1
|
Kang JH, Yang JK, Cho KH, Lee OH, Kwon H, Kim SY, Kim S, Ko YT. Intracalvariosseous administration of donepezil microspheres protects against cognitive impairment by virtue of long-lasting brain exposure in mice. Theranostics 2024; 14:6708-6725. [PMID: 39479440 PMCID: PMC11519799 DOI: 10.7150/thno.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Rationale: Recent studies have demonstrated the direct connections between the skull bone marrow, meninges, and brain. In an effort to explore these connections for the purpose of brain drug delivery, we previously proposed the direct application of CNS drugs into the diploic space between the outer and inner cortex of the skull, namely, intracalvariosseous administration (ICO). It was successfully demonstrated that small molecular to large colloidal drugs can readily reach the brain after ICO in mice and rabbits. Here, we report that a single ICO of donepezil microspheres protects cognitive impairment in Alzheimer mouse models over a month-long period. Methods: Donepezil-loaded long-acting microspheres (DPZ@LAM) were prepared with biodegradable poly(DL-lactide-co-glycolide) (PLGA). Pharmacokinetic study and behavioral test were performed to determine the brain exposure and therapeutic effects after ICO of DPZ@LAM in scopolamine-induced memory-deficient mice. Results: DPZ@LAM were capable of a month-long and precisely controlled drug release. After a single ICO of DPZ@LAM, DPZ concentration in brain sustained above the effective therapeutic levels for four weeks. The long-lasting brain exposure also led to significantly recovered cognitive function in scopolamine-induced memory-deficient mice, along with decreased acetylcholinesterase activity and increased brain-derived neurotrophic factor. Conclusions: ICO allows for BBB-bypassing brain drug delivery through the direct connection between the skull bone marrow and brain, providing an alternative approach for the treatment of neurodegenerative diseases with otherwise BBB impermeable CNS drugs.
Collapse
Affiliation(s)
- Ji Hee Kang
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Jin-Kyoung Yang
- Department of Chemical Engineering, Dong-Eui University, Busan, 47340, Republic of Korea
| | - Kyo Hee Cho
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - O Hyun Lee
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Hayoon Kwon
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Sehoon Kim
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Young Tag Ko
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| |
Collapse
|
2
|
Madadi AK, Sohn MJ. Comprehensive Therapeutic Approaches to Tuberculous Meningitis: Pharmacokinetics, Combined Dosing, and Advanced Intrathecal Therapies. Pharmaceutics 2024; 16:540. [PMID: 38675201 PMCID: PMC11054600 DOI: 10.3390/pharmaceutics16040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Tuberculous meningitis (TBM) presents a critical neurologic emergency characterized by high mortality and morbidity rates, necessitating immediate therapeutic intervention, often ahead of definitive microbiological and molecular diagnoses. The primary hurdle in effective TBM treatment is the blood-brain barrier (BBB), which significantly restricts the delivery of anti-tuberculous medications to the central nervous system (CNS), leading to subtherapeutic drug levels and poor treatment outcomes. The standard regimen for initial TBM treatment frequently falls short, followed by adverse side effects, vasculitis, and hydrocephalus, driving the condition toward a refractory state. To overcome this obstacle, intrathecal (IT) sustained release of anti-TB medication emerges as a promising approach. This method enables a steady, uninterrupted, and prolonged release of medication directly into the cerebrospinal fluid (CSF), thus preventing systemic side effects by limiting drug exposure to the rest of the body. Our review diligently investigates the existing literature and treatment methodologies, aiming to highlight their shortcomings. As part of our enhanced strategy for sustained IT anti-TB delivery, we particularly seek to explore the utilization of nanoparticle-infused hydrogels containing isoniazid (INH) and rifampicin (RIF), alongside osmotic pump usage, as innovative treatments for TBM. This comprehensive review delineates an optimized framework for the management of TBM, including an integrated approach that combines pharmacokinetic insights, concomitant drug administration strategies, and the latest advancements in IT and intraventricular (IVT) therapy for CNS infections. By proposing a multifaceted treatment strategy, this analysis aims to enhance the clinical outcomes for TBM patients, highlighting the critical role of targeted drug delivery in overcoming the formidable challenges presented by the blood-brain barrier and the complex pathophysiology of TBM.
Collapse
Affiliation(s)
- Ahmad Khalid Madadi
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjin-gu, Busan 47392, Republic of Korea;
| | - Moon-Jun Sohn
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjin-gu, Busan 47392, Republic of Korea;
- Department of Neurosurgery, Neuroscience & Radiosurgery Hybrid Research Center, College of Medicine, Inje University Ilsan Paik Hospital, 170, Juhwa-ro, Ilsanseo-gu, Goyang City 10380, Republic of Korea
| |
Collapse
|
3
|
Sobel D, Ramasubramanian B, Sawhney P, Parmar K. Preparation of PLGA Microspheres Using the Non-Toxic Glycofurol as Polymer Solvent by a Modified Phase Inversion Methodology. Polymers (Basel) 2024; 16:434. [PMID: 38337323 DOI: 10.3390/polym16030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Poly(D,L-lactide-co-glycolide is a biodegradable copolymer that can release pharmaceuticals. These pharmaceuticals can provide local therapy and also avert the clinical issues that occur when a drug must be given continuously and/or automatically. However, the drawbacks of using poly(D,L-lactide-co-glycolide include the kinetics and duration of time of poly(D,L-lactide-co-glycolide drug release, the denaturing of the drug loaded drug, and the potential clinical side effects. These drawbacks are mainly caused by the volatile organic solvents needed to prepare poly(D,L-lactide-co-glycolide spheres. Using the non-toxic solvent glycofurol solvent instead of volatile organic solvents to construct poly(D,L-lactide-co-glycolide microspheres may deter the issues of using volatile organic solvents. Up to now, preparation of such glycofurol spheres has previously met with limited success. We constructed dexamethasone laden poly(D,L-lactide-co-glycolide microspheres utilizing glycofurol as the solvent within a modified phase inversion methodology. These prepared microspheres have a higher drug load and a lower rate of water diffusion. This prolongs drug release compared to dichloromethane constructed spheres. The glycofurol-generated spheres are also not toxic to target cells as is the case for dichloromethane-constructed spheres. Further, glycofurol-constructed spheres do not denature the dexamethasone molecule and have kinetics of drug release that are more clinically advantageous, including a lower drug burst and a prolonged drug release.
Collapse
Affiliation(s)
- Douglas Sobel
- Medical School, Georgetown University, Washington, DC 20057, USA
| | | | - Puja Sawhney
- Medical School, Georgetown University, Washington, DC 20057, USA
| | - Keerat Parmar
- Medical School, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
4
|
Stella GM, Lettieri S, Piloni D, Ferrarotti I, Perrotta F, Corsico AG, Bortolotto C. Smart Sensors and Microtechnologies in the Precision Medicine Approach against Lung Cancer. Pharmaceuticals (Basel) 2023; 16:1042. [PMID: 37513953 PMCID: PMC10385174 DOI: 10.3390/ph16071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND AND RATIONALE The therapeutic interventions against lung cancer are currently based on a fully personalized approach to the disease with considerable improvement of patients' outcome. Alongside continuous scientific progresses and research investments, massive technologic efforts, innovative challenges, and consolidated achievements together with research investments are at the bases of the engineering and manufacturing revolution that allows a significant gain in clinical setting. AIM AND METHODS The scope of this review is thus to focus, rather than on the biologic traits, on the analysis of the precision sensors and novel generation materials, as semiconductors, which are below the clinical development of personalized diagnosis and treatment. In this perspective, a careful revision and analysis of the state of the art of the literature and experimental knowledge is presented. RESULTS Novel materials are being used in the development of personalized diagnosis and treatment for lung cancer. Among them, semiconductors are used to analyze volatile cancer compounds and allow early disease diagnosis. Moreover, they can be used to generate MEMS which have found an application in advanced imaging techniques as well as in drug delivery devices. CONCLUSIONS Overall, these issues represent critical issues only partially known and generally underestimated by the clinical community. These novel micro-technology-based biosensing devices, based on the use of molecules at atomic concentrations, are crucial for clinical innovation since they have allowed the recent significant advances in cancer biology deciphering as well as in disease detection and therapy. There is an urgent need to create a stronger dialogue between technologists, basic researchers, and clinicians to address all scientific and manufacturing efforts towards a real improvement in patients' outcome. Here, great attention is focused on their application against lung cancer, from their exploitations in translational research to their application in diagnosis and treatment development, to ensure early diagnosis and better clinical outcomes.
