1
|
Repetowski P, Warszyńska M, Dąbrowski JM. NIR-activated multifunctional agents for the combined application in cancer imaging and therapy. Adv Colloid Interface Sci 2025; 336:103356. [PMID: 39612723 DOI: 10.1016/j.cis.2024.103356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/17/2024] [Indexed: 12/01/2024]
Abstract
Anticancer therapies that combine both diagnostic and therapeutic capabilities hold significant promise for enhancing treatment efficacy and patient outcomes. Among these, agents responsive to near-infrared (NIR) photons are of particular interest due to their negligible toxicity and multifunctionality. These compounds are not only effective in photodynamic therapy (PDT), but also serve as contrast agents in various imaging modalities, including fluorescence and photoacoustic imaging. In this review, we explore the photophysical and photochemical properties of NIR-activated porphyrin, cyanine, and phthalocyanines derivatives as well as aggregation-induced emission compounds, highlighting their application in synergistic detection, diagnosis, and therapy. Special attention is given to the design and optimization of these agents to achieve high photostability, efficient NIR absorption, and significant yields of fluorescence, heat, or reactive oxygen species (ROS) generation depending on the application. Additionally, we discuss the incorporation of these compounds into nanocarriers to enhance their solubility, stability, and target specificity. Such nanoparticle-based systems exhibit improved pharmacokinetics and pharmacodynamics, facilitating more effective tumor targeting and broadening the application range to photoacoustic imaging and photothermal therapy. Furthermore, we summarize the application of these NIR-responsive agents in multimodal imaging techniques, which combine the advantages of fluorescence and photoacoustic imaging to provide comprehensive diagnostic information. Finally, we address the current challenges and limitations of photodiagnosis and phototherapy and highlight some critical barriers to their clinical implementation. These include issues related to their phototoxicity, limited tissue penetration, and potential off-target effects. The review concludes by highlighting future research directions aimed at overcoming these obstacles, with a focus on the development of next-generation agents and platforms that offer enhanced therapeutic efficacy and imaging capabilities in the field of cancer treatment.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Marta Warszyńska
- Faculty of Chemistry, Jagiellonian University, 30-387 Kraków, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | | |
Collapse
|
2
|
Repetowski P, Warszyńska M, Kostecka A, Pucelik B, Barzowska A, Emami A, İşci Ü, Dumoulin F, Dąbrowski JM. Synthesis, Photo-Characterizations, and Pre-Clinical Studies on Advanced Cellular and Animal Models of Zinc(II) and Platinum(II) Sulfonyl-Substituted Phthalocyanines for Enhanced Vascular-Targeted Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48937-48954. [PMID: 39241197 PMCID: PMC11420872 DOI: 10.1021/acsami.4c04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/08/2024]
Abstract
Two phthalocyanine derivatives tetra-peripherally substituted with tert-butylsulfonyl groups and coordinating either zinc(II) or platinum(II) ions have been synthesized and subsequently investigated in terms of their optical and photochemical properties, as well as biological activity in cellular, tissue-engineered, and animal models. Our research has revealed that both synthesized phthalocyanines are effective generators of reactive oxygen species (ROS). PtSO2tBu demonstrated an outstanding ability to generate singlet oxygen (ΦΔ = 0.87-0.99), while ZnSO2tBu in addition to 1O2 (ΦΔ = 0.45-0.48) generated efficiently other ROS, in particular ·OH. Considering future biomedical applications, the affinity of the tested phthalocyanines for biological membranes (partition coefficient; log Pow) and their primary interaction with serum albumin were also determined. To facilitate their biological administration, a water-dispersible formulation of these phthalocyanines was developed using Pluronic triblock copolymers to prevent self-aggregation and improve their delivery to cancer cells and tissues. The results showed a significant increase in cellular uptake and phototoxicity when phthalocyanines were incorporated into the customizable polymeric micelles. Moreover, the improved distribution in the body and photodynamic efficacy of the encapsulated phthalocyanines were investigated in hiPSC-delivered organoids and BALB/c mice bearing CT26 tumors. Both photosensitizers exhibit strong antitumor activity. Notably, vascular-targeted photodynamic therapy (V-PDT) led to complete tumor eradication in 84% of ZnSO2tBu and 100% of PtSO2tBu-treated mice, and no recurrence has so far been observed for up to five months after treatment. In the case of PtSO2tBu, the effect was significantly stronger, offering a wider range of light doses suitable for achieving effective PDT.
Collapse
Affiliation(s)
- Paweł Repetowski
- Faculty
of Chemistry, Jagiellonian University, Kraków 30-387, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Kraków 30-348, Poland
| | - Marta Warszyńska
- Faculty
of Chemistry, Jagiellonian University, Kraków 30-387, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Kraków 30-348, Poland
| | - Anna Kostecka
- Faculty
of Chemistry, Jagiellonian University, Kraków 30-387, Poland
| | - Barbara Pucelik
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Łukasiewicz
Research Network—Kraków Institute of Technology, Kraków 30-418, Poland
| | - Agata Barzowska
- Małopolska
Centre of Biotechnology, Jagiellonian University, Kraków 30-387, Poland
- Łukasiewicz
Research Network—Kraków Institute of Technology, Kraków 30-418, Poland
| | - Atefeh Emami
- Faculty of
Engineering and Natural Sciences, Department of Biomedical Engineering, Acıbadem Mehmet Ali Aydınlar University, Ataşehir, Istanbul 34752, Türkiye
| | - Ümit İşci
- Faculty
of Technology, Department of Metallurgical & Materials Engineering, Marmara University, Istanbul 34722, Türkiye
| | - Fabienne Dumoulin
- Faculty of
Engineering and Natural Sciences, Department of Biomedical Engineering, Acıbadem Mehmet Ali Aydınlar University, Ataşehir, Istanbul 34752, Türkiye
| | | |
Collapse
|
3
|
Kara M, Kocaaga N, Akgul B, Abamor ES, Erdogmus A, Topuzogullari M, Acar S. Micelles of poly[oligo(ethylene glycol) methacrylate] as delivery vehicles for zinc phthalocyanine photosensitizers. NANOTECHNOLOGY 2024; 35:475602. [PMID: 39173645 DOI: 10.1088/1361-6528/ad726b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Drug-loaded polymeric micelles have proven to be highly effective carrier systems for the efficient delivery of hydrophobic photosensitizers (PSs) in photodynamic therapy (PDT). This study introduces the micellization potential of poly(oligoethylene glycol methyl ether methacrylate) (pOEGMA) as a novel approach, utilizing the hydrophobic methacrylate segments of pOEGMA to interact with highly hydrophobic zinc phthalocyanine (ZnPc), thereby forming a potential micellar drug carrier system. The ZnPc molecule was synthesized from phthalonitrile derivatives and its fluorescence, photodegradation, and singlet oxygen quantum yields were determined in various solvents. In solvents such as tetrahydrofuran, dimethyl sulfoxide, and N,N-dimethylformamide, the ZnPc compound exhibited the requisite photophysical and photochemical properties for PDT applications. The pOEGMA homopolymer was synthesized via reversible addition-fragmentation chain-transfer polymerization, while ZnPc-loaded pOEGMA micelles were prepared using the nanoprecipitation method. Characterization of the pOEGMA, ZnPc, and micelles was conducted using FTIR,1H-NMR, dynamic light scattering, matrix-assisted laser desorption/ionization time-of-flight mass spectrometries, gel permeation chromatography, and transmission electron microscopy. The critical micelle concentration was determined to be 0.027 mg ml-1using fluorescence spectrometry. The drug loading and encapsulation efficiencies of the ZnPc-loaded micelles were calculated to be 0.67% and 0.47%, respectively. Additionally, the release performance of ZnPc from pOEGMA micelles was monitored over a period of nearly 10 d, while the lyophilized micelles exhibited stability for 3 months. Lastly, the ZnPc-loaded micelles were more biocompatible than ZnPc on L929 cell line. The results suggest that the pOEGMA homopolymer possesses the capability to micellize through its methacrylate segments when interacting with highly hydrophobic molecules, presenting a promising avenue for enhancing the delivery efficiency of hydrophobic PSs in PDT. Moreover, it was also deciphered that obtained formulations were highly biocompatible according to cytotoxicity results and could be safely employed as drug delivery systems in further applications.
Collapse
Affiliation(s)
- Merve Kara
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Nagihan Kocaaga
- Faculty of Arts and Sciences, Department of Chemistry, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Busra Akgul
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Emrah S Abamor
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Ali Erdogmus
- Faculty of Arts and Sciences, Department of Chemistry, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Murat Topuzogullari
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Serap Acar
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Esenler, Istanbul, Turkey
| |
Collapse
|
4
|
Tagauov YD, Abdrassulova ZT, Tulindinova G, Korogod NP, Salybekova NN, Shaimerdenova GZ, Kenzheyeva ZK, Ashirova ZB, Tuleukhanov ST, Ghoneim MMI, Saadeldin WI, Abu-Elsaoud AM. Comparative effects of different supplemented dietary doses of chlorophyll on blood parameters of experimental male rats. BRAZ J BIOL 2023; 83:e274608. [PMID: 38055503 DOI: 10.1590/1519-6984.274608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023] Open
Abstract
Chlorophylls are organic pigments that are a part of our daily diet, particularly in light of the increased popularity of more eco-friendly and healthy practices. Since altering oxidative equilibrium seems to be connected to the emergence of numerous illnesses, the antioxidant capacities of both groups of lipophilic compounds have been studied. The objective was to evaluate adding dietary chlorophyll at two concentrations-30 and 60 mg/ml-would improve blood characteristics in rats. Supplemented dietary chlorophyll showed significantly increased WBCs, RBCs, granulocytes, lymphocytes, HGB, HCT MCHC, and Platelets. it nonsignificant effect on RDW, MPV, and Eosinophil. These findings support a significant rise in critical hematological parameters at two separate time intervals, 14 and 28 days following dietary chlorophyll supplementation, at dosages of 30 and 60 mg/ml. After 30 and 60 mg/ml, platelet count, PCT, lymphocytes, and monocytes substantially (p0.001) rose. In light of these findings, critical hematological indicators markedly rise in response to exogenous dietary chlorophyll. To strengthen blood parameters and enhance blood features and prevent anemia, dietary chlorophyll is advised.
