1
|
Li ZL, Deng GX, Fang CZ, Zhao YQ, Yuan J, Chen L, Zhong HJ, Guo F. Solid Self-Microemulsifying Drug Delivery System for Improved Oral Bioavailability of Relugolix: Preparation and Evaluation. Int J Nanomedicine 2025; 20:1065-1082. [PMID: 39886543 PMCID: PMC11780666 DOI: 10.2147/ijn.s497099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025] Open
Abstract
Purpose To improve the oral absorption of relugolix (RLGL), which has low oral bioavailability due to its low solubility and being a substrate of P-glycoprotein (P-gp). A solid self-microemulsifying drug delivery system of relugolix (RLGL-S-SMEDDS) was prepared and evaluated in vitro and in vivo. Methods The composition of the solid self-microemulsifying drug delivery system (S-SMEDDS) was selected by solubility study and pseudo-ternary phase diagram, and further optimized by Design-Expert optimization design. The optimized RLGL-S-SMEDDS were evaluated in terms of particle size, zeta potential, morphology analysis, thermodynamic stability, drug release, flow properties, transporter pathways in Caco-2 cells, the influence of excipients on the intestinal transporters, transport within Caco-2 cell monolayers and transport in lymphocyte. In vivo pharmacokinetic study and toxicological study were also conducted. Results The optimum formulation for self-microemulsifying drug delivery system (SMEDDS) consists of Ethyl Oleate (26% of the weight), Solutol HS15 (49% of the weight), Transcutol HP (25% of the weight) and loaded relugolix (4.8 mg/g). The S-SMEDDS was then formed by adsorbing 2.4 g of SMEDDS onto 1 g of hydrophilic-200 silica. In phosphate buffered saline (PBS) (pH 6.8) release medium containing 1% tween 80, the vitro release studies showed 86% cumulative drug release for RLGL-S-SMEDDS and 3.6% cumulative drug release for RLGL suspensions. In vitro cellular uptake experiments revealed that the uptake of RLGL-S-SMEDDS by Caco-2 cells was three times higher than that of free RLGL, and that S-SMEDDS can enhance the drug absorption through lymphatic absorption and inhibition of intestinal transporter. In vivo pharmacokinetic evaluation demonstrated that the oral bioavailability of RLGL-S-SMEDDS was 1.9 times higher than that of RLGL-suspensions. There was no apparent cardiac, hepatic, splenic, pulmonary or renal toxicity on the surface discovered by pathological analysis after oral administration. Conclusion It is evident that S-SMEDDS may be a safe and effective method to improve oral absorption of drugs with low oral bioavailability.
Collapse
Affiliation(s)
- Zi-Lin Li
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Guo-Xing Deng
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Chuan-Zhou Fang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Yue-Qi Zhao
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Jing Yuan
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, People’s Republic of China
| | - Liang Chen
- Jiangxi Prozin Pharmaceutical Co., LTD, Jian, 343100, People’s Republic of China
| | - Hai-Jun Zhong
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Feng Guo
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People’s Republic of China
| |
Collapse
|
2
|
Waghmare S, Palekar R, Potey L, Khedekar P, Sabale P, Sabale V. Solid Lipid Nanoparticles as an Innovative Lipidic Drug Delivery System. Pharm Nanotechnol 2025; 13:22-40. [PMID: 38317470 DOI: 10.2174/0122117385271393231117063750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 02/07/2024]
Abstract
In order to overcome some of the drawbacks of traditional formulations, increasing emphasis has recently been paid to lipid-based drug delivery systems. Solid lipid nanoparticles (SLNs) are promising delivery methods, and they hold promise because of their simplicity in production, capacity to scale up, biocompatibility, and biodegradability of formulation components. Other benefits could be connected to a particular route of administration or the makeup of the ingredients being placed into these delivery systems. This article aims to review the significance of solid lipid nanocarriers, their benefits and drawbacks, as well as their types, compositions, methods of preparation, mechanisms of drug release, characterization, routes of administration, and applications in a variety of delivery systems with a focus on their efficacy.
Collapse
Affiliation(s)
- Suchita Waghmare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Rohini Palekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Lata Potey
- Shree Sainath College of Pharmacy Dawalameti, Nagpur, Maharashtra, 440023, India
| | - Pramod Khedekar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Prafulla Sabale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Vidya Sabale
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, Maharashtra, 440037, India
| |
Collapse
|
3
|
Bages A, Castelain M, Dietrich N, Raynal R, Ioualalen K. Hydrophobic solid lipid-based microparticles for the protection of gastric-sensitive hydrophilic active biomolecules for oral administration in the treatment of EPI. Eur J Pharm Biopharm 2024; 204:114504. [PMID: 39303951 DOI: 10.1016/j.ejpb.2024.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Exocrine Pancreatic Insufficiency (EPI), induced by conditions such as cystic fibrosis, chronic pancreatitis, and Crohn's disease, is a frequently overlooked and underdiagnosed gastrointestinal disorder. It leads to inadequate intestinal digestion due to insufficient secretion of pancreatic juice, resulting in discomfort, pain, and ultimately severe malnutrition. Despite numerous treatments proving ineffective over the past three decades, a strictly hydrophobic solid lipid formulation, administered orally, is proposed in this study to restore digestive function. This technology relies on the hydrophobic nature of the matrix to physically protect the hydrophilic active principle from the gastric environment while enabling its immediate release in the duodenum by targeting the amphiphilic nature of bile salts. Results demonstrate that this formulation effectively protects an acid-sensitive active ingredient during gastric passage (Simulated Gastric Fluid or SGF), facilitating its rapid release upon entering an artificial duodenal environment (Simulated Intestinal Fluid or SIF). Furthermore, it has been demonstrated that the preservation of a protein-based active ingredient extends beyond its primary protein structure to include its functional aspects, such as enzymatic activity. This drug delivery technology could enable the protection of hydrophilic active biomolecules, such as pancreatin, which are sensitive to gastric acidity, while promoting their immediate release upon contact with bile salts in the proximal duodenum, with the ultimate goal of correcting the digestive defect induced by EPI.
Collapse
Affiliation(s)
- Alexis Bages
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France; ENEAPHARM, Labège, France.
| | | | - Nicolas Dietrich
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | | |
Collapse
|
4
|
Li J, Hao X, van Loosdrecht MCM, Lin Y. Understanding the ionic hydrogel-forming property of extracellular polymeric substances: Differences in lipopolysaccharides between flocculent and granular sludge. WATER RESEARCH 2024; 268:122707. [PMID: 39481336 DOI: 10.1016/j.watres.2024.122707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/11/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
An interesting and potential property of extracellular polymeric substances (EPS) is the hydrogel formation with calcium ions. Aiming at understanding the significant difference in the hydrogel formed between EPS from flocculent and granular sludge, a targeted investigation of the lipopolysaccharides (LPS), one of the important EPS components, was performed. LPS was isolated from the EPS of flocculent and granular sludge, and both the glycan and the lipid A parts of LPS were characterized and compared. The morphology of LPS-calcium (LPS-Ca) aggregates were visualized by the polymyxin B-based fluorescent probe. The LPS constituted about 25 % and 15 % of the EPS from flocculent and granular sludge, respectively. The flocculent sludge LPS showed a lower amount of glycans, shorter glycan chain length, lower molecular weight, and higher possibility of containing unsaturated lipids than the granular sludge EPS. The flocculent sludge LPS-Ca aggregates demonstrated invert structures with the water phase in between, contributing to the fluid-like property of the respect EPS-Ca. In contrast, with the remarkably different chemical structure, LPS-Ca aggregates from granular sludge displayed bilaminar multilayered morphology, contributing to the solid, self-standing hydrogel of EPS-Ca.
Collapse
Affiliation(s)
- Ji Li
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9 2629 HZ Delft, The Netherlands; Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China.
| | - Xiaodi Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9 2629 HZ Delft, The Netherlands
| | - Yuemei Lin
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9 2629 HZ Delft, The Netherlands
| |
Collapse
|
5
|
Gu Q, Zhu L. Heating Induced Nanoparticle Migration and Enhanced Delivery in Tumor Treatment Using Nanotechnology. Bioengineering (Basel) 2024; 11:900. [PMID: 39329642 PMCID: PMC11428587 DOI: 10.3390/bioengineering11090900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Nanoparticles have been developed as imaging contrast agents, heat absorbers to confine energy into targeted tumors, and drug carriers in advanced cancer treatment. It is crucial to achieve a minimal concentration of drug-carrying nanostructures or to induce an optimized nanoparticle distribution in tumors. This review is focused on understanding how local or whole-body heating alters transport properties in tumors, therefore leading to enhanced nanoparticle delivery or optimized nanoparticle distributions in tumors. First, an overview of cancer treatment and the development of nanotechnology in cancer therapy is introduced. Second, the importance of particle distribution in one of the hyperthermia approaches using nanoparticles in damaging tumors is discussed. How intensive heating during nanoparticle hyperthermia alters interstitial space structure to induce nanoparticle migration in tumors is evaluated. The next section reviews major obstacles in the systemic delivery of therapeutic agents to targeted tumors due to unique features of tumor microenvironments. Experimental observations on how mild local or whole-body heating boosts systemic nanoparticle delivery to tumors are presented, and possible physiological mechanisms are explored. The end of this review provides the current challenges facing clinicians and researchers in designing effective and safe heating strategies to maximize the delivery of therapeutic agents to tumors.
