingerprints. Furthermore, the FTIR calibration models provided an accurate estimation of the contents of marker components with respect to HPLC and inductively coupled plasma optical emission spectrometry (ICP-OES). The coefficients of determination (R²) for the independent validation of indigo, indirubin, and calcium were 0.977, 0.983, and 0.971, respectively. Meanwhile, the mean relative errors (MRE) for the independent validation of indigo, indirubin, and calcium were 2.2%, 2.4%, and 1.8%, respectively. In conclusion, this research shows the potential of FTIR spectroscopy for the rapid and integrated quality assessment of organic-inorganic composite herbs in both chemical fingerprints identification and marker components quantification.
Collapse
Affiliation(s)
- Meng Pan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Wenxuan Pei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yixin Yao
- Kangmei Pharmaceutical Co., Ltd., Puning 515300, China.
| | - Ling Dong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jianbo Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
41
|
Tokuyasu N, Shomori K, Amano K, Honjo S, Sakamoto T, Watanabe J, Amisaki M, Morimoto M, Uchinaka E, Yagyu T, Saito H, Ito H, Fujiwara Y. Indirubin, a Constituent of the Chinese Herbal Medicine Qing-Dai, Attenuates Dextran Sulfate Sodium-induced Murine Colitis. Yonago Acta Med 2018. [PMID: 29946219 DOI: 10.33160/yam.2018.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background Indirubin, a constituent of the Chinese herbal medicine "Qing-Dai," has anti-cancer and anti-inflammatory activities. We aimed to evaluate the efficacy of indirubin for ameliorating colonic inflammation in a mouse model of inflammatory bowel disease. Methods Mice with dextran sulfate sodium (DSS)-induced acute and chronic colitis were treated with indirubin in their diet. Clinical and histologic changes were evaluated. In addition, colon levels of interleukin-6, a critical pro-inflammatory mediator, was detected by enzyme-linked immunosorbent assay. Results In the model of acute colitis, indirubin treatment improved the loss of body weight. Histology of colonic tissue revealed that indirubin treatment improved the histology grading of colitis (P = 0.02), the extent of submucosal fibrosis (P = 0.018), the number of mucosal toluidine blue-positive cells (P = 0.004) and colon length (P = 0.01). In the model of chronic colitis, indirubin treatment had no significant effect on pathologic findings except for colon length (P = 0.003). However, indirubin administration significantly reduced colon levels of interleukin-6 in the chronic-colitis model (P = 0.001). Conclusion Our study clearly showed that oral intake of indirubin can improve murine DSS-induced colitis (which mimics human inflammatory bowel disease).
Collapse
Affiliation(s)
- Naruo Tokuyasu
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan.,†Division of Organ Pathology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Kohei Shomori
- †Division of Organ Pathology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | | | - Soichiro Honjo
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Teruhisa Sakamoto
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Joji Watanabe
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Masataka Amisaki
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Masaki Morimoto
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Ei Uchinaka
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Takuki Yagyu
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Hiroaki Saito
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Hisao Ito
- †Division of Organ Pathology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| | - Yoshiyuki Fujiwara
- Division of Surgical Oncology, Department of Surgery, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8503, Japan
| |
Collapse
|
42
|
Gao W, Zhang L, Wang X, Yu L, Wang C, Gong Y. The combination of indirubin and isatin attenuates dextran sodium sulfate induced ulcerative colitis in mice. Biochem Cell Biol 2018; 96:636-645. [PMID: 29671340 DOI: 10.1139/bcb-2018-0041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Indirubin and isatin have been used in the treatment of inflammatory diseases due to their anti-inflammatory properties. This study aimed to evaluate the combined effect of indirubin and isatin on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC). UC was induced by the administration of 3% (w/v) DSS solution, and then the model mice were administered indirubin (10 mg/kg body mass) and (or) isatin (10 mg/kg body mass) by gavage once daily for 7 days. The results showed that indirubin and isatin, individually or combined, significantly inhibited weight loss, lowered disease activity index (DAI), ameliorated pathological changes, decreased the levels of pro-inflammatory mediators and myeloperoxidase (MPO) activity, increased the expression of anti-inflammatory cytokines and Foxp3, suppressed CD4+ T cell infiltration, and inhibited oxidative stress and epithelial cell apoptosis. Additionally, indirubin and isatin, both individually and combined, can also inhibit activation of the NF-κB and MAPK pathways induced by DSS. The protective effect of combination therapy against UC was superior to that of single-agent treatment. These results suggest that indirubin combined with isatin attenuates DSS-induced UC, and changes to the NF-κB and MAPK signaling pathways may mediate the protective effects of indirubin and isatin in UC.