Collapse
Affiliation(s)
- Y D Tagauov
- Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, Department of Biophysics, Biomedicine and Neuroscience, Almaty, Kazakhstan
| | - Z T Abdrassulova
- Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, Department of Biophysics, Biomedicine and Neuroscience, Almaty, Kazakhstan
- International Medical School University of International Business, Almaty, Kazakhstan
| | - G Tulindinova
- Pavlodar Pedagogical University, Higher School of Natural Sciences, Almaty, Kazakhstan
| | - N P Korogod
- Pavlodar Pedagogical University, Higher School of Natural Sciences, Almaty, Kazakhstan
| | - N N Salybekova
- Khoja Akhmet Yassawi International Kazakh-Turkish University, Faculty of Natural Sciences, Department Biology, Turkistan, Kazakhstan
| | - G Z Shaimerdenova
- Taraz Regional University Named After Mokhamed Khaydar Dulaty, Taraz, Kazakhstan
| | - Z K Kenzheyeva
- Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, Department of Biophysics, Biomedicine and Neuroscience, Almaty, Kazakhstan
- International Medical School University of International Business, Almaty, Kazakhstan
| | - Z B Ashirova
- Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, Department of Biophysics, Biomedicine and Neuroscience, Almaty, Kazakhstan
- International Medical School University of International Business, Almaty, Kazakhstan
| | - S T Tuleukhanov
- Al-Farabi Kazakh National University, Faculty of Biology and Biotechnology, Department of Biophysics, Biomedicine and Neuroscience, Almaty, Kazakhstan
| | - M M I Ghoneim
- Sinai University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, El-Arish, Egypt
| | | | - A M Abu-Elsaoud
- Imam Muhammad Ibn Saud Islamic University, College of Science, Department of Biology, Riyadh, Saudi Arabia
- Suez Canal University, Faculty of Science, Department of Botany and Microbiology, Ismailia, Egypt
| |
Collapse
|
5
|
Bortnevskaya YS, Shiryaev NA, Zakharov NS, Kitoroage OO, Gradova MA, Karpechenko NY, Novikov AS, Nikolskaya ED, Mollaeva MR, Yabbarov NG, Bragina NA, Zhdanova KA. Synthesis and Biological Properties of EGFR-Targeted Photosensitizer Based on Cationic Porphyrin. Pharmaceutics 2023; 15:pharmaceutics15041284. [PMID: 37111769 PMCID: PMC10145264 DOI: 10.3390/pharmaceutics15041284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Photodynamic therapy (PDT) in oncology is characterized by low invasiveness, minimal side effects, and little tissue scarring. Increasing the selectivity of PDT agents toward a cellular target is a new approach intended to improve this method. This study is devoted to the design and synthesis of a new conjugate based on meso-arylporphyrin with a low-molecular-weight tyrosine kinase inhibitor, Erlotinib. A nano-formulation based on Pluronic F127 micelles was obtained and characterized. The photophysical and photochemical properties and biological activity of the studied compounds and their nano-formulation were studied. A significant, 20-40-fold difference between the dark and photoinduced activity was achieved for the conjugate nanomicelles. After irradiation, the studied conjugate nanomicelles were 1.8 times more toxic toward the EGFR-overexpressing cell line MDA-MB-231 compared to the conditionally normal NKE cells. The IC50 was 0.073 ± 0.014 μM for the MDA-MB-231 cell line and 0.13 ± 0.018 μM for NKE cells after irradiation for the target conjugate nanomicelles.
Collapse
Affiliation(s)
- Yulia S Bortnevskaya
- Institute of Fine Chemical Technology, MIREA-Russian Technological University, Vernadsky pr., 86, 119571 Moscow, Russia
| | - Nikita A Shiryaev
- Institute of Fine Chemical Technology, MIREA-Russian Technological University, Vernadsky pr., 86, 119571 Moscow, Russia
| | - Nikita S Zakharov
- Institute of Fine Chemical Technology, MIREA-Russian Technological University, Vernadsky pr., 86, 119571 Moscow, Russia
| | - Oleg O Kitoroage
- Institute of Fine Chemical Technology, MIREA-Russian Technological University, Vernadsky pr., 86, 119571 Moscow, Russia
| | - Margarita A Gradova
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin St., 4, 119991 Moscow, Russia
| | - Natalia Yu Karpechenko
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Kashirskoe Highway, 24, 115522 Moscow, Russia
- Department of Medical Chemistry and Toxicology, Pirogov National Research Medical University, Ministry of Health of Russia, Ostrovityanova St., 1, 117997 Moscow, Russia
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7-9, 199034 Saint Petersburg, Russia
- Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, 117198 Moscow, Russia
| | - Elena D Nikolskaya
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St., 4, 119334 Moscow, Russia
| | - Mariia R Mollaeva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St., 4, 119334 Moscow, Russia
| | - Nikita G Yabbarov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina St., 4, 119334 Moscow, Russia
| | - Natal'ya A Bragina
- Institute of Fine Chemical Technology, MIREA-Russian Technological University, Vernadsky pr., 86, 119571 Moscow, Russia
| | - Kseniya A Zhdanova
- Institute of Fine Chemical Technology, MIREA-Russian Technological University, Vernadsky pr., 86, 119571 Moscow, Russia
| |
Collapse
|
6
|
Abdul Rinshad V, Sahoo J, Venkateswarulu M, Hickey N, De M, Sarathi Mukherjee P. Solvent Induced Conversion of a Self-Assembled Gyrobifastigium to a Barrel and Encapsulation of Zinc-Phthalocyanine within the Barrel for Enhanced Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202218226. [PMID: 36715420 DOI: 10.1002/anie.202218226] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
A rare gyrobifastigium architecture (GB) was constructed by self-assembly of a tetradentate donor (L) with PdII acceptor in DMSO. The GB was converted to its isomeric tetragonal barrel (MB) upon treatment with water. The hydrophobic cavity of MB has been explored for the encapsulation of zinc-phthalocyanine (ZnPc), which is an excellent photosensitizer for photodynamic therapy (PDT). However, the poor water-solubility and aggregation tendency are the main reasons for the suboptimal PDT performance of free ZnPc in the aqueous medium. Effective solubilization of ZnPc in an aqueous medium was achieved by encapsulating it in the cavity of MB. The inclusion complex (ZnPc⊂MB) showed enhanced singlet oxygen generation in water. Higher cellular uptake and anticancer activity of the ZnPc⊂MB compared to free ZnPc on HeLa cells indicate that encapsulation of ZnPc in an aqueous host is a potential strategy for enhancement of its PDT activity in water.
Collapse
Affiliation(s)
- Valiyakath Abdul Rinshad
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
7
|
Tagauov YD, Abu-Elsaoud AM, Abdrassulova ZT, Tuleukhanov ST, Salybekova NN, Tulindinova G, Al-Abkal F. Improvement of Blood Parameters of Male Rats Exposed to Different Injection Doses of Liquid Chlorophyll. Cureus 2023; 15:e36044. [PMID: 37056524 PMCID: PMC10089374 DOI: 10.7759/cureus.36044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction Chlorophylls are natural pigments in our everyday diet, especially with customers' rising preference for more natural and healthful habits. The antioxidant capabilities of both classes of lipophilic substances have been researched since disrupting antioxidant equilibrium appears to be linked to the development of several diseases. Methods This research aimed to evaluate the effect of injection with chlorophyll (30 and 60 mg/ml) on enhancing the blood parameters of rats. Twenty-one white male rats were included in this study and divided into three groups: control, 30 mg/ml, and 60 mg/ml. Results Treatment with liquid chlorophyll significantly increased white blood cells (WBCs), red blood cells (RBCs), granulocytes, lymphocytes, hemoglobin (Hgb), hematocrit (Hct), mean corpuscular Hgb concentration (MCHC), and platelets. However, it nonsignificantly increased mean corpuscular volume (MCV). These results confirm a great increase in important hematological parameters in response to exogenous injectable chlorophyll with concentrations of 30 and 60 mg/ml and at two different time points, 14 and 28 days after injection. The platelet count was significantly (p<0.001) increased after 30 mg/ml and 60 mg/ml. Conclusion These results show a significant increase in important hematological parameters in response to exogenous injectable chlorophyll. The liquid chlorophyll is recommended to increase blood parameters and improve blood characteristics avoiding anemia.
Collapse
|
8
|
Kolarikova M, Hosikova B, Dilenko H, Barton-Tomankova K, Valkova L, Bajgar R, Malina L, Kolarova H. Photodynamic therapy: Innovative approaches for antibacterial and anticancer treatments. Med Res Rev 2023. [PMID: 36757198 DOI: 10.1002/med.21935] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 02/10/2023]
Abstract
Photodynamic therapy is an alternative treatment mainly for cancer but also for bacterial infections. This treatment dates back to 1900 when a German medical school graduate Oscar Raab found a photodynamic effect while doing research for his doctoral dissertation with Professor Hermann von Tappeiner. Unexpectedly, Raab revealed that the toxicity of acridine on paramecium depends on the intensity of light in his laboratory. Photodynamic therapy is therefore based on the administration of a photosensitizer with subsequent light irradiation within the absorption maxima of this substance followed by reactive oxygen species formation and finally cell death. Although this treatment is not a novelty, there is an endeavor for various modifications to the therapy. For example, selectivity and efficiency of the photosensitizer, as well as irradiation with various types of light sources are still being modified to improve final results of the photodynamic therapy. The main aim of this review is to summarize anticancer and antibacterial modifications, namely various compounds, approaches, and techniques, to enhance the effectiveness of photodynamic therapy.
Collapse
Affiliation(s)
- Marketa Kolarikova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Barbora Hosikova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hanna Dilenko
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Katerina Barton-Tomankova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lucie Valkova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Robert Bajgar
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Lukas Malina
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Hana Kolarova
- Department of Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
9
|
Zhang Z, Chen H, Wang Y, Zhang N, Trépout S, Tang BZ, Gasser G, Li MH. Polymersomes with Red/Near-Infrared Emission and Reactive Oxygen Species Generation. Macromol Rapid Commun 2023; 44:e2200716. [PMID: 36254854 DOI: 10.1002/marc.202200716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/30/2022] [Indexed: 11/09/2022]
Abstract
In photodynamic therapy (PDT), the uses of nanoparticles bearing photosensitizers (PSs) can overcome some of the drawbacks of using a PS alone (e.g., poor water solubility and low tumor selectivity). However, numerous nano-formulations are developed by physical encapsulation of PSs through Van der Waals interactions, which have not only a limited load efficiency but also some in vivo biodistribution problems caused by leakage or burst release. Herein, polymersomes made from an amphiphilic block copolymer, in which a PS with aggregation-induced emission (AIE-PS) is covalently attached to its hydrophobic poly(amino acid) block, are reported. These AIE-PS polymersomes dispersed in aqueous solution have a high AIE-PS load efficiency (up to 46% as a mass fraction), a hydrodynamic diameter of 86 nm that is suitable for in vivo applications, and an excellent colloidal stability for at least 1 month. They exhibit a red/near-infrared photoluminescence and ability to generate reactive oxygen species (ROS) under visible light. They are non-cytotoxic in the dark as tested on Hela cells up to concentration of 100 µm. Benefiting from colloidal stability, AIE property and ROS generation capability, such a family of polymersomes can be great candidates for image-guided PDT.