Collapse
Affiliation(s)
- Giulia Maria Stella
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Sara Lettieri
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Davide Piloni
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Ilaria Ferrarotti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", 80131 Napoli, Italy
- U.O.C. Clinica Pneumologica "L. Vanvitelli", A.O. dei Colli, Ospedale Monaldi, 80131 Napoli, Italy
| | - Angelo Guido Corsico
- Department of Internal Medicine and Medical Therapeutics, University of Pavia Medical School, 27100 Pavia, Italy
- Cardiothoracic and Vascular Department, Unit of Respiratory Diseases, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Chandra Bortolotto
- Department of Clinical-Surgical, Diagnostic and Paediatric Sciences, University of Pavia Medical School, 27100 Pavia, Italy
- Department of Diagnostic Services and Imaging, Unit of Radiology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
5
|
A pH-Responsive Asymmetric Microfluidic/Chitosan Device for Drug Release in Infective Bone Defect Treatment. Int J Mol Sci 2023; 24:ijms24054616. [PMID: 36902046 PMCID: PMC10003349 DOI: 10.3390/ijms24054616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Bacterial infection is currently considered to be one of the major reasons that leads to the failure of guided bone regeneration (GBR) therapy. Under the normal condition, the pH is neutral, while the microenvironment will become acid at the sites of infection. Here, we present an asymmetric microfluidic/chitosan device that can achieve pH-responsive drug release to treat bacterial infection and promote osteoblast proliferation at the same time. On-demand release of minocycline relies on a pH-sensitive hydrogel actuator, which swells significantly when exposed to the acid pH of an infected region. The PDMAEMA hydrogel had pronounced pH-sensitive properties, and a large volume transition occurred at pH 5 and 6. Over 12 h, the device enabled minocycline solution flowrates of 0.51-1.63 µg/h and 0.44-1.13 µg/h at pH 5 and 6, respectively. The asymmetric microfluidic/chitosan device exhibited excellent capabilities for inhibiting Staphylococcus aureus and Streptococcus mutans growth within 24 h. It had no negative effect on proliferation and morphology of L929 fibroblasts and MC3T3-E1 osteoblasts, which indicates good cytocompatibility. Therefore, such a pH-responsive drug release asymmetric microfluidic/chitosan device could be a promising therapeutic approach in the treatment of infective bone defects.
Collapse
|
6
|
Rajan R, Pal K, Jayadev D, Jayan JS, U A, Appukuttan S, de Souza FG, Joseph K, Kumar SS. Polymeric Nanoparticles in Hybrid Catalytic Processing and Drug Delivery System. Top Catal 2022. [DOI: 10.1007/s11244-022-01697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Lee SH, Kim CR, Cho YC, Kim SN, Kim BH, Lee C, Ji HB, Han JH, Park CG, Hong H, Choy YB. Magnetically actuating implantable pump for the on-demand and needle-free administration of human growth hormone. Int J Pharm 2022; 618:121664. [PMID: 35292393 DOI: 10.1016/j.ijpharm.2022.121664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 11/28/2022]
Abstract
A bolus of human growth hormone (hGH) is often prescribed for the treatment of growth hormone deficiency, which requires frequent injections in current clinical settings. This painful needle-involved delivery often results in poor patient compliance, leading to low medication adherence and poor clinical outcomes. Therefore, we propose a magnetically actuating implantable pump (MAP) that can infuse an accurate dose of hGH only at the time of non-invasive magnet application from the skin. The MAP herein could reproducibly infuse 20.6 ± 0.9 μg hGH per actuation without any leak at times without actuation. The infused amount increased proportionally with an increase in the number of actuations. When the MAP was implanted and actuated with a magnet in animals with growth hormone deficiency for 21 days, the profiles of plasma hGH concentration and insulin-like growth factor (IGF)-1, as well as changes in body weight, were similar to those observed in animals treated with conventional subcutaneous hGH injections. Therefore, we anticipate that the MAP fabricated in this study can be a non-invasive alternative to administer hGH without repeated and frequent needle injections.
Collapse
Affiliation(s)
- Seung Ho Lee
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Cho Rim Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong Chan Cho
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Se-Na Kim
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Byung Hwi Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Han Bi Ji
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Hoon Han
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - HyeonJi Hong
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Young Bin Choy
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea; Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
8
|
Bhovi VK, Melinmath SP, Gowda R. A Review - Biodegradable Polymers and their Applications. Mini Rev Med Chem 2022; 22:2081-2101. [PMID: 35088668 DOI: 10.2174/1389557522666220128152847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
Polymers have an endless scope in the recent era due to their flexibility, amendment, and insertion of organic and inorganic active components into the polymer backbone. There is strong competition between natural and synthetic biodegradable polymers in the sense of biodegradability and compatibility with modern technology. Biodegradable polymers play a significant role in sustaining mankind on the earth due to non-environment hazards. These polymers play a crucial role in the area of biomedicine technology such as tissues engineering, preparation of different scaffolds, drug delivery systems, industrial, agriculture, and food packaging. Here, we probed on an assortment of types of applications, challenges, and limitations of biodegradable polymers in life.
Collapse
Affiliation(s)
- Venkatesh K Bhovi
- PG Studies and research in Chemistry, Vijayanagar College, Hosapete, Vijayanagar, Karnataka, India
| | - Sulochana P Melinmath
- PG Studies and research in Chemistry, Vijayanagar College, Hosapete, Vijayanagar, Karnataka, India
| | - Ranjith Gowda
- PG Studies and research in Chemistry, Vijayanagar College, Hosapete, Vijayanagar, Karnataka, India
| |
Collapse
|
9
|
Modeling programmable drug delivery in bioelectronics with electrochemical actuation. Proc Natl Acad Sci U S A 2021; 118:2026405118. [PMID: 33836613 DOI: 10.1073/pnas.2026405118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Drug delivery systems featuring electrochemical actuation represent an emerging class of biomedical technology with programmable volume/flowrate capabilities for localized delivery. Recent work establishes applications in neuroscience experiments involving small animals in the context of pharmacological response. However, for programmable delivery, the available flowrate control and delivery time models fail to consider key variables of the drug delivery system--microfluidic resistance and membrane stiffness. Here we establish an analytical model that accounts for the missing variables and provides a scalable understanding of each variable influence in the physics of delivery process (i.e., maximum flowrate, delivery time). This analytical model accounts for the key parameters--initial environmental pressure, initial volume, microfluidic resistance, flexible membrane, current, and temperature--to control the delivery and bypasses numerical simulations allowing faster system optimization for different in vivo experiments. We show that the delivery process is controlled by three nondimensional parameters, and the volume/flowrate results from the proposed analytical model agree with the numerical results and experiments. These results have relevance to the many emerging applications of programmable delivery in clinical studies within the neuroscience and broader biomedical communities.
Collapse
|
10
|
Turner BL, Senevirathne S, Kilgour K, McArt D, Biggs M, Menegatti S, Daniele MA. Ultrasound-Powered Implants: A Critical Review of Piezoelectric Material Selection and Applications. Adv Healthc Mater 2021; 10:e2100986. [PMID: 34235886 DOI: 10.1002/adhm.202100986] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Indexed: 12/14/2022]
Abstract
Ultrasound-powered implants (UPIs) represent cutting edge power sources for implantable medical devices (IMDs), as their powering strategy allows for extended functional lifetime, decreased size, increased implant depth, and improved biocompatibility. IMDs are limited by their reliance on batteries. While batteries proved a stable power supply, batteries feature relatively large sizes, limited life spans, and toxic material compositions. Accordingly, energy harvesting and wireless power transfer (WPT) strategies are attracting increasing attention by researchers as alternative reliable power sources. Piezoelectric energy scavenging has shown promise for low power applications. However, energy scavenging devices need be located near sources of movement, and the power stream may suffer from occasional interruptions. WPT overcomes such challenges by more stable, on-demand power to IMDs. Among the various forms of WPT, ultrasound powering offers distinct advantages such as low tissue-mediated attenuation, a higher approved safe dose (720 mW cm-2 ), and improved efficiency at smaller device sizes. This study presents and discusses the state-of-the-art in UPIs by reviewing piezoelectric materials and harvesting devices including lead-based inorganic, lead-free inorganic, and organic polymers. A comparative discussion is also presented of the functional material properties, architecture, and performance metrics, together with an overview of the applications where UPIs are being deployed.