Collapse
Affiliation(s)
- Wenyan Gao
- a Department of Traditional Chinese Medicine, The General Hospital of Shenyang Military Area Command, Shenyang 110016, People's Republic of China
| | - Luding Zhang
- b Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, People's Republic of China
| | - Xiaoqian Wang
- a Department of Traditional Chinese Medicine, The General Hospital of Shenyang Military Area Command, Shenyang 110016, People's Republic of China
| | - Li Yu
- a Department of Traditional Chinese Medicine, The General Hospital of Shenyang Military Area Command, Shenyang 110016, People's Republic of China
| | - Changhong Wang
- a Department of Traditional Chinese Medicine, The General Hospital of Shenyang Military Area Command, Shenyang 110016, People's Republic of China
| | - Yang Gong
- a Department of Traditional Chinese Medicine, The General Hospital of Shenyang Military Area Command, Shenyang 110016, People's Republic of China
| |
Collapse
|
43
|
Qi T, Li H, Li S. Indirubin improves antioxidant and anti-inflammatory functions in lipopolysaccharide-challenged mice. Oncotarget 2018; 8:36658-36663. [PMID: 28525368 PMCID: PMC5482685 DOI: 10.18632/oncotarget.17560] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022] Open
Abstract
Indirubin, a traditional Chinese medicine formulation from the Muricidae family, has been reported to exhibit abroad anti-cancer and anti-inflammation activities and mediate nuclear factor-κB (NF-κB) signal. Thus, this study aimed to investigate the protective effects of indirubin on LPS-induced acute lung injury and the potential mechanism in mice. The results showed that LPS treatment caused oxidative stress and inflammation in mice. Indirubin alleviated LPS-caused oxidative stress and inflammation via reducing MDA abundance and IL-1β and TNF-α expressions in mice. Meanwhile, indirubin improved lung NO production and inhibited NF-κB activation caused by LPS exposure. In conclusion, indirubin alleviated LPS-induced acute lung injury via improving antioxidant and anti-inflammatory functions, which might be associated with the NO and NF-κB signals.
Collapse
Affiliation(s)
- Tianjie Qi
- Department of Respiratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Haitao Li
- Department of Respiratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Shuai Li
- Department of Respiratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
44
|
A New Chinese Medicine Intestine Formula Greatly Improves the Effect of Aminosalicylate on Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:7323129. [PMID: 29358969 PMCID: PMC5735632 DOI: 10.1155/2017/7323129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 08/13/2017] [Accepted: 08/29/2017] [Indexed: 12/21/2022]
Abstract
Ulcerative colitis (UC) is a chronic lifelong inflammatory disorder of the colon. Current medical treatment of UC relies predominantly on the use of traditional drugs, including aminosalicylates, corticosteroids, and immunosuppressants, which failed to effectively control this disease's progression and produced various side effects. Here, we report a new Chinese medicine intestine formula (CIF) which greatly improved the effect of mesalazine, an aminosalicylate, on UC. In the present study, 60 patients with chronic UC were treated with oral mesalazine alone or in combination with CIF enema. The combination of mesalazine and CIF greatly and significantly improved the clinical symptoms and colon mucosal condition and improved the Mayo Clinic Disease Activity Index and health-related quality of life, when compared to mesalazine alone. In particular, the addition of CIF further decreased serum levels of tumor necrosis factor-alpha and hypersensitivity C-reactive protein but in contrast increased interleukin-4. Thus, the results demonstrate the beneficial role of CIF in UC treatment, which may be mediated by the regulation of inflammation.
Collapse
|