1
|
Eckardt A, Marble C, Fern B, Moritz H, Kotula C, Ke J, Rebancos C, Robertson S, Nishimune H, Suzuki M. Muscle-specific Bet1L knockdown induces neuromuscular denervation, motor neuron degeneration, and motor dysfunction in a rat model of familial ALS. Front Neurosci 2025; 19:1527181. [PMID: 39896335 PMCID: PMC11782205 DOI: 10.3389/fnins.2025.1527181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by specific loss of motor neurons in the spinal cord and brain stem. Although ALS has historically been characterized as a motor neuron disease, there is evidence that motor neurons degenerate in a retrograde manner, beginning in the periphery at the neuromuscular junctions (NMJs) and skeletal muscle. We recently reported a vesicle trafficking protein Bet1L (Bet1 Golgi Vesicular Membrane Trafficking Protein Like) as a new molecule possibly linked to NMJ degeneration in ALS. In this study, we tested the hypothesis that Bet1L gene silencing in skeletal muscle could influence NMJ integrity, motor neuron function, and survival in a rat model of familial ALS (SOD1G93A transgenic). Small interfering RNA (siRNA) targeting the Bet1L gene was injected on a weekly basis into the hindlimb muscle of pre-symptomatic ALS and wild-type (WT) rats. After 3 weeks, intramuscular Bet1L siRNA injection significantly increased the number of denervated NMJs in the injected muscle. Bet1L knockdown decreased motor neuron size in the lumbar spinal cord, which innervated the siRNA-injected hindlimb. Impaired motor function was identified in the hindlimbs of Bet1L siRNA-injected rats. Notably, the effects of Bet1L knockdown on NMJ and motor neuron degeneration were more significant in ALS rats when compared to WT rats. Together, Bet1L knockdown induces denervation of NMJs, but also this knockdown accelerates the disease progression in ALS. Our results provide new evidence to support the potential roles of Bet1L as a key molecule in NMJ maintenance and ALS pathogenesis.
Collapse
Affiliation(s)
- Adam Eckardt
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Charles Marble
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Bradley Fern
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Henry Moritz
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Charles Kotula
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Jiayi Ke
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Clarisse Rebancos
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Hiroshi Nishimune
- Neurobiology of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States
- Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
2
|
Zhong C, Shi Z, Binzel DW, Jin K, Li X, Guo P, Li SK. Posterior eye delivery of angiogenesis-inhibiting RNA nanoparticles via subconjunctival injection. Int J Pharm 2024; 657:124151. [PMID: 38657717 PMCID: PMC11221552 DOI: 10.1016/j.ijpharm.2024.124151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Neovascularization contributes to various posterior eye segment diseases such as age-related macular degeneration and diabetic retinopathy. RNA nanoparticles were demonstrated previously to enter the corneal and retinal cells after subconjunctival injection for ocular delivery. In the present study, antiangiogenic aptamers (anti-vascular endothelial growth factor (VEGF) and anti-angiopoietin-2 (Ang2) aptamers) were conjugated to RNA nanoparticles. The objectives were to investigate the clearance and distribution of these angiogenesis-inhibiting RNA nanoparticles after subconjunctival injection in vivo and their antiangiogenic effects for inhibiting ocular neovascularization in vitro. The results in the whole-body fluorescence imaging study showed that the clearance of RNA nanoparticles was size-dependent with no significant differences between RNA nanoparticles with and without the aptamers except for pRNA-3WJ. The distribution study of RNA nanoparticles by confocal microscopy of the dissected eye tissues in vivo indicated cell internalization of the larger RNA nanoparticles in the retina and retinal pigment epithelium after subconjunctival injection, and the larger nanoparticles with aptamers showed higher levels of cell internalization than those without. In the cell proliferation assay in vitro, RNA nanoparticles with multiple aptamers had higher antiangiogenic effects. With both longer retention time and high antiangiogenic effect, SQR-VEGF-Ang2 could be a promising RNA nanoparticle for posterior eye delivery.
Collapse
Affiliation(s)
- Cheng Zhong
- Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Zhanquan Shi
- Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Daniel W Binzel
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Kai Jin
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Xin Li
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - S Kevin Li
- Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
3
|
Zhang X, Mei LC, Gao YY, Hao GF, Song BA. Web tools support predicting protein-nucleic acid complexes stability with affinity changes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1781. [PMID: 36693636 DOI: 10.1002/wrna.1781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 01/26/2023]
Abstract
Numerous biological processes, such as transcription, replication, and translation, rely on protein-nucleic acid interactions (PNIs). Demonstrating the binding stability of protein-nucleic acid complexes is vital to deciphering the code for PNIs. Numerous web-based tools have been developed to attach importance to protein-nucleic acid stability, facilitating the prediction of PNIs characteristics rapidly. However, the data and tools are dispersed and lack comprehensive integration to understand the stability of PNIs better. In this review, we first summarize existing databases for evaluating the stability of protein-nucleic acid binding. Then, we compare and evaluate the pros and cons of web tools for forecasting the interaction energies of protein-nucleic acid complexes. Finally, we discuss the application of combining models and capabilities of PNIs. We may hope these web-based tools will facilitate the discovery of recognition mechanisms for protein-nucleic acid binding stability. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Xiao Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Long-Can Mei
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, China
| | - Yang-Yang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan, China
| | - Bao-An Song
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
High-Capacity Mesoporous Silica Nanocarriers of siRNA for Applications in Retinal Delivery. Int J Mol Sci 2023; 24:ijms24032753. [PMID: 36769075 PMCID: PMC9916966 DOI: 10.3390/ijms24032753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
The main cause of subretinal neovascularisation in wet age-related macular degeneration (AMD) is an abnormal expression in the retinal pigment epithelium (RPE) of the vascular endothelial growth factor (VEGF). Current approaches for the treatment of AMD present considerable issues that could be overcome by encapsulating anti-VEGF drugs in suitable nanocarriers, thus providing better penetration, higher retention times, and sustained release. In this work, the ability of large pore mesoporous silica nanoparticles (LP-MSNs) to transport and protect nucleic acid molecules is exploited to develop an innovative LP-MSN-based nanosystem for the topical administration of anti-VEGF siRNA molecules to RPE cells. siRNA is loaded into LP-MSN mesopores, while the external surface of the nanodevices is functionalised with polyethylenimine (PEI) chains that allow the controlled release of siRNA and promote endosomal escape to facilitate cytosolic delivery of the cargo. The successful results obtained for VEGF silencing in ARPE-19 RPE cells demonstrate that the designed nanodevice is suitable as an siRNA transporter.
Collapse
|
5
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
6
|
Shadid M, Badawi M, Abulrob A. Antisense oligonucleotides: absorption, distribution, metabolism, and excretion. Expert Opin Drug Metab Toxicol 2021; 17:1281-1292. [PMID: 34643122 DOI: 10.1080/17425255.2021.1992382] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Antisense oligonucleotides (ASOs) have emerged as a promising novel drug modality that aims to address unmet medical needs. A record of six ASO drugs have been approved since 2016, and more candidates are in clinical development. ASOs are the most advanced class within the RNA-based therapeutics field. AREAS COVERED This review highlights the two major backbones that are currently used to build the most advanced ASO platforms - the phosphorodiamidate morpholino oligomers (PMOs) and the phosphorothioates (PSs). The absorption, distribution, metabolism, and excretion (ADME) properties of the PMO and PS platforms are discussed in detail. EXPERT OPINION Understanding the ADME properties of existing ASOs can foster further improvement of this cutting-edge therapy, thereby enabling researchers to safely develop ASO drugs and enhancing their ability to innovate. ABBREVIATIONS 2'-MOE, 2'-O-methoxyethyl; 2'PS, 2 modified PS; ADME, absorption, distribution, metabolism, and excretion; ASO, antisense oligonucleotide; AUC, area under the curve; BNA, bridged nucleic acid; CPP, cell-penetrating peptide; CMV, cytomegalovirus; CNS, central nervous system; CYP, cytochrome P; DDI, drug-drug interaction; DMD, Duchenne muscular dystrophy; FDA, Food and Drug Administration; GalNAc3, triantennary N-acetyl galactosamine; IT, intrathecal; IV, intravenous; LNA, locked nucleic acid; mRNA, messenger RNA; NA, not applicable; PBPK, physiologically based pharmacokinetics; PD, pharmacodynamic; PK, pharmacokinetic; PMO, phosphorodiamidate morpholino oligomer; PMOplus, PMOs with positionally specific positive molecular charges; PPMO, peptide-conjugated PMO; PS, phosphorothioate; SC, subcutaneous; siRNA, small-interfering RNA; SMA, spinal muscular atrophy.