Collapse
Affiliation(s)
- Zhihua Zhang
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Hui Chen
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Youchao Wang
- Chimie ParisTech, PSL Université Paris, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Nian Zhang
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Sylvain Trépout
- Institut Curie, Université Paris-Saclay, Inserm US43, CNRS UMS2016, Centre Universitaire, Bât. 101B-110-111-112, Rue Henri Becquerel, CS 90030, Orsay, Cedex, 91401, France
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Gilles Gasser
- Chimie ParisTech, PSL Université Paris, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemistry, 11 rue Pierre et Marie Curie, Paris, 75005, France
| | - Min-Hui Li
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, Paris, 75005, France
| |
Collapse
|
10
|
Rybkin AY, Kurmaz SV, Urakova EA, Filatova NV, Sizov LR, Kozlov AV, Koifman MO, Goryachev NS. Nanoparticles of N-Vinylpyrrolidone Amphiphilic Copolymers and Pheophorbide a as Promising Photosensitizers for Photodynamic Therapy: Design, Properties and In Vitro Phototoxic Activity. Pharmaceutics 2023; 15:pharmaceutics15010273. [PMID: 36678902 PMCID: PMC9863766 DOI: 10.3390/pharmaceutics15010273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
A series of nanoparticles (NPs) with a hydrodynamic radius from 20 to 100 nm in PBS was developed over the solubilization of hydrophobic dye methyl pheophorbide a (chlorin e6 derivative) by amphiphilic copolymers of N-vinylpyrrolidone with (di)methacrylates. Photophysical properties and biological activity of the NPs aqueous solution were studied. It was found that the dye encapsulated in the copolymers is in an aggregated state. However, its aggregation degree decreases sharply, and singlet oxygen quantum yield and the fluorescence signal increase upon the interaction of these NPs with model biological membranes-liposomes or components of a tissue homogenate. The phototoxic effect of NPs in HeLa cells exceeds by 1.5-2 times that of the reference dye chlorin e6 trisodium salt-one of the most effective photosensitizers used in clinical practice. It could be explained by the effective release of the hydrophobic photosensitizer from the NPs into biological structures. The demonstrated approach can be used not only for the encapsulation of hydrophobic photosensitizers for PDT but also for other drugs, and N-vinylpyrrolidone amphiphilic copolymers show promising potential as a modern platform for the design of targeted delivery vehicles.
Collapse
Affiliation(s)
- Alexander Yu. Rybkin
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
- Correspondence:
| | - Svetlana V. Kurmaz
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
| | - Elizaveta A. Urakova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Natalia V. Filatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
| | - Lev R. Sizov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
| | - Alexey V. Kozlov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
| | - Mikhail O. Koifman
- Department of Chemistry and Technology of Macromolecular Compounds, Ivanovo State University of Chemistry and Technology, Sheremetevskiy Av. 7, 153000 Ivanovo, Russia
| | - Nikolai S. Goryachev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Pr. Akademika Semenova 1, 142432 Chernogolovka, Russia
- Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
11
|
Li H, Xiao W, Tian Z, Liu Z, Shi L, Wang Y, Liu Y, Liu Y. Reaction mechanism of nanomedicine based on porphyrin skeleton and its application prospects. Photodiagnosis Photodyn Ther 2022; 41:103236. [PMID: 36494023 DOI: 10.1016/j.pdpdt.2022.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Research on porphyrin-based photosensitizing drugs is becoming increasingly popular. They possess unique diagnostic capabilities and therapeutic effects that have gained wide recognition in oncology drug development. In recent years, the rapid growth of nanotechnology has brought great hope for nanopharmaceutical formulations. By combining porphyrins with various nanomaterials, people have improved the properties of porphyrin compounds, making drug delivery easier. Porphyrin-based nanoparticles can enhance the effect of photodynamic therapy for cancer treatment, providing opportunities for achieving complex targeting strategies and versatility with promising applications in drug carriers, tumor imaging, and treatment. This paper reviews recent porphyrin nanodrugs, including inorganic-organic hybrid nanoparticles, nanomicelles, self-assembled nanoparticles, and combination therapeutic nanodrugs, and their actions and effects on cancer cells when performing photodynamic therapy. It also discusses the drawbacks as well as the prospects for development.
Collapse
Affiliation(s)
- Hui Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Wenli Xiao
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Zejie Tian
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Zhenhua Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Lei Shi
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Ying Wang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Yujie Liu
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
12
|
Saad MA, Hasan T. Spotlight on Photoactivatable Liposomes beyond Drug Delivery: An Enabler of Multitargeting of Molecular Pathways. Bioconjug Chem 2022; 33:2041-2064. [PMID: 36197738 DOI: 10.1021/acs.bioconjchem.2c00376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potential of photoactivating certain molecules, photosensitizers (PS), resulting in photochemical processes, has long been realized in the form of photodynamic therapy (PDT) for the management of several cancerous and noncancerous pathologies. With an improved understanding of the photoactivation process and its broader implications, efforts are being made to exploit the various facets of photoactivation, PDT, and the associated phenomenon of photodynamic priming in enhancing treatment outcomes, specifically in cancer therapeutics. The parallel emergence of nanomedicine, specifically liposome-based nanoformulations, and the convergence of the two fields of liposome-based drug delivery and PDT have led to the development of unique hybrid systems, which combine the exciting features of liposomes with adequate complementation through the photoactivation process. While initially liposomes carrying photosensitizers (PSs) were developed for enhancing the pharmacokinetics and the general applicability of PSs, more recently, PS-loaded liposomes, apart from their utility in PDT, have found several applications including enhanced targeting of drugs, coloading multiple therapeutic agents to enhance synergistic effects, imaging, priming, triggering drug release, and facilitating the escape of therapeutic agents from the endolysosomal complex. This review discusses the design strategies, potential, and unique attributes of these hybrid systems, with not only photoactivation as an attribute but also the ability to encapsulate multiple agents for imaging, biomodulation, priming, and therapy referred to as photoactivatable multiagent/inhibitor liposomes (PMILS) and their targeted versions─targeted PMILS (TPMILS). While liposomes have formed their own niche in nanotechnology and nanomedicine with several clinically approved formulations, we try to highlight how using PS-loaded liposomes could address some of the limitations and concerns usually associated with liposomes to overcome them and enhance their preclinical and clinical utility in the future.
Collapse
Affiliation(s)
- Mohammad A Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States.,Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Wang SY, Chen G, Chen JF, Wang J, Deng SH, Cheng D. Glutathione-depleting polymer delivering chlorin e6 for enhancing photodynamic therapy. RSC Adv 2022; 12:21609-21620. [PMID: 35975058 PMCID: PMC9346557 DOI: 10.1039/d2ra01877b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/16/2022] [Indexed: 11/21/2022] Open
Abstract
The therapeutic effect of photodynamic therapy (PDT) is highly dependent on the intracellular production of reactive oxygen species (ROS). However, the ROS generated by photosensitizers can be consumed by the highly concentrated glutathione (GSH) in tumor cells, severely impairing the therapeutic effect of PDT. Herein, we synthesized a GSH-scavenging copolymer to deliver photosensitizer chlorin e6 (Ce6). The pyridyl disulfide groups, which have faster reactivity with the thiol groups of GSH than other disulfide groups, were grafted onto a hydrophobic block to encapsulate the Ce6. Under NIR irradiation, the Ce6 generated ROS to kill tumor cells, and the pyridyl disulfide groups depleted the GSH to prevent ROS consumption, which synergistically enhanced the therapeutic effect of PDT. In vitro and in vivo experiments confirmed the combinatory antitumor effect of Ce6-induced ROS generation and the pyridyl disulfide group-induced GSH depletion. Therefore, the pyridyl disulfide group-grafted amphiphilic copolymer provides a more efficient strategy for enhancing PDT and has promising potential for clinical application.
Collapse
Affiliation(s)
- Shi-Yin Wang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Guo Chen
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Ji-Feng Chen
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Jin Wang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University Guangzhou 510630 P. R. China
| | - Shao-Hui Deng
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Du Cheng
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University Guangzhou 510275 P. R. China
| |
Collapse
|
14
|
Jaquilin P J R, Oluwafemi OS, Thomas S, Oyedeji AO. Recent advances in drug delivery nanocarriers incorporated in temperature-sensitive Pluronic F-127–A critical review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Lee D, Kwon S, Jang SY, Park E, Lee Y, Koo H. Overcoming the obstacles of current photodynamic therapy in tumors using nanoparticles. Bioact Mater 2022; 8:20-34. [PMID: 34541384 PMCID: PMC8424083 DOI: 10.1016/j.bioactmat.2021.06.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Photodynamic therapy (PDT) has been applied in clinical treatment of tumors for a long time. However, insufficient supply of pivotal factors including photosensitizer (PS), light, and oxygen in tumor tissue dramatically reduces the therapeutic efficacy of PDT. Nanoparticles have received an influx of attention as drug carriers, and recent studies have demonstrated their promising potential to overcome the obstacles of PDT in tumor tissue. Physicochemical optimization for passive targeting, ligand modification for active targeting, and stimuli-responsive release achieved efficient delivery of PS to tumor tissue. Various trials using upconversion NPs, two-photon lasers, X-rays, and bioluminescence have provided clues for efficient methods of light delivery to deep tissue. Attempts have been made to overcome unfavorable tumor microenvironments via artificial oxygen generation, Fenton reaction, and combination with other chemical drugs. In this review, we introduce these creative approaches to addressing the hurdles facing PDT in tumors. In particular, the studies that have been validated in animal experiments are preferred in this review over proof-of-concept studies that were only performed in cells.