Collapse
Affiliation(s)
- Qimei Gu
- Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Liang Zhu
- Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
6
|
Dong X, Thao Duyen Nguyen N. Exploring novel type of lipid-bases drug delivery systems that contain one lipid and one water-soluble surfactant only. Int J Pharm 2024; 661:124447. [PMID: 39002820 PMCID: PMC11571485 DOI: 10.1016/j.ijpharm.2024.124447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
None of transitional lipid-based drug delivery systems (LBDDS) includes compositions containing one lipid and one water-soluble surfactant that form stable microemulsions. The conversion of liquid LBDDS to solid LBDDS has been limited by low drug loading. Previously, we have developed drug solid microemulsions containing one lipid and TPGS (a water-soluble surfactant) that achieved high drug loading and remarkably increased oral bioavailability. This study aimed to test if binary lipid systems (BLS), composed of one lipid and one water-soluble surfactant that form stable self-emulsifying microemulsions, is not an exclusive but widely applicable type of LBDDS for other lipids and surfactants and evaluate the influences of chemical structures of lipids and surfactants on microemulsions and solid microemulsions. We systemically identified new BLS by using a library of lipids and surfactants. Propylene glycol diesters and glycerol triesters were favorable for forming stable microemulsions with Tween 80, Cremophor EL, or TPGS. To the best of our knowledge, this is the first report exploring and confirming that the BLS is a new addition to traditional LBDDS, provides a promising option for researchers, and has the potential to increase drug loading to facilitate the development of solid microemulsions.
Collapse
Affiliation(s)
- Xiaowei Dong
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Ngoc Thao Duyen Nguyen
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
7
|
Sanil K, Almotairy A, Uttreja P, Ashour EA. Formulation Development and Evaluation of Cannabidiol Hot-Melt Extruded Solid Self-Emulsifying Drug Delivery System for Oral Applications. AAPS PharmSciTech 2024; 25:136. [PMID: 38862810 DOI: 10.1208/s12249-024-02857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024] Open
Abstract
Cannabidiol (CBD) is a highly lipophilic compound with poor oral bioavailability, due to poor aqueous solubility and extensive pre-systemic metabolism. The aim of this study was to explore the potential of employing Hot Melt Extrusion (HME) technology for the continuous production of Self Emulsifying Drug Delivery Systems (SEDDS) to improve the solubility and in vitro dissolution performance of CBD. Accordingly, different placebos were processed through HME in order to obtain a lead CBD loaded solid SEDDS. Two SEDDS were prepared with sesame oil, Poloxamer 188, Gelucire®59/14, PEO N80 and Soluplus®. Moreover, Vitamin E was added as an antioxidant. The SEDDS formulations demonstrated emulsification times of 9.19 and 9.30 min for F1 and F2 respectively. The formed emulsions showed smaller droplet size ranging from 150-400 nm that could improve lymphatic uptake of CBD and reduce first pass metabolism. Both formulations showed significantly faster in vitro dissolution rate (90% for F1 and 83% for F2) compared to 14% for the pure CBD within the first hour, giving an enhanced release profile. The formulations were tested for stability over a 60-day time period at 4°C, 25°C, and 40°C. Formulation F1 was stable over the 60-day time-period at 4°C. Therefore, the continuous HME technology could replace conventional methods for processing SEDDS and improve the oral delivery of CBD for better therapeutic outcomes.
Collapse
Affiliation(s)
- Kavish Sanil
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Ahmed Almotairy
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al Madinah AlMunawarah, 30001, Saudi Arabia
| | - Prateek Uttreja
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Eman A Ashour
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
| |
Collapse
|
8
|
Hu S, Zhao R, Chi X, Chen T, Li Y, Xu Y, Zhu B, Hu J. Unleashing the power of chlorogenic acid: exploring its potential in nutrition delivery and the food industry. Food Funct 2024; 15:4741-4762. [PMID: 38629635 DOI: 10.1039/d4fo00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In the contemporary era, heightened emphasis on health and safety has emerged as a paramount concern among individuals with food. The concepts of "natural" and "green" have progressively asserted dominance in the food consumption market. Consequently, through continuous exploration and development, an escalating array of natural bioactive ingredients is finding application in both nutrition delivery and the broader food industry. Chlorogenic acid (CGA), a polyphenolic compound widely distributed in various plants in nature, has garnered significant attention. Abundant research underscores CGA's robust biological activity, showcasing notable preventive and therapeutic efficacy across diverse diseases. This article commences with a comprehensive overview, summarizing the dietary sources and primary biological activities of CGA. These encompass antioxidant, anti-inflammatory, antibacterial, anti-cancer, and neuroprotective activities. Next, a comprehensive overview of the current research on nutrient delivery systems incorporating CGA is provided. This exploration encompasses nanoparticle, liposome, hydrogel, and emulsion delivery systems. Additionally, the article explores the latest applications of CGA in the food industry. Serving as a cutting-edge theoretical foundation, this paper contributes to the design and development of CGA in the realms of nutrition delivery and the food industry. Finally, the article presents informed speculations and considerations for the future development of CGA.
Collapse
Affiliation(s)
- Shumeng Hu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
| | - Runan Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Xuesong Chi
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Tao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Yangjing Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Yu Xu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Beiwei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, PR China.
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Jiangning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, PR China.
- School of Food Science and Technology, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, PR China
| |
Collapse
|
9
|
Schulzen A, Andreadis II, Bergström CAS, Quodbach J. Development and characterization of solid lipid-based formulations (sLBFs) of ritonavir utilizing a lipolysis and permeation assay. Eur J Pharm Sci 2024; 196:106732. [PMID: 38408708 DOI: 10.1016/j.ejps.2024.106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
As a high number of active pharmaceutical ingredients (APIs) under development belong to BCS classes II and IV, the need for improving bioavailability is critical. A powerful approach is the use of lipid-based formulations (LBFs) that usually consist of a combination of liquid lipids, cosolvents, and surfactants. In this study, ritonavir loaded solid LBFs (sLBFs) were prepared using solid lipid excipients to investigate whether sLBFs are also capable of improving solubility and permeability. Additionally, the influence of polymeric precipitation inhibitors (PVP-VA and HPMC-AS) on lipolysis triggered supersaturation and precipitation was investigated. One step intestinal digestion and bicompartmental permeation studies using an artificial lecithin-in-dodecane (LiDo) membrane were performed for each formulation. All formulations presented significantly higher solubility (5 to >20-fold higher) during lipolysis and permeation studies compared to pure ritonavir. In the combined lipolysis-permeation studies, the formulated ritonavir concentration increased 15-fold in the donor compartment and the flux increased up to 71 % as compared to non-formulated ritonavir. The formulation with the highest surfactant concentration showed significantly higher ritonavir solubility compared to the formulation with the highest amount of lipids. However, the precipitation rates were comparable. The addition of precipitation inhibitors did not influence the lipolytic process and showed no significant benefit over the initial formulations with regards to precipitation. While all tested sLBFs increased the permeation rate, no statistically significant difference was noted between the formulations regardless of composition. To conclude, the different release profiles of the formulations were not correlated to the resulting flux through a permeation membrane, further supporting the importance of making use of combined lipolysis-permeation assays when exploring LBFs.
Collapse
Affiliation(s)
- Arne Schulzen
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstraße 1, DE-40225, Düsseldorf, Germany
| | - Ioannis I Andreadis
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden; Laboratory of Pharmaceutical Technology, Department of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden; The Swedish Drug Delivery Center, Department of Pharmacy, Uppsala University, P.O. Box 580, SE-751 23, Uppsala, Sweden
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitätsstraße 1, DE-40225, Düsseldorf, Germany; Department of Pharmacy, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
10
|
Morakul B, Teeranachaideekul V, Limwikrant W, Junyaprasert VB. Dissolution and antioxidant potential of apigenin self nanoemulsifying drug delivery system (SNEDDS) for oral delivery. Sci Rep 2024; 14:8851. [PMID: 38632321 PMCID: PMC11024192 DOI: 10.1038/s41598-024-59617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
Self-nanoemulsifying drug delivery systems (SNEDDS) have been used to improve the oral bioavailability of various drugs. In the current study, apigenin was developed as SNEDDS to solve its dissolution problem and enhance oral bioavailability and antioxidant potential. SNEDDS were prepared by mixing Gelucire 44/14, Tween 80, and PEG 400 under controlled conditions. The droplet of diluted SNEDDS demonstrated a spherical shape with a size of less than 100 nm and a neutral charge. The very fast self-emulsification was obtained within 32 s, and the transmittance values exceeded 99%. The highest drug loading was 90.10 ± 0.24% of the initial load with the highest %encapsulation efficiency of 84.20 ± 0.03%. FT-IR and DSC spectra showed no interaction between components. The dissolution in buffer pH 1.2, 4.5, and 6.8 showed significantly higher dissolved apigenin than the apigenin coarse powder. The dissolution profiles were fitted to the Korsmeyer-Peppas kinetics. The cellular antioxidant activities in Caco-2 cells were approximately 52.25-54.64% compared to no treatment and were higher than the apigenin coarse powder (12.70%). Our work highlights the potential of SNEDDS to enhance the dissolution and permeability of apigenin and promote antioxidant efficacy, which has a strong chance of being developed as a bioactive compound for nutraceuticals.