Collapse
Affiliation(s)
- Mohammad Shadid
- Nonclinical Development, Sarepta Therapeutics, Inc, Cambridge, MA, USA
| | - Mohamed Badawi
- Clinical Pharmacology Fellow, Ohio State University, Columbus, OH, USA
| | - Abedelnasser Abulrob
- Senior Research Officer, Human Health Therapeutics Centre, Translational Bioscience, National Research Council Canada, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Sharif NA. Therapeutic Drugs and Devices for Tackling Ocular Hypertension and Glaucoma, and Need for Neuroprotection and Cytoprotective Therapies. Front Pharmacol 2021; 12:729249. [PMID: 34603044 PMCID: PMC8484316 DOI: 10.3389/fphar.2021.729249] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Damage to the optic nerve and the death of associated retinal ganglion cells (RGCs) by elevated intraocular pressure (IOP), also known as glaucoma, is responsible for visual impairment and blindness in millions of people worldwide. The ocular hypertension (OHT) and the deleterious mechanical forces it exerts at the back of the eye, at the level of the optic nerve head/optic disc and lamina cribosa, is the only modifiable risk factor associated with glaucoma that can be treated. The elevated IOP occurs due to the inability of accumulated aqueous humor (AQH) to egress from the anterior chamber of the eye due to occlusion of the major outflow pathway, the trabecular meshwork (TM) and Schlemm’s canal (SC). Several different classes of pharmaceutical agents, surgical techniques and implantable devices have been developed to lower and control IOP. First-line drugs to promote AQH outflow via the uveoscleral outflow pathway include FP-receptor prostaglandin (PG) agonists (e.g., latanoprost, travoprost and tafluprost) and a novel non-PG EP2-receptor agonist (omidenepag isopropyl, Eybelis®). TM/SC outflow enhancing drugs are also effective ocular hypotensive agents (e.g., rho kinase inhibitors like ripasudil and netarsudil; and latanoprostene bunod, a conjugate of a nitric oxide donor and latanoprost). One of the most effective anterior chamber AQH microshunt devices is the Preserflo® microshunt which can lower IOP down to 10–13 mmHg. Other IOP-lowering drugs and devices on the horizon will be also discussed. Additionally, since elevated IOP is only one of many risk factors for development of glaucomatous optic neuropathy, a treatise of the role of inflammatory neurodegeneration of the optic nerve and retinal ganglion cells and appropriate neuroprotective strategies to mitigate this disease will also be reviewed and discussed.
Collapse
Affiliation(s)
- Najam A Sharif
- Global Alliances and External Research, Ophthalmology Innovation Center, Santen Inc., Emeryville, CA, United States
| |
Collapse
|
8
|
Wang Y, Hu LF, Zhou TJ, Qi LY, Xing L, Lee J, Wang FZ, Oh YK, Jiang HL. Gene therapy strategies for rare monogenic disorders with nuclear or mitochondrial gene mutations. Biomaterials 2021; 277:121108. [PMID: 34478929 DOI: 10.1016/j.biomaterials.2021.121108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 12/26/2022]
Abstract
Rare monogenic disorders are a group of single-gene-mutated diseases that have a low incidence rate (less than 0.5‰) and eventually lead to patient disability and even death. Due to the relatively low number of people affected, these diseases typically fail to attract a great deal of commercial investment and research interest, and the affected patients thus have unmet medical needs. Advances in genomics biology, gene editing, and gene delivery can now offer potentially effective options for treating rare monogenic diseases. Herein, we review the application of gene therapy strategies (traditional gene therapy and gene editing) against various rare monogenic diseases with nuclear or mitochondrial gene mutations, including eye, central nervous system, pulmonary, systemic, and blood cell diseases. We summarize their pathologic features, address the barriers to gene delivery for these diseases, discuss available therapies in the clinic and in clinical trials, and sum up in-development gene delivery systems for various rare monogenic disorders. Finally, we elaborate the possible directions and outlook of gene therapy for rare monogenic disorders.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Li-Fan Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lian-Yu Qi
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Feng-Zhen Wang
- Department of Clinical Pharmacy, The First Clinical School of Xuzhou Medical University, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China; Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Liu N, Wu Q, Liu Y, Li J, Ji P, Fu G. Application of Nanomaterials in the Treatment and Diagnosis of Ophthalmology Diseases. Curr Stem Cell Res Ther 2021; 16:95-103. [PMID: 32039688 DOI: 10.2174/1574888x15666200210104449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 11/22/2022]
Abstract
Eye diseases often lead to impaired vision and seriously affect the daily life of patients. Local administration of ophthalmic drugs is one of the most important approaches for the treatment of ophthalmic diseases. However, due to the special biochemical environment of the ocular tissue and the existence of many barriers, the bioavailability of conventional ophthalmic preparations in the eye is very low. Nanomaterials can be utilized as carriers of drugs, which can improve the absorption, distribution, metabolism and bioavailability of drugs in eyes. Nanomaterials have also the advantages of small size, simple preparation, good degradability, strong targeting, and little stimulation to biological tissues, providing an innovative and practical method for the drug delivery of ophthalmic diseases. In addition, nanomaterials can be used as an auxiliary means for early diagnosis of ophthalmic diseases by improving the specificity and accuracy of detection methods. Nanomaterials help clinicians and researchers delve deeper into the physiology and pathology of the eye at the nanoscale. We summarize the application of nanomaterials in the diagnosis and treatment of ophthalmic diseases in this review.
Collapse
Affiliation(s)
- Nanxin Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Qingqing Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Yunfei Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Jiao Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Gang Fu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| |
Collapse
|
10
|
Feng C, Mu JX, Ren CL. Regulation of oligonucleotide adsorption by a thermo and pH dual-responsive copolymer layer. Phys Chem Chem Phys 2021; 23:14296-14307. [PMID: 34160496 DOI: 10.1039/d1cp01644j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Oligonucleotides hold great promise as therapeutic agents to specifically and selectively inhibit gene expression. In order to achieve better targeting efficiency and treatment efficacy, nanocarriers that are dual-responsive to both temperature and pH are more attractive and suitable due to the fact that certain malignancies can cause a slight increase of local temperature and a minor decrease in extracellular pH around the tumor site at the same time. Here, we systematically study oligonucleotide adsorption on the poly(ethyleneimine)-b-poly(N-isopropylacrylamide) (PEI-b-PNIPAm) copolymer layer grafted on a planar surface and nanoparticles with various radii, where the single effect of temperature or pH alone on oligonucleotide adsorption has been extensively investigated, but the combined effect of temperature and pH is less discussed. The theoretical results show that the surface density of the adsorbed oligonucleotides exhibits thermo and pH dual-responsive behavior, in which temperature and pH exhibit a combined effect on the loading capacity of the oligonucleotides. The underlying molecular mechanism of the dual-responsive behavior is revealed. Besides, the effect of important but coupled parameters in nanocarrier design such as polymer surface coverage and length, salt concentration as well as surface curvature (inverse nanoparticle radius) that may influence the dual-responsive behavior of oligonucleotide adsorption is further discussed, which is of great significance to direct the optimal design of PNIPAm/PEI-based nanocarriers to improve the transfection efficiency by achieving the maximal loading capacity of oligonucleotides at different temperatures and pH values.
Collapse
Affiliation(s)
- Chao Feng
- State Key Laboratory of Metastable Materials Science & Technology and Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao, 066004, China.
| | - Jiang-Xue Mu
- State Key Laboratory of Metastable Materials Science & Technology and Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao, 066004, China.
| | - Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093, China. and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
11
|
Delivery of siRNA to the Eye: Protocol for a Feasibility Study to Assess Novel Delivery System for Topical Delivery of siRNA Therapeutics to the Ocular Surface. Methods Mol Biol 2021. [PMID: 33928589 DOI: 10.1007/978-1-0716-1298-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Drug delivery to the eye remains a real challenge due to the presence of ocular anatomical barriers and physiological protective mechanisms. The lack of effective siRNA delivery mechanism has hampered the real potential of RNAi therapy, but recent literature suggests that nanocarrier systems show great promise in enhancing siRNA bioavailability and reducing the need for repeated intraocular injections. A diverse range of materials are under exploration worldwide, including natural and synthetic polymers, liposomes, peptides, and dendrimeric nanomaterials. This chapter describes a simple workflow for feasibility assessment of a proposed ocular surface siRNA delivery system. Gel retardation assay is used for investigation of optimal siRNA to carrier loading ratio. Fluorescent siRNA allows for initial in vitro testing of cellular uptake to corneal epithelial cells and investigation of in vivo siRNA delivery into mouse cornea by live animal imaging and fluorescence microscopy.
Collapse
|
12
|
Ge X, Chen L, Zhao B, Yuan W. Rationale and Application of PEGylated Lipid-Based System for Advanced Target Delivery of siRNA. Front Pharmacol 2021; 11:598175. [PMID: 33716725 PMCID: PMC7944141 DOI: 10.3389/fphar.2020.598175] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/09/2020] [Indexed: 11/26/2022] Open
Abstract
RNA interference (RNAi) technology has become a powerful tool in application of unraveling the mechanism of disease and may hold the potential to be developed for clinical uses. Small interfering RNA (siRNA) can bind to target mRNA with high specificity and efficacy and thus inhibit the expression of related protein for the purpose of treatment of diseases. The major challenge for RNAi application is how to improve its stability and bioactivity and therefore deliver therapeutic agents to the target sites with high efficiency and accuracy. PEGylated lipid-based delivery system has been widely used for development of various medicines due to its long circulating half-life time, low toxicity, biocompatibility, and easiness to be scaled up. The PEGylated lipid-based delivery system may also provide platform for targeting delivery of nucleic acids, and some of the research works have moved to the phases for clinical trials. In this review, we introduced the mechanism, major challenges, and strategies to overcome technical barriers of PEGylated lipid-based delivery systems for advanced target delivery of siRNA in vivo. We also summarized recent advance of PEGylated lipid-based siRNA delivery systems and included some successful research works in this field.