Collapse
Affiliation(s)
- Donghyun Lee
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Soonmin Kwon
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seok-young Jang
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Eunyoung Park
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Yeeun Lee
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Heebeom Koo
- Department of Medical Life Sciences, Department of Biomedicine & Health Sciences, and Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| |
Collapse
|
16
|
Gallardo-Villagrán M, Paulus L, Charissoux JL, Leger DY, Vergne-Salle P, Therrien B, Liagre B. Ruthenium-based assemblies incorporating tetrapyridylporphyrin panels: a photosensitizer delivery strategy for the treatment of rheumatoid arthritis by photodynamic therapy. Dalton Trans 2022; 51:9673-9680. [DOI: 10.1039/d2dt00917j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ruthenium-based assemblies containing tetrapyridylporphyrin derivatives in their structures have been evaluated as photosensitizers to treat rheumatoid arthritis by photodynamic therapy.
Collapse
Affiliation(s)
- Manuel Gallardo-Villagrán
- Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland
- Université de Limoges, Laboratoire PEIRENE UR 22722, Faculté de Pharmacie, F-87025 Limoges, France
| | - Lucie Paulus
- Université de Limoges, Laboratoire PEIRENE UR 22722, Faculté de Pharmacie, F-87025 Limoges, France
| | - Jean-Louis Charissoux
- Service d'Orthopédie-Traumatologie, CHRU Dupuytren, 2 avenue Martin Luther King, 87042 Limoges Cedex, France
| | - David Yannick Leger
- Université de Limoges, Laboratoire PEIRENE UR 22722, Faculté de Pharmacie, F-87025 Limoges, France
| | - Pascale Vergne-Salle
- Service de Rhumatologie, CHRU Dupuytren 2, 16 rue Bernard Descottes, 87042 Limoges Cedex, France
| | - Bruno Therrien
- Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland
| | - Bertrand Liagre
- Université de Limoges, Laboratoire PEIRENE UR 22722, Faculté de Pharmacie, F-87025 Limoges, France
| |
Collapse
|
17
|
Judzewitsch PR, Corrigan N, Wong EHH, Boyer C. Photo-Enhanced Antimicrobial Activity of Polymers Containing an Embedded Photosensitiser. Angew Chem Int Ed Engl 2021; 60:24248-24256. [PMID: 34453390 DOI: 10.1002/anie.202110672] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 12/14/2022]
Abstract
This work presents the synthesis of a novel photosensitive acrylate monomer for use as both a self-catalyst in the photoinduced electron/energy transfer-reversible addition fragmentation chain transfer (PET-RAFT) polymerisation process and a photosensitiser (PS) for antibacterial applications. Hydrophilic, cationic, and antimicrobial formulations are explored to compare the antibacterial effects between charged and non-charged polymers. Covalent attachment of the catalyst to well-defined linear polymer chains has no effect on polymerisation control or singlet oxygen generation. The addition of the PS to polymers provides activity against S. aureus for all polymer formulations, resulting in up to a 99.99999 % killing efficacy in 30 min. Antimicrobial peptide mimetic polymers previously active against P. aeruginosa, but not S. aureus, gain significant bactericidal activity against S. aureus through the inclusion of PS groups, with 99.998 % killing efficiency after 30 min incubation with light. Thus, a broader spectrum of antimicrobial activity is achieved using two distinct mechanisms of bactericidal activity via the incorporation of a photosensitiser monomer into an antimicrobial polymer.
Collapse
Affiliation(s)
- Peter R Judzewitsch
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| |
Collapse
|
18
|
Photo‐Enhanced Antimicrobial Activity of Polymers Containing an Embedded Photosensitiser. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Jeong H, Park W, Kim DH, Na K. Dynamic nanoassemblies of nanomaterials for cancer photomedicine. Adv Drug Deliv Rev 2021; 177:113954. [PMID: 34478780 DOI: 10.1016/j.addr.2021.113954] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/09/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Photomedicine has long been used for treating cancerous diseases. With advances in chemical and material sciences, various types of light-activated photosensitizers (PSs) have been developed for effective photodynamic therapy (PDT) and photothermal therapy (PTT). However, conventional organic/inorganic materials-based PSs lack disease recognition capability and show limited therapeutic effects in addition to side effects. Recently, intelligent dynamic nanoassemblies that are activated in a tumor environment have been extensively researched to target diseased tissues more effectively, for increasing therapeutic effectiveness while minimizing side effects. This paper presents the latest dynamic nanoassemblies for effective PDT or PTT and combination phototherapies, including immunotherapy and image-guided therapy. Dynamic self-assembly exhibits great potential for clinical translation in diagnosis and treatment through its integrated versatility. Nanoassemblies based on multidisciplinary technology are a promising technique for treating incurable cancerous diseases in the future.
Collapse
Affiliation(s)
- Hayoon Jeong
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea
| | - Wooram Park
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA; Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL 60208, USA; Department of Bioengineering, The University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Kun Na
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi 14662, Republic of Korea.
| |
Collapse
|
20
|
Luo T, Nash GT, Xu Z, Jiang X, Liu J, Lin W. Nanoscale Metal-Organic Framework Confines Zinc-Phthalocyanine Photosensitizers for Enhanced Photodynamic Therapy. J Am Chem Soc 2021; 143:13519-13524. [PMID: 34424712 PMCID: PMC8414475 DOI: 10.1021/jacs.1c07379] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The performance of
photodynamic therapy (PDT) depends on the solubility,
pharmacokinetic behaviors, and photophysical properties of photosensitizers
(PSs). However, highly conjugated PSs with strong reactive oxygen
species (ROS) generation efficiency tend to have poor solubility
and aggregate in aqueous environments, leading to suboptimal PDT performance.
Here, we report a new strategy to load highly conjugated but poorly
soluble zinc-phthalocyanine (ZnP) PSs in the pores of a Hf12-QC (QC = 2″,3′-dinitro-[1,1’:4′,1”;4″,1’”-quaterphenyl]-4,4’”-dicarboxylate)
nanoscale metal–organic framework to afford ZnP@Hf-QC with
spatially confined ZnP PSs. ZnP@Hf-QC avoids aggregation-induced quenching
of ZnP excited states to significantly enhance ROS generation upon
light irradiation. With higher cellular uptake, enhanced ROS generation,
and better biocompatibility, ZnP@Hf-QC mediated PDT exhibited an IC50 of 0.14 μM and achieved exceptional antitumor efficacy
with >99% tumor growth inhibition and 80% cure rates on two murine
colon cancer models.
Collapse
Affiliation(s)
- Taokun Luo
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Geoffrey T Nash
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Ziwan Xu
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Xiaomin Jiang
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jianqiao Liu
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
21
|
Pierre MBR. Nanocarriers for Photodynamic Therapy Intended to Cutaneous Tumors. Curr Drug Targets 2021; 22:1090-1107. [PMID: 33397257 DOI: 10.2174/1389450122999210101230743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 11/22/2022]
Abstract
Photodynamic Therapy (PDT) is a therapeutic modality used for several malignant and premalignant skin disorders, including Bowen's disease skin cancers and Superficial Basal Cell Carcinoma (BCC). Several photosensitizers (PSs) have been explored for tumor destruction of skin cancers, after their activation by a light source of appropriate wavelength. Topical release of PSs avoids prolonged photosensitization reactions associated with systemic administration; however, its clinical usefulness is influenced by its poor tissue penetration and the stability of the active agent. Nanotechnology-based drug delivery systems are promising tool to enhance the efficiency for PDT of cancer. This review focuses on PSs encapsulated in nanocarriers explored for PDT of skin tumors.
Collapse
Affiliation(s)
- Maria B R Pierre
- Universidade Federal do Rio de Janeiro (UFRJ)- Faculdade de Farmacia- Av, Brigadeiro Trompowsky, s/n. CEP Rio de Janeiro - RJ, 21941-901, Brazil
| |
Collapse
|
22
|
Vera C, Tulli F, Borsarelli CD. Photosensitization With Supramolecular Arrays for Enhanced Antimicrobial Photodynamic Treatments. Front Bioeng Biotechnol 2021; 9:655370. [PMID: 34307317 PMCID: PMC8293899 DOI: 10.3389/fbioe.2021.655370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
Microbial infections represent a silent threat to health that has worsened in recent decades due to microbial resistance to multiple drugs, preventing the fight against infectious diseases. Therefore, the current postantibiotic era forces the search for new microbial control strategies. In this regard, antimicrobial photodynamic therapy (aPDT) using supramolecular arrays with photosensitizing capabilities showed successful emerging applications. This exciting field makes it possible to combine applied aspects of molecular photochemistry and supramolecular chemistry, together with the development of nano- and biomaterials for the design of multifunctional or "smart" supramolecular photosensitizers (SPS). This minireview aims to collect the concepts of the photosensitization process and supramolecular chemistry applied to the development of efficient applications of aPDT, with a brief discussion of the most recent literature in the field.
Collapse
Affiliation(s)
| | | | - Claudio D. Borsarelli
- Instituto de Bionanotecnología del NOA (INBIONATEC), CONICET – Universidad Nacional de Santiago del Estero (UNSE), Santiago del Estero, Argentina
| |
Collapse
|
23
|
Xie J, Wang Y, Choi W, Jangili P, Ge Y, Xu Y, Kang J, Liu L, Zhang B, Xie Z, He J, Xie N, Nie G, Zhang H, Kim JS. Overcoming barriers in photodynamic therapy harnessing nano-formulation strategies. Chem Soc Rev 2021; 50:9152-9201. [PMID: 34223847 DOI: 10.1039/d0cs01370f] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) has been extensively investigated for decades for tumor treatment because of its non-invasiveness, spatiotemporal selectivity, lower side-effects, and immune activation ability. It can be a promising treatment modality in several medical fields, including oncology, immunology, urology, dermatology, ophthalmology, cardiology, pneumology, and dentistry. Nevertheless, the clinical application of PDT is largely restricted by the drawbacks of traditional photosensitizers, limited tissue penetrability of light, inefficient induction of tumor cell death, tumor resistance to the therapy, and the severe pain induced by the therapy. Recently, various photosensitizer formulations and therapy strategies have been developed to overcome these barriers. Significantly, the introduction of nanomaterials in PDT, as carriers or photosensitizers, may overcome the drawbacks of traditional photosensitizers. Based on this, nanocomposites excited by various light sources are applied in the PDT of deep-seated tumors. Modulation of cell death pathways with co-delivered reagents promotes PDT induced tumor cell death. Relief of tumor resistance to PDT with combined therapy strategies further promotes tumor inhibition. Also, the optimization of photosensitizer formulations and therapy procedures reduces pain in PDT. Here, a systematic summary of recent advances in the fabrication of photosensitizers and the design of therapy strategies to overcome barriers in PDT is presented. Several aspects important for the clinical application of PDT in cancer treatment are also discussed.