Collapse
Affiliation(s)
- Brendan L. Turner
- Joint Department of Biomedical Engineering North Carolina State University and University of North Carolina Chapel Hill, 911 Oval Dr. Raleigh NC 27695 USA
| | - Seedevi Senevirathne
- The Patrick G Johnston Centre for Cancer Research Queen's University 97 Lisburn Rd Belfast BT9 7AE UK
| | - Katie Kilgour
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC 27695 USA
| | - Darragh McArt
- The Patrick G Johnston Centre for Cancer Research Queen's University 97 Lisburn Rd Belfast BT9 7AE UK
| | - Manus Biggs
- Centre for Research in Medical Devices National University of Ireland Newcastle Road Galway H91 W2TY Ireland
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh NC 27695 USA
| | - Michael A. Daniele
- Joint Department of Biomedical Engineering North Carolina State University and University of North Carolina Chapel Hill, 911 Oval Dr. Raleigh NC 27695 USA
- Department of Electrical and Computer Engineering North Carolina State University 890 Oval Dr. Raleigh NC 27695 USA
| |
Collapse
|
11
|
Liu Y, Sun L, Zhang H, Shang L, Zhao Y. Microfluidics for Drug Development: From Synthesis to Evaluation. Chem Rev 2021; 121:7468-7529. [PMID: 34024093 DOI: 10.1021/acs.chemrev.0c01289] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug development is a long process whose main content includes drug synthesis, drug delivery, and drug evaluation. Compared with conventional drug development procedures, microfluidics has emerged as a revolutionary technology in that it offers a miniaturized and highly controllable environment for bio(chemical) reactions to take place. It is also compatible with analytical strategies to implement integrated and high-throughput screening and evaluations. In this review, we provide a comprehensive summary of the entire microfluidics-based drug development system, from drug synthesis to drug evaluation. The challenges in the current status and the prospects for future development are also discussed. We believe that this review will promote communications throughout diversified scientific and engineering communities that will continue contributing to this burgeoning field.
Collapse
Affiliation(s)
- Yuxiao Liu
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Zhang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Luoran Shang
- Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
12
|
Wang Y, Li Z, Hu Q. Emerging self-regulated micro/nano drug delivery devices: A step forward towards intelligent diagnosis and therapy. NANO TODAY 2021; 38:101127. [DOI: 10.1016/j.nantod.2021.101127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Agarwal P, Greene DG, Sherman S, Wendl K, Vega L, Park H, Shimanovich R, Reid DL. Structural characterization and developability assessment of sustained release hydrogels for rapid implementation during preclinical studies. Eur J Pharm Sci 2021; 158:105689. [PMID: 33359482 DOI: 10.1016/j.ejps.2020.105689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/12/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
Sustained-release formulations are important tools to convert efficacious molecules into therapeutic products. Hydrogels enable the rapid assessment of sustained-release strategies, which are important during preclinical development where drug quantities are limited and fast turnaround times are the norm. Most research in hydrogel-based drug delivery has focused around synthesizing new materials and polymers, with limited focus on structural characterization, technology developability and implementation. Two commercially available thermosensitive hydrogel systems, comprised of block copolymers of poly(lactic-co-glycolic acid)-b-poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (PLGA) and poly(lactide-co-caprolactone)-b-poly(ethyleneglycol)-b-poly(lactide-co-caprolactone) (PLCL), were evaluated during this study. The two block copolymers described in the study were successfully formulated to form hydrogels which delayed the release of lysozyme (> 20 days) in vitro. Characterization of formulation attributes of the hydrogels like Tsol-gel temperature, complex viscosity and injection force showed that these systems are amenable to rapid implementation in preclinical studies. Understanding the structure of the gel network is critical to determine the factors controlling the release of therapeutics out of these gels. The structures were characterized via the gel mesh sizes, which were estimated using two orthogonal techniques: small angle X-ray scattering (SAXS) and rheology. The mesh sizes of these hydrogels were larger than the hydrodynamic radius (size) of lysozyme (drug), indicating that release through these gels is expected to be diffusive at all time scales rather than sub-diffusive. In vitro drug release experiments confirm that diffusion is the dominating mechanism for lysozyme release; with no contribution from degradation, erosion, relaxation, swelling of the polymer network or drug-polymer interactions. PLGA hydrogel was found to have a much higher complex viscosity than PLCL hydrogel, which correlates with the slower diffusivity and release of lysozyme seen from the PLGA hydrogel as compared to PLCL hydrogel. This is due to the increased frictional drag experienced by the lysozyme molecule in the PLGA hydrogel network, as described by the hydrodynamic theory.
Collapse
Affiliation(s)
- Prashant Agarwal
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States.
| | - Daniel G Greene
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States
| | - Scott Sherman
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States
| | - Kaitlyn Wendl
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States
| | - Leonela Vega
- Final Product Technologies, Process Development, Amgen Inc., 360 Binney St, Cambridge, MA 02142, United States
| | - Hyunsoo Park
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States
| | - Roman Shimanovich
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States
| | - Darren L Reid
- Drug Product Technologies, Process Development, Amgen, Inc., 360 Binney St, Cambridge, MA 02142, United States
| |
Collapse
|
14
|
Fang Y, Meng L, Prominski A, Schaumann EN, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020. [PMID: 32672777 DOI: 10.1039/d1030cs00333f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Fang Y, Meng L, Prominski A, Schaumann E, Seebald M, Tian B. Recent advances in bioelectronics chemistry. Chem Soc Rev 2020; 49:7978-8035. [PMID: 32672777 PMCID: PMC7674226 DOI: 10.1039/d0cs00333f] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Research in bioelectronics is highly interdisciplinary, with many new developments being based on techniques from across the physical and life sciences. Advances in our understanding of the fundamental chemistry underlying the materials used in bioelectronic applications have been a crucial component of many recent discoveries. In this review, we highlight ways in which a chemistry-oriented perspective may facilitate novel and deep insights into both the fundamental scientific understanding and the design of materials, which can in turn tune the functionality and biocompatibility of bioelectronic devices. We provide an in-depth examination of several developments in the field, organized by the chemical properties of the materials. We conclude by surveying how some of the latest major topics of chemical research may be further integrated with bioelectronics.
Collapse
Affiliation(s)
- Yin Fang
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Erik Schaumann
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Seebald
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- The Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
16
|
Villarruel Mendoza LA, Scilletta NA, Bellino MG, Desimone MF, Catalano PN. Recent Advances in Micro-Electro-Mechanical Devices for Controlled Drug Release Applications. Front Bioeng Biotechnol 2020; 8:827. [PMID: 32850709 PMCID: PMC7405504 DOI: 10.3389/fbioe.2020.00827] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/29/2020] [Indexed: 01/27/2023] Open
Abstract
In recent years, controlled release of drugs has posed numerous challenges with the aim of optimizing parameters such as the release of the suitable quantity of drugs in the right site at the right time with the least invasiveness and the greatest possible automation. Some of the factors that challenge conventional drug release include long-term treatments, narrow therapeutic windows, complex dosing schedules, combined therapies, individual dosing regimens, and labile active substance administration. In this sense, the emergence of micro-devices that combine mechanical and electrical components, so called micro-electro-mechanical systems (MEMS) can offer solutions to these drawbacks. These devices can be fabricated using biocompatible materials, with great uniformity and reproducibility, similar to integrated circuits. They can be aseptically manufactured and hermetically sealed, while having mobile components that enable physical or analytical functions together with electrical components. In this review we present recent advances in the generation of MEMS drug delivery devices, in which various micro and nanometric structures such as contacts, connections, channels, reservoirs, pumps, valves, needles, and/or membranes can be included in their design and manufacture. Implantable single and multiple reservoir-based and transdermal-based MEMS devices are discussed in terms of fundamental mechanisms, fabrication, performance, and drug release applications.