Collapse
Affiliation(s)
- Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Lijuan Chen
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Weien Yuan
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Chaharband F, Daftarian N, Kanavi MR, Varshochian R, Hajiramezanali M, Norouzi P, Arefian E, Atyabi F, Dinarvand R. Trimethyl chitosan-hyaluronic acid nano-polyplexes for intravitreal VEGFR-2 siRNA delivery: Formulation and in vivo efficacy evaluation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 26:102181. [DOI: 10.1016/j.nano.2020.102181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/06/2020] [Accepted: 02/26/2020] [Indexed: 12/29/2022]
|
14
|
Devoldere J, Wels M, Peynshaert K, Dewitte H, De Smedt SC, Remaut K. The obstacle course to the inner retina: Hyaluronic acid-coated lipoplexes cross the vitreous but fail to overcome the inner limiting membrane. Eur J Pharm Biopharm 2019; 141:161-171. [PMID: 31150809 DOI: 10.1016/j.ejpb.2019.05.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
Considerable research over the last few years has revealed dysregulation of growth factors in various retinal diseases, such as glaucoma, diabetic retinopathy and photoreceptor degenerations. The use of messengerRNA (mRNA) to transiently overexpress a specific factor could compensate for this imbalance. However, a critical challenge of this approach lies in the ability to efficiently deliver mRNA molecules to the retinal target cells. In this study we found that intravitreal (IVT) injection is an attractive approach to deliver mRNA to the retina, providing two critical barriers can be overcome: the vitreous and the inner limiting membrane (ILM). We demonstrated that the vitreous is indeed a major hurdle in the delivery of the cationic mRNA-complexes to retinal cells, both in terms of vitreal mobility and cellular uptake. To improve their intravitreal mobility and avoid unwanted extracellular interactions, we evaluated the use of hyaluronic acid (HA) as an electrostatic coating strategy. This HA-coating provided the complexes with a negative surface charge, markedly enhancing their mobility in the vitreous humor, without reducing their cellular internalization and transfection efficiency. However, although this coating strategy allows the mRNA-complexes to successfully overcome the vitreal barrier, the majority of the particles accumulated at the ILM. This study therefore underscores the crucial barrier function of the ILM toward non-viral retinal gene delivery and the need to smartly design mRNA-carriers able to surmount the vitreous as well as the ILM.
Collapse
Affiliation(s)
- Joke Devoldere
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Mike Wels
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Karen Peynshaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Heleen Dewitte
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Medical School of the Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1050 Jette, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
15
|
Hu J, Shen X, Rigo F, Prakash TP, Mootha VV, Corey DR. Duplex RNAs and ss-siRNAs Block RNA Foci Associated with Fuchs' Endothelial Corneal Dystrophy. Nucleic Acid Ther 2019; 29:73-81. [PMID: 30676271 DOI: 10.1089/nat.2018.0764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fuchs' endothelial corneal dystrophy (FECD) leads to vision loss and is one of the most common inherited eye diseases. Corneal transplants are the only curative treatment available, and there is a major unmet need for treatments that are less invasive and independent of donor tissue. Most cases of FECD are associated with an expanded CUG repeat within the intronic region of TCF4 and the mutant RNA has been implicated as the cause of the disease. We previously presented preliminary data suggesting that single-stranded antisense oligonucleotides (ASOs) can inhibit CUG RNA foci in patient-derived cells and tissue. We now show that duplex RNAs and single-stranded silencing RNAs (ss-siRNAs) reduce the number of cells with foci and the number of foci per cells. Potencies are similar to those that are achieved with chemically modified ASOs designed to block foci. These data widen the potential for synthetic nucleic acids to be used to treat a widely prevalent and debilitating disease.
Collapse
Affiliation(s)
- Jiaxin Hu
- 1 Department of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Xiulong Shen
- 1 Department of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas
| | - Frank Rigo
- 2 Ionis Pharmaceuticals, Carlsbad, California
| | | | - V Vinod Mootha
- 3 Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas.,4 McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, Texas
| | - David R Corey
- 1 Department of Pharmacology and Biochemistry, UT Southwestern Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
16
|
Drug-Loaded Biocompatible Nanocarriers Embedded in Poloxamer 407 Hydrogels as Therapeutic Formulations. MEDICINES 2018; 6:medicines6010007. [PMID: 30597953 PMCID: PMC6473859 DOI: 10.3390/medicines6010007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023]
Abstract
Hydrogels are three-dimensional networks of hydrophilic polymers able to absorb and retain a considerable amount of water or biological fluid while maintaining their structure. Among these, thermo-sensitive hydrogels, characterized by a temperature-dependent sol–gel transition, have been massively used as drug delivery systems for the controlled release of various bioactives. Poloxamer 407 (P407) is an ABA-type triblock copolymer with a center block of hydrophobic polypropylene oxide (PPO) between two hydrophilic polyethyleneoxide (PEO) lateral chains. Due to its unique thermo-reversible gelation properties, P407 has been widely investigated as a temperature-responsive material. The gelation phenomenon of P407 aqueous solutions is reversible and characterized by a sol–gel transition temperature. The nanoencapsulation of drugs within biocompatible delivery systems dispersed in P407 hydrogels is a strategy used to increase the local residence time of various bioactives at the injection site. In this mini-review, the state of the art of the most important mixed systems made up of colloidal carriers localized within a P407 hydrogel will be provided in order to illustrate the possibility of obtaining a controlled release of the entrapped drugs and an increase in their therapeutic efficacy as a function of the biomaterial used.
Collapse
|
17
|
Röthlisberger P, Hollenstein M. Aptamer chemistry. Adv Drug Deliv Rev 2018; 134:3-21. [PMID: 29626546 DOI: 10.1016/j.addr.2018.04.007] [Citation(s) in RCA: 241] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded DNA or RNA molecules capable of tightly binding to specific targets. These functional nucleic acids are obtained by an in vitro Darwinian evolution method coined SELEX (Systematic Evolution of Ligands by EXponential enrichment). Compared to their proteinaceous counterparts, aptamers offer a number of advantages including a low immunogenicity, a relative ease of large-scale synthesis at affordable costs with little or no batch-to-batch variation, physical stability, and facile chemical modification. These alluring properties have propelled aptamers into the forefront of numerous practical applications such as the development of therapeutic and diagnostic agents as well as the construction of biosensing platforms. However, commercial success of aptamers still proceeds at a weak pace. The main factors responsible for this delay are the susceptibility of aptamers to degradation by nucleases, their rapid renal filtration, suboptimal thermal stability, and the lack of functional group diversity. Here, we describe the different chemical methods available to mitigate these shortcomings. Particularly, we describe the chemical post-SELEX processing of aptamers to include functional groups as well as the inclusion of modified nucleoside triphosphates into the SELEX protocol. These methods will be illustrated with successful examples of chemically modified aptamers used as drug delivery systems, in therapeutic applications, and as biosensing devices.
Collapse
|
18
|
Therapeutic aptamers in discovery, preclinical and clinical stages. Adv Drug Deliv Rev 2018; 134:51-64. [PMID: 30125605 DOI: 10.1016/j.addr.2018.08.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/11/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Abstract
The aptamer field witnessed steady growth during the past 28 years as evident from the exponentially increasing number of related publications. The field is "coming of age", but like other biomedical research areas facing a global push towards translational research to carry ideas from bench- to bedside, there is pressure to show impact for aptamers at the clinical end. Being easy-to-make, non-immunogenic, stable and high-affinity nano-ligands, aptamers are perfectly poised to move in this direction. They can specifically bind targets ranging from small molecules to complex multimeric structures, making them potentially useful in a limitless variety of therapeutic approaches. This review will summarize efforts made to accomplish the therapeutic promise of aptamers, with a focus on aptamers directly acting as therapeutic molecules, rather than those used in targeted delivery of other drugs. The review will showcase representative examples at various stages of development, covering different disease categories.