Collapse
Affiliation(s)
- Jianlei Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen 518060, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yu J, Qiu H, Yin S, Wang H, Li Y. Polymeric Drug Delivery System Based on Pluronics for Cancer Treatment. Molecules 2021; 26:3610. [PMID: 34204668 PMCID: PMC8231161 DOI: 10.3390/molecules26123610] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pluronic polymers (pluronics) are a unique class of synthetic triblock copolymers containing hydrophobic polypropylene oxide (PPO) and hydrophilic polyethylene oxide (PEO) arranged in the PEO-PPO-PEO manner. Due to their excellent biocompatibility and amphiphilic properties, pluronics are an ideal and promising biological material, which is widely used in drug delivery, disease diagnosis, and treatment, among other applications. Through self-assembly or in combination with other materials, pluronics can form nano carriers with different morphologies, representing a kind of multifunctional pharmaceutical excipients. In recent years, the utilization of pluronic-based multi-functional drug carriers in tumor treatment has become widespread, and various responsive drug carriers are designed according to the characteristics of the tumor microenvironment, resulting in major progress in tumor therapy. This review introduces the specific role of pluronic-based polymer drug delivery systems in tumor therapy, focusing on their physical and chemical properties as well as the design aspects of pluronic polymers. Finally, using newer literature reports, this review provides insights into the future potential and challenges posed by different pluronic-based polymer drug delivery systems in tumor therapy.
Collapse
Affiliation(s)
- Jialin Yu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
| | - Huayu Qiu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Shouchun Yin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
| | - Hebin Wang
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741099, China
| | - Yang Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (J.Y.); (H.Q.); (S.Y.)
| |
Collapse
|
25
|
Wang J, Zhang B, Sun J, Hu W, Wang H. Recent advances in porous nanostructures for cancer theranostics. NANO TODAY 2021; 38:101146. [PMID: 33897805 PMCID: PMC8059603 DOI: 10.1016/j.nantod.2021.101146] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Porous nanomaterials with high surface area, tunable porosity, and large mesopores have recently received particular attention in cancer therapy and imaging. Introduction of additional pores to nanostructures not only endows the tunability of optoelectronic and optical features optimal for tumor treatment, but also modulates the loading capacity and controlled release of therapeutic agents. In recognition, increasing efforts have been made to fabricate various porous nanomaterials and explore their potentials in oncology applications. Thus, a systematic and comprehensive summary is necessary to overview the recent progress, especially in last ten years, on the development of various mesoporous nanomaterials for cancer treatment as theranostic agents. While outlining their individual synthetic mechanisms after a brief introduction of the structures and properties of porous nanomaterials, the current review highlighted the representative applications of three main categories of porous nanostructures (organic, inorganic, and organic-inorganic nanomaterials). In each category, the synthesis, representative examples, and interactions with tumors were further detailed. The review was concluded with deliberations on the key challenges and future outlooks of porous nanostructures in cancer theranostics.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
| | - Beilu Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Wei Hu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| |
Collapse
|
26
|
Tang J, Liu Y, Qi D, Yang L, Chen H, Wang C, Feng X. Nucleus-Targeted Delivery of Multi-Protein Self-Assembly for Combined Anticancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101219. [PMID: 34028978 DOI: 10.1002/smll.202101219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Protein therapy has the potential to revolutionize medicine, but the delivery of multiple proteins is challenging because it requires the development of a strategy that enables different proteins to be combined together and transported not only into cells, but also to the desired cell compartments, such as the nucleus. Here, an efficient intranuclear protein delivery nanoplatform based on modified ribonuclease A (RNase A) tuned self-assembly is presented. RNase A bioreversibly modified with adamantane is functionalized with wind chime-like lysine modified cyclodextrin (WLC) to generate RNase A-WLC (R-WLC). R-WLC can not only enhance the cellular uptake of RNase A and accumulate it into the nucleus, but also works as nanovehicles to efficiently transport deoxyribonuclease I (DNase I) into the nucleus, resulting in greatly improved antitumor efficacy in vitro and in vivo. This protein co-assembly strategy can be applied to other functional proteins and has great prospects in the treatment of many diseases.
Collapse
Affiliation(s)
- Jiakun Tang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Ye Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Dongmei Qi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Lan Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Chenhui Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
27
|
Obata M, Masuda S, Takahashi M, Yazaki K, Hirohara S. Effect of the hydrophobic segment of an amphiphilic block copolymer on micelle formation, zinc phthalocyanine loading, and photodynamic activity. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Yoo SW, Oh G, Ahn JC, Chung E. Non-Oncologic Applications of Nanomedicine-Based Phototherapy. Biomedicines 2021; 9:113. [PMID: 33504015 PMCID: PMC7911939 DOI: 10.3390/biomedicines9020113] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Phototherapy is widely applied to various human diseases. Nanomedicine-based phototherapy can be classified into photodynamic therapy (PDT) and photothermal therapy (PTT). Activated photosensitizer kills the target cells by generating radicals or reactive oxygen species in PDT while generating heat in PTT. Both PDT and PTT have been employed for treating various diseases, from preclinical to randomized controlled clinical trials. However, there are still hurdles to overcome before entering clinical practice. This review provides an overview of nanomedicine-based phototherapy, especially in non-oncologic diseases. Multiple clinical trials were undertaken to prove the therapeutic efficacy of PDT in dermatologic, ophthalmologic, cardiovascular, and dental diseases. Preclinical studies showed the feasibility of PDT in neurologic, gastrointestinal, respiratory, and musculoskeletal diseases. A few clinical studies of PTT were tried in atherosclerosis and dry eye syndrome. Although most studies have shown promising results, there have been limitations in specificity, targeting efficiency, and tissue penetration using phototherapy. Recently, nanomaterials have shown promising results to overcome these limitations. With advanced technology, nanomedicine-based phototherapy holds great potential for broader clinical practice.
Collapse
Affiliation(s)
- Su Woong Yoo
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Jeollanam-do 58128, Korea;
| | - Gyungseok Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
| | - Jin Chul Ahn
- Medical Laser Research Center and Department of Biomedical Science, Dankook University, Cheonan 31116, Korea;
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea;
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
29
|
Husni P, Shin Y, Kim JC, Kang K, Lee ES, Youn YS, Rusdiana T, Oh KT. Photo-Based Nanomedicines Using Polymeric Systems in the Field of Cancer Imaging and Therapy. Biomedicines 2020; 8:E618. [PMID: 33339198 PMCID: PMC7765596 DOI: 10.3390/biomedicines8120618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022] Open
Abstract
The use of photo-based nanomedicine in imaging and therapy has grown rapidly. The property of light in converting its energy into different forms has been exploited in the fields of optical imaging (OI) and phototherapy (PT) for diagnostic and therapeutic applications. The development of nanotechnology offers numerous advantages to overcome the challenges of OI and PT. Accordingly, in this review, we shed light on common photosensitive agents (PSAs) used in OI and PT; these include fluorescent and bioluminescent PSAs for OI or PT agents for photodynamic therapy (PDT) and photothermal therapy (PTT). We also describe photo-based nanotechnology systems that can be used in photo-based diagnostics and therapies by using various polymeric systems.
Collapse
Affiliation(s)
- Patihul Husni
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Yuseon Shin
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Jae Chang Kim
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Kioh Kang
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea;
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea;
| | - Taofik Rusdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Kyung Taek Oh
- Department of Global Innovative Drugs, College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Korea; (P.H.); (Y.S.); (J.C.K.); (K.K.)
| |
Collapse
|
30
|
Zhao L, Choi J, Lu Y, Kim SY. NIR Photoregulated Theranostic System Based on Hexagonal-Phase Upconverting Nanoparticles for Tumor-Targeted Photodynamic Therapy and Fluorescence Imaging. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2332. [PMID: 33255734 PMCID: PMC7760611 DOI: 10.3390/nano10122332] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
Although photodynamic therapy (PDT) is an effective, minimally invasive therapeutic modality with advantages in highly localized and specific tumor treatments, large and deep-seated cancers within the body cannot be successfully treated due to low transparency to visible light. To improve the therapeutic efficiency of tumor treatment in deep tissue and reduce the side effects in normal tissue, this study developed a near-infrared (NIR)-triggered upconversion nanoparticle (UCNP)-based photosensitizer (PS) carrier as a new theranostics system. The NaYF4:Yb/Er UCNPs were synthesized by a hydrothermal method, producing nanoparticles of a uniformly small size (≈20 nm) and crystalline morphology of the hexagonal phase. These UCNPs were modified with folic acid-conjugated biocompatible block copolymers through a bidentate dihydrolipoic acid linker. The polymer modified hexagonal phase UCNPs (FA-PEAH-UCNPs) showed an improved dispersibility in the aqueous solution and strong NIR-to-vis upconversion fluorescence. The hydrophobic PS, pheophorbide a (Pha), was then conjugated to the stable vectors. Moreover, these UCNP-based Pha carriers containing tumor targeting folic acid ligands exhibited the significantly enhanced cellular uptake efficiency as well as PDT treatment efficiency. These results suggested that this system could extend the excitation wavelength of PDT to the NIR region and effectively improve therapeutic efficiency of PSs.