Collapse
Affiliation(s)
| | - Natalia Antonela Scilletta
- Departamento de Micro y Nanotecnologia, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, San Martín, Argentina
| | | | - Martin Federico Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de la Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Paolo Nicolas Catalano
- Departamento de Micro y Nanotecnologia, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, San Martín, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
17
|
Zhang Y, Castro DC, Han Y, Wu Y, Guo H, Weng Z, Xue Y, Ausra J, Wang X, Li R, Wu G, Vázquez-Guardado A, Xie Y, Xie Z, Ostojich D, Peng D, Sun R, Wang B, Yu Y, Leshock JP, Qu S, Su CJ, Shen W, Hang T, Banks A, Huang Y, Radulovic J, Gutruf P, Bruchas MR, Rogers JA. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc Natl Acad Sci U S A 2019; 116:21427-21437. [PMID: 31601737 PMCID: PMC6815115 DOI: 10.1073/pnas.1909850116] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pharmacology and optogenetics are widely used in neuroscience research to study the central and peripheral nervous systems. While both approaches allow for sophisticated studies of neural circuitry, continued advances are, in part, hampered by technology limitations associated with requirements for physical tethers that connect external equipment to rigid probes inserted into delicate regions of the brain. The results can lead to tissue damage and alterations in behavioral tasks and natural movements, with additional difficulties in use for studies that involve social interactions and/or motions in complex 3-dimensional environments. These disadvantages are particularly pronounced in research that demands combined optogenetic and pharmacological functions in a single experiment. Here, we present a lightweight, wireless, battery-free injectable microsystem that combines soft microfluidic and microscale inorganic light-emitting diode probes for programmable pharmacology and optogenetics, designed to offer the features of drug refillability and adjustable flow rates, together with programmable control over the temporal profiles. The technology has potential for large-scale manufacturing and broad distribution to the neuroscience community, with capabilities in targeting specific neuronal populations in freely moving animals. In addition, the same platform can easily be adapted for a wide range of other types of passive or active electronic functions, including electrical stimulation.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Daniel C Castro
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195
| | - Yuan Han
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, 200031 Shanghai, China
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 221004 Xuzhou, China
| | - Yixin Wu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Hexia Guo
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Zhengyan Weng
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211
| | - Yeguang Xue
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
| | - Jokubas Ausra
- Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721
| | - Xueju Wang
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211
| | - Rui Li
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, 116024 Dalian, China
- International Research Center for Computational Mechanics, Dalian University of Technology, 116024 Dalian, China
| | - Guangfu Wu
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211
| | | | - Yiwen Xie
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Zhaoqian Xie
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, 116024 Dalian, China
| | - Diana Ostojich
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Dongsheng Peng
- College of Optoelectronic Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Rujie Sun
- Bristol Composites Institute, University of Bristol, BS8 1TR Bristol, United Kingdom
| | - Binbin Wang
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211
| | | | - John P Leshock
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Subing Qu
- Department of Materials Science and Engineering, Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Chun-Ju Su
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Wen Shen
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX 76019
| | - Tao Hang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Anthony Banks
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Yonggang Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL 60611
| | - Philipp Gutruf
- Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721;
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195;
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208;
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
18
|
Zhang Y, Mickle AD, Gutruf P, McIlvried LA, Guo H, Wu Y, Golden JP, Xue Y, Grajales-Reyes JG, Wang X, Krishnan S, Xie Y, Peng D, Su CJ, Zhang F, Reeder JT, Vogt SK, Huang Y, Rogers JA, Gereau RW. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. SCIENCE ADVANCES 2019; 5:eaaw5296. [PMID: 31281895 PMCID: PMC6611690 DOI: 10.1126/sciadv.aaw5296] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/29/2019] [Indexed: 05/14/2023]
Abstract
Studies of the peripheral nervous system rely on controlled manipulation of neuronal function with pharmacologic and/or optogenetic techniques. Traditional hardware for these purposes can cause notable damage to fragile nerve tissues, create irritation at the biotic/abiotic interface, and alter the natural behaviors of animals. Here, we present a wireless, battery-free device that integrates a microscale inorganic light-emitting diode and an ultralow-power microfluidic system with an electrochemical pumping mechanism in a soft platform that can be mounted onto target peripheral nerves for programmed delivery of light and/or pharmacological agents in freely moving animals. Biocompliant designs lead to minimal effects on overall nerve health and function, even with chronic use in vivo. The small size and light weight construction allow for deployment as fully implantable devices in mice. These features create opportunities for studies of the peripheral nervous system outside of the scope of those possible with existing technologies.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Aaron D. Mickle
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO 63110, USA
- Washington University School of Medicine, 660 S. Euclid Ave., Box 8054, St. Louis, MO 63110, USA
| | - Philipp Gutruf
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Biomedical Engineering, College of Engineering, The University of Arizona, Bioscience Research Laboratories, 1230 N. Cherry Ave., Tucson, AZ 85721, USA
| | - Lisa A. McIlvried
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO 63110, USA
- Washington University School of Medicine, 660 S. Euclid Ave., Box 8054, St. Louis, MO 63110, USA
| | - Hexia Guo
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yixin Wu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Judith P. Golden
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO 63110, USA
- Washington University School of Medicine, 660 S. Euclid Ave., Box 8054, St. Louis, MO 63110, USA
| | - Yeguang Xue
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jose G. Grajales-Reyes
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO 63110, USA
- Washington University School of Medicine, 660 S. Euclid Ave., Box 8054, St. Louis, MO 63110, USA
| | - Xueju Wang
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Siddharth Krishnan
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yiwen Xie
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Dongsheng Peng
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chun-Ju Su
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Fengyi Zhang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Jonathan T. Reeder
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Sherri K. Vogt
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO 63110, USA
- Washington University School of Medicine, 660 S. Euclid Ave., Box 8054, St. Louis, MO 63110, USA
| | - Yonggang Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - John A. Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Corresponding author. (J.A.R.); (R.W.G.)
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO 63110, USA
- Washington University School of Medicine, 660 S. Euclid Ave., Box 8054, St. Louis, MO 63110, USA
- Departments of Neuroscience and Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
- Corresponding author. (J.A.R.); (R.W.G.)
| |
Collapse
|
19
|
Pons-Faudoa FP, Ballerini A, Sakamoto J, Grattoni A. Advanced implantable drug delivery technologies: transforming the clinical landscape of therapeutics for chronic diseases. Biomed Microdevices 2019; 21:47. [PMID: 31104136 PMCID: PMC7161312 DOI: 10.1007/s10544-019-0389-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chronic diseases account for the majority of all deaths worldwide, and their prevalence is expected to escalate in the next 10 years. Because chronic disorders require long-term therapy, the healthcare system must address the needs of an increasing number of patients. The use of new drug administration routes, specifically implantable drug delivery devices, has the potential to reduce treatment-monitoring clinical visits and follow-ups with healthcare providers. Also, implantable drug delivery devices can be designed to maintain drug concentrations in the therapeutic window to achieve controlled, continuous release of therapeutics over extended periods, eliminating the risk of patient non-compliance to oral treatment. A higher local drug concentration can be achieved if the device is implanted in the affected tissue, reducing systemic adverse side effects and decreasing the challenges and discomfort of parenteral treatment. Although implantable drug delivery devices have existed for some time, interest in their therapeutic potential is growing, with a global market expected to reach over $12 billion USD by 2018. This review discusses implantable drug delivery technologies in an advanced stage of development or in clinical use and focuses on the state-of-the-art of reservoir-based implants including pumps, electromechanical systems, and polymers, sites of implantation and side effects, and deployment in developing countries.
Collapse
Affiliation(s)
- Fernanda P Pons-Faudoa
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Avenida Eugenio Garza Sada 2501, 64849, Monterrey, NL, Mexico
| | - Andrea Ballerini
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
- Department of Oncology and Onco-Hematology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Jason Sakamoto
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
- Department of Surgery, Houston Methodist Hospital, 6550 Fannin Street, Houston, TX, 77030, USA.