Collapse
|
19
|
Yang Z, Zhang XR, Zhao Q, Wang SL, Xiong LL, Zhang P, Yuan B, Zhang ZB, Fan SY, Wang TH, Zhang YH. Knockdown of TNF‑α alleviates acute lung injury in rats with intestinal ischemia and reperfusion injury by upregulating IL‑10 expression. Int J Mol Med 2018; 42:926-934. [PMID: 29767265 PMCID: PMC6034932 DOI: 10.3892/ijmm.2018.3674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/26/2018] [Indexed: 02/05/2023] Open
Abstract
Intestinal ischemia and reperfusion (II/R) injury often triggers severe injury in remote organs, with the lungs being considered the main target. Excessive elevation of proinflammatory cytokines is a major contributor in the occurrence and development of II/R-induced acute lung injury (ALI). Therefore, the present study aimed to investigate whether blocking tumor necrosis factor-α (TNF-α) expression could protect the lungs from injury following II/R, and to explore the possible underlying mechanism involving interleukin-10 (IL-10). Briefly, II/R was induced in rats by 40 min occlusion of the superior mesenteric artery and celiac artery, followed by 8, 16 or 24 h of reperfusion. Subsequently, lentiviral vectors containing TNF-α short hairpin (sh)RNA were injected into the right lung tissues, in order to induce TNF-α knockdown. The severity of ALI was determined according to lung injury scores and lung edema (lung wet/dry weight ratio). The expression levels of TNF-α were analyzed by quantitative polymerase chain reaction (qPCR), western blotting and immunofluorescence (IF) staining. IL-10 expression, in response to TNF-α knockdown, was detected in lung tissues by qPCR and IF. The results detected marked inflammatory responses, and increased levels of lung wet/dry weight ratio and TNF-α expression, in the lungs of II/R rats. Conversely, treatment with TNF-α shRNA significantly alleviated the severity of ALI and upregulated the expression levels of IL-10 in lung tissues. These findings suggested that TNF-α RNA interference may exert a protective effect on II/R-induced ALI via the upregulation of IL-10. Therefore, TNF-α knockdown may be considered a potential strategy for the prevention or treatment of ALI induced by II/R in future clinical trials.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Respiration, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Xue-Rong Zhang
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Qiong Zhao
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Sheng-Lan Wang
- Department of Respiration, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Liu-Lin Xiong
- Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Piao Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Bing Yuan
- Department of Respiration, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Zi-Bing Zhang
- Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shu-Yuan Fan
- Department of Respiration, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yun-Hui Zhang
- Department of Respiration, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
20
|
Wang LL, Guo HH, Zhan Y, Feng CL, Huang S, Han YX, Zheng WS, Jiang JD. Specific up-regulation of p21 by a small active RNA sequence suppresses human colorectal cancer growth. Oncotarget 2018; 8:25055-25065. [PMID: 28445988 PMCID: PMC5421909 DOI: 10.18632/oncotarget.15918] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/22/2016] [Indexed: 12/25/2022] Open
Abstract
The double stranded small active RNA (saRNA)- p21-saRNA-322 inhibits tumor growth by stimulating the p21 gene expression. We focused our research of p21-saRNA-322 on colorectal cancer because 1) p21 down-regulation is a signature abnormality of the cancer, and 2) colorectal cancer might be a suitable target for in situ p21-saRNA-322 delivery. The goal of the present study is to learn the activity of p21-saRNA-322 in colorectal cancer. Three human colorectal cancer cell lines, HCT-116, HCT-116 (p53–/−) and HT-29 were transfected with the p21-saRNA-322. The expression of P21 protein and p21 mRNA were measured using the Western blot and reverse transcriptase polymerase chain reaction (RT-PCR). The effect of p21-saRNA-322 on cancer cells was evaluated in vitro; and furthermore, a xenograft colorectal tumor mode in mice was established to estimate the tumor suppressing ability of p21-saRNA-322 in vivo. The results showed that in all three colorectal cancer cell lines, the expression of p21 mRNA and P21 protein were dramatically elevated after p21-saRNA-322 transfection. Transfection of p21-saRNA-322 caused apoptosis and cell cycle arrest at the G0/G1. Furthermore, anti-proliferation effect, reduction of colonies formation and cell senescence were observed in p21-saRNA-322 treated cells. Animal studies showed that p21-saRNA-322 treatment significantly inhibited the HT-29 tumor growth and facilitated p21 activation in vivo. These results indicated that, p21-saRNA-322-induceded up-regulation of p21 might be a promising therapeutic option for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Lu-Lu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yun Zhan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Chen-Lin Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Shuai Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Yan-Xing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Wen-Sheng Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
21
|
Mishra DK, Balekar N, Mishra PK. Nanoengineered strategies for siRNA delivery: from target assessment to cancer therapeutic efficacy. Drug Deliv Transl Res 2017; 7:346-358. [PMID: 28050890 DOI: 10.1007/s13346-016-0352-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The promise of RNA interference (RNAi) technology in cancer therapeutics aims to deliver small interfering RNA (siRNA) for silencing of gene expression in cell type-specific pathway. However, the challenge for the delivery of stable siRNA is hindered by an immune-hostile tumor microenvironment and physiological barriers of the circulatory system. Therefore, the development and validation of safe, stable, and efficient nanoengineered delivery systems are highly essential for effective delivery of siRNA into cancer cells. This review focuses on gene-silencing mechanisms, challenges to siRNA delivery, design and delivery of nanocarrier systems, ongoing clinical trials, and translational prospects for siRNA-mediated cancer therapeutics.
Collapse
Affiliation(s)
| | - Neelam Balekar
- IPS Academy, College of Pharmacy, A. B. Road, Indore, MP, 452 012, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, National Institute for Research in Environmental Health, Indian Council of Medical Research (ICMR), Bhopal, India
| |
Collapse
|
22
|
Mustonen EK, Palomäki T, Pasanen M. Oligonucleotide-based pharmaceuticals: Non-clinical and clinical safety signals and non-clinical testing strategies. Regul Toxicol Pharmacol 2017; 90:328-341. [PMID: 28966105 DOI: 10.1016/j.yrtph.2017.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022]
Abstract
Antisense oligonucleotides, short interfering RNAs (siRNAs) and aptamers are oligonucleotide-based pharmaceuticals with a promising role in targeted therapies. Currently, five oligonucleotide-based pharmaceuticals have achieved marketing authorization in Europe or USA and many more are undergoing clinical testing. However, several safety concerns have been raised in non-clinical and clinical studies. Oligonucleotides share properties with both chemical and biological pharmaceuticals and therefore they pose challenges also from the regulatory point of view. We have analyzed the safety data of oligonucleotides and evaluated the applicability of current non-clinical toxicological guidelines for assessing the safety of oligonucleotide-based pharmaceuticals. Oligonucleotide-based pharmaceuticals display a similar toxicological profile, exerting adverse effects on liver and kidney, evoking hematological alterations, as well as causing immunostimulation and prolonging the coagulation time. It is possible to extrapolate some of these effects from non-clinical studies to humans. However, evaluation strategies for genotoxicity testing of "non-natural" oligonucleotides should be revised. Additionally, the selective use of surrogates and prediction of clinical endpoints for non-clinically observed immunostimulation is complicated by its multiple potential manifestations, demanding improvements in the testing strategies. Utilizing more relevant and mechanistic-based approaches and taking better account of species differences, could possibly improve the prediction of relevant immunological/proinflammatory effects in humans.
Collapse
Affiliation(s)
- Enni-Kaisa Mustonen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy, P.O. Box 1627, 70211 Kuopio, Finland
| | | | - Markku Pasanen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy, P.O. Box 1627, 70211 Kuopio, Finland.
| |
Collapse
|
23
|
Huang D, Fletcher S, Wilton SD, Palmer N, McLenachan S, Mackey DA, Chen FK. Inherited Retinal Disease Therapies Targeting Precursor Messenger Ribonucleic Acid. Vision (Basel) 2017; 1:vision1030022. [PMID: 31740647 PMCID: PMC6836112 DOI: 10.3390/vision1030022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/24/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023] Open
Abstract
Inherited retinal diseases are an extremely diverse group of genetically and phenotypically heterogeneous conditions characterized by variable maturation of retinal development, impairment of photoreceptor cell function and gradual loss of photoreceptor cells and vision. Significant progress has been made over the last two decades in identifying the many genes implicated in inherited retinal diseases and developing novel therapies to address the underlying genetic defects. Approximately one-quarter of exonic mutations related to human inherited diseases are likely to induce aberrant splicing products, providing opportunities for the development of novel therapeutics that target splicing processes. The feasibility of antisense oligomer mediated splice intervention to treat inherited diseases has been demonstrated in vitro, in vivo and in clinical trials. In this review, we will discuss therapeutic approaches to treat inherited retinal disease, including strategies to correct splicing and modify exon selection at the level of pre-mRNA. The challenges of clinical translation of this class of emerging therapeutics will also be discussed.
Collapse
Affiliation(s)
- Di Huang
- Molecular Therapy Laboratory, Murdoch University, Murdoch 6150, Australia
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Sue Fletcher
- Molecular Therapy Laboratory, Murdoch University, Murdoch 6150, Australia
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Steve D. Wilton
- Molecular Therapy Laboratory, Murdoch University, Murdoch 6150, Australia
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Norman Palmer
- Perron Institute, 4th Floor A Block, Queen Elizabeth II Medical Centre, Verdun Street, Nedlands 6009, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
| | - David A. Mackey
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands 6009, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth 6000, Australia
- Correspondence: ; Tel.: +61-8-9381-0817
| |
Collapse
|
24
|
Moffatt K, Wang Y, Raj Singh TR, Donnelly RF. Microneedles for enhanced transdermal and intraocular drug delivery. Curr Opin Pharmacol 2017; 36:14-21. [PMID: 28780407 DOI: 10.1016/j.coph.2017.07.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/22/2022]
Abstract
Microneedle mediated delivery based research has garnered great interest in recent years. In the past, the initial focus was delivery of macromolecules of biological origin, however the field has now broadened its scope to include transdermal delivery of conventional low molecular weight drug molecules. Great success has been demonstrated utilising this approach, particularly in the field of vaccine delivery. Current technological advances have permitted an enhancement in design formulation, allowing delivery of therapeutic doses of small molecule drugs and biomolecules, aided by larger patch sizes and scalable manufacture. In addition, it has been recently shown that microneedles are beneficial in localisation of drug delivery systems within targeted ocular tissues. Microneedles have the capacity to modify the means in which therapeutics and formulations are delivered to the eye. However, further research is still required due to potential drawbacks and challenges. Indeed, no true microneedle-based transdermal or ocular drug delivery system has yet been marketed. Some concerns have been raised regarding regulatory issues and manufacturing processes of such systems, and those in the field are now actively working to address them. Microneedle-based transdermal and ocular drug delivery systems have the potential to greatly impact not only patient benefits, but also industry, and through diligence, innovation and collaboration, their true potential will begin to be realised within the next 3-5 years.