Collapse
Affiliation(s)
- Boontida Morakul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand.
| | - Veerawat Teeranachaideekul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand
| | - Waree Limwikrant
- Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | | |
Collapse
|
11
|
Aguirre ME, Orallo DE, Suárez PA, Ramirez CL. Galenic formulations of Cannabis sativa: comparison of the chemical properties of extracts obtained by simple protocols using lipidic vehicles. Nat Prod Res 2024; 38:661-666. [PMID: 36855240 DOI: 10.1080/14786419.2023.2184357] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/19/2023] [Indexed: 03/02/2023]
Abstract
The growing use of Cannabis sativa as a complementary therapy to allopathic medicine has brought about the modification of laws for its use worldwide. This entails the need to harmonize the methods of galenic preparations in pharmacies and cannabis-specialized non-governmental organizations as well as for self-provision as contemplated in some current legislation, such as that of Argentina. Thus, this work aimed to study simple and efficient methods to produce medicinal cannabis oils that require low-cost equipment and few handling steps. The final formulas allowed the obtaining of preparations of known concentrations of neutral cannabinoids, total polyphenol content, total flavonoid content, and antioxidant capacity. These methods allow for the selection of convenient vehicles and access to safe medicinal products of standardized quality. Our results show that cannabis extraction can be efficiently performed by directly using long-chain lipidic vehicles as extractants, resulting in a formulation with maximized oxidizing capacity and potentially extending its durability.
Collapse
Affiliation(s)
- Matías E Aguirre
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones Físicas de Mar del Plata, IFIMAR (CONICET-UNMDP), Funes 3350, (7600) Mar del Plata, Argentina
| | - Dalila E Orallo
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - Patricia A Suárez
- Instituto de Investigaciones Marinas y Costeras (IIMyC) FCEyN/UNMdP-CONICET Juan B. Justo 2550, Mar del Plata, Argentina
| | - Cristina L Ramirez
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
12
|
Preeti, Sambhakar S, Saharan R, Narwal S, Malik R, Gahlot V, Khalid A, Najmi A, Zoghebi K, Halawi MA, Albratty M, Mohan S. Exploring LIPIDs for their potential to improves bioavailability of lipophilic drugs candidates: A review. Saudi Pharm J 2023; 31:101870. [PMID: 38053738 PMCID: PMC10694332 DOI: 10.1016/j.jsps.2023.101870] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
This review aims to provide a thorough examination of the benefits, challenges, and advancements in utilizing lipids for more effective drug delivery, ultimately contributing to the development of innovative approaches in pharmaceutical science. Lipophilic drugs, characterized by low aqueous solubility, present a formidable challenge in achieving effective delivery and absorption within the human body. To address this issue, one promising approach involves harnessing the potential of lipids. Lipids, in their diverse forms, serve as carriers, leveraging their unique capacity to enhance solubility, stability, and absorption of these challenging drugs. By facilitating improved intestinal solubility and selective lymphatic absorption of porously permeable drugs, lipids offer an array of possibilities for drug delivery. This versatile characteristic not only bolsters the pharmacological efficacy of drugs with low bioavailability but also contributes to enhanced therapeutic performance, ultimately reducing the required dose size and associated costs. This comprehensive review delves into the strategic formulation approaches that employ lipids as carriers to ameliorate drug solubility and bioavailability. Emphasis is placed on the critical considerations of lipid type, composition, and processing techniques when designing lipid-based formulations. This review meticulously examines the multifaceted challenges that come hand in hand with lipid-based formulations for lipophilic drugs, offering an insightful perspective on future trends. Regulatory considerations and the broad spectrum of potential applications are also thoughtfully discussed. In summary, this review presents a valuable repository of insights into the effective utilization of lipids as carriers, all aimed at elevating the bioavailability of lipophilic drugs.
Collapse
Affiliation(s)
- Preeti
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar, Haryana 122506, India
| | - Sharda Sambhakar
- Banasthali Vidyapith, Vanasthali Road, Aliyabad, Rajasthan 304022, India
| | - Renu Saharan
- Maharishi Markandeswar Deemed to be University, Mullana, Ambala, Haryana 133203, India
| | - Sonia Narwal
- Panipat Institute of Engineering & Technology, Department of Pharmacy, GT Road, Samalkha, Panipat 132102, Haryana, India
| | - Rohit Malik
- Gurugram Global College of Pharmacy, Haily Mandi Rd, Farukh Nagar, Haryana 122506, India
| | - Vinod Gahlot
- HIMT College of Pharmacy, Knowledge Park - 1, Greater Noida, District - Gautam Buddh Nagar, UP 201310, India
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum 11111, Sudan
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Maryam A. Halawi
- Department of Cinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| |
Collapse
|
13
|
Aung WT, Kopongpanich P, Boonkanokwong V. Supersaturable Solid Self-microemulsifying Delivery Systems of Astaxanthin via Spray Drying: Effects of Polymers and Solid Carriers. AAPS PharmSciTech 2023; 24:218. [PMID: 37891405 DOI: 10.1208/s12249-023-02671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to develop the solid astaxanthin-encapsulated self-microemulsifying delivery system (S-AST SMEDS) spray-dried particles and investigate the effect of materials in formulations on product characteristics. The optimized liquid AST SMEDS incorporated with a polymeric precipitation inhibitor (PI) was solidified with a solid carrier by spray drying. Physicochemical properties of S-AST SMEDS spray-dried powders including morphology, particle size and distribution, flowability, solid-state characters, moisture content, yield, loading capacity of AST, and reconstitution properties were examined. Polymeric PIs seemed to have an impact on particles' size, surface smoothness, and flowability while solid carriers had an effect on the particles' moisture content and droplet size of microemulsions obtained after reconstitution. The amount of AST encapsulated in S-SMEDS powder was influenced by both polymer and solid carriers. Dissolution and short-term stability of S-AST SMEDS were also studied. Our developed spray-dried solid SMEDS particles helped enhance AST dissolution rate.
Collapse
Affiliation(s)
- Wai Thet Aung
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Peerawas Kopongpanich
- Pharmaceutical Product Development and Technology Transfer (PDTT) Unit, Chulalongkorn University Drug and Health Products Innovation Promotion Center (CUDHIP), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
| | - Veerakiet Boonkanokwong
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand.
| |
Collapse
|
14
|
Sirvi A, Debaje S, Guleria K, Sangamwar AT. Critical aspects involved in lipid dispersion and digestion: Emphasis on in vitro models and factors influencing lipolysis of oral lipid based formulations. Adv Colloid Interface Sci 2023; 321:103028. [PMID: 39491077 DOI: 10.1016/j.cis.2023.103028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
Understanding the mechanisms underlying the dispersion and digestion process is vital in the development of oral lipid-based formulations (LBFs). In vitro lipolysis models mimic the digestion process in the stomach and intestine to explore the fundamental mechanism of supersaturation, solubilization, and precipitation of drugs within the LBFs. The lipid digestion is controlled by the in vitro experimental conditions, and constitution of the lipid formulations. Hence, there is a continuous upgradation in the digestion models to best extrapolate the in vivo conditions. This review covers the recent developments in digestion models with media compositions and lipid formulation components. Key findings from recent studies that thoroughly examined the relation between the digestion, solubilization, and permeation of oral LBFs in the presence of bile-lipid aggregates are presented. These developments are foremost to build the in vitro-in vivo correlation of the drugs for regulatory considerations.
Collapse
Affiliation(s)
- Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Shubham Debaje
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Kajal Guleria
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S Nagar, Punjab, India.
| |
Collapse
|
15
|
Mohamad NV. Strategies to Enhance the Solubility and Bioavailability of Tocotrienols Using Self-Emulsifying Drug Delivery System. Pharmaceuticals (Basel) 2023; 16:1403. [PMID: 37895874 PMCID: PMC10610013 DOI: 10.3390/ph16101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Tocotrienols have higher medicinal value, with multiple sources of evidence showing their biological properties as antioxidant, anti-inflammatory, and osteoprotective compounds. However, tocotrienol bioavailability presents an ongoing challenge in its translation into viable products. This is because tocotrienol oil is known to be a poorly water-soluble compound, making it difficult to be absorbed into the body and resulting in less effectiveness. With the potential and benefits of tocotrienol, new strategies to increase the bioavailability and efficacy of poorly absorbed tocotrienol are required when administered orally. One of the proposed formulation techniques was self-emulsification, which has proven its capacity to improve oral drug delivery of poorly water-soluble drugs by advancing the solubility and bioavailability of these active compounds. This review discusses the updated evidence on the bioavailability of tocotrienols formulated with self-emulsifying drug delivery systems (SEDDSs) from in vivo and human studies. In short, SEDDSs formulation enhances the solubility and passive permeability of tocotrienol, thus improving its oral bioavailability and biological actions. This increases its medicinal and commercial value. Furthermore, the self-emulsifying formulation presents a useful dosage form that is absorbed in vivo independent of dietary fats with consistent and enhanced levels of tocotrienol isomers. Therefore, a lipid-based formulation technique can provide an additional detailed understanding of the oral bioavailability of tocotrienols.
Collapse
Affiliation(s)
- Nur-Vaizura Mohamad
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
16
|
Sharma S, Goel V, Kaur P, Gadhave K, Garg N, Das Singla L, Choudhury D. Targeted drug delivery using beeswax-derived albendazole-loaded solid lipid nanoparticles in Haemonchus contortus, an albendazole-tolerant nematode. Exp Parasitol 2023; 253:108593. [PMID: 37595879 DOI: 10.1016/j.exppara.2023.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
Targeted delivery has not been achieved for anthelmintic treatment, resulting in the requirement of excess drug dose leading to side effects and therapeutic resistance. Gastrointestinal helminths take up lipid droplets from digestive fluid for energy production, egg development, and defense which inspired us to develop biocompatible and orally administrable albendazole-loaded solid lipid nanoparticles (SLN-A) that were derived from beeswax and showed drug loading efficiency of 83.3 ± 6.5 mg/g and sustained-release properties with 84.8 ± 2.5% of drug released at pH 6.4 within 24 h at 37 °C. Rhodamine B-loaded SLN showed time-dependent release and distribution of dye in-vitro in Haemonchus contortus. The sustained-release property was shown by the particles that caused enhancement of albendazole potency up to 50 folds. Therefore, this formulation has immense potential as an anthelminthic drug delivery vehicle that will be able to reduce the dose and drug-induced side effects by enhancing the bioavailability of the drug.