- Department of Radiation Oncology, Houston Methodist Hospital, 6550 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Shatz W, Aaronson J, Yohe S, Kelley RF, Kalia YN. Strategies for modifying drug residence time and ocular bioavailability to decrease treatment frequency for back of the eye diseases. Expert Opin Drug Deliv 2018; 16:43-57. [PMID: 30488721 DOI: 10.1080/17425247.2019.1553953] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Treating posterior eye diseases has become a major area of focus for pharmaceutical and biotechnology companies. Current standard of care for treating posterior eye diseases relies on administration via intravitreal injection. Although effective, this is not without complications and there is great incentive to develop longer-acting therapeutics and/or sustained release delivery systems. Here, we present an overview of emerging technologies for delivery of biologics to the back of the eye. AREAS COVERED Posterior eye diseases, intravitreal injection, age-related macular degeneration, anti-VEGF, ocular pharmacokinetics, novel technologies to extend half-life, in vivo models, translation to the clinic, and hurdles to effective patient care. EXPERT OPINION Posterior eye diseases are a worldwide public health issue. Although anti-VEGF molecules represent a major advance for treating diseases involving choroidal neovascularization, frequent injection can be burdensome for patients and clinicians. There is a need for effective and patient-friendly treatments for posterior eye diseases. Many technologies that enable long-acting delivery to the back of the eye are being evaluated. However, successful development of novel therapies and delivery technologies is hampered by a multitude of factors, including patient education, translatability of in vitro/in vivo preclinical data to the clinic, and regulatory challenges associated with novel technologies.
Collapse
Affiliation(s)
- Whitney Shatz
- a Department of Protein Chemistry , Genentech , South San Francisco , CA , USA.,b School of Pharmaceutical Sciences , University of Geneva & University of Lausanne , Geneva , Switzerland
| | - Jeffrey Aaronson
- c Department of Drug Delivery , Genentech , South San Francisco , CA , USA
| | - Stefan Yohe
- c Department of Drug Delivery , Genentech , South San Francisco , CA , USA
| | - Robert F Kelley
- c Department of Drug Delivery , Genentech , South San Francisco , CA , USA
| | - Yogeshvar N Kalia
- b School of Pharmaceutical Sciences , University of Geneva & University of Lausanne , Geneva , Switzerland
| |
Collapse
|
21
|
Reddy S, He L, Ramakrishana S. Miniaturized-electroneurostimulators and self-powered/rechargeable implanted devices for electrical-stimulation therapy. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2017.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Abstract
Over the last century, there has been a dramatic change in the nature of therapeutic, biologically active molecules available to treat disease. Therapies have evolved from extracted natural products towards rationally designed biomolecules, including small molecules, engineered proteins and nucleic acids. The use of potent drugs which target specific organs, cells or biochemical pathways, necessitates new tools which can enable controlled delivery and dosing of these therapeutics to their biological targets. Here, we review the miniaturisation of drug delivery systems from the macro to nano-scale, focussing on controlled dosing and controlled targeting as two key parameters in drug delivery device design. We describe how the miniaturisation of these devices enables the move from repeated, systemic dosing, to on-demand, targeted delivery of therapeutic drugs and highlight areas of focus for the future.
Collapse
Affiliation(s)
- Derfogail Delcassian
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,b Department of Anaesthesiology , Boston Children's Hospital, Harvard Medical School , Boston , MA , USA.,c Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy , University of Nottingham , Nottingham , UK
| | - Asha K Patel
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,d Division of Cancer and Stem Cells, School of Medicine, and Division of Advanced Materials and Healthcare Technologies, School of Pharmacy , University of Nottingham , Nottingham , UK
| | - Abel B Cortinas
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,e Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Robert Langer
- a David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,e Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , MA , USA.,f Institute for Medical Engineering and Science , Massachusetts Institute of Technology , Cambridge , MA , USA.,g Media Lab , Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
23
|
Adams SD, Kouzani AZ, Tye SJ, Bennet KE, Berk M. An investigation into closed-loop treatment of neurological disorders based on sensing mitochondrial dysfunction. J Neuroeng Rehabil 2018; 15:8. [PMID: 29439744 PMCID: PMC5811973 DOI: 10.1186/s12984-018-0349-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
Dynamic feedback based closed-loop medical devices offer a number of advantages for treatment of heterogeneous neurological conditions. Closed-loop devices integrate a level of neurobiological feedback, which allows for real-time adjustments to be made with the overarching aim of improving treatment efficacy and minimizing risks for adverse events. One target which has not been extensively explored as a potential feedback component in closed-loop therapies is mitochondrial function. Several neurodegenerative and psychiatric disorders including Parkinson's disease, Major Depressive disorder and Bipolar disorder have been linked to perturbations in the mitochondrial respiratory chain. This paper investigates the potential to monitor this mitochondrial function as a method of feedback for closed-loop neuromodulation treatments. A generic model of the closed-loop treatment is developed to describe the high-level functions of any system designed to control neural function based on mitochondrial response to stimulation, simplifying comparison and future meta-analysis. This model has four key functional components including: a sensor, signal manipulator, controller and effector. Each of these components are described and several potential technologies for each are investigated. While some of these candidate technologies are quite mature, there are still technological gaps remaining. The field of closed-loop medical devices is rapidly evolving, and whilst there is a lot of interest in this area, widespread adoption has not yet been achieved due to several remaining technological hurdles. However, the significant therapeutic benefits offered by this technology mean that this will be an active area for research for years to come.
Collapse
Affiliation(s)
- Scott D. Adams
- School of Engineering, Deakin University, Geelong, VIC 3216 Australia
| | - Abbas Z. Kouzani
- School of Engineering, Deakin University, Geelong, VIC 3216 Australia
| | - Susannah J. Tye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905 USA
| | - Kevin E. Bennet
- Division of Engineering, Mayo Clinic, Rochester, MN 55905 USA
| | - Michael Berk
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216 Australia
| |
Collapse
|
24
|
Intrathecal Baclofen Therapy for the Control of Spasticity. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Lee SH, Lee YB, Kim BH, Lee C, Cho YM, Kim SN, Park CG, Cho YC, Choy YB. Implantable batteryless device for on-demand and pulsatile insulin administration. Nat Commun 2017; 8:15032. [PMID: 28406149 PMCID: PMC5399301 DOI: 10.1038/ncomms15032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Many implantable systems have been designed for long-term, pulsatile delivery of insulin, but the lifetime of these devices is limited by the need for battery replacement and consequent replacement surgery. Here we propose a batteryless, fully implantable insulin pump that can be actuated by a magnetic field. The pump is prepared by simple-assembly of magnets and constituent units and comprises a drug reservoir and actuator equipped with a plunger and barrel, each assembled with a magnet. The plunger moves to noninvasively infuse insulin only when a magnetic field is applied on the exterior surface of the body. Here we show that the dose is easily controlled by varying the number of magnet applications. Also, pump implantation in diabetic rats results in profiles of insulin concentration and decreased blood glucose levels similar to those observed in rats treated with conventional subcutaneous insulin injections.
Collapse
Affiliation(s)
- Seung Ho Lee
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Young Bin Lee
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Hwi Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Young Min Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Se-Na Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chun Gwon Park
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Yong-Chan Cho
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Bin Choy
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
26
|
Li J, Wang X. Research Update: Materials design of implantable nanogenerators for biomechanical energy harvesting. APL MATERIALS 2017; 5:073801. [PMID: 29270331 PMCID: PMC5734651 DOI: 10.1063/1.4978936] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/07/2017] [Indexed: 05/22/2023]
Abstract
Implantable nanogenerators are rapidly advanced recently as a promising concept for harvesting biomechanical energy in vivo. This review article presents an overview of the most current progress of implantable piezoelectric nanogenerator (PENG) and triboelectric nanogenerator (TENG) with a focus on materials selection, engineering, and assembly. The evolution of the PENG materials is discussed from ZnO nanostructures, to high-performance ferroelectric perovskites, to flexible piezoelectric polymer mesostructures. Discussion of TENGs is focused on the materials and surface features of friction layers, encapsulation materials, and device integrations. Challenges faced by this promising technology and possible future research directions are also discussed.