Collapse
Affiliation(s)
- Kurtis Moffatt
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yujing Wang
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
25
|
Arami S, Mahdavi M, Rashidi MR, Yekta R, Rahnamay M, Molavi L, Hejazi MS, Samadi N. Apoptosis induction activity and molecular docking studies of survivin siRNA carried by Fe3O4-PEG-LAC-chitosan-PEI nanoparticles in MCF-7 human breast cancer cells. J Pharm Biomed Anal 2017; 142:145-154. [DOI: 10.1016/j.jpba.2017.04.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/16/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
|
26
|
Faber K, Zorzi GK, Brazil NT, Rott MB, Teixeira HF. siRNA-loaded liposomes: Inhibition of encystment of Acanthamoeba
and toxicity on the eye surface. Chem Biol Drug Des 2017; 90:406-416. [DOI: 10.1111/cbdd.12958] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/23/2016] [Accepted: 01/03/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Kathrin Faber
- Graduate Program in Pharmaceutical Sciences; School of Pharmacy; Federal University of Rio Grande do Sul; Porto Alegre Brazil
- Institute of Pharmacology and Toxicology; Universitätsmedizin Berlin; Berlin Germany
| | - Giovanni K. Zorzi
- Graduate Program in Pharmaceutical Sciences; School of Pharmacy; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Nathalya T. Brazil
- Graduate Program in Pharmaceutical Sciences; School of Pharmacy; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| | - Marilise B. Rott
- Graduate Program of Agricultural and Environmental Microbiology; Institute of Basic Health Sciences; Porto Alegre Brazil
| | - Helder F. Teixeira
- Graduate Program in Pharmaceutical Sciences; School of Pharmacy; Federal University of Rio Grande do Sul; Porto Alegre Brazil
| |
Collapse
|
27
|
Polymers in the co-delivery of siRNA and anticancer drugs to treat multidrug-resistant tumors. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-016-0296-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Lajunen T, Nurmi R, Kontturi L, Viitala L, Yliperttula M, Murtomäki L, Urtti A. Light activated liposomes: Functionality and prospects in ocular drug delivery. J Control Release 2016; 244:157-166. [PMID: 27565215 DOI: 10.1016/j.jconrel.2016.08.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/08/2016] [Accepted: 08/21/2016] [Indexed: 12/17/2022]
Abstract
Ocular drug delivery, especially to the retina and choroid, is a major challenge in drug development. Liposome technology may be useful in ophthalmology in enabling new routes of delivery, prolongation of drug action and intracellular drug delivery, but drug release from the liposomes should be controlled. For that purpose, light activation may be an approach to release drug at specified time and site in the eye. Technical advances have been made in the field of light activated drug release, particularly indocyanine green loaded liposomes are a promising approach with safe materials and effective light triggered release of small and large molecules. This review discusses the liposomal drug delivery with light activated systems in the context of ophthalmic drug delivery challenges.
Collapse
Affiliation(s)
- Tatu Lajunen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5 E, 00790 Helsinki, Finland
| | - Riikka Nurmi
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5 E, 00790 Helsinki, Finland
| | - Leena Kontturi
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5 E, 00790 Helsinki, Finland; Department of Pharmaceutics, University of Utrecht, Utrecht, The Netherlands
| | - Lauri Viitala
- Department of Chemistry, Aalto University, Espoo, Finland
| | - Marjo Yliperttula
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5 E, 00790 Helsinki, Finland; Department of Pharmaceutical Sciences, University of Padova, Padova, Italy
| | | | - Arto Urtti
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 5 E, 00790 Helsinki, Finland; School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland.
| |
Collapse
|
29
|
Han H, Son S, Son S, Kim N, Yhee JY, Lee JH, Choi JS, Joo CK, Lee H, Lee D, Kim WJ, Kim SH, Kwon IC, Kim H, Kim K. Reducible Polyethylenimine Nanoparticles for Efficient siRNA Delivery in Corneal Neovascularization Therapy. Macromol Biosci 2016; 16:1583-1597. [DOI: 10.1002/mabi.201600051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/14/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Hyounkoo Han
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
- Department of Chemical and Biomolecular Engineering; Sogang University; Shinsu-dong Mapo-gu Seoul 121-742 South Korea
| | - Sohee Son
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| | - Sejin Son
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| | - Namho Kim
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| | - Ji Young Yhee
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| | - Jae Hyeop Lee
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
- Department of Chemical and Biomolecular Engineering; Sogang University; Shinsu-dong Mapo-gu Seoul 121-742 South Korea
| | - Jun-Sub Choi
- Department of Ophthalmology and Visual Science; Seoul St. Mary's Hospital; College of Medicine; The Catholic University of Korea; 505, Banpo-dong Seocho-gu Seoul 137-040 South Korea
| | - Choun-Ki Joo
- Department of Ophthalmology and Visual Science; Seoul St. Mary's Hospital; College of Medicine; The Catholic University of Korea; 505, Banpo-dong Seocho-gu Seoul 137-040 South Korea
| | - Hohyeon Lee
- Department of Chemical and Biomolecular Engineering; Sogang University; Shinsu-dong Mapo-gu Seoul 121-742 South Korea
| | - Duhwan Lee
- Center for Self-Assembly and Complexity; Institute for Basic Science (IBS); Pohang 790-784 South Korea
- Department of Chemistry Polymer Research Institute; Pohang University of Science and Technology (POSTECH); Pohang 790-784 South Korea
| | - Won Jong Kim
- Center for Self-Assembly and Complexity; Institute for Basic Science (IBS); Pohang 790-784 South Korea
- Department of Chemistry Polymer Research Institute; Pohang University of Science and Technology (POSTECH); Pohang 790-784 South Korea
| | - Sun Hwa Kim
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| | - Ick Chan Kwon
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| | - Hyuncheol Kim
- Department of Chemical and Biomolecular Engineering; Sogang University; Shinsu-dong Mapo-gu Seoul 121-742 South Korea
| | - Kwangmeyung Kim
- Center for Theragnosis; Biomedical Research Institute Korea Institute of Science and Technology (KIST); Hwarangno 14-gil 6 Seongbuk-gu Seoul 136-791 South Korea
| |
Collapse
|
30
|
Abstract
Resistance to chemotherapy is among the most important issues in the management of ovarian cancer. Unlike cancer cells, which are heterogeneous as a result of remarkable genetic instability, stromal cells are considered relatively homogeneous. Thus, targeting the tumor microenvironment is an attractive approach for cancer therapy. Arguably, anti-vascular endothelial growth factor (anti-VEGF) therapies hold great promise, but their efficacy has been modest, likely owing to redundant and complementary angiogenic pathways. Components of platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and other pathways may compensate for VEGF blockade and allow angiogenesis to occur despite anti-VEGF treatment. In addition, hypoxia induced by anti-angiogenesis therapy modifies signaling pathways in tumor and stromal cells, which induces resistance to therapy. Because of tumor cell heterogeneity and angiogenic pathway redundancy, combining cytotoxic and targeted therapies or combining therapies targeting different pathways can potentially overcome resistance. Although targeted therapy is showing promise, much more work is needed to maximize its impact, including the discovery of new targets and identification of individuals most likely to benefit from such therapies.
