1
|
Nemakhavhani L, Abrahamse H, Kumar SSD. A review on dendrimer-based nanoconjugates and their intracellular trafficking in cancer photodynamic therapy. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:384-398. [PMID: 39101753 DOI: 10.1080/21691401.2024.2368033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024]
Abstract
Nanotechnology-based cancer treatment has received considerable attention, and these treatments generally use drug-loaded nanoparticles (NPs) to target and destroy cancer cells. Nanotechnology combined with photodynamic therapy (PDT) has demonstrated positive outcomes in cancer therapy. Combining nanotechnology and PDT is effective in targeting metastatic cancer cells. Nanotechnology can also increase the effectiveness of PDT by targeting cells at a molecular level. Dendrimer-based nanoconjugates (DBNs) are highly stable and biocompatible, making them suitable for drug delivery applications. Moreover, the hyperbranched structures in DBNs have the capacity to load hydrophobic compounds, such as photosensitizers (PSs) and chemotherapy drugs, and deliver them efficiently to tumour cells. This review primarily focuses on DBNs and their potential applications in cancer treatment. We discuss the chemical design, mechanism of action, and targeting efficiency of DBNs in tumour metastasis, intracellular trafficking in cancer treatment, and DBNs' biocompatibility, biodegradability and clearance properties. Overall, this study will provide the most recent insights into the application of DBNs and PDT in cancer therapy.
Collapse
Affiliation(s)
- Lufuno Nemakhavhani
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
2
|
Bai Z, Wan D, Lan T, Hong W, Dong H, Wei Y, Wei X. Nanoplatform Based Intranasal Vaccines: Current Progress and Clinical Challenges. ACS NANO 2024; 18:24650-24681. [PMID: 39185745 PMCID: PMC11394369 DOI: 10.1021/acsnano.3c10797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Multiple vaccine platforms have been employed to develop the nasal SARS-CoV-2 vaccines in preclinical studies, and the dominating pipelines are viral vectored as protein-based vaccines. Among them, several viral vectored-based vaccines have entered clinical development. Nevertheless, some unsatisfactory results were reported in these clinical studies. In the face of such urgent situations, it is imperative to rapidly develop the next-generation intranasal COVID-19 vaccine utilizing other technologies. Nanobased intranasal vaccines have emerged as an approach against respiratory infectious diseases. Harnessing the power of nanotechnology, these vaccines offer a noninvasive yet potent defense against pathogens, including the threat of COVID-19. The improvements made in vaccine mucosal delivery technologies based on nanoparticles, such as lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles etc., not only provide stability and controlled release but also enhance mucosal adhesion, effectively overcoming the limitations of conventional vaccines. Hence, in this review, we overview the evaluation of intranasal vaccine and highlight the current barriers. Next, the modern delivery systems based on nanoplatforms are summarized. The challenges in clinical application of nanoplatform based intranasal vaccine are finally discussed.
Collapse
Affiliation(s)
- Ziyi Bai
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Haohao Dong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
3
|
Sun Q, Ni J, Li S, Ding H, Wang P, Song N, Wang X, Li M. Access to Reverse Glycosyl Azides and Rare Sugar-Based Glycosyl Azides via Radical Decarboxylative Azidation: Divergent Synthesis of 4'- C-Azidonucleosides as Potential Antiviral Agents. Org Lett 2024; 26:3997-4001. [PMID: 38687048 DOI: 10.1021/acs.orglett.4c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The radical decarboxylative azidation of structurally diverse uronic acids has been established as an efficient approach to reverse glycosyl azides and rare sugar-derived glycosyl azides under the action of Ag2CO3, 3-pyridinesulfonyl azide, and K2S2O8. The power of this method has been highlighted by the divergent synthesis of 4'-C-azidonucleosides using Vorbrüggen glycosylation of nucleobases with 4-C-azidofuranosyl acetates. The antiviral assessment of the resulting nucleosides revealed one compound as a potential inhibitor of covalently closed circular DNA.