Collapse
|
27
|
Agrahari V, Agrahari V, Mandal A, Pal D, Mitra AK. How are we improving the delivery to back of the eye? Advances and challenges of novel therapeutic approaches. Expert Opin Drug Deliv 2016; 14:1145-1162. [DOI: 10.1080/17425247.2017.1272569] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Vibhuti Agrahari
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Vivek Agrahari
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Abhirup Mandal
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Dhananjay Pal
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Ashim K. Mitra
- School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
28
|
Worthington KS, Wiley LA, Mullins RF, Tucker BA, Nuxoll E. Prevascularized silicon membranes for the enhancement of transport to implanted medical devices. J Biomed Mater Res B Appl Biomater 2016; 104:1602-1609. [PMID: 26316050 DOI: 10.1002/jbm.b.33506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/31/2015] [Accepted: 08/14/2015] [Indexed: 12/25/2022]
Abstract
Recent advances in drug delivery and sensing devices for in situ applications are limited by the diffusion-limiting foreign body response of fibrous encapsulation. In this study, we fabricated prevascularized synthetic device ports to help mitigate this limitation. Membranes with rectilinear arrays of square pores with widths ranging from 40 to 200 μm were created using materials (50 μm thick double-sided polished silicon) and processes (photolithography and directed reactive ion etching) common in the manufacturing of microfabricated sensors. Vascular endothelial cells responded to membrane geometry by either forming vascular tubes that extended through the pore or completely filling membrane pores after 4 days in culture. Although tube formation began to predominate overgrowth around 75 μm and continued to increase at even larger pore sizes, tubes formed at these large pore sizes were not completely round and had relatively thin walls. Thus, the optimum range of pore size for prevascularization of these membranes was estimated to be 75-100 μm. This study lays the foundation for creating a prevascularized port that can be used to reduce fibrous encapsulation and thus enhance diffusion to implanted medical devices and sensors. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1602-1609, 2016.
Collapse
Affiliation(s)
- Kristan S Worthington
- Stephen A. Wynn Institute for Vision Research, Department of Opthamology and Visual Sciences, The University of Iowa, Iowa City, Iowa
| | - Luke A Wiley
- Stephen A. Wynn Institute for Vision Research, Department of Opthamology and Visual Sciences, The University of Iowa, Iowa City, Iowa
| | - Robert F Mullins
- Stephen A. Wynn Institute for Vision Research, Department of Opthamology and Visual Sciences, The University of Iowa, Iowa City, Iowa
| | - Budd A Tucker
- Stephen A. Wynn Institute for Vision Research, Department of Opthamology and Visual Sciences, The University of Iowa, Iowa City, Iowa
| | - Eric Nuxoll
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, Iowa.
| |
Collapse
|
29
|
Sepahvandi A, Eskandari M, Moztarzadeh F. Drug Delivery Systems to the Posterior Segment of the Eye: Implants and Nanoparticles. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0219-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Microfabrication for Drug Delivery. MATERIALS 2016; 9:ma9080646. [PMID: 28773770 PMCID: PMC5509096 DOI: 10.3390/ma9080646] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/14/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022]
Abstract
This review is devoted to discussing the application of microfabrication technologies to target challenges encountered in life processes by the development of drug delivery systems. Recently, microfabrication has been largely applied to solve health and pharmaceutical science issues. In particular, fabrication methods along with compatible materials have been successfully designed to produce multifunctional, highly effective drug delivery systems. Microfabrication offers unique tools that can tackle problems in this field, such as ease of mass production with high quality control and low cost, complexity of architecture design and a broad range of materials. Presented is an overview of silicon- and polymer-based fabrication methods that are key in the production of microfabricated drug delivery systems. Moreover, the efforts focused on studying the biocompatibility of materials used in microfabrication are analyzed. Finally, this review discusses representative ways microfabrication has been employed to develop systems delivering drugs through the transdermal and oral route, and to improve drug eluting implants. Additionally, microfabricated vaccine delivery systems are presented due to the great impact they can have in obtaining a cold chain-free vaccine, with long-term stability. Microfabrication will continue to offer new, alternative solutions for the development of smart, advanced drug delivery systems.
Collapse
|
31
|
Abstract
Technology is the prominent feature of the twenty-first century, including in medicine. There are very few organs that cannot be stimulated, shocked, or infused. With more and more implantable devices being approved for clinical use, anesthesiologists have to regularly take care of patients who have these devices. An understanding of the devices, the associated comorbidities, and the perioperative risks is crucial for safe management of these patients. Cardiac devices are discussed in some detail; neurostimulators and other implantable devices are briefly described. The principles of assessment and management are similar for all patients with implanted devices.
Collapse
Affiliation(s)
- Ana Costa
- Department of Anesthesiology, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794-8480, USA.
| | - Deborah C Richman
- Department of Anesthesiology, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794-8480, USA
| |
Collapse
|
32
|
Cobo A, Sheybani R, Tu H, Meng E. A Wireless Implantable Micropump for Chronic Drug Infusion Against Cancer. SENSORS AND ACTUATORS. A, PHYSICAL 2016; 239:18-25. [PMID: 26855476 PMCID: PMC4735729 DOI: 10.1016/j.sna.2016.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present an implantable micropump with a miniature form factor and completely wireless operation that enables chronic drug administration intended for evaluation and development of cancer therapies in freely moving small research animals such as rodents. The low power electrolysis actuator avoids the need for heavy implantable batteries. The infusion system features a class E inductive powering system that provides on-demand activation of the pump as well as remote adjustment of the delivery regimen without animal handling. Micropump performance was demonstrated using a model anti-cancer application in which daily doses of 30 μL were supplied for several weeks with less than 6% variation in flow rate within a single pump and less than 8% variation across different pumps. Pumping under different back pressure, viscosity, and temperature conditions were investigated; parameters were chosen so as to mimic in vivo conditions. In benchtop tests under simulated in vivo conditions, micropumps provided consistent and reliable performance over a period of 30 days with less than 4% flow rate variation. The demonstrated prototype has potential to provide a practical solution for remote chronic administration of drugs to ambulatory small animals for research as well as drug discovery and development applications.
Collapse
Affiliation(s)
- Angelica Cobo
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB-140, Los Angeles, CA 90089-1111, USA
| | - Roya Sheybani
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB-140, Los Angeles, CA 90089-1111, USA
| | - Heidi Tu
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB-140, Los Angeles, CA 90089-1111, USA
| | - Ellis Meng
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB-140, Los Angeles, CA 90089-1111, USA
- Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, 3651 Watt Way, VHE-602, Los Angeles, CA 90089-0241, USA
| |
Collapse
|
33
|
Sheybani R, Cobo A, Meng E. Wireless programmable electrochemical drug delivery micropump with fully integrated electrochemical dosing sensors. Biomed Microdevices 2016; 17:74. [PMID: 26149696 DOI: 10.1007/s10544-015-9980-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We present a fully integrated implantable electrolysis-based micropump with incorporated EI dosing sensors. Wireless powering and data telemetry (through amplitude and frequency modulation) were utilized to achieve variable flow control and a bi-directional data link with the sensors. Wireless infusion rate control (0.14-1.04 μL/min) and dose sensing (bolus resolution of 0.55-2 μL) were each calibrated separately with the final circuit architecture and then simultaneous wireless flow control and dose sensing were demonstrated. Recombination detection using the dosing system, as well as, effects of coil separation distance and misalignment in wireless power and data transfer were studied. A custom-made normally closed spring-loaded ball check valve was designed and incorporated at the reservoir outlet to prevent backflow of fluids as a result of the reverse pressure gradient caused by recombination of electrolysis gases. Successful delivery, infusion rate control, and dose sensing were achieved in simulated brain tissue.