Collapse
|
31
|
Enhanced Trans-Corneal Permeability of Valacyclovir by Polymethacrylic Acid Copolymers Based Ocular Microspheres: In Vivo Evaluation of Estimated Pharmacokinetic/Pharmacodynamic Indices and Simulation of Aqueous Humor Drug Concentration-Time Profile. J Pharm Innov 2015. [DOI: 10.1007/s12247-015-9239-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Talekar M, Tran TH, Amiji M. Translational Nano-Medicines: Targeted Therapeutic Delivery for Cancer and Inflammatory Diseases. AAPS J 2015; 17:813-27. [PMID: 25921939 PMCID: PMC4477000 DOI: 10.1208/s12248-015-9772-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/10/2015] [Indexed: 12/12/2022] Open
Abstract
With the advent of novel and personalized therapeutic approaches for cancer and inflammatory diseases, there is a growing demand for designing delivery systems that circumvent some of the limitation with the current therapeutic strategies. Nanoparticle-based delivery of drugs has provided means of overcoming some of these limitations by ensuring the drug payload is directed to the disease site and insuring reduced off-target activity. This review highlights the challenges posed by the solid tumor microenvironment and the systemic limitations for effective chemotherapy. It then assesses the basis of nanoparticle-based targeting to the tumor tissues, which helps to overcome some of the microenvironmental and systemic limitations to therapy. We have extensively focused on some of the tumor multidrug resistance mechanisms (e.g., hypoxia and aerobic glycolysis) that contribute to the development of multidrug resistance and how targeted nano-approaches can be adopted to overcome drug resistance. Finally, we assess the combinatorial approach and how this platform has been used to develop multifunctional delivery systems for cancer therapy. The review article also focuses on inflammatory diseases, the biological therapies available for its treatment, and the concept of macrophage repolarization for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Meghna Talekar
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts 02115 USA
| | - Thanh-Huyen Tran
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts 02115 USA
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts 02115 USA
| |
Collapse
|
33
|
Effects of CD25siRNA gene transfer on high-risk rat corneal graft rejection. Graefes Arch Clin Exp Ophthalmol 2015; 253:1765-76. [PMID: 26024991 DOI: 10.1007/s00417-015-3067-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 04/13/2015] [Accepted: 05/15/2015] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Corneal graft rejection is the major cause of corneal failures. Previous studies have shown that the CD25 monoclonal antibody can inhibit corneal graft rejection during the acute phase of rejection in rat models. In the current study, we evaluated the safety and efficacy of the topical Entranster™ vector in rat corneal applications and further investigated the effects of CD25siRNA gene transfer on high-risk rat corneal graft rejection. METHODS Fluorescence detection, clinical assessment, hematoxylin and eosin (HE), terminal deoxynucleotidyl transferase biotin-dUTP nick end labelling (TUNEL) and CD11b assays were used to evaluate the safety and efficacy of CD25siRNA gene transfer in normal SD rat corneas. Orthotopic corneal transplants were performed in alkali burned SD rats. Corneal recipients were divided into four groups that received different treatments. Clinical assessment, western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry, HE and transmission electron microscopy (TEM) were performed on all grafts. RESULTS Low toxicity, no immunogenicity and high transfection efficiency were observed in rat corneas treated with the Entranster™ vector. Reduced endothelial cell apoptosis, inflammatory cell infiltration and graft neovascularisation were observed in the CD25siRNA treatment groups. The graft survival curves showed that CD25siRNA treatment significantly prolonged graft survival time, with better graft transparency and less graft oedema. Lower CD25 and higher IL-10 expression were detected in the CD25siRNA treatment groups during the study period, and a higher FOXP3 level was found in the CD25siRNA group than in the CD25siRNA-twice group on days 14 and 21 post-operation. CONCLUSIONS The Entranster™ vector is an effective vector for corneal gene therapy. CD25 siRNA gene transfer inhibits corneal graft rejection via upregulation of anti-inflammatory molecule expression.
Collapse
|
34
|
Pescina S, Govoni P, Antopolsky M, Murtomäki L, Padula C, Santi P, Nicoli S. Permeation of proteins, oligonucleotide and dextrans across ocular tissues: experimental studies and a literature update. J Pharm Sci 2015; 104:2190-202. [PMID: 25973792 DOI: 10.1002/jps.24465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/02/2015] [Accepted: 04/02/2015] [Indexed: 12/15/2022]
Abstract
Proteins and oligonucleotides represent powerful tools for the treatment of several ocular diseases, affecting both anterior and posterior eye segments. Despite the potential of these compounds, their administration remains a challenge. The last years have seen a growing interest for the noninvasive administration of macromolecular drugs, but still there is only little information of their permeability across the different ocular barriers. The aim of this work was to evaluate the permeation of macromolecules of different size, shape and charge across porcine ocular tissues such as the isolated sclera, the choroid Bruch's membrane and the cornea, both intact and de-epitelialized. Permeants used were two proteins (albumin and cytochrome C), an oligonucleotide, two dextrans (4 and 40 kDa) and a monoclonal antibody (bevacizumab). Obtained data and its comparison with the literature highlight the difficulties in predicting the behavior of macromolecules based on their physicochemical properties, because the interplay between the charge, molecular radius and conformation prevent their analysis separately. However, the data can be of great help for a rough evaluation of the feasibility of a noninvasive administration and for building computational models to improve understanding of the interplay among static, dynamic and metabolic barriers in the delivery of macromolecules to the eye.
Collapse
Affiliation(s)
- Silvia Pescina
- Department of Pharmacy, University of Parma, Parma, 43124, Italy
| | - Paolo Govoni
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Parma, 43126, Italy
| | - Maxim Antopolsky
- Centre for Drug Research, University of Helsinki, Helsinki, FI-00014, Finland
| | - Lasse Murtomäki
- Department of Chemistry, Aalto University, Aalto, FI-00076, Finland
| | - Cristina Padula
- Department of Pharmacy, University of Parma, Parma, 43124, Italy
| | - Patrizia Santi
- Department of Pharmacy, University of Parma, Parma, 43124, Italy
| | - Sara Nicoli
- Department of Pharmacy, University of Parma, Parma, 43124, Italy
| |
Collapse
|
35
|
Liu Z, Gong H, Zeng R, Liang X, Zhang LM, Yang L, Lan Y. Efficient delivery of NF-κB siRNA to human retinal pigment epithelial cells with hyperbranched cationic polysaccharide derivative-based nanoparticles. Int J Nanomedicine 2015; 10:2735-49. [PMID: 25897219 PMCID: PMC4396640 DOI: 10.2147/ijn.s75188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A hyperbranched cationic polysaccharide derivative-mediated small interfering (si)RNA interference strategy was proposed to inhibit nuclear transcription factor-kappa B (NF-κB) activation in human retinal pigment epithelial (hRPE) cells for the gene therapy of diabetic retinopathy. Two hyperbranched cationic polysaccharide derivatives containing the same amount of cationic residues, but with different branching structures and molecular weights, including 3-(dimethylamino)-1-propylamine-conjugated glycogen (DMAPA-Glyp) and amylopectin (DMAPA-Amp) derivatives, were developed for the efficient delivery of NF-κB siRNA into hRPE cells. The DMAPA-Glyp derivative showed lower toxicity against hRPE cells. Furthermore, the DMAPA-Glyp derivative more readily condensed siRNA and then formed the nanoparticles attributed to its higher branching architecture when compared to the DMAPA-Amp derivative. Both DMAPA-Glyp/siRNA and DMAPA-Amp/siRNA nanoparticles were able to protect siRNA from degradation by nuclease in 25% fetal bovine serum. The particle sizes of the DMAPA-Glyp/siRNA nanoparticles (70–120 nm) were smaller than those of the DMAPA-Amp/siRNA nanoparticles (130–180 nm) due to the higher branching architecture and lower molecular weight of the DMAPA-Glyp derivative. In addition, the zeta potentials of the DMAPA-Glyp/siRNA nanoparticles were higher than those of the DMAPA-Glyp/siRNA nanoparticles. As a result, siRNA was much more efficiently transferred into hRPE cells using the DMAPA-Glyp/siRNA nanoparticles rather than the DMAPA-Amp/siRNA nanoparticles. This led to significantly high levels of suppression on the expression levels of NF-κB p65 messenger RNA and protein in the cells transfected with DMAPA-Glyp/siRNA nanoparticles. This work provides a potential approach to promote hyperbranched polysaccharide derivatives as nonviral siRNA vectors for the inhibition of NF-κB activation in hRPE cells.
Collapse
Affiliation(s)
- Zhenzhen Liu
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, Key Laboratory of Designed Synthesis and Application of Polymer Material, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Haijun Gong
- Department of Ophthalmology, Guangdong Provinci Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Rui Zeng
- Department of Ophthalmology, Guangdong Provinci Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xuan Liang
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, Key Laboratory of Designed Synthesis and Application of Polymer Material, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li-Ming Zhang
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, Key Laboratory of Designed Synthesis and Application of Polymer Material, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Liqun Yang
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, Key Laboratory of Designed Synthesis and Application of Polymer Material, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuqing Lan
- Department of Ophthalmology, Guangdong Provinci Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
36
|
Solhjou Z, Athar H, Xu Q, Abdi R. Emerging therapies targeting intra-organ inflammation in transplantation. Am J Transplant 2015; 15:305-11. [PMID: 25612486 DOI: 10.1111/ajt.13073] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 09/16/2014] [Accepted: 10/12/2014] [Indexed: 01/25/2023]
Abstract
Over the past several years, the field of transplantation has witnessed significant progress on several fronts; in particular, achievements have been made in devising novel immunosuppressive strategies. An under-explored area that may hold great potential to improve transplantation outcomes is the design of novel strategies to apply specifically to organs to reduce intra-graft inflammation. A growing body of evidence indicates a key role of intra-graft inflammatory cascade in potently instigating the alloimmune response. Indeed, controlling the activation of innate immunity/inflammatory responses has been shown to be a promising strategy to increase the graft acceptance and survival. In this minireview, we provide an overview of emerging targeted strategies, which can be directly applied to grafts to down-regulate intra-graft inflammation prior to transplantation.
Collapse
Affiliation(s)
- Z Solhjou
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | | | | |
Collapse
|
37
|
Geng S, Yang B, Wang G, Qin G, Wada S, Wang JY. Two cholesterol derivative-based PEGylated liposomes as drug delivery system, study on pharmacokinetics and drug delivery to retina. NANOTECHNOLOGY 2014; 25:275103. [PMID: 24960297 DOI: 10.1088/0957-4484/25/27/275103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, two cholesterol derivatives, (4-cholesterocarbonyl-4'-(N,N,N-triethylamine butyloxyl bromide) azobenzene (CAB) and 4-cholesterocarbonyl-4'-(N,N-diethylamine butyloxyl) azobenzene (ACB), one of which is positively charged while the other is neutral, were synthesized and incorporated with phospholipids and cholesterol to form doxorubicin (DOX)-loaded liposomes. PEGylation was achieved by including 1,2-distearoyl-sn-glycero-3-phosphatiylethanol-amine-N-[methoxy-(polyethylene glycol)-2000 (DSPE-PEG2000). Our results showed that PEGylated liposomes displayed significantly improved stability and the drug leakage was decreased compared to the non-PEGylated ones in vitro. The in vivo study with rats also revealed that the pharmacokinetics and circulation half-life of DOX were significantly improved when liposomes were PEGylated (p < 0.05). In particular, the neutral cholesterol derivative ACB played some role in improving liposomes' stability in systemic circulation compared to the conventional PC liposome and the positively charged CAB liposome, with or without PEGylation. In addition, in the case of local drug delivery, the positively charged PEG-liposome not only delivered much more of the drug into the rats' retinas (p < 0.001), but also maintained much longer drug retention time compared to the neutral PEGylated liposomes.