Collapse
Affiliation(s)
- Qikai Sun
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jingxuan Ni
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shanshan Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Han Ding
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ni Song
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xin Wang
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- Song Li' Academician Workstation, School of Pharmaceutical Sciences, Hainan University, Sanya 572000, China
| | - Ming Li
- Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
4
|
Dotiwala F, Upadhyay AK. Next Generation Mucosal Vaccine Strategy for Respiratory Pathogens. Vaccines (Basel) 2023; 11:1585. [PMID: 37896988 PMCID: PMC10611113 DOI: 10.3390/vaccines11101585] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Inducing humoral and cytotoxic mucosal immunity at the sites of pathogen entry has the potential to prevent the infection from getting established. This is different from systemic vaccination, which protects against the development of systemic symptoms. The field of mucosal vaccination has seen fewer technological advances compared to nucleic acid and subunit vaccine advances for injectable vaccine platforms. The advent of the next-generation adenoviral vectors has given a boost to mucosal vaccine research. Basic research into the mechanisms regulating innate and adaptive mucosal immunity and the discovery of effective and safe mucosal vaccine adjuvants will continue to improve mucosal vaccine design. The results from clinical trials of inhaled COVID-19 vaccines demonstrate their ability to induce the proliferation of cytotoxic T cells and the production of secreted IgA and IgG antibodies locally, unlike intramuscular vaccinations. However, these mucosal vaccines induce systemic immune responses at par with systemic vaccinations. This review summarizes the function of the respiratory mucosa-associated lymphoid tissue and the advantages that the adenoviral vectors provide as inhaled vaccine platforms.
Collapse
Affiliation(s)
- Farokh Dotiwala
- Ocugen Inc., 11 Great Valley Parkway, Malvern, PA 19355, USA
| | | |
Collapse
|
5
|
Wong KH, Guo Z, Law MK, Chen M. Functionalized PAMAM constructed nanosystems for biomacromolecule delivery. Biomater Sci 2023; 11:1589-1606. [PMID: 36692071 DOI: 10.1039/d2bm01677j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyamidoamines (PAMAMs) are a class of dendrimer with monodispersity and controlled topology, which can deliver biologically active macromolecules (e.g., genes and proteins) to specific regions with high efficiency and minimum side effects. In detail, PAMAMs can be functionalized easily by core modification or surface amendment to encapsulate a wide range of biomacromolecules. Besides, self-assembled, cross-linked and hybrid PAMAMs with customized therapeutic purposes are developed as delivery vehicles, which makes PAMAMs promising for biomacromolecule therapy. In this review, we comprehensively summarize the application of PAMAMs in biomacromolecule delivery from the synthesis of functionalized PAMAM carriers to the development of PAMAM-based drug delivery systems. The underlying strategies for PAMAM functionalization and assembly are first systematically discussed, and then the current applications of PAMAMs for biomacromolecule delivery are reviewed. Finally, a brief perspective on the further applications of PAMAMs concludes, aiming to provide insights into developing PAMAM-based biomacromolecule delivery systems.
Collapse
Affiliation(s)
- Ka Hong Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Zhaopei Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| | - Man-Kay Law
- State Key Laboratory of Analog and Mixed-Signal VLSI, IME and FST-ECE, University of Macau, Macau SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
6
|
Zhao H, Xu C, Wang T, Liu J. Biomimetic Construction of Artificial Selenoenzymes. Biomimetics (Basel) 2023; 8:biomimetics8010054. [PMID: 36810385 PMCID: PMC9944854 DOI: 10.3390/biomimetics8010054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Selenium exists in the form of selenocysteines in selenoproteins and plays a pivotal role in the catalytic process of the antioxidative enzymes. In order to study the structural and functional properties of selenium in selenoproteins, explore the significance of the role of selenium in the fields of biology and chemistry, scientists conducted a series of artificial simulations on selenoproteins. In this review, we sum up the progress and developed strategies in the construction of artificial selenoenzyme. Using different mechanisms from different catalytic angles, selenium-containing catalytic antibodies, semi-synthetic selenonezyme, and the selenium-containing molecularly imprinted enzymes have been constructed. A variety of synthetic selenoenzyme models have been designed and constructed by selecting host molecules such as cyclodextrins, dendrimers, and hyperbranched polymers as the main scaffolds. Then, a variety of selenoprotein assemblies as well as cascade antioxidant nanoenzymes were built by using electrostatic interaction, metal coordination, and host-guest interaction. The unique redox properties of selenoenzyme glutathione peroxidase (GPx) can be reproduced.