Collapse
Affiliation(s)
- Sunidhi Sharma
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Vanshita Goel
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Pawandeep Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Kundlik Gadhave
- Indian Institute of Technology (IIT), Mandi, Mandi, 175005, Himachal Pradesh, India
| | - Neha Garg
- Indian Institute of Technology (IIT), Mandi, Mandi, 175005, Himachal Pradesh, India; Institute of Medical Sciences, Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Lachhman Das Singla
- Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001, Punjab, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India; BioX, Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India.
| |
Collapse
|
17
|
Nazlı H, Mesut B, Akbal-Dağıstan Ö, Özsoy Y. A Novel Semi-Solid Self-Emulsifying Formulation of Aprepitant for Oral Delivery: An In Vitro Evaluation. Pharmaceutics 2023; 15:pharmaceutics15051509. [PMID: 37242751 DOI: 10.3390/pharmaceutics15051509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Aprepitant is the first member of a relatively new antiemetic drug class called NK1 receptor antagonists. It is commonly prescribed to prevent chemotherapy-induced nausea and vomiting. Although it is included in many treatment guidelines, its poor solubility causes bioavailability issues. A particle size reduction technique was used in the commercial formulation to overcome low bioavailability. Production with this method consists of many successive steps that cause the cost of the drug to increase. This study aims to develop an alternative, cost-effective formulation to the existing nanocrystal form. We designed a self-emulsifying formulation that can be filled into capsules in a melted state and then solidified at room temperature. Solidification was achieved by using surfactants with a melting temperature above room temperature. Various polymers have also been tested to maintain the supersaturated state of the drug. The optimized formulation consists of CapryolTM 90, Kolliphor® CS20, Transcutol® P, and Soluplus®; it was characterized by DLS, FTIR, DSC, and XRPD techniques. A lipolysis test was conducted to predict the digestion performance of formulations in the gastrointestinal system. Dissolution studies showed an increased dissolution rate of the drug. Finally, the cytotoxicity of the formulation was tested in the Caco-2 cell line. According to the results, a formulation with improved solubility and low toxicity was obtained.
Collapse
Affiliation(s)
- Hakan Nazlı
- Department of Pharmaceutical Technology, Trakya University, 22030 Edirne, Turkey
| | - Burcu Mesut
- Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Turkey
| | - Özlem Akbal-Dağıstan
- Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Turkey
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Istanbul University, 34116 Istanbul, Turkey
| |
Collapse
|
18
|
Ahmad J, Garg A, Mustafa G, Mohammed AA, Ahmad MZ. 3D Printing Technology as a Promising Tool to Design Nanomedicine-Based Solid Dosage Forms: Contemporary Research and Future Scope. Pharmaceutics 2023; 15:1448. [PMID: 37242690 PMCID: PMC10220923 DOI: 10.3390/pharmaceutics15051448] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
3D printing technology in medicine is gaining great attention from researchers since the FDA approved the first 3D-printed tablet (Spritam®) on the market. This technique permits the fabrication of various types of dosage forms with different geometries and designs. Its feasibility in the design of different types of pharmaceutical dosage forms is very promising for making quick prototypes because it is flexible and does not require expensive equipment or molds. However, the development of multi-functional drug delivery systems, specifically as solid dosage forms loaded with nanopharmaceuticals, has received attention in recent years, although it is challenging for formulators to convert them into a successful solid dosage form. The combination of nanotechnology with the 3D printing technique in the field of medicine has provided a platform to overcome the challenges associated with the fabrication of nanomedicine-based solid dosage forms. Therefore, the major focus of the present manuscript is to review the recent research developments that involved the formulation design of nanomedicine-based solid dosage forms utilizing 3D printing technology. Utilization of 3D printing techniques in the field of nanopharmaceuticals achieved the successful transformation of liquid polymeric nanocapsules and liquid self-nanoemulsifying drug delivery systems (SNEDDS) to solid dosage forms such as tablets and suppositories easily with customized doses as per the needs of the individual patient (personalized medicine). Furthermore, the present review also highlights the utility of extrusion-based 3D printing techniques (Pressure-Assisted Microsyringe-PAM; Fused Deposition Modeling-FDM) to produce tablets and suppositories containing polymeric nanocapsule systems and SNEDDS for oral and rectal administration. The manuscript critically analyzes contemporary research related to the impact of various process parameters on the performance of 3D-printed solid dosage forms.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Gulam Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
19
|
Kekani LN, Witika BA. Current advances in nanodrug delivery systems for malaria prevention and treatment. DISCOVER NANO 2023; 18:66. [PMID: 37382765 PMCID: PMC10409709 DOI: 10.1186/s11671-023-03849-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/13/2023] [Indexed: 06/30/2023]
Abstract
Malaria is a life-threatening, blood-borne disease with over two hundred million cases throughout the world and is more prevalent in Sub-Saharan Africa than anywhere else in the world. Over the years, several treatment agents have been developed for malaria; however, most of these active pharmaceutical ingredients exhibit poor aqueous solubility and low bioavailability and may result in drug-resistant parasites, thus increasing malaria cases and eventually, deaths. Factors such as these in therapeutics have led to a better appreciation of nanomaterials. The ability of nanomaterials to function as drug carriers with a high loading capacity and targeted drug delivery, good biocompatibility, and low toxicity renders them an appealing alternative to conventional therapy. Nanomaterials such as dendrimers and liposomes have been demonstrated to be capable of enhancing the efficacy of antimalarial drugs. This review discusses the recent development of nanomaterials and their benefits in drug delivery for the potential treatment of malaria.
Collapse
Affiliation(s)
- Linda N Kekani
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa
| | - Bwalya A Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa.
| |
Collapse
|
20
|
Chen D, Liu Y, Liu P, Zhou Y, Jiang L, Yuan C, Huang M. Orally delivered rutin in lipid-based nano-formulation exerts strong antithrombotic effects by protein disulfide isomerase inhibition. Drug Deliv 2022; 29:1824-1835. [PMID: 35674505 PMCID: PMC9186361 DOI: 10.1080/10717544.2022.2083726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/21/2022] Open
Abstract
Thrombosis occurs in both macrovasculature and microvasculature, causing various cardio-cerebral vascular diseases. The lack of effective and safe antithrombotic drugs leads to a public health crisis. Mounting evidence suggests that protein disulfide isomerase (PDI) plays a critical role in the initial stage of thrombus formation, motivating the research of the feasibility of PDI inhibitors as novel anti-thrombotics. Rutin, one of the most potent PDI inhibitors, was reported to suppress platelet aggregation and thrombosis in animal models, but further studies and clinical translation were restricted due to its low aqueous solubility and oral bioavailability. In this work, we fabricated rutin-loaded lipid-based nano-formulation (NanoR) and characterized their physical-chemical properties, release profiles, pharmacokinetic process, and pharmacodynamic function against thrombosis in macrovessels and microvessels. NanoR provided increased solubility and dissolution of rutin to achieve earlier Tmax and higher Cmax than the sodium salt of rutin (NaR) after oral gavage. Ex vivo studies demonstrated that NanoR significantly inhibited thrombin generation and clot formation in the plasma of mice. Importantly, such effect was reversed by exogenous recombinant PDI, demonstrating the specificity of the NanoR. In direct current-induced arterial thrombosis model and ferric chloride-induced microvascular thrombosis model, NanoR exhibited greatly enhanced antithrombotic activity compared with NaR. NanoR also showed good safety performance according to tail bleeding assay, global coagulation tests, and histological analysis. Overall, our current results indicated that NanoR offers a promising antithrombotic treatment with potential for clinical translation.
Collapse
Affiliation(s)
- Dan Chen
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Yurong Liu
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Peiwen Liu
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Yang Zhou
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Longguang Jiang
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Mingdong Huang
- College of Chemistry, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Fuzhou University, Fuzhou, China
| |
Collapse
|
21
|
SEDEX-Self-Emulsifying Delivery Via Hot Melt Extrusion: A Continuous Pilot-Scale Feasibility Study. Pharmaceutics 2022; 14:pharmaceutics14122617. [PMID: 36559111 PMCID: PMC9783592 DOI: 10.3390/pharmaceutics14122617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to develop a continuous pilot-scale solidification and characterization of self-emulsifying drug delivery systems (SEDDSs) via hot melt extrusion (HME) using Soluplus® and Kollidon® VA-64. First, an oil-binding capacity study was performed to estimate the maximal amount of SEDDSs that the polymers could bind. Then, HME was conducted using a Coperion 18 mm ZSK18 pilot plant-scale extruder with split-feeding of polymer and SEDDS in 10, 20, and 30% w/w SEDDSs was conducted. The prepared extrudates were characterized depending on appearance, differential scanning calorimetry, wide-angle X-ray scattering, emulsification time, droplet size, polydispersity index, and cloud point. The oil-binding studies showed that the polymers were able to bind up to 50% w/w of liquid SEDDSs. The polymers were processed via HME in a temperature range between 110 and 160 °C, where a plasticizing effect of the SEDDSs was observed. The extrudates were found to be stable in the amorphous state and self-emulsified in demineralized water at 37 °C with mean droplet sizes between 50 and 300 nm. A cloud point and phase inversion were evident in the Soluplus® samples. In conclusion, processing SEDDSs with HME could be considered a promising alternative to the established solidification techniques as well as classic amorphous solid dispersions for drug delivery.