Collapse
Affiliation(s)
- Shengyong Geng
- School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| | | | | | | | | | | |
Collapse
|
38
|
DNA nanotechnology-based development of delivery systems for bioactive compounds. Eur J Pharm Sci 2014; 58:26-33. [DOI: 10.1016/j.ejps.2014.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/04/2014] [Accepted: 03/12/2014] [Indexed: 12/25/2022]
|
39
|
Abstract
RNA interference (RNAi) therapeutics appear to offer substantial opportunities for future therapy. However, post-administration RNAi effectors are typically unable to reach disease target cells in vivo without the assistance of a delivery system or vector. The main focus of this review is on lipid-based nanoparticle (LNP) delivery systems in current research and development that have at least been shown to act as effective delivery systems for functional delivery of RNAi effectors to disease target cells in vivo. The potential utility of these LNP delivery systems is growing rapidly, and LNPs are emerging as the preferred synthetic delivery systems in preclinical studies and current nonviral RNAi effector clinical trials. Moreover, studies on LNP-mediated delivery in vivo are leading to the emergence of useful biophysical parameters and physical organic chemistry rules that provide a framework for understanding in vivo delivery behaviors and outcomes. These same parameters and rules should also suggest ways and means to develop next generations of LNPs with genuine utility and long-term clinical viability.
Collapse
Affiliation(s)
- Andrew D Miller
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, Waterloo Campus, 150 Stamford Street, London SE1 9NH , UK and GlobalAcorn Limited , London , UK
| |
Collapse
|
40
|
Al-Halafi AM. Nanocarriers of nanotechnology in retinal diseases. Saudi J Ophthalmol 2014; 28:304-9. [PMID: 25473348 DOI: 10.1016/j.sjopt.2014.02.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/29/2014] [Accepted: 02/24/2014] [Indexed: 12/21/2022] Open
Abstract
We are approaching a new era of retinal pharmacotherapy where new drugs are rapidly being worked out for the treatment of posterior-segment disease. Recent development in ocular drug delivery systems research has provided new insights into drug development, and the use of nanoparticles for drug delivery is thus a promising excellent approach for advanced therapy of ocular diseases. The primary goal is to develop a variety of drug delivery systems to complement and further enhance the efficacy of the available new medications. The ideal sustained release technology will provide a high level of safety with continuous release over an extended period of time while maintaining almost total drug bioactivity. The use of nanocarriers, such as cyclodextrin nanoparticle suspension, liposomes, nanospheres and, nanoemulsions for gene therapy of retinal diseases has been highlighted in this review.
Collapse
Affiliation(s)
- Ali M Al-Halafi
- Department of Surgery, Ophthalmology Division, Security Forces Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev 2014; 66:110-6. [PMID: 24384374 DOI: 10.1016/j.addr.2013.12.008] [Citation(s) in RCA: 310] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 11/22/2013] [Accepted: 12/19/2013] [Indexed: 11/17/2022]
Abstract
Small interfering RNAs (siRNA) have recently emerged as a new class of therapeutics with a great potential to revolutionize the treatment of cancer and other diseases. A specifically designed siRNA binds and induces post-transcriptional silencing of target genes (mRNA). Clinical applications of siRNA-based therapeutics have been limited by their rapid degradation, poor cellular uptake, and rapid renal clearance following systemic administration. A variety of synthetic and natural nanoparticles composed of lipids, polymers, and metals have been developed for siRNA delivery, with different efficacy and safety profiles. Liposomal nanoparticles have proven effective in delivering siRNA into tumor tissues by improving stability and bioavailability. While providing high transfection efficiency and a capacity to form complexes with negatively charged siRNA, cationic lipids/liposomes are highly toxic. Negatively charged liposomes, on the other hand, are rapidly cleared from circulation. To overcome these problems we developed highly safe and effective neutral lipid-based nanoliposomes that provide robust gene silencing in tumors following systemic (intravenous) administration. This delivery system demonstrated remarkable antitumor efficacy in various orthotopic human cancer models in animals. Here, we briefly overview this and other lipid-based approaches with preclinical applications in different tumor models for cancer therapy and potential applications as siRNA-nanotherapeutics in human cancers.
Collapse
Affiliation(s)
- Bulent Ozpolat
- Departments of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K Sood
- Gynecologic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Departments of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
42
|
Molokhia SA, Thomas SC, Garff KJ, Mandell KJ, Wirostko BM. Anterior eye segment drug delivery systems: current treatments and future challenges. J Ocul Pharmacol Ther 2013; 29:92-105. [PMID: 23485091 DOI: 10.1089/jop.2012.0241] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
New technologies for delivery of drugs, such as small molecules and biologics, are of growing interest among clinical and pharmaceutical researchers for use in treating anterior segment eye disease. The challenge is to deliver effective drugs at therapeutic concentrations to the targeted ocular tissue with minimal side effects. To achieve this, a better understanding of the unmet needs, what is required of the various methods of delivery to achieve successful delivery, and the potential challenges of anterior segment drug delivery is necessary and the primarily aim of this review. This review covers the various physiological and anatomical barriers that exist for effective delivery to the targeted tissue of the eye, the pathological conditions of the anterior segment, and the unmet needs for treatment of these ocular diseases. Second, it reviews the novel delivery technologies that have the potential to maintain and/or improve the drug's therapeutic index and improving both patient adherence for chronic therapy and potential patient outcomes. This review bridges the pharmaceutical and clinical research/challenges and provides a detailed overview of anterior segment drug delivery accomplishments thus far, for researchers and clinicians.
Collapse
Affiliation(s)
- Sarah A Molokhia
- Department of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, Utah 84132, USA.
| | | | | | | | | |
Collapse
|
43
|
Feng L, Li SK, Liu H, Liu CY, LaSance K, Haque F, Shu D, Guo P. Ocular delivery of pRNA nanoparticles: distribution and clearance after subconjunctival injection. Pharm Res 2013; 31:1046-58. [PMID: 24297069 DOI: 10.1007/s11095-013-1226-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/03/2013] [Indexed: 12/28/2022]
Abstract
PURPOSE RNA nanoparticles derived from the three-way junction (3WJ) of the pRNA of bacteriophage phi29 DNA packaging motor were previously found to be thermodynamically stable. As the nanoparticles could have potential in ocular drug delivery, the objectives in the present study were to investigate the distribution of pRNA nanoparticles after subconjunctival injection and examine the feasibility to deliver the nanoparticles to the cells of cornea and retina. METHODS Alexa647-labeled pRNA nanoparticles (pRNA-3WJ and pRNA-X) and double-stranded RNA (dsRNA) were administered via subconjunctival injection in mice. Alexa647 dye was a control. Topical administration was performed for comparison. Ocular clearance of pRNA nanoparticles and dsRNA after the injection was assessed using whole-body fluorescence imaging of the eyes. The numbers of cells in the ocular tissues with nanoparticle cell internalization were determined in fluorescence microscopy of dissected eye tissues. RESULTS After subconjunctival injection, pRNA nanoparticles and dsRNA were observed to distribute into the eyes and cleared through the lymph. pRNA-3WJ, pRNA-X, and dsRNA were found in the cells of the conjunctiva, cornea, and sclera, but only pRNA-X was in the cells of the retina. Topical administration was not effective in delivering the nanoparticles to the eye. CONCLUSIONS The pRNA nanoparticles were delivered to the cells in the eye via subconjunctival injection, and cell internalization was achieved in the cornea with pRNA-3WJ and pRNA-X and in the retina with pRNA-X. Only the X-shape pRNA-X could enter the retina.