Collapse
Affiliation(s)
- Linlin Zhao
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China;
| | - Jongseon Choi
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Korea;
| | - Yan Lu
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China;
| | - So Yeon Kim
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Korea;
- Department of Chemical Engineering Education, College of Education, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
31
|
Cho HJ, Park SJ, Jung WH, Cho Y, Ahn DJ, Lee YS, Kim S. Injectable Single-Component Peptide Depot: Autonomously Rechargeable Tumor Photosensitization for Repeated Photodynamic Therapy. ACS NANO 2020; 14:15793-15805. [PMID: 33175520 DOI: 10.1021/acsnano.0c06881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The general practice of photodynamic therapy (PDT) comprises repeated multiple sessions, where photosensitizers are repeatedly administered prior to each operation of light irradiation. To address potential problems arising from the total overdose of photosensitizer by such repeated injections, we here introduce an internalizing RGD peptide (iRGD) derivative (Ppa-iRGDC-BK01) that self-aggregates into an injectable single-component supramolecular depot. Ppa-iRGDC-BK01 is designed as an in situ self-implantable photosensitizer so that it forms a depot by itself upon injection, and its molecular functions (cancer cell internalization and photosensitization) are activated by sustained release, tumor targeting, and tumor-selective proteolytic/reductive cleavage of the iRGD segment. The experimental and theoretical studies revealed that when exposed to body temperature, Ppa-iRGDC-BK01 undergoes thermally accelerated self-assembly to form a supramolecular depot through the hydrophobic interaction of the Ppa pendants and the reorganization of the interpeptide hydrogen bonding. It turned out that the self-aggregation of Ppa-iRGDC-BK01 into a depot exerts a multiple-quenching effect on the photosensitivity to effectively prevent nonspecific phototoxicity and protect it from photobleaching outside the tumor, while enabling autonomous tumor rephotosensitization by long sustained release, tumor accumulation, and intratumoral activation over time. We demonstrate that depot formation through a single peritumoral injection and subsequent quintuple laser irradiations at intervals resulted in complete eradication of the tumor. During the repeated PDT, depot-implanted normal tissues around the tumor exhibited no phototoxic damage under laser exposure. Our approach of single-component photosensitizing supramolecular depot, combined with a strategy of tumor-targeted therapeutic activation, would be a safer and more precise operation of PDT through a nonconventional protocol composed of one-time photosensitizer injection and multiple laser irradiations.
Collapse
Affiliation(s)
- Hong-Jun Cho
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sung-Jun Park
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Woo Hyuk Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yuri Cho
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Dong June Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sehoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
32
|
Xiao S, Chen L. The emerging landscape of nanotheranostic-based diagnosis and therapy for osteoarthritis. J Control Release 2020; 328:817-833. [PMID: 33176171 DOI: 10.1016/j.jconrel.2020.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a common degenerative disease involving numerous joint tissues and cells, with a growing rate in prevalence that ultimately results in a negative social impact. Early diagnosis, OA progression monitoring and effective treatment are of significant importance in halting OA process. However, traditional imaging techniques lack sensitivity and specificity, which lead to a delay in timely clinical intervention. Additionally, current treatments only slow the progression of OA but have not meet the largely medical need for disease-modifying therapy. In order to overcome the above-mentioned problems and improve clinical efficacy, nanotheranostics has been proposed on OA remedy, which has confirmed success in animal models. In this review, different imaging targets-based nanoprobe for early and timely OA diagnosis is first discussed. Second, therapeutic strategies delivered by nanosystem are summarized as much as possible. Their advantages and the potential for clinical translation are detailed discussed. Third, nanomedicine simultaneously combined with the imaging for OA treatment is introduced. Nanotheranostics dynamically tracked the OA treatment outcomes to timely and individually adjust therapy. Finally, future prospects and challenges of nanotechnology-based OA diagnosis, imaging and treatment are concluded and predicted. It is believed that nanoprobe and nanomedicine will become prospective in OA therapeutic revolution.
Collapse
Affiliation(s)
- Shuyi Xiao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Liang Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China.
| |
Collapse
|
33
|
Shi Y, Zhao Z, Gao Y, Pan DC, Salinas AK, Tanner EE, Guo J, Mitragotri S. Oral delivery of sorafenib through spontaneous formation of ionic liquid nanocomplexes. J Control Release 2020; 322:602-609. [DOI: 10.1016/j.jconrel.2020.03.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/16/2022]
|
34
|
Yang F, Xu J, Fu M, Ji J, Chi L, Zhai G. Development of stimuli-responsive intelligent polymer micelles for the delivery of doxorubicin. J Drug Target 2020; 28:993-1011. [PMID: 32378974 DOI: 10.1080/1061186x.2020.1766474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Doxorubicin is still used as a first-line drug in current therapeutics for numerous types of malignant tumours (including lymphoma, transplantable leukaemia and solid tumour). Nevertheless, to overcome the serious side effects like cardiotoxicity and myelosuppression caused by effective doses of doxorubicin remains as a world-class puzzle. In recent years, the usage of biocompatible polymeric nanomaterials to form an intelligently sensitive carrier for the targeted release in tumour microenvironment has attracted wide attention. These different intelligent polymeric micelles (PMs) could change the pharmacokinetics process of drugs or respond in the special microenvironment of tumour site to maximise the efficacy and reduce the toxicity of doxorubicin in other tissues and organs. Several intelligent PMs have already been in the clinical research stage and planned for market. Therefore, related research remains active, and the latest nanotechnology approaches for doxorubicin delivery are always in the spotlight. Centring on the model drugs doxorubicin, this review summarised the mechanisms of PMs, classified the polymers used in the application of doxorubicin delivery and discussed some interesting and imaginative smart PMs in recent years.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jiangkang Xu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Manfei Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Liqun Chi
- Department of Pharmacy, Haidian Maternal and Child Health Hospital of Beijing, Beijing, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
35
|
Kim Y, Uthaman S, Pillarisetti S, Noh K, Huh KM, Park IK. Bioactivatable reactive oxygen species-sensitive nanoparticulate system for chemo-photodynamic therapy. Acta Biomater 2020; 108:273-284. [PMID: 32205212 DOI: 10.1016/j.actbio.2020.03.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022]
Abstract
Bioactivatable polymer nanoparticles (NPs) have attracted considerable attention as a prospective cancer therapy. Herein, we describe bioactivatable reactive oxygen species (ROS)-sensitive prodrug NPs designed to elicit spatiotemporally controlled, phototriggered chemo-photodynamic therapy. First, an effective anticancer agent, doxorubicin (DOX), was conjugated to poly(ethylene glycol) (PEG) via an ROS-responsive degradable thioketal (TK) linker. The resulting amphiphilic PEG-DOX conjugate (PEG-TK-DOX) self-assembled into a bioactivatable ROS-responsive NP system could efficiently encapsulate a hydrophobic photodynamic therapy (PDT) agent, pheophorbide A (PhA), with good colloidal stability and unimodal size distribution. Second, after the selective retention of NPs in the tumor, the site-specific release of DOX and PhA was spatiotemporally controlled, initially by endogenous ROS and subsequently by exogenous ROS produced during PDT. The locoregional treatment not only photoactivates PhA molecules to generate cytotoxic ROS but also triggers an ROS cascade, which accelerates the release of DOX and PhA via the ROS-mediated structural destruction of NPs, resulting in an enhanced anticancer therapeutic effect. This prodrug-NP system may function as an effective nanomedicine platform, working synergistically to maximize the efficacy of the combination of chemotherapy and photodynamic therapy with a remote-controlled release mechanism. STATEMENT OF SIGNIFICANCE: Photodynamic therapy (PDT) is a noninvasive therapy involving local ROS generation through the activation of photosensitizer (PS) molecules induced via external irradiation with near-infrared (NIR) light. Combinational therapies with PDT could synergistically enhance the therapeutic efficacy and overcome the limitations of monotherapy. In this study, we describe bioactivatable reactive oxygen species (ROS)-sensitive prodrug nanoparticles designed to elicit spatiotemporally controlled, photo triggered chemo-photodynamic therapy. Upon accumulation in tumor by enhanced permeation and retention (EPR) effect, the nanoparticles exhibited target-specific release of chemo-drug and photosensitizer in a spatiotemporally controlled cascade manner by endogenous ROS in the initial stage and the excessive production of exogenous ROS during PDT, leading to a further ROS cascade that accelerates the release of therapeutic cargo.
Collapse
|
36
|
Liu Y, Fens MH, Lou B, van Kronenburg NC, Maas-Bakker RF, Kok RJ, Oliveira S, Hennink WE, van Nostrum CF. π-π-Stacked Poly(ε-caprolactone)- b-poly(ethylene glycol) Micelles Loaded with a Photosensitizer for Photodynamic Therapy. Pharmaceutics 2020; 12:pharmaceutics12040338. [PMID: 32283871 PMCID: PMC7238042 DOI: 10.3390/pharmaceutics12040338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
To improve the in vivo stability of poly(ε-caprolactone)-b-poly(ethylene glycol) (PCL-PEG)-based micelles and cargo retention by π-π stacking interactions, pendant aromatic rings were introduced by copolymerization of ε-caprolactone with benzyl 5-methyl-2-oxo-1,3-dioxane-5-carboxylate (TMC-Bz). It was shown that the incorporation of aromatic rings yielded smaller micelles (18–30 nm) with better colloidal stability in PBS than micelles without aromatic groups. The circulation time of i.v. injected micelles containing multiple pendant aromatic groups was longer (t½-α: ~0.7 h; t½-β: 2.9 h) than that of micelles with a single terminal aromatic group (t½ < 0.3 h). In addition, the in vitro partitioning of the encapsulated photosensitizer (meta-tetra(hydroxyphenyl)chlorin, mTHPC) between micelles and human plasma was favored towards micelles for those that contained the pendant aromatic groups. However, this was not sufficient to fully retain mTHPC in the micelles in vivo, as indicated by similar biodistribution patterns of micellar mTHPC compared to free mTHPC, and unequal biodistribution patterns of mTHPC and the host micelles. Our study points out that more detailed in vitro methods are necessary to more reliably predict in vivo outcomes. Furthermore, additional measures beyond π-π stacking are needed to stably incorporate mTHPC in micelles in order to benefit from the use of micelles as targeted delivery systems.