Collapse
|
22
|
Petřík J, Rychecký O, Krejčí T, Becherová L, Trunov D, Prachár M, Navrátil O, Žvátora P, Krejčík L, Dammer O, Beránek J, Kozlík P, Křížek T, Šoóš M, Heřt J, Bissola S, Berto S, Štěpánek F. Pharmaceutical Product Characterization and Manufacturability of Surfactant-Enriched Oil Marbles with Abiraterone Acetate. AAPS PharmSciTech 2022; 23:274. [PMID: 36207549 DOI: 10.1208/s12249-022-02430-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
The present study investigates the physicochemical properties and stability of a novel lipid-based formulation-surfactant-enriched oil marbles containing abiraterone acetate. While the biopharmaceutical performance of this formulation has been reported recently, this study aims to fill the gap between a promising in vivo performance and industrial applicability. A series of techniques were employed to assess the solid-state characteristics of oil marble cores along with their physicochemical properties upon stability testing. The chemical stability of abiraterone acetate in the formulation was also investigated. The core of the formulation was found to be stable both physically and chemically over 12 months of storage. The in vitro performance of stressed samples was evaluated using a dissolution experiment. The formulation has successfully self-emulsified upon incubation in bio-relevant media, resulting in a fast and complete API release. An important issue connected with the excipient used as a covering material of oil marbles has been identified. The seemingly insignificant water sorption caused agglomeration of the oil marbles and consequently compromised the dissolution rate in some of the stressed samples. Replacing HPMC with lactose as a covering material resulted in more favorable properties upon storage. Overall, it has been shown that oil marbles are an industrially applicable concept of the solidified lipid-based formulation.
Collapse
Affiliation(s)
- Jakub Petřík
- Zentiva, k.s. U Kabelovny 130, 102 37, Prague, Czech Republic.,Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Ondřej Rychecký
- Zentiva, k.s. U Kabelovny 130, 102 37, Prague, Czech Republic.,Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Tereza Krejčí
- Zentiva, k.s. U Kabelovny 130, 102 37, Prague, Czech Republic.,Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Lucia Becherová
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Dan Trunov
- Zentiva, k.s. U Kabelovny 130, 102 37, Prague, Czech Republic.,Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Maximilián Prachár
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Ondřej Navrátil
- Zentiva, k.s. U Kabelovny 130, 102 37, Prague, Czech Republic.,Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Pavel Žvátora
- Zentiva, k.s. U Kabelovny 130, 102 37, Prague, Czech Republic
| | - Lukáš Krejčík
- Zentiva, k.s. U Kabelovny 130, 102 37, Prague, Czech Republic
| | - Ondřej Dammer
- Zentiva, k.s. U Kabelovny 130, 102 37, Prague, Czech Republic
| | - Josef Beránek
- Zentiva, k.s. U Kabelovny 130, 102 37, Prague, Czech Republic
| | - Petr Kozlík
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Miroslav Šoóš
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Jakub Heřt
- Zentiva, k.s. U Kabelovny 130, 102 37, Prague, Czech Republic
| | - Samuele Bissola
- DottBonapace &C srl, Via A.Merli 10/A, Cusano Milanino (MI), Italy
| | - Simone Berto
- DottBonapace &C srl, Via A.Merli 10/A, Cusano Milanino (MI), Italy
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague, Czech Republic.
| |
Collapse
|
23
|
Zupančič O, Spoerk M, Paudel A. Lipid-based solubilization technology via hot melt extrusion: promises and challenges. Expert Opin Drug Deliv 2022; 19:1013-1032. [PMID: 35943158 DOI: 10.1080/17425247.2022.2112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Self-emulsifying drug delivery systems (SEDDS) are a promising strategy to improve the oral bioavailability of poorly water-soluble drugs (PWSD). The excipients of SEDDS enable permeation through the mucus and gastro-intestinal barrier, inhibiting efflux transporters (e.g. P-glycoprotein) of drugs. Poor drug loading capacity and formulation instability are the main setbacks of traditional SEDDS. The use of polymeric precipitation inhibitors was shown to create supersaturable SEDDS with increased drug payload, and their solidification can help to overcome the instability challenge. As an alternative to several existing SEDDS solidification technologies, hot melt extrusion (HME) holds the potential for lean and continuous manufacturing of supersaturable solid-SEDDS. Despite being ubiquitously applied in solid lipid and polymeric processing, HME has not yet been widely considered for the preparation of SEDDS. AREAS COVERED The review begins with the rationale why SEDDS as the preferred lipid-based delivery systems (LBDS) is suitable for the oral delivery of PWSD and discusses the common barriers to oral administration. The potential of LBDS to surmount them is discussed. SEDDS as the flagship of LBDS for PWSD is proposed with a special emphasis on solid-SEDDS. Finally, the opportunities and challenges of HME from the lipid-based excipient (LBE) processing and product performance standpoint are highlighted. EXPERT OPINION HME can be a continuous, solvent-free, cost-effective, and scalable technology for manufacturing solid supersaturable SEDDS. Several critical formulations and process parameters in successfully preparing SEDDS via HME are identified.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
24
|
Lee YZ, Seow EK, Lim SC, Yuen KH, Karim Khan NA. Formulation of oily tocotrienols as a solid self-emulsifying dosage form for improved oral bioavailability in human subjects. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Enhanced oral absorption of teriparatide with therapeutic potential for management of osteoporosis. J Control Release 2022; 349:502-519. [PMID: 35835400 DOI: 10.1016/j.jconrel.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
In this study, a system for oral delivery of recombinant human parathyroid hormone [rhPTH(1-34); teriparatide (TRP)] was developed to enhance oral absorption and to demonstrate an equivalent therapeutic effect to that of subcutaneous (SC) TRP injection. The solid oral formulation of TRP was prepared by electrostatic complexation with l-lysine-linked deoxycholic acid (LDA) and deoxycholic acid (DA) at a molar ratio of 1:5:7 in the aqueous dispersion of non-ionic n-dodecyl-β-d-maltoside (DM) at a 1:15 weight ratio, followed by freeze-drying the dispersal, yielding TRP(1:5:7)-15. As expected, TRP(1:5:7)-15 showed a 414% increase in permeability across the Caco-2/HT29-MTX-E12 cell monolayer, resulting in a 13.0-fold greater oral bioavailability compared with free TRP. In addition, the intestinal transport mechanisms in the presence of specific inhibitors of clathrin-mediated endocytosis, macropinocytosis, and bile acid transporters revealed 44.4%, 28.7%, and 51.2% decreases in transport, respectively, confirming that these routes play crucial roles in the permeation of TRP in TRP(1:5:7)-15. Notably, this formulation showed similar activation of the release of cyclic adenosine monophosphate (cAMP) compared with TRP, suggesting equivalent efficacy in the parathyroid hormone receptor-adenylate cyclase system of osteosarcoma cells. Furthermore, oral TRP(1:5:7)-15 (equivalent to 0.4 mg/kg TRP) demonstrated increases in bone mineral density (36.9%) and trabecular thickness (31.3%) compared with untreated glucocorticoid-induced osteoporotic mice. Moreover, the elevated levels of biomarkers of bone formation, including osteocalcin, were also comparable with those after SC injection of TRP (0.02 mg/kg). These findings suggest that TRP(1:5:7)-15 can be used as an effective oral therapy for the management of osteoporosis.
Collapse
|
26
|
Musakhanian J, Rodier JD, Dave M. Oxidative Stability in Lipid Formulations: a Review of the Mechanisms, Drivers, and Inhibitors of Oxidation. AAPS PharmSciTech 2022; 23:151. [PMID: 35596043 DOI: 10.1208/s12249-022-02282-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/03/2022] [Indexed: 11/30/2022] Open
Abstract
The importance of lipid-based formulations in addressing solubility and ultimately the bioavailability issues of the emerging drug entities is undeniable. Yet, there is scarcity of literature on lipid excipient chemistry and performance, notably in relation to oxidative stability. While not all lipid excipients are prone to oxidation, those with sensitive moieties offer drug delivery solutions that outweigh the manageable oxidative challenges they may present. For example, caprylocaproyl polyoxylglycerides help solubilize and deliver cancer drug to patients, lauroyl polyoxylglycerides enhance the delivery of cholesterol lowering drug, and sesame/soybean oils are critical part of parenteral nutrition. Ironically, excipients with far greater oxidative propensity are omnipresent in pharmaceutical products, a testament to the manageability of oxidative challenges in drug development. Successful formulation development requires awareness of what, where, and how formulation stability may be impacted, and accordingly taking appropriate steps to circumvent or meet the challenges ahead. Aiming to fill the information gap from a drug delivery scientist perspective, this review discusses oxidation pathways, prooxidants, antioxidants, and their complex interplay, which can paradoxically take opposite directions depending on the drug delivery system.
Collapse
|
27
|
Jebastin K, Narayanasamy D. Rationale utilization of phospholipid excipients: a distinctive tool for progressing state of the art in research of emerging drug carriers. J Liposome Res 2022; 33:1-33. [PMID: 35543241 DOI: 10.1080/08982104.2022.2069809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Phospholipids have a high degree of biocompatibility and are deemed ideal pharmaceutical excipients in the development of lipid-based drug delivery systems, because of their unique features (permeation, solubility enhancer, emulsion stabilizer, micelle forming agent, and the key excipients in solid dispersions) they can be used in a variety of pharmaceutical drug delivery systems, such as liposomes, phytosomes, solid lipid nanoparticles, etc. The primary usage of phospholipids in a colloidal pharmaceutical formulation is to enhance the drug's bioavailability with low aqueous solubility [i.e. Biopharmaceutical Classification System (BCS) Class II drugs], Membrane penetration (i.e. BCS Class III drugs), drug uptake and release enhancement or modification, protection of sensitive active pharmaceutical ingredients (APIs) from gastrointestinal degradation, a decrease of gastrointestinal adverse effects, and even masking of the bitter taste of orally delivered drugs are other uses. Phospholipid-based colloidal drug products can be tailored to address a wide variety of product requirements, including administration methods, cost, product stability, toxicity, and efficacy. Such formulations that are also a cost-effective method for developing medications for topical, oral, pulmonary, or parenteral administration. The originality of this review work is that we comprehensively evaluated the unique properties and special aspects of phospholipids and summarized how the individual phospholipids can be utilized in various types of lipid-based drug delivery systems, as well as listing newly marketed lipid-based products, patents, and continuing clinical trials of phospholipid-based therapeutic products. This review would be helpful for researchers responsible for formulation development and research into novel colloidal phospholipid-based drug delivery systems.