Collapse
|
7
|
Wang J, Li B, Qiu L, Qiao X, Yang H. Dendrimer-based drug delivery systems: history, challenges, and latest developments. J Biol Eng 2022; 16:18. [PMID: 35879774 PMCID: PMC9317453 DOI: 10.1186/s13036-022-00298-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Since the first dendrimer was reported in 1978 by Fritz Vögtle, dendrimer research has grown exponentially, from synthesis to application in the past four decades. The distinct structure characteristics of dendrimers include nanoscopic size, multi-functionalized surface, high branching, cavernous interior, and so on, making dendrimers themselves ideal drug delivery vehicles. This mini review article provides a brief overview of dendrimer’s history and properties and the latest developments of dendrimers as drug delivery systems. This review focuses on the latest progress in the applications of dendrimers as drug and gene carriers, including 1) active drug release strategies to dissociate drug/gene from dendrimer in response to stimuli; 2) size-adaptive and charge reversal dendrimer delivery systems that can better take advantage of the size and surface properties of dendrimer; 3) bulk and micro/nano dendrimer gel delivery systems. The recent advances in dendrimer formulations may lead to the generation of new drug and gene products and enable the development of novel combination therapies.
Collapse
Affiliation(s)
- Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Boxuan Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Li Qiu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xin Qiao
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, 65409, USA
| |
Collapse
|
8
|
Sorroza-Martínez K, González-Méndez I, Vonlanthen M, Cuétara-Guadarrama F, Illescas J, Zhu XX, Rivera E. Guest-Mediated Reversal of the Tumbling Process in Phosphorus-Dendritic Compounds Containing β-Cyclodextrin Units: An NMR Study. Pharmaceuticals (Basel) 2021; 14:556. [PMID: 34207945 PMCID: PMC8230630 DOI: 10.3390/ph14060556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/02/2022] Open
Abstract
The conformational study of dendritic platforms containing multiple β-cyclodextrin (βCD) units in the periphery is relevant to determine the availability of βCD cavities for the formation of inclusion complexes in aqueous biological systems. In this work, we performed a detailed conformational analysis in D2O, via 1D and 2D NMR spectroscopy of a novel class of phosphorus dendritic compounds of the type P3N3-[O-C6H4-O-(CH2)n-βCD]6 (where n = 3 or 4). We unambiguously demonstrated that a functionalized glucopyranose unit of at least one βCD unit undergoes a 360° tumbling process, resulting in a deep inclusion of the spacer that binds the cyclodextrin to the phosphorus core inside the cavity, consequently limiting the availability of the inner cavities. In addition, we confirmed through NMR titrations that this tumbling phenomenon can be reversed for all βCD host units using a high-affinity guest, namely 1-adamantanecarboxylic acid (AdCOOH). Our findings have demonstrated that it is possible to create a wide variety of multi-functional dendritic platforms.
Collapse
Affiliation(s)
- Kendra Sorroza-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| | - Israel González-Méndez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| | - Mireille Vonlanthen
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| | - Fabián Cuétara-Guadarrama
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| | - Javier Illescas
- Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Avenida Tecnológico S/N Col. Agrícola Bellavista, Metepec CP 52140, Mexico;
| | - Xiao Xia Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada;
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, México City CP 04510, Mexico; (K.S.-M.); (M.V.); (F.C.-G.)
| |
Collapse
|
9
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Soni SS, Alsasa A, Rodell CB. Applications of Macrocyclic Host Molecules in Immune Modulation and Therapeutic Delivery. Front Chem 2021; 9:658548. [PMID: 33889565 PMCID: PMC8055865 DOI: 10.3389/fchem.2021.658548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
The immune system plays a central role in the development and progression of human disease. Modulation of the immune response is therefore a critical therapeutic target that enables us to approach some of the most vexing problems in medicine today such as obesity, cancer, viral infection, and autoimmunity. Methods of manipulating the immune system through therapeutic delivery centralize around two common themes: the local delivery of biomaterials to affect the surrounding tissue or the systemic delivery of soluble material systems, often aided by context-specific cell or tissue targeting strategies. In either case, supramolecular interactions enable control of biomaterial composition, structure, and behavior at the molecular-scale; through rational biomaterial design, the realization of next-generation immunotherapeutics and immunotheranostics is therefore made possible. This brief review highlights methods of harnessing macromolecular interaction for immunotherapeutic applications, with an emphasis on modes of drug delivery.