Collapse
Affiliation(s)
- Roya Sheybani
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB-140, Los Angeles, CA, 90089-1111, USA
| | | | | |
Collapse
|
34
|
Sheybani R, Meng E. Acceleration Techniques for Recombination of Gases in Electrolysis Microactuators with Nafion®-Coated Electrocatalyst. SENSORS AND ACTUATORS. B, CHEMICAL 2015; 221:914-922. [PMID: 26251561 PMCID: PMC4522938 DOI: 10.1016/j.snb.2015.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recombination of electrolysis gases (oxidation of hydrogen and reduction of oxygen) is an important factor in operation efficiency of devices employing electrolysis such as actuators and also unitized regenerative fuel cells. Several methods of improving recombination speed and repeatability were developed for application to electrolysis microactuators with Nafion®-coated catalytic electrodes. Decreasing the electrolysis chamber volume increased the speed, consistency, and repeatability of the gas recombination rate. To further improve recombination performance, methods to increase the catalyst surface area, hydrophobicity, and availability were developed and evaluated. Of these, including in the electrolyte pyrolyzed-Nafion®-coated Pt segments contained in the actuator chamber accelerated recombination by increasing the catalyst surface area and decreasing the gas transport diffusion path. This approach also reduced variability in recombination encountered under varying actuator orientation (resulting in differing catalyst/gas bubble proximity) and increased the rate of recombination by 2.3 times across all actuator orientations. Repeatability of complete recombination for different generated gas volumes was studied through cycling.
Collapse
Affiliation(s)
- Roya Sheybani
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB-140, Los Angeles, CA 90089-1111, USA
| | - Ellis Meng
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB-140, Los Angeles, CA 90089-1111, USA
- Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, 3651 Watt Way, VHE-602, Los Angeles, CA 90089-0241, USA
- Corresponding Author: Ellis Meng, Phone: (213) 740-6952, Fax: (213) 821-3897,
| |
Collapse
|
35
|
Liu Y, Song P, Liu J, Tng DJH, Hu R, Chen H, Hu Y, Tan CH, Wang J, Liu J, Ye L, Yong KT. An in-vivo evaluation of a MEMS drug delivery device using Kunming mice model. Biomed Microdevices 2015; 17:6. [PMID: 25653064 DOI: 10.1007/s10544-014-9917-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of MEMS implantable drug delivery pump device enables one to program the desired drug delivery profile in the device for individualized medicine treatment to patients. In this study, a MEMS drug delivery device is prepared and employed for in vivo applications. 12 devices are implanted subcutaneously into Kunming mice for evaluating their long term biocompatibility and drug-delivery efficiency in vivo. All the mice survived after device implantation surgery procedures. Histological analysis result reveals a normal wound healing progression within the tissues-to-device contact areas. Serum analysis shows that all measured factors are within normal ranges and do not indicate any adverse responses associated with the implanted device. Phenylephrine formulation is chosen and delivered to the abdominal cavity of the mice by using either the implanted MEMS device (experimental group) or the syringe injection method (control group). Both groups show that they are able to precisely control and manipulate the increment rate of blood pressure in the small animals. Our result strongly suggests that the developed refillable implantable MEMS devices will serve as a viable option for future individualized medicine applications such as glaucoma, HIV-dementia and diabetes therapy.
Collapse
Affiliation(s)
- Yaqian Liu
- Laboratory Animal Center of the Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yi Y, Buttner U, Foulds IG. A cyclically actuated electrolytic drug delivery device. LAB ON A CHIP 2015; 15:3540-3548. [PMID: 26198777 DOI: 10.1039/c5lc00703h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This work, focusing on an implantable drug delivery system, presents the first prototype electrolytic pump that combines a catalytic reformer and a cyclically actuated mode. These features improve the release performance and extend the lifetime of the device. Using our platinum (Pt)-coated carbon fiber mesh that acts as a catalytic reforming element, the cyclical mode is improved because the faster recombination rate allows for a shorter cycling time for drug delivery. Another feature of our device is that it uses a solid-drug-in-reservoir (SDR) approach, which allows small amounts of a solid drug to be dissolved in human fluid, forming a reproducible drug solution for long-term therapies. We have conducted proof-of-principle drug delivery studies using such an electrolytic pump and solvent blue 38 as the drug substitute. These tests demonstrate power-controlled and pulsatile release profiles of the chemical substance, as well as the feasibility of this device. A drug delivery rate of 11.44 ± 0.56 μg min(-1) was achieved by using an input power of 4 mW for multiple pulses, which indicates the stability of our system.
Collapse
Affiliation(s)
- Ying Yi
- School of Engineering, University of British Columbia, Kelowna, British Columbia, Canada.
| | | | | |
Collapse
|
37
|
Yi Y, Zaher A, Yassine O, Kosel J, Foulds IG. A remotely operated drug delivery system with an electrolytic pump and a thermo-responsive valve. BIOMICROFLUIDICS 2015; 9:052608. [PMID: 26339328 PMCID: PMC4514716 DOI: 10.1063/1.4927436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/08/2015] [Indexed: 05/21/2023]
Abstract
Implantable drug delivery devices are becoming attractive due to their abilities of targeted and controlled dose release. Currently, two important issues are functional lifetime and non-controlled drug diffusion. In this work, we present a drug delivery device combining an electrolytic pump and a thermo-responsive valve, which are both remotely controlled by an electromagnetic field (40.5 mT and 450 kHz). Our proposed device exhibits a novel operation mechanism for long-term therapeutic treatments using a solid drug in reservoir approach. Our device also prevents undesired drug liquid diffusions. When the electromagnetic field is on, the electrolysis-induced bubble drives the drug liquid towards the Poly (N-Isopropylacrylamide) (PNIPAM) valve that consists of PNIPAM and iron micro-particles. The heat generated by the iron micro-particles causes the PNIPAM to shrink, resulting in an open valve. When the electromagnetic field is turned off, the PNIPAM starts to swell. In the meantime, the bubbles are catalytically recombined into water, reducing the pressure inside the pumping chamber, which leads to the refilling of the fresh liquid from outside the device. A catalytic reformer is included, allowing more liquid refilling during the limited valve's closing time. The amount of body liquid that refills the drug reservoir can further dissolve the solid drug, forming a reproducible drug solution for the next dose. By repeatedly turning on and off the electromagnetic field, the drug dose can be cyclically released, and the exit port of the device is effectively controlled.
Collapse
Affiliation(s)
- Ying Yi
- School of Engineering, University of British Columbia (UBC) , Kelowna, British Columbia V1V 1V7, Canada
| | - Amir Zaher
- School of Engineering, University of British Columbia (UBC) , Kelowna, British Columbia V1V 1V7, Canada
| | - Omar Yassine
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia
| | - Jurgen Kosel
- Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia
| | | |
Collapse
|
38
|
Micro- and nano-fabricated implantable drug-delivery systems: current state and future perspectives. Ther Deliv 2015; 5:1167-70. [PMID: 25491666 DOI: 10.4155/tde.14.90] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Cobo A, Sheybani R, Meng E. MEMS: Enabled Drug Delivery Systems. Adv Healthc Mater 2015; 4:969-82. [PMID: 25703045 DOI: 10.1002/adhm.201400772] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/01/2015] [Indexed: 12/25/2022]
Abstract
Drug delivery systems play a crucial role in the treatment and management of medical conditions. Microelectromechanical systems (MEMS) technologies have allowed the development of advanced miniaturized devices for medical and biological applications. This Review presents the use of MEMS technologies to produce drug delivery devices detailing the delivery mechanisms, device formats employed, and various biomedical applications. The integration of dosing control systems, examples of commercially available microtechnology-enabled drug delivery devices, remaining challenges, and future outlook are also discussed.
Collapse
Affiliation(s)
- Angelica Cobo
- Department of Biomedical Engineering; Viterbi School of Engineering; University of Southern California; 1042 Downey Way DRB-140 Los Angeles CA 90089-1111 USA
| | - Roya Sheybani
- Department of Biomedical Engineering; Viterbi School of Engineering; University of Southern California; 1042 Downey Way DRB-140 Los Angeles CA 90089-1111 USA
| | - Ellis Meng
- Department of Biomedical Engineering; Viterbi School of Engineering; University of Southern California; 1042 Downey Way DRB-140 Los Angeles CA 90089-1111 USA
- Department of Electrical Engineering; Viterbi School of Engineering; University of Southern California; 3651 Watt Way VHE-602 Los Angeles CA 90089-0241 USA
| |
Collapse
|
40
|
Sheybani R, Meng E. On-demand wireless infusion rate control in an implantable micropump for patient-tailored treatment of chronic conditions. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:882-5. [PMID: 25570100 DOI: 10.1109/embc.2014.6943732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Wireless infusion rate control and programmability for an implantable, low power, electrochemical micropump is presented. Flow rate control was achieved through adjustment of the wiper position of a current potentiometer in the wireless receiver (0.6-3.2 mA output current with a resolution of 0.2 mA per step). An off-the-shelf Bluetooth module and Basic Stamp microcontroller kit was used to initiate amplitude-shift keying (ASK) modulation of the inductive power signal. Accurate flow control of two model regimens was achieved on benchtop. Wireless transmission (power transfer and control) was not affected by simulated tissue material placed between the transmitter and receiver.