Collapse
Affiliation(s)
- Koilpillai Jebastin
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
28
|
Zhang L, Wahlgren M, Bergenståhl B. Oil-Based Delivery Control Release System Targeted to the Later Part of the Gastrointestinal Tract-A Mechanistic Study. Pharmaceutics 2022; 14:pharmaceutics14050896. [PMID: 35631482 PMCID: PMC9144740 DOI: 10.3390/pharmaceutics14050896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Oil-based drug delivery systems have been studied in different aspects. The present study proposes a new application for an oil-based delivery system, focusing on controlled release until the drug reaches the later part of the small intestine. Bulk surfactants and interfacial surfactants were added into the oil formulation to provide a better mechanistic understating of the lipolysis. Validation of the modified in vitro method shows the overall conversion from medium-chain triglyceride oil (MCT oil) to free fatty acids (FFA) of 100 ± 4% in five replicates. This fully converted level and high reproducibility are fundamental for the following investigations where any retarding effect can be distinguished from the experimental errors. The results show that viscosity and thermodynamic activity have limited retardation. Furthermore, the former may change the kinetics of lipolysis, while the latter changes the equilibrium level. The gel-forming retarder (ethylcellulose) displayed a strong effect. Whereas the lipolysis was significantly retarded (>50%) when the retarders altered the interfacial composition (poloxamer 407), degradable interfacial surfactants did not have the same effect. However, surface-active, lipolysis-resistant retarders with a high CMC did not show a retarding effect.
Collapse
|
29
|
Nakmode D, Bhavana V, Thakor P, Madan J, Singh PK, Singh SB, Rosenholm JM, Bansal KK, Mehra NK. Fundamental Aspects of Lipid-Based Excipients in Lipid-Based Product Development. Pharmaceutics 2022; 14:pharmaceutics14040831. [PMID: 35456665 PMCID: PMC9025782 DOI: 10.3390/pharmaceutics14040831] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
Poor aqueous solubility of drugs is still a foremost challenge in pharmaceutical product development. The use of lipids in designing formulations provides an opportunity to enhance the aqueous solubility and consequently bioavailability of drugs. Pre-dissolution of drugs in lipids, surfactants, or mixtures of lipid excipients and surfactants eliminate the dissolution/dissolving step, which is likely to be the rate-limiting factor for oral absorption of poorly water-soluble drugs. In this review, we exhaustively summarize the lipids excipients in relation to their classification, absorption mechanisms, and lipid-based product development. Methodologies utilized for the preparation of solid and semi-solid lipid formulations, applications, phase behaviour, and regulatory perspective of lipid excipients are discussed.
Collapse
Affiliation(s)
- Deepa Nakmode
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Pradip Thakor
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Jitender Madan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Pankaj Kumar Singh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Shashi Bala Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India;
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
| | - Kuldeep K. Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- Correspondence: (K.K.B.); (N.K.M.)
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
- Correspondence: (K.K.B.); (N.K.M.)
| |
Collapse
|
30
|
Bio-enabling strategies to mitigate the pharmaceutical food effect: a mini review. Int J Pharm 2022; 619:121695. [PMID: 35339633 DOI: 10.1016/j.ijpharm.2022.121695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/02/2022] [Accepted: 03/19/2022] [Indexed: 12/27/2022]
Abstract
The concomitant administration of oral drugs with food can result in significant changes in bioavailability, leading to variable pharmacokinetics and considerable clinical implications, such as over- or under-dosing. Consequently, there is increasing demand for bio-enabling formulation strategies to reduce variability in exposure between the fasted and fed state and/or mitigate the pharmaceutical food effect. The current review critically evaluates technologies that have been implemented to overcome the positive food effects of pharmaceutical drugs, including, lipid-based formulations, nanosized drug preparations, cyclodextrins, amorphisation and solid dispersions, prodrugs and salts. Additionally, improved insight into preclinical models for predicting the food effect is provided. Despite the wealth of research, this review demonstrates that application of optimal formulation strategies to mitigate the positive food effects and the evaluation in preclinical models is not a universal approach, and improved standardisation of models to predict the food effects would be desirable. Ultimately, the successful reformulation of specific drugs to eliminate the food effect provides a panoply of advantages for patients with regard to clinical efficacy and compliance.
Collapse
|
31
|
DoE-Based Solid Self-microemulsifying Drug Delivery System (S-SMEDDS) Approach for Improving the Dissolution Properties of Raltegravir Potassium. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09621-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Federer C, Claus V, Hock N, David Friedl J, Wibel R, Bernkop-Schnürch A. Charge-reversal nanoemulsions: A systematic investigation of phosphorylated PEG-based surfactants. Int J Pharm 2022; 613:121438. [PMID: 34973407 DOI: 10.1016/j.ijpharm.2021.121438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 11/15/2022]
Abstract
Surfactants bearing monophosphate esters with PEG of increasing chain length and different lipophilic tail structures were investigated to improve the effectiveness of enzyme triggered charge-converting nanoemulsions. The surfactants PEG-8-stearate, PEG-22-tocopheryl succinate (TPGS), PEG-3-oleate, PEG-9-oleate and PEG-9-lauryl ether were phosphorylated and incorporated in a self-emulsifying drug delivery system (SEDDS) exhibiting a defined PEG corona. To provide a positive zeta potential increasing amounts of the cationic surfactant benzalkonium chloride (BA) were incorporated. The effect of these PEG monophosphate esters (P-PEG-surfactants) was evaluated based on enzyme induced phosphate release and change in zeta potential. Significant enzyme induced charge conversion was observed for all P-PEG-surfactants, showing shifts from Δ3 mV to Δ31 mV. Surfactants comprising the shortest and longest PEG chain showed similar amplitudes (P-PEG-3-oleate: Δ11.9 mV; P-PEG-22-TPGS Δ10.2 mV), whereas P-PEG-8-stearate, P-PEG-9-oleate and P-PEG-9-lauryl ether bearing similarly long PEG chains but different lipophilic tail structures resulted in pronounced differences in amplitudes of Δ10.3 mV, Δ14.5 mV and Δ18.1 mV, respectively. Furthermore, an indirect correlation between the lipophilicity of P-PEG-surfactants and the obtained charge-reversing effect was observed. With the exception of P-PEG-lauryl ether, this charge-reversal effect decreased with increasing BA concentrations. In conclusion, the enzyme induced amplitude of charge conversion of P-PEG-surfactants depends to a high extent on their lipophilic tail structure. Based on this knowledge potent charge-reversal nanoemulsions can be designed.
Collapse
Affiliation(s)
- Christoph Federer
- Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria; Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Victor Claus
- Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria; Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Nathalie Hock
- Thiomatrix Forschungs- und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria; Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Julian David Friedl
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Richard Wibel
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
33
|
Seo EB, du Plessis LH, Viljoen JM. Solidification of Self-Emulsifying Drug Delivery Systems as a Novel Approach to the Management of Uncomplicated Malaria. Pharmaceuticals (Basel) 2022; 15:ph15020120. [PMID: 35215233 PMCID: PMC8877057 DOI: 10.3390/ph15020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Malaria affects millions of people annually, especially in third-world countries. The mainstay of treatment is oral anti-malarial drugs and vaccination. An increase in resistant strains of malaria parasites to most of the current anti-malarial drugs adds to the global burden. Moreover, existing and new anti-malarial drugs are hampered by significantly poor aqueous solubility and low permeability, resulting in low oral bioavailability and patient noncompliance. Lipid formulations are commonly used to increase solubility and efficacy and decrease toxicity. The present review discusses the findings from studies focusing on specialised oral lipophilic drug delivery systems, including self-emulsifying drug delivery systems (SEDDSs). SEDDSs facilitate the spontaneous formation of liquid emulsions that effectively solubilise the incorporated drugs into the gastrointestinal tract and thereby improve the absorption of poorly-soluble anti-malaria drugs. However, traditional SEDDSs are normally in liquid dosage forms, which are delivered orally to the site of absorption, and are hampered by poor stability. This paper discusses novel solidification techniques that can easily and economically be up-scaled due to already existing industrial equipment that could be utilised. This method could, furthermore, improve product stability and patient compliance. The possible impact that solid oral SEDDSs can play in the fight against malaria is highlighted.