Collapse
Affiliation(s)
- Liang Feng
- Division of Pharmaceutical Sciences James L. Winkle College of Pharmacy, University of Cincinnati, 3225 Eden Avenue 136 HPB, Cincinnati, Ohio, 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Martens TF, Vercauteren D, Forier K, Deschout H, Remaut K, Paesen R, Ameloot M, Engbersen JFJ, Demeester J, De Smedt SC, Braeckmans K. Measuring the intravitreal mobility of nanomedicines with single-particle tracking microscopy. Nanomedicine (Lond) 2013; 8:1955-68. [DOI: 10.2217/nnm.12.202] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aim: To develop a robust assay to evaluate and compare the intravitreal mobility of nanoparticles in the intact vitreous body. Materials & methods: Excised bovine eyes were prepared to preserve the fragile structure of the vitreous humor, while permitting high-resolution fluorescence microscopy and single-particle tracking analysis of intravitreally injected nanoparticles. This assay was validated by analyzing polystyrene beads and further employed to evaluate gene nanomedicines composed of poly(amido amine)s and plasmid DNA. Results: The assay was able to distinguish immobilized cationic nanoparticles from mobile PEGylated nanoparticles. PEGylation of the polyplexes resulted in a drastic improvement of their mobility. Conclusion: An ex vivo eye model is presented for studying nanoparticle mobility in intact vitreous humor by single-particle tracking microscopy. These results give important guidelines for developing gene- and drug-delivery nanomedicines that are compatible with intravitreal administration. Original submitted 20 April 2012; Revised submitted 22 November 2012
Collapse
Affiliation(s)
- Thomas F Martens
- Laboratory for General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
- Center for Nano- & Biophotonics (NB-Photonics), Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Dries Vercauteren
- Laboratory for General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
- Center for Nano- & Biophotonics (NB-Photonics), Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Katrien Forier
- Laboratory for General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
- Center for Nano- & Biophotonics (NB-Photonics), Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Hendrik Deschout
- Laboratory for General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
- Center for Nano- & Biophotonics (NB-Photonics), Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Katrien Remaut
- Laboratory for General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Rik Paesen
- University Hasselt & Transnational University Limburg, BIOMED, Agoralaan building C, B-3590 Diepenbeek, Belgium
| | - Marcel Ameloot
- University Hasselt & Transnational University Limburg, BIOMED, Agoralaan building C, B-3590 Diepenbeek, Belgium
| | - Johan FJ Engbersen
- Department of Biomedical Chemistry, MIRA Institute for Biomedical Technology & Technical Medicine, Faculty of Science & Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Jo Demeester
- Laboratory for General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory for General Biochemistry & Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
- Center for Nano- & Biophotonics (NB-Photonics), Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| |
Collapse
|
45
|
Chaplot SP, Rupenthal ID. Dendrimers for gene delivery – a potential approach for ocular therapy? J Pharm Pharmacol 2013; 66:542-56. [DOI: 10.1111/jphp.12104] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/15/2013] [Indexed: 12/12/2022]
Abstract
Abstract
Objectives
A vast number of blinding diseases have genetic aetiologies and may be treated by molecular based therapies such as antisense oligonucleotides or short interfering RNA. However, treatment success of ocular gene therapy is highly dependent on efficient delivery of such molecules.
Key findings
The majority of clinical studies for ocular gene therapy utilize viral vectors. While these have proven highly efficient, they show limited loading capacity and pose significant safety risks owing to their oncogenic and immunogenic effects. Non-viral gene carriers have emerged as a promising alternative with dendrimers providing great potential for gene therapy because of their size, shape and high density of modifiable surface groups. However, while dendrimers have been used extensively for drug and gene delivery to other organs, only a few studies have been reported on the eye.
Summary
This review focuses on the development of dendrimers for gene delivery with special emphasis on ocular gene therapy. Different synthesis approaches and types of dendrimers are discussed. Ocular gene therapy targets are highlighted with an overview of current clinical studies. The use of dendrimers in ocular gene delivery in comparison to liposomes and nanoparticles is also discussed. Finally, future prospects of tailored multifunctional dendrimers for ocular gene therapy are highlighted.
Collapse
Affiliation(s)
- Sahil P Chaplot
- Drug Delivery Research Unit, School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
46
|
Doss CGP, Debottam S, Debajyoti C. Glutathione-responsive nano-transporter-mediated siRNA delivery: silencing the mRNA expression of Ras. PROTOPLASMA 2013; 250:787-792. [PMID: 22968632 DOI: 10.1007/s00709-012-0451-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
Gene therapy through antisense technology via intracellular delivery of a gene-silencing element is a promising approach to treat critical diseases like cancers. Ras acts as molecular switch, considered as one of the proto-oncogenes whose modification or mutation may promote tumor formation. The recent trends of nano-carrier-based drug delivery have gained superiority and proved to be 100 times more potent in drug delivery compared to standard therapies. The nano-based drug delivery has provided the basis of achieving successful target-specific drug delivery. Glutathione (GSH) is considered as one of the best and ubiquitous internal stimulus for swift destabilization of nano-transporters inside cells to accomplish proficient intracellular drug release. This concept has given a new hope to oncologists of modifying the existing drugs to be delivered to their desired destination. RNA interference is a primary tool in functional genomics to selectively silence messenger RNA (mRNA) expression, which can be exploited quickly to develop novel drugs against lethal disease target. Silencing of mRNA molecules using siRNA has also come of age to become one of the latest weapons developed in the concept of gene therapy. However, this strategy has severely failed to achieve target specificity especially to a tumor cell. In this context, we have proposed the incorporation of an antisense siRNA packed inside a GSH-responsive nano-transporter to be delivered specifically to a tumor cell against the sense mRNA of the Ras protein. It will limit the Ras-mediated activation of other proteins and transcription factors. Thus, it will knock down several differential gene expressions being regulated by Ras-activated pathways like enzyme-linked receptor kinase pathway. Henceforth, gene silencing technology through nano-drug delivery can be combined as a single weapon to terminate malignancy.
Collapse
Affiliation(s)
- C George Priya Doss
- Centre for Nanobiotechnology, Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| | | | | |
Collapse
|
47
|
Pescina S, Antopolsky M, Santi P, Nicoli S, Murtomäki L. Effect of iontophoresis on the in vitro trans-scleral transport of three single stranded oligonucleotides. Eur J Pharm Sci 2013; 49:142-7. [PMID: 23485440 DOI: 10.1016/j.ejps.2013.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/21/2012] [Accepted: 02/03/2013] [Indexed: 01/17/2023]
Abstract
Oligonucleotides represent a subject of clinical interest due to their potential ability to treat several diseases, including those affecting the posterior segment of the eye. Unfortunately, therapeutic oligonucleotides are currently administered by means of highly invasive approaches, such as intravitreal injections. The aim of the present work was to study in vitro, across isolated bovine sclera, the effect of iontophoresis on the transport of three single stranded oligonucleotides (ssDNA), 12-, 24- and 36-mer, selected as reference compounds in view of a non-invasive drug delivery to the back of the eye. All the three sequences were able to cross bovine sclera in vitro without iontophoresis. When anodal iontophoresis was applied, no change in flux was observed, while in the presence of cathodal iontophoresis the permeability coefficients increased four-fold compared to passive conditions. This behavior can be ascribed to the electrorepulsive mechanism, due to the negative charge of the nucleic acid backbone. It was also observed that the molecular weights of the three sequences did not affect trans-scleral transport, neither in passive, nor in current assisted permeation. Furthermore, increasing the current intensity from 1.75 mA to 3 mA, no effect on the trans-scleral transport of the 24-mer was noticed. Although preliminary, the results demonstrate that cathodal iontophoresis enhances trans-scleral transport of single stranded oligonucleotides and suggest its use as a novel non-invasive approach for the treatment of diseases affecting the posterior segment of the eye.
Collapse
Affiliation(s)
- Silvia Pescina
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | | | | | | | | |
Collapse
|
48
|
Monaghan M, Greiser U, Wall JG, O’Brien T, Pandit A. Interference: an alteRNAtive therapy following acute myocardial infarction. Trends Pharmacol Sci 2012; 33:635-45. [DOI: 10.1016/j.tips.2012.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
|
49
|
Chang JH, Garg NK, Lunde E, Han KY, Jain S, Azar DT. Corneal neovascularization: an anti-VEGF therapy review. Surv Ophthalmol 2012; 57:415-29. [PMID: 22898649 DOI: 10.1016/j.survophthal.2012.01.007] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 01/14/2012] [Accepted: 01/16/2012] [Indexed: 01/02/2023]
Abstract
Corneal neovascularization is a serious condition that can lead to a profound decline in vision. The abnormal vessels block light, cause corneal scarring, compromise visual acuity, and may lead to inflammation and edema. Corneal neovascularization occurs when the balance between angiogenic and antiangiogenic factors is tipped toward angiogenic molecules. Vascular endothelial growth factor (VEGF), one of the most important mediators of angiogenesis, is upregulated during neovascularization. In fact, anti-VEGF agents have efficacy in the treatment of neovascular age-related macular degeneration, diabetic retinopathy, macular edema, neovascular glaucoma, and other neovascular diseases. These same agents have great potential for the treatment of corneal neovascularization. We review some of the most promising anti-VEGF therapies, including bevacizumab, VEGF trap, siRNA, and tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago 60612, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Daka A, Peer D. RNAi-based nanomedicines for targeted personalized therapy. Adv Drug Deliv Rev 2012; 64:1508-21. [PMID: 22975009 DOI: 10.1016/j.addr.2012.08.014] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 08/07/2012] [Accepted: 08/13/2012] [Indexed: 12/31/2022]
Abstract
RNA interference (RNAi) has just made it through the pipeline to clinical trials. However, in order for RNAi to serve as an ideal personalized therapeutics and be clinically approved-safe, specific, and potent strategies must be devised for efficient delivery of RNAi payloads to specific cell types, which despite the immense potential, remains a challenge. Through evaluating the recent reported studies in this field, we introduce the progress in designing targeted nano-scaled strategies that are anticipated to overcome the delivery drawbacks and along with the exciting "omics" discipline to personalize RNAi-based therapeutics.
Collapse
Affiliation(s)
- Ala Daka
- Laboratory of Nanomedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Science, Israel
| | | |
Collapse
|