Collapse
|
41
|
A New Concept of a Drug Delivery System with Improved Precision and Patient Safety Features. MICROMACHINES 2014. [DOI: 10.3390/mi6010080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Yasin MN, Svirskis D, Seyfoddin A, Rupenthal ID. Implants for drug delivery to the posterior segment of the eye: A focus on stimuli-responsive and tunable release systems. J Control Release 2014; 196:208-21. [DOI: 10.1016/j.jconrel.2014.09.030] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 09/28/2014] [Accepted: 09/30/2014] [Indexed: 12/21/2022]
|
43
|
Nuxoll E. BioMEMS in drug delivery. Adv Drug Deliv Rev 2013; 65:1611-25. [PMID: 23856413 DOI: 10.1016/j.addr.2013.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 05/31/2013] [Accepted: 07/05/2013] [Indexed: 12/25/2022]
Abstract
The drive to design micro-scale medical devices which can be reliably and uniformly mass produced has prompted many researchers to adapt processing technologies from the semiconductor industry. By operating at a much smaller length scale, the resulting biologically-oriented microelectromechanical systems (BioMEMS) provide many opportunities for improved drug delivery: Low-dose vaccinations and painless transdermal drug delivery are possible through precisely engineered microneedles which pierce the skin's barrier layer without reaching the nerves. Low-power, low-volume BioMEMS pumps and reservoirs can be implanted where conventional pumping systems cannot. Drug formulations with geometrically complex, extremely uniform micro- and nano-particles are formed through micromolding or with microfluidic devices. This review describes these BioMEMS technologies and discusses their current state of implementation. As these technologies continue to develop and capitalize on their simpler integration with other MEMS-based systems such as computer controls and telemetry, BioMEMS' impact on the field of drug delivery will continue to increase.
Collapse
Affiliation(s)
- Eric Nuxoll
- Department of Chemical and Biochemical Engineering, Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA 52245, USA.
| |
Collapse
|
44
|
Delgado-Rivera R, Rosario-Meléndez R, Yu W, Uhrich KE. Biodegradable salicylate-based poly(anhydride-ester) microspheres for controlled insulin delivery. J Biomed Mater Res A 2013; 102:2736-42. [PMID: 24027012 DOI: 10.1002/jbm.a.34949] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 01/21/2023]
Abstract
Salicylate-based poly(anhydride-esters) (PAEs) chemically incorporate salicylic acid (SA) into the polymer backbone, which is then delivered in a controlled manner upon polymer hydrolysis. In this work, a salicylate-based PAE is a carrier to encapsulate and deliver insulin. Polymer microspheres were formulated using a water/oil/water double-emulsion solvent evaporation technique. The microspheres obtained had a smooth surface, high protein encapsulation efficiency, and relatively low emulsifier content. Insulin was released in vitro for 15 days, with no signs of aggregation or unfolding of the secondary structure. The released insulin also retained bioactivity in vitro. Concurrently, SA was released from the microspheres with polymer degradation and anti-inflammatory activity was observed. Based upon these results, the formulated microspheres enable simultaneous delivery of insulin and SA, both retaining bioactivity following processing.
Collapse
Affiliation(s)
- Roberto Delgado-Rivera
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, 08854
| | | | | | | |
Collapse
|
45
|
Song P, Tng DJH, Hu R, Lin G, Meng E, Yong KT. An electrochemically actuated MEMS device for individualized drug delivery: an in vitro study. Adv Healthc Mater 2013; 2:1170-8. [PMID: 23495127 DOI: 10.1002/adhm.201200356] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/03/2012] [Indexed: 12/20/2022]
Abstract
Individualized disease treatment is a promising branch for future medicine. In this work, we introduce an implantable microelectromechanical system (MEMS) based drug delivery device for programmable drug delivery. An in vitro study on cancer cell treatment has been conducted to demonstrate a proof-of-concept that the engineered device is suitable for individualized disease treatment. This is the first study to demonstrate that MEMS drug delivery devices can influence the outcome of cancer drug treatment through the use of individualized disease treatment regimes, where the strategy for drug dosages is tailored according to different individuals. The presented device is electrochemically actuated through a diaphragm membrane and made of polydimethylsiloxane (PDMS) for biocompatibility using simple and cost-effective microfabrication techniques. Individualized disease treatment was investigated using the in vitro programmed delivery of a chemotherapy drug, doxorubicin, to pancreatic cancer cell cultures. Cultured cell colonies of two pancreatic cancer cell lines (Panc-1 and MiaPaCa-2) were treated with three programmed schedules and monitored for 7 days. The result shows that the colony growth has been successfully inhibited for both cell lines among all the three treatment schedules. Also, the different observations between the two cell lines under different schedules reveal that MiaPaCa-2 cells are more sensitive to the drug applied. These results demonstrate that further development on the device will provide a promising novel platform for individualized disease treatment in future medicine as well as for automatic in vitro assays in drug development industry.
Collapse
Affiliation(s)
- Peiyi Song
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | | | | | | | |
Collapse
|
46
|
Ngoepe M, Choonara YE, Tyagi C, Tomar LK, du Toit LC, Kumar P, Ndesendo VMK, Pillay V. Integration of biosensors and drug delivery technologies for early detection and chronic management of illness. SENSORS (BASEL, SWITZERLAND) 2013; 13:7680-713. [PMID: 23771157 PMCID: PMC3715220 DOI: 10.3390/s130607680] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/21/2013] [Accepted: 06/07/2013] [Indexed: 11/17/2022]
Abstract
Recent advances in biosensor design and sensing efficacy need to be amalgamated with research in responsive drug delivery systems for building superior health or illness regimes and ensuring good patient compliance. A variety of illnesses require continuous monitoring in order to have efficient illness intervention. Physicochemical changes in the body can signify the occurrence of an illness before it manifests. Even with the usage of sensors that allow diagnosis and prognosis of the illness, medical intervention still has its downfalls. Late detection of illness can reduce the efficacy of therapeutics. Furthermore, the conventional modes of treatment can cause side-effects such as tissue damage (chemotherapy and rhabdomyolysis) and induce other forms of illness (hepatotoxicity). The use of drug delivery systems enables the lowering of side-effects with subsequent improvement in patient compliance. Chronic illnesses require continuous monitoring and medical intervention for efficient treatment to be achieved. Therefore, designing a responsive system that will reciprocate to the physicochemical changes may offer superior therapeutic activity. In this respect, integration of biosensors and drug delivery is a proficient approach and requires designing an implantable system that has a closed loop system. This offers regulation of the changes by means of releasing a therapeutic agent whenever illness biomarkers prevail. Proper selection of biomarkers is vital as this is key for diagnosis and a stimulation factor for responsive drug delivery. By detecting an illness before it manifests by means of biomarkers levels, therapeutic dosing would relate to the severity of such changes. In this review various biosensors and drug delivery systems are discussed in order to assess the challenges and future perspectives of integrating biosensors and drug delivery systems for detection and management of chronic illness.
Collapse
Affiliation(s)
- Mpho Ngoepe
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Yahya E. Choonara
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Charu Tyagi
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Lomas Kumar Tomar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Lisa C. du Toit
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| | - Valence M. K. Ndesendo
- School of Pharmacy and Pharmaceutical Sciences, St. John's University of Tanzania, Dodoma, Tanzania; E-Mail:
| | - Viness Pillay
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa; E-Mails: (M.N.); (Y.E.C.); (L.C.D.); (P.K.); (C.T.) (L.K.T.)
| |
Collapse
|