Collapse
|
34
|
Wyttenbach N, Niederquell A, Ectors P, Kuentz M. Study and Computational Modeling of Fatty Acid Effects on Drug Solubility in Lipid-Based Systems. J Pharm Sci 2021; 111:1728-1738. [PMID: 34863971 DOI: 10.1016/j.xphs.2021.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
Lipid-based systems have many advantages in formulation of poorly water-soluble drugs but issues of a limited solvent capacity are often encountered in development. One of the possible solubilization approaches of especially basic drugs could be the addition of fatty acids to oils but currently, a systematic study is lacking. Therefore, the present work investigated apparently neutral and basic drugs in medium chain triglycerides (MCT) alone and with added either caproic acid (C6), caprylic acid (C8), capric acid (C10) or oleic acid (C18:1) at different levels (5 - 20%, w/w). A miniaturized solubility assay was used together with X-ray diffraction to analyze the residual solid and finally, solubility data were modeled using the conductor-like screening model for real solvents (COSMO-RS). Some drug bases had an MCT solubility of only a few mg/ml or less but addition of fatty acids provided in some formulations exceptional drug loading of up to about 20% (w/w). The solubility changes were in general more pronounced the shorter the chain length was and the longest oleic acid even displayed a negative effect in mixtures of celecoxib and fenofibrate. The COSMO-RS prediction accuracy was highly specific for the given compounds with root mean square errors (RMSE) ranging from an excellent 0.07 to a highest value of 1.12. The latter was obtained with the strongest model base pimozide for which a new solid form was found in some samples. In conclusion, targeting specific molecular interactions with the solute combined with mechanistic modeling provides new tools to advance lipid-based drug delivery.
Collapse
Affiliation(s)
- Nicole Wyttenbach
- F. Hoffmann-La Roche Ltd., Pharmaceutical Research & Early Development, Roche Innovation Center Basel, Grenzacherstr. 124, CH- 4070 Basel, Switzerland
| | - Andreas Niederquell
- University of Applied Sciences and Arts Northwest. Switzerland, Institute of Pharma Technology Hofackerstr. 30, CH- 4132 Muttenz, Switzerland
| | - Philipp Ectors
- F. Hoffmann-La Roche Ltd., Pharma Technical Development, Grenzacherstr. 124, CH-4070 Basel, Switzerland
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwest. Switzerland, Institute of Pharma Technology Hofackerstr. 30, CH- 4132 Muttenz, Switzerland.
| |
Collapse
|
35
|
Rajput A, Pingale P, Telange D, Chalikwar S, Borse V. Lymphatic transport system to circumvent hepatic metabolism for oral delivery of lipid-based nanocarriers. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
36
|
Formulation and In Vivo Evaluation of a Solid Self-Emulsifying Drug Delivery System Using Oily Liquid Tocotrienols as Model Active Substance. Pharmaceutics 2021; 13:pharmaceutics13111777. [PMID: 34834191 PMCID: PMC8621674 DOI: 10.3390/pharmaceutics13111777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Self-emulsifying drug delivery systems (SEDDS) can improve the oral bioavailability of poorly water-soluble drugs. Solid self-emulsifying drug delivery systems (s-SEDDS) offer several advantages including improved drug stability, ease of administration, and production. Most compounds employed in developing s-SEDDS are solid in nature, with a high amount of surfactants added. The aim of this study was to develop an s-SEDDS using a tocotrienol-rich fraction (TRF) as the model liquid active substance via a simple adsorption method. The solid formulation was developed using magnesium aluminosilicate as the carrier with 70% TRF and 30% surfactants (poloxamer and Labrasol®). The formulation showed good self-emulsification efficiency with stable emulsion formed, excellent powder flowability, and small emulsion droplet size of 210–277 nm. The s-SEDDS with combined surfactants (poloxamer and Labrasol®) showed a faster absorption rate compared to preparations with only a single surfactant and enhanced oral bioavailability (3.4–3.8 times higher) compared to the non-self-emulsifying oily preparation when administered at a fasted state in rats. In conclusion, an s-SEDDS containing a high amount of TRF was successfully developed. It may serve as a useful alternative to a liquid product with enhanced oral bioavailability and the added advantage of being a solid dosage form.
Collapse
|
37
|
Dhritlahre RK, Ruchika, Padwad Y, Saneja A. Self-emulsifying formulations to augment therapeutic efficacy of nutraceuticals: From concepts to clinic. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Khanfar M, Al-Nimry S, Attar S. Solid self nano-emulsifying system for the enhancement of dissolution and bioavailability of Prasugrel HCl: in vitro and in vivo studies. Pharm Dev Technol 2021; 26:1021-1033. [PMID: 34435939 DOI: 10.1080/10837450.2021.1973495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prasugrel Hydrochloride (PHCl) is an antiplatelet drug. It is a class II drug with variable bioavailability. The objective of this work was to enhance the solubility and hence the bioavailability and efficacy of PHCl. A Self Nano-Emulsifying Drug Delivery System (SNEDDS) was prepared using Kolliphor El, Maisine 35-1, and Transcutol P as surfactant, oil, and co-surfactant, respectively in a ratio 10:72:18 v/v%. The SNEDDS was converted into solid by adsorption onto Neusilin. In vitro release of the drug from SNEDDS in (pH = 4) at 37 °C and 75 rpm for 45 min was studied. The results were compared to those from the unprocessed PHCl and Lexar® (the commercial drug). In-vivo studies (platelet Aggregation and bleeding time) were conducted using rats as animal models. It was found that the particle size of the SNEDDS ranged between 80 and 155 nm and EE% was in the range of 90.2% ± 0.4. The release from SNEDDS was about 84% compared to around 25% from unprocessed PHCl and 65% from Lexar® after 15 min. The platelet aggregation of the formula was lower than the PHCl, and Lexar® indicating higher bioavailability. In conclusion, SNEDDS with high EE% was prepared and was successful in enhancing the solubility, dissolution rate, and the bioavailability.
Collapse
Affiliation(s)
- Mai Khanfar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Suhair Al-Nimry
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Shatha Attar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
39
|
Solid self emulsifying drug delivery system: Superior mode for oral delivery of hydrophobic cargos. J Control Release 2021; 337:646-660. [PMID: 34384795 DOI: 10.1016/j.jconrel.2021.08.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/11/2022]
Abstract
A significant proportion of recently approved drug molecules possess poor aqueous solubility which further restrains their desired bioavailability. Poor aqueous solubility of these drugs poses significant hurdles in development of novel drug delivery systems and achieving target response. Self-emulsifying drug delivery systems (SEDDS) emerged as an insightful approach for delivering highly hydrophobic entities to enhance their bioavailability. Conventional SEDDS were developed in a liquid form which owned numerous shortcomings like low stability and drug loading efficiency, fewer choices of dosage forms and irreversible precipitation of drug or excipients. To address these curbs solid-SEDDS (S-SEDDS) was introduced as an efficient strategy that combined advantages of solid dosage forms such as increased stability, portability and patient compliance along with substantial improvement in the bioavailability. S-SEDDS are isotropic mixtures of oil, surfactant, solvent and co-solvents generated by solidification of liquid or semisolid self-emulsifying ingredients onto powders. The present review highlights components of S-SEDDS, their peculiarities to be considered while designing solid dosage forms and various methods of fabrication. Lastly, key challenges faced during development, applications and future directions for the research in this area are thoroughly summarized.
Collapse
|
40
|
Koehl NJ, Shah S, Tenekam ID, Khamiakova T, Sauwen N, Vingerhoets S, Coppenolle H, Holm R. Lipid Based Formulations in Hard Gelatin and HPMC Capsules: a Physical Compatibility Study. Pharm Res 2021; 38:1439-1454. [PMID: 34378150 DOI: 10.1007/s11095-021-03088-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE To investigate the compatibility between hard gelatin and HPMC capsules with a range of different isotropic lipid based formulations containing multiple excipients. METHODS The miscibility was investigated for 350 systems applying five different oils (Labrafac ™ lipophile WL1349, Maisine® CC, Captex 300 EP/NF, olive oil, and Capmul MCM EP/NF), five different surfactans (Labrasol ® ALF, Labrafil M 2125 CS, Kolliphor ® ELP, Kolliphor ® HS 15, Tween 80) and three different cosolvents (propylene glycol, polyethylene glycol 400, and Transcutol ® HP). For the isotropic systems capsule compatibility was investigated in both gelatin and HPMC capsules at 25°C at 40% and 60% relative humidity by examining physical damages to the capsules and weight changes after storage. RESULTS The miscibility of lipid based vehicles was best when the formulation contained monoglycerides and surfactants with a hydrophilic-lipophilic balance value <12. Gelatin capsules in general resulted in a better compatibility when compared to HPMC capsules for the evaluated formulations. Addition of water to the formulation improved the capsule compatibility for both capsule types. The expected capsule mass change could partly be predicted in binary systems using the provided data of the single excipients weighted for its formulation proportion. CONCLUSIONS The capsule compatibility was driven by the components incorporated into the formulations, where more was compatible with gelatin than HPMC capsules. Prediction of the mass change from individual excipient contributions can provide a good first estimate if a vehicle is compatible with a capsule, however, this needs to be proved experimentally.