Collapse
Affiliation(s)
- Yanna Liu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Marcel H.A.M. Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Bo Lou
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Nicky C.H. van Kronenburg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Roel F.M. Maas-Bakker
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Robbert J. Kok
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Sabrina Oliveira
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
- Correspondence: ; Tel.: +31-620274607
| |
Collapse
|
37
|
Gibot L, Demazeau M, Pimienta V, Mingotaud AF, Vicendo P, Collin F, Martins-Froment N, Dejean S, Nottelet B, Roux C, Lonetti B. Role of Polymer Micelles in the Delivery of Photodynamic Therapy Agent to Liposomes and Cells. Cancers (Basel) 2020; 12:E384. [PMID: 32046147 PMCID: PMC7072360 DOI: 10.3390/cancers12020384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
The use of nanocarriers for hydrophobic photosensitizers, in the context of photodynamic therapy (PDT) to improve pharmacokinetics and bio-distribution, is well-established. However, the mechanisms at play in the internalization of nanocarriers are not well-elucidated, despite its importance in nanocarrier design. In this study, we focus on the mechanisms involved in copolymer poly(ethylene oxide)-block-poly(-caprolactone) PEO-PCL and poly(ethylene oxide)-block-poly styrene PEO-PS micelles - membrane interactions through complementary physico-chemical studies on biomimetic membranes, and biological experiments on two-dimensional (2D) and three-dimensional (3D) cell cultures. Förster Resonance Energy Transfer measurements on fluorescently-labelled lipid vesicles, and flow cytometry on two cancerous cell lines enabled the evaluation in the uptake of a photosensitizer, Pheophorbide a (Pheo), and copolymer chains towards model membranes, and cells, respectively. The effects of calibrated light illumination for PDT treatment on lipid vesicle membranes, i.e., leakage and formation of oxidized lipids, and cell viability, were assessed. No significant differences were observed between the ability of PEO-PCL and PEO-PS micelles in delivering Pheo to model membranes, but Pheo was found in higher concentrations in cells in the case of PEO-PCL. These higher Pheo concentrations did not correspond to better performances in PDT treatment. We demonstrated that there are subtle differences in PEO-PCL and PEO-PS micelles for the delivery of Pheo.
Collapse
Affiliation(s)
- Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Maxime Demazeau
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Véronique Pimienta
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Patricia Vicendo
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Fabrice Collin
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Nathalie Martins-Froment
- Service Commun de Spectrométrie de Masse (FR2599), Université de Toulouse III (Paul Sabatier), 118, route de Narbonne, F-31062 Toulouse Cedex 9, France;
| | - Stéphane Dejean
- IBMM, Université de Montpellier, CNRS, ENSCM, 34 090 Montpellier, France; (S.D.); (B.N.)
| | - Benjamin Nottelet
- IBMM, Université de Montpellier, CNRS, ENSCM, 34 090 Montpellier, France; (S.D.); (B.N.)
| | - Clément Roux
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III—Paul Sabatier, F-31062 Toulouse, France; (L.G.); (M.D.); (V.P.); (A.-F.M.); (P.V.); (F.C.)
| |
Collapse
|
38
|
Kumari P, Paul M, Bhatt H, Rompicharla SVK, Sarkar D, Ghosh B, Biswas S. Chlorin e6 Conjugated Methoxy-Poly(Ethylene Glycol)-Poly(D,L-Lactide) Glutathione Sensitive Micelles for Photodynamic Therapy. Pharm Res 2020; 37:18. [DOI: 10.1007/s11095-019-2750-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
|
39
|
Abstract
The biomaterials have been well designed as photoabsorbing/sensitizing agents or effective carriers to enhance the photoimmunotherapeutic efficacy and evade their side effects.
Collapse
Affiliation(s)
- Muchao Chen
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou
- PR China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Soochow University
- Suzhou
- PR China
| |
Collapse
|
40
|
Wunderlich ALM, Azevedo SCSF, Yamada LA, Bataglini C, Previate C, Campanholi KSS, Pereira PCS, Caetano W, Kaplum V, Nakamura CV, Nakanishi ABS, Comar JF, Pedrosa MMD, Godoi VAF. Chlorophyll treatment combined with photostimulation increases glycolysis and decreases oxidative stress in the liver of type 1 diabetic rats. ACTA ACUST UNITED AC 2019; 53:e8389. [PMID: 31859908 PMCID: PMC6915880 DOI: 10.1590/1414-431x20198389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/17/2019] [Indexed: 11/21/2022]
Abstract
Photodynamic therapy (PDT) promotes cell death, and it has been successfully employed as a treatment resource for neuropathic complications of diabetes mellitus (T1DM) and hepatocellular carcinoma. The liver is the major organ involved in the regulation of energy homeostasis, and in pathological conditions such as T1DM, changes in liver metabolic pathways result in hyperglycemia, which is associated with multiple organic dysfunctions. In this context, it has been suggested that chlorophyll-a and its derivatives have anti-diabetic actions, such as reducing hyperglycemia, hyperinsulinemia, and hypertriglyceridemia, but these effects have not yet been proven. Thus, the biological action of PDT with chlorophyll-a on hepatic parameters related to energy metabolism and oxidative stress in T1DM Wistar rats was investigated. Evaluation of the acute effects of this pigment was performed by incubation of isolated hepatocytes with chlorophyll-a and the chronic effects were evaluated by oral treatment with chlorophyll-based extract, with post-analysis of the intact liver by in situ perfusion. In both experimental protocols, chlorophyll-a decreased hepatic glucose release and glycogenolysis rate and stimulated the glycolytic pathway in DM/PDT. In addition, there was a reduction in hepatic oxidative stress, noticeable by decreased lipoperoxidation, reactive oxygen species, and carbonylated proteins in livers of chlorophyll-treated T1DM rats. These are indicators of the potential capacity of chlorophyll-a in improving the status of the diabetic liver.
Collapse
Affiliation(s)
- A L M Wunderlich
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - S C S F Azevedo
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - L A Yamada
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - C Bataglini
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - C Previate
- Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - K S S Campanholi
- Programa de Pós-Graduação em Química, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - P C S Pereira
- Programa de Pós-Graduação em Química, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - W Caetano
- Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - V Kaplum
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - C V Nakamura
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - A B S Nakanishi
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - J F Comar
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - M M D Pedrosa
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - V A F Godoi
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| |
Collapse
|
41
|
Lo PC, Rodríguez-Morgade MS, Pandey RK, Ng DKP, Torres T, Dumoulin F. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem Soc Rev 2019; 49:1041-1056. [PMID: 31845688 DOI: 10.1039/c9cs00129h] [Citation(s) in RCA: 405] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phthalocyanines exhibit superior photoproperties that make them a surely attractive class of photosensitisers for photodynamic therapy of cancer. Several derivatives are at various phases of clinical trials, and efforts have been put continuously to improve their photodynamic efficacy. To this end, various strategies have been applied to develop advanced phthalocyanines with optimised photoproperties, dual therapeutic actions, tumour-targeting properties and/or specific activation at tumour sites. The advantageous properties and potential of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer are highlighted in this tutorial review.
Collapse
Affiliation(s)
- Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
42
|
Liu J, Yan J, Yan S, Wang Y, Zhang R, Hou P, He W, Ji M. Biomimetic and Self-Assembled Nanoclusters Targeting β-Catenin for Potent Anticancer Therapy and Enhanced Immunotherapy. NANO LETTERS 2019; 19:8708-8715. [PMID: 31744296 DOI: 10.1021/acs.nanolett.9b03414] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Immune checkpoint blockade therapies fail to induce immune response in the vast majority of cancer patients, so developing robust adjuvants for increasing tumor immune response is central for effective tumor immunotherapy. The Wnt/β-catenin pathway is a crucial oncogenic signal in relation to tumor immune evasion; however, none of the Wnt inhibitor under clinical or preclinical phases has demonstrated satisfactory specificity. Thus, new compounds or modalities that tumor specifically modulate the Wnt signal will be of great significance and value in clinical tumor immunotherapy. Herein, inspired by a natural phenomenon in cancer cells that the Achilles' Heel of oncoprotein β-catenin, H1 helix, predisposes β-catenin to oligomerization for proteasomal degradation and can be exacerbated by carnosic acid (CA, a Wnt inhibitor), we developed a size-tuned nanocluster (CAcluster) with well-defined supramolecular nanostructure by coassembling CA and H1 peptide. With the inherent enhanced permeability and retention (EPR) effect and the designed tumor microenvironment (TME) responsiveness, the CAcluster tumor specifically suppress the Wnt/β-catenin cascade in vivo, while maintaining a highly favorable biosafety profile. More importantly, the CAclusterin vivo improved the tumor response to the PD1/PD-L1 immune checkpoint blockade in melanoma and colon cancer. This study provides new insights into the biomimetic coassembly strategy to design supramolecular nanostructured adjuvants for hazard-free Wnt suppression and synergy with tumor immunotherapy.
Collapse
Affiliation(s)
- Jiaxin Liu
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Jin Yan
- Frontier Institute of Science and Technology, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Siqi Yan
- Ophthalmology Department , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Yubo Wang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Rui Zhang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Wangxiao He
- Department of Talent Highland , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| | - Meiju Ji
- Center for Translational Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an 710061 , China
| |
Collapse
|
43
|
Setaro F, Wennink JWH, Mäkinen PI, Holappa L, Trohopoulos PN, Ylä-Herttuala S, van Nostrum CF, de la Escosura A, Torres T. Amphiphilic phthalocyanines in polymeric micelles: a supramolecular approach toward efficient third-generation photosensitizers. J Mater Chem B 2019; 8:282-289. [PMID: 31803886 DOI: 10.1039/c9tb02014d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this paper we describe a straightforward supramolecular strategy to encapsulate silicon phthalocyanine (SiPc) photosensitizers (PS) in polymeric micelles made of poly(ε-caprolactone)-b-methoxypoly(ethylene glycol) (PCL-PEG) block copolymers. While PCL-PEG micelles are promising nanocarriers based on their biocompatibility and biodegradability, the design of our new PS favors their encapsulation. In particular, they combine two axial benzoyl substituents, each of them carrying either three hydrophilic methoxy(triethylenoxy) chains (1), three hydrophobic dodecyloxy chains (3), or both kinds of chains (2). The SiPc derivatives 1 and 2 are therefore amphiphilic, with the SiPc unit contributing to the hydrophobic core, while lipophilicity increases along the series, making it possible to correlate the loading efficacy in PCL-PEG micelles with the hydrophobic/hydrophilic balance of the PS structure. This has led to a new kind of third-generation nano-PS that efficiently photogenerates 1O2, while preliminary in vitro experiments demonstrate an excellent cellular uptake and a promising PDT activity.