Collapse
Affiliation(s)
- Niklas J Koehl
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Sanket Shah
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Ingrid Djouka Tenekam
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Tatsiana Khamiakova
- Quantitative Sciences, Janssen Research and Development, Johnson and Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Nicolas Sauwen
- Open Analytics NV, Jupiterstraat 20, 2600, Antwerp, Belgium
| | - Sien Vingerhoets
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Hans Coppenolle
- Quantitative Sciences, Janssen Research and Development, Johnson and Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium. .,Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
41
|
Zhu Y, Ye J, Zhang Q. Self-emulsifying Drug Delivery System Improve Oral Bioavailability: Role of Excipients and Physico-chemical Characterization. Pharm Nanotechnol 2021; 8:290-301. [PMID: 32781978 DOI: 10.2174/2211738508666200811104240] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Self-emulsifying drug delivery system (SEDDS) is a kind of solid or liquid formulation composed of drugs, oil, surfactant and cosurfactant. It could form a fine emulsion (micro/nano) in the gastrointestinal tract after oral administration. Later on, the formed emulsion is absorbed through the lymphatic pathway. The oral bioavailability of drugs in SEDDS would be improved for bypassing the first-pass effect of the liver. Therefore, SEDDS has become a vital strategy to increase the oral bioavailability of poor watersoluble drugs. In addition, there is no aqueous phase in SEDDS, thus SEDDS is a homogeneous system, consequently being suitable for large-scale production and more stable than conventional emulsion. However, the role of formulation aspects in the biological property of SEDDS is not fully clear. In order to prepare the satisfying SEDDS to improve oral drug bioavailability, we need to fully understand the various factors that affect the in vivo behavior of SEDDS. In this review, we would explore the role of ingredient (drugs, oils, surfactant and cosurfactant) of SEDDS in increasing oral drug bioavailability. We would also discuss the effect of physicochemical property (particle size and zeta potential) of SEDDS on the oral drug bioavailability enhancement. This review would provide an approach to develop a rational SEDDS to improving oral drug bioavailability. Lay Summary: Self-emulsifying drug-delivery system (SEDDS) has been proven to be promising in ameliorating the oral bioavailability of poor water-soluble drugs. This review highlighted the influence of excipients and physicochemical property of SEDDS on the formation of emulsion and the oral absorption of drugs in the body.
Collapse
Affiliation(s)
- Yujin Zhu
- Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Jing Ye
- Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Quan Zhang
- Institute of Materia Medica, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
42
|
Algahtani MS, Mohammed AA, Ahmad J, Abdullah MM, Saleh E. 3D Printing of Dapagliflozin Containing Self-Nanoemulsifying Tablets: Formulation Design and In Vitro Characterization. Pharmaceutics 2021; 13:pharmaceutics13070993. [PMID: 34209066 PMCID: PMC8309195 DOI: 10.3390/pharmaceutics13070993] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/29/2022] Open
Abstract
The 3D printing techniques have been explored extensively in recent years for pharmaceutical manufacturing and drug delivery applications. The current investigation aims to explore 3D printing for the design and development of a nanomedicine-based oral solid dosage form of a poorly water-soluble drug. A self-nanoemulsifying tablet formulation of dapagliflozin propanediol monohydrate was developed utilizing the semisolid pressure-assisted microsyringe (PAM) extrusion-based 3D printing technique. The developed formulation system consists of two major components (liquid and solid phase), which include oils (caproyl 90, octanoic acid) and co-surfactant (PEG 400) as liquid phase while surfactant (poloxamer 188) and solid matrix (PEG 6000) as solid-phase excipients that ultimately self-nanoemulsify as a drug encapsulated nanoemulsion system on contact with aqueous phase/gastrointestinal fluid. The droplet size distribution of the generated nanoemulsion from a self-nanoemulsifying 3D printed tablet was observed to be 104.7 ± 3.36 nm with polydispersity index 0.063 ± 0.024. The FT-IR analysis of the printed tablet revealed that no drug-excipients interactions were observed. The DSC and X-RD analysis of the printed tablet revealed that the loaded drug is molecularly dispersed in the crystal lattice of the tablet solid matrix and remains solubilized in the liquid phase of the printed tablet. SEM image of the drug-loaded self-nanoemulsifying tablets revealed that dapagliflozin propanediol monohydrate was completely encapsulated in the solid matrix of the printed tablet, which was further confirmed by SEM-EDS analysis. The in vitro dissolution profile of dapagliflozin-loaded self-nanoemulsifying tablet revealed an immediate-release drug profile for all three sizes (8 mm, 10 mm, and 12 mm) tablets, exhibiting >75.0% drug release within 20 min. Thus, this study has emphasized the capability of the PAM-based 3D printing technique to print a self-nanoemulsifying tablet dosage form with an immediate-release drug profile for poorly water-soluble drug.
Collapse
Affiliation(s)
- Mohammed S. Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (A.A.M.)
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (A.A.M.)
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (A.A.M.)
- Correspondence: or ; Tel.: +966-175428744
| | - M. M. Abdullah
- Promising Centre for Sensors and Electronic Devices (PCSED), Department of Physics, College of Arts and Science, Najran University, Najran 11001, Saudi Arabia;
| | - Ehab Saleh
- Future Manufacturing Processes Research Group, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
43
|
Dual-Responsive Micellar Microgels Matrixed with Surface-Engineered Lipids: a New Approach for Controlled Vaginal Drug Delivery. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Pink DL, Loruthai O, Ziolek RM, Terry AE, Barlow DJ, Lawrence MJ, Lorenz CD. Interplay of lipid and surfactant: Impact on nanoparticle structure. J Colloid Interface Sci 2021; 597:278-288. [PMID: 33872884 DOI: 10.1016/j.jcis.2021.03.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 11/24/2022]
Abstract
Liquid lipid nanoparticles (LLN) are oil-in-water nanoemulsions of great interest in the delivery of hydrophobic drug molecules. They consist of a surfactant shell and a liquid lipid core. The small size of LLNs makes them difficult to study, yet a detailed understanding of their internal structure is vital in developing stable drug delivery vehicles (DDVs). Here, we implement machine learning techniques alongside small angle neutron scattering experiments and molecular dynamics simulations to provide critical insight into the conformations and distributions of the lipid and surfactant throughout the LLN. We simulate the assembly of a single LLN composed of the lipid, triolein (GTO), and the surfactant, Brij O10. Our work shows that the addition of surfactant is pivotal in the formation of a disordered lipid core; the even coverage of Brij O10 across the LLN shields the GTO from water and so the lipids adopt conformations that reduce crystallisation. We demonstrate the superior ability of unsupervised artificial neural networks in characterising the internal structure of DDVs, when compared to more conventional geometric methods. We have identified, clustered, classified and averaged the dominant conformations of lipid and surfactant molecules within the LLN, providing a multi-scale picture of the internal structure of LLNs.
Collapse
Affiliation(s)
- Demi L Pink
- Biological Physics and Soft Matter Group, Department of Physics, King's College London, London, WC2R 2LS, United Kingdom
| | - Orathai Loruthai
- Pharmaceutical Biophysics Group, Institute of Pharmaceutical Science, King's College London, London, SW1 9NH, United Kingdom
| | - Robert M Ziolek
- Biological Physics and Soft Matter Group, Department of Physics, King's College London, London, WC2R 2LS, United Kingdom
| | - Ann E Terry
- CoSAXS beamline, MAX IV Laboratory, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - David J Barlow
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Stopford Building, Oxford Road, Manchester, United Kingdom
| | - M Jayne Lawrence
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Stopford Building, Oxford Road, Manchester, United Kingdom.
| | - Christian D Lorenz
- Biological Physics and Soft Matter Group, Department of Physics, King's College London, London, WC2R 2LS, United Kingdom.
| |
Collapse
|
45
|
Johannesson J, Khan J, Hubert M, Teleki A, Bergström CA. 3D-printing of solid lipid tablets from emulsion gels. Int J Pharm 2021; 597:120304. [DOI: 10.1016/j.ijpharm.2021.120304] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/18/2023]
|
46
|
Alqahtani MS, Kazi M, Alsenaidy MA, Ahmad MZ. Advances in Oral Drug Delivery. Front Pharmacol 2021; 12:618411. [PMID: 33679401 PMCID: PMC7933596 DOI: 10.3389/fphar.2021.618411] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
The oral route is the most common route for drug administration. It is the most preferred route, due to its advantages, such as non-invasiveness, patient compliance and convenience of drug administration. Various factors govern oral drug absorption including drug solubility, mucosal permeability, and stability in the gastrointestinal tract environment. Attempts to overcome these factors have focused on understanding the physicochemical, biochemical, metabolic and biological barriers which limit the overall drug bioavailability. Different pharmaceutical technologies and drug delivery systems including nanocarriers, micelles, cyclodextrins and lipid-based carriers have been explored to enhance oral drug absorption. To this end, this review will discuss the physiological, and pharmaceutical barriers influencing drug bioavailability for the oral route of administration, as well as the conventional and novel drug delivery strategies. The challenges and development aspects of pediatric formulations will also be addressed.
Collapse
Affiliation(s)
- Mohammed S. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A. Alsenaidy
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Z. Ahmad
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
47
|
Dholakiya A, Dudhat K, Patel J, Mori D. An integrated QbD based approach of SMEDDS and liquisolid compacts to simultaneously improve the solubility and processability of hydrochlorthiazide. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Challenges and opportunities in the delivery of cancer therapeutics: update on recent progress. Ther Deliv 2020; 12:55-76. [PMID: 33307811 DOI: 10.4155/tde-2020-0079] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Global cancer prevalence has continuously increased in the last decades despite substantial progress achieved for patient care. Cancer is no longer recognized as a singular disease but as a plurality of different ones, leading to the important choice of the drug administration route and promoting the development of novel drug-delivery systems (DDS). Due to their structural diversity, therapeutic cancer drugs present specific challenges in physicochemical properties that can adversely affect their efficacy and toxicity profile. These challenges are addressed by innovative DDS to improve bioavailability, pharmacokinetics and biodistribution profiles. Here, we define the drug delivery challenges related to oral, intravenous, subcutaneous or alternative routes of administration, and review innovative DDS, marketed or in development, that answer those challenges.
Collapse
|
49
|
Timur SS, Gürsoy RN. Design and in vitro evaluation of solid SEDDS for breast cancer therapy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Grüne L, Bunjes H. Suitability of phosphatidylcholine-based formulations for liquid filling in hard capsules. Eur J Pharm Sci 2020; 153:105470. [DOI: 10.1016/j.ejps.2020.105470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 11/25/2022]
|