Collapse
Affiliation(s)
- Francesca Setaro
- Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain.
| | - Jos W H Wennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands.
| | - Petri I Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland
| | - Lari Holappa
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland
| | | | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands.
| | - Andres de la Escosura
- Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain. and Institute for Advanced Research in Chemical Sciences (IAdChem), 28049 Cantoblanco, Madrid, Spain
| | - Tomas Torres
- Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain. and Institute for Advanced Research in Chemical Sciences (IAdChem), 28049 Cantoblanco, Madrid, Spain and IMDEA Nanosience, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
44
|
Shanmugapriya K, Kang HW. Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: Review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110110. [PMID: 31546465 DOI: 10.1016/j.msec.2019.110110] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022]
|
45
|
Liu Y, Li K, Wu Y, Ma J, Tang P, Liu Y, Wu D. PVA reinforced gossypolone and doxorubicin π-π stacking nanoparticles towards tumor targeting and ultralow dose synergistic chemotherapy. Biomater Sci 2019; 7:3662-3674. [PMID: 31179466 DOI: 10.1039/c9bm00674e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To improve the tumor synergistic therapeutic effects of carrier-free dual-drug delivery systems and realize ultralow dose administration, we developed a tumor targeting and high-efficiency synergistic chemotherapy system (HA-Gn@DPGn NPs) based on polyvinyl alcohol (PVA) reinforced gossypolone (Gn) and doxorubicin (DOX) π-π stacking nanoparticles (DPGn NPs), in which PVA filled the gaps between Gn and DOX and bridged Gn and DOX tightly. Hyaluronic acid modifier hyaluronic acid-gossypolone (HA-Gn) was covered on the surface of DPGn NPs to form HA-Gn@DPGn NPs that procured active targeting properties. This system presented a spherical shape with a uniform hydrodynamic size of 87 ± 6.8 nm, a high drug loading of 80.31%, and high stability. FTIR and UV spectra demonstrated that HA-Gn was covered on the surface of the system and showed significant π-π stacking properties. A considerably low combination index of Gn and DOX (0.1862) was determined at an ultra-low dose of DOX under a Gn : DOX ratio of 50 : 1. HA-Gn@DPGn NPs also demonstrated excellent tumor synergistic therapeutic efficacy (TIR > 87%) at an ultralow dose of DOX and Gn. This system demonstrates high tumor comprehensive synergistic therapeutic efficacy at an ultralow drug dose with multiple favorable therapeutic characteristics, including negligible side effects, tumor targeting ability and thermal-responsive drug release, and thus has considerable potential for tumor synergistic therapy.
Collapse
Affiliation(s)
- Yiming Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhang L, Yang XQ, Wei JS, Li X, Wang H, Zhao YD. Intelligent gold nanostars for in vivo CT imaging and catalase-enhanced synergistic photodynamic & photothermal tumor therapy. Theranostics 2019; 9:5424-5442. [PMID: 31534494 PMCID: PMC6735389 DOI: 10.7150/thno.33015] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/06/2019] [Indexed: 12/23/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved and minimally invasive form of cancer treatment. However, due to hypoxia at the tumor site and phototoxicity to normal tissues, monotherapies using photosensitizers remain suboptimal. This study aimed to develop a highly selective controlled catalase-enhanced synergistic photodynamic and photothermal cancer therapy based on gold nanostars. Methods: Gold nanostars (GNS) with high thermal conversion efficiency were used as the core for photothermal therapy (PTT) and the shell consisted of the photosensitizer Ce6-loaded mesoporous silicon. The shell was modified with catalase (E), which catalyzes the conversion of hydrogen peroxide to oxygen at the tumor site, alleviating hypoxia and increasing the effect of the photodynamic treatment. Finally, a phospholipid derivative with c(RGDyK) was used as the targeting moiety and the nanoparticle-encapsulating material. Results: The nanoprobe exhibited good dispersion, high stability, and high photothermal conversion efficiency (~28%) for PTT as well as a photodynamic "on-off" effect on Ce6 encapsulated in mesoporous channels. The "release" of Ce6 was only triggered under photothermal stimulation in vivo. Due to its targeting ability, 72 h after injection of the probe, the tumor site in mice showed an observable CT response. The combined treatment using photothermal therapy (PTT) and catalase-enhanced photo-controlled PDT exerted a superior effect to PTT or PDT monotherapies. Conclusion: Our findings demonstrate that the use of this intelligent nanoprobe for CT-targeted image-guided treatment of tumors with integrated photothermal therapy (PTT) and catalase-enhanced controlled photodynamic therapy (PDT) may provide a novel approach for cancer theranostics.
Collapse
|
47
|
Singh N, Kumar P, Kumar R, Riaz U. Ultrasound-Assisted Polymerization of Dyes with Phenylenediamines: Facile Method To Design Polymeric Photosensitizers with Enhanced Singlet Oxygen Generation Characteristics and Anticancer Activity. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Neetika Singh
- Materials Research Laboratory Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | | | | | - Ufana Riaz
- Materials Research Laboratory Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
48
|
Yakavets I, Millard M, Zorin V, Lassalle HP, Bezdetnaya L. Current state of the nanoscale delivery systems for temoporfin-based photodynamic therapy: Advanced delivery strategies. J Control Release 2019; 304:268-287. [PMID: 31136810 DOI: 10.1016/j.jconrel.2019.05.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022]
Abstract
Enthusiasm for photodynamic therapy (PDT) as a promising technique to eradicate various cancers has increased exponentially in recent decades. The majority of clinically approved photosensitizers are hydrophobic in nature, thus, the effective delivery of photosensitizers at the targeted site is the main hurdle associated with PDT. Temoporfin (mTHPC, medicinal product name: Foscan®), is one of the most potent clinically approved photosensitizers, is not an exception. Successful temoporfin-PDT requires nanoscale delivery systems for selective delivery of photosensitizer. Over the last 25 years, the number of papers on nanoplatforms developed for mTHPC delivery such as conjugates, host-guest inclusion complexes, lipid-and polymer-based nanoparticles and carbon nanotubes is burgeoning. However, none of them appeared to be "ultimate". The present review offers the description of different challenges and achievements in nanoparticle-based mTHPC delivery focusing on the synergetic combination of various nano-platforms to improve temoporfin delivery at all stages of biodistribution. Furthermore, the association of different nanoparticles in one nanoplatform might be considered as an advanced strategy allowing the combination of several treatment modalities.
Collapse
Affiliation(s)
- Ilya Yakavets
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France; Laboratory of Biophysics and Biotechnology, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus.
| | - Marie Millard
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| | - Vladimir Zorin
- Laboratory of Biophysics and Biotechnology, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus; International Sakharov Environmental Institute, Belarusian State University, Dauhabrodskaja 23, 220030 Minsk, Belarus.
| | - Henri-Pierre Lassalle
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France; Research Department, Institut de Cancérologie de Lorraine, 6 avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
49
|
Guo M, Song H, Li K, Ma M, Liu Y, Fu Q, He Z. A new approach to developing diagnostics and therapeutics: Aggregation-induced emission-based fluorescence turn-on. Med Res Rev 2019; 40:27-53. [PMID: 31070260 DOI: 10.1002/med.21595] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/21/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
Fluorescence imaging is a promising visualization tool and possesses the advantages of in situ response and facile operation; thus, it is widely exploited for bioassays. However, traditional fluorophores suffer from concentration limits because they are always quenched when they aggregate, which impedes applications, especially for trace analysis and real-time monitoring. Recently, novel molecules with aggregation-induced emission (AIE) characteristics were developed to solve the problems encountered when using traditional organic dyes, because these new molecules exhibit weak or even no fluorescence when they are in free movement states but emit intensely upon the restriction of intramolecular motions. Inspired by the excellent performances of AIE molecules, a substantial number of AIE-based probes have been designed, synthesized, and applied to various fields to fulfill diverse detection tasks. According to numerous experiments, AIE probes are more practical than traditional fluorescent probes, especially when used in bioassays. To bridge bioimaging and materials engineering, this review provides a comprehensive understanding of the development of AIE bioprobes. It begins with a summary of mechanisms of the AIE phenomenon. Then, the strategies to realize accurate detection using AIE probes are discussed. In addition, typical examples of AIE-active materials applied in diagnosis, treatment, and nanocarrier tracking are presented. In addition, some challenges are put forward to inspire more ideas in the promising field of AIE-active materials.
Collapse
Affiliation(s)
- Meichen Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Hang Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Kai Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Minchao Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
50
|
Kim EJ, Choi JH, Yang HJ, Choi SS, Lee HK, Cho YC, Kim HK, Kim SW, Chae HS. Comparison of high and low molecular weight chitosan as in-vitro boosting agent for photodynamic therapy against Helicobacter pylori using methylene blue and endoscopic light. Photodiagnosis Photodyn Ther 2019; 26:111-115. [PMID: 30836214 DOI: 10.1016/j.pdpdt.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/28/2019] [Accepted: 03/01/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND We reported in a previous study that photodynamic therapy (PDT) of Helicobacter pylori(H. pylori) could potentiate bactericidal effect by adding chitosan. As a next step, we compared the bactericidal effects of low molecular weight (LMW) combined with Photodynamic Therapy to high molecular weight (HMW) chitosan. METHOD To perform PDT to kill H. pylori, we used endoscopic light as light source, methylene blue (MB) as a photosensitizer and chitosan (310-375, 50-190 kDa). We evaluated bacterial removal rate and its membrane damage by ethidium bromide monoazide PCR method (EMA q-PCR). 8-oxo-2'-dexoyguanosine by ELISA was measured for oxidative stress. RESULTS At a chitosan concentration of ≤0.05%, the killing effect did not differ between the two molecular weights, and 100% bacterial removal rate was observed at a light energy ≥ 6.23 mJ/cm2 powers under 0.02% MB. After 15 min irradiation, LMW chitosan with high concentration of MB (0.004%) showed highest killing effects, which were consistent with the results of EMA q-PCR but not with the level of 8-OHdG. Bactericidal effects of LMW chitosan plus PDT using 0.002 and 0.004% MB for 15 min irradiation were significantly higher than those using HMW chitosan plus PDT. CONCLUSION We found that PDT using methylene blue with LMW chitosan to kill H. pylori exerted greater bactericidal effects through bacterial membrane damage than PDT with HMW chitosan. These results suggest that it would be better to choose LMW chitosan to enhance the effect of PDT for clinical application, even at a very low concentration of PS.
Collapse
Affiliation(s)
- Eui Jin Kim
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji Hye Choi
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Jung Yang
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung Sook Choi
- College of Pharmacy, Sahmyook University, Seoul, South Korea
| | - Hae Kyung Lee
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Hyung Keun Kim
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sang Woo Kim
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hiun Suk Chae
- Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|