Collapse
Affiliation(s)
| | | | - Christopher B. Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
11
|
β-Cyclodextrin-based (IA-co-AMPS) Semi-IPNs as smart biomaterials for oral delivery of hydrophilic drugs: Synthesis, characterization, in-Vitro and in-Vivo evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
First Class of Phosphorus Dendritic Compounds Containing β-Cyclodextrin Units in the Periphery Prepared by CuAAC. Molecules 2020; 25:molecules25184034. [PMID: 32899600 PMCID: PMC7570757 DOI: 10.3390/molecules25184034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022] Open
Abstract
A new class of phosphorus dendritic compounds (PDCs) having a cyclotriphosphazene (P3N3) core and decorated with six β-cyclodextrin (βCD) units, named P3N3-[O-C6H4-O-(CH2)n-βCD]6, where n = 3 or 4 was designed, and the synthesis was performed using copper (I) catalyzed alkyne-azide cycloaddition (CuAAC). To obtain the complete substitution of the P3N3, two linkers consisting of an aromatic ring and an aliphatic chain of two different lengths were assessed. We found that, with both linkers, the total modification of the periphery was achieved. The two new obtained dendritic compounds presented a considerably high water solubility (>1 g/mL). The compounds comprised in this new class of PDCs are potential drug carrier candidates, since the conjugation of the βCD units to the P3N3 core through the primary face will not only serve as surface cover but, also, provide them the faculty to encapsulate various drugs inside the βCDs cavities.
Collapse
|
13
|
Pinteala M, Abadie MJM, Rusu RD. Smart Supra- and Macro-Molecular Tools for Biomedical Applications. MATERIALS 2020; 13:ma13153343. [PMID: 32727155 PMCID: PMC7435709 DOI: 10.3390/ma13153343] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Abstract
Stimuli-responsive, “smart” polymeric materials used in the biomedical field function in a bio-mimicking manner by providing a non-linear response to triggers coming from a physiological microenvironment or other external source. They are built based on various chemical, physical, and biological tools that enable pH and/or temperature-stimulated changes in structural or physicochemical attributes, like shape, volume, solubility, supramolecular arrangement, and others. This review touches on some particular developments on the topic of stimuli-sensitive molecular tools for biomedical applications. Design and mechanistic details are provided concerning the smart synthetic instruments that are employed to prepare supra- and macro-molecular architectures with specific responses to external stimuli. Five major themes are approached: (i) temperature- and pH-responsive systems for controlled drug delivery; (ii) glycodynameric hydrogels for drug delivery; (iii) polymeric non-viral vectors for gene delivery; (iv) metallic nanoconjugates for biomedical applications; and, (v) smart organic tools for biomedical imaging.
Collapse
Affiliation(s)
- Mariana Pinteala
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
| | - Marc J. M. Abadie
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
- Institute Charles Gerhardt Montpellier, Bat 15, CC 1052, University of Montpellier, 34095 Montpellier, France
| | - Radu D. Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania; (M.P.); (M.J.M.A.)
- Correspondence: ; Tel.: +40-232-217454
| |
Collapse
|
14
|
Sorroza-Martínez K, González-Méndez I, Martínez-Serrano RD, Solano JD, Ruiu A, Illescas J, Zhu XX, Rivera E. Efficient modification of PAMAM G1 dendrimer surface with β-cyclodextrin units by CuAAC: impact on the water solubility and cytotoxicity. RSC Adv 2020; 10:25557-25566. [PMID: 35518581 PMCID: PMC9055266 DOI: 10.1039/d0ra02574g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
The toxicity of the poly(amidoamine) dendrimers (PAMAM) caused by the peripheral amino groups has been a limitation for their use as drug carriers in clinical applications. In this work, we completely modified the periphery of PAMAM dendrimer generation 1 (PAMAM G1) with β-cyclodextrin (β-CD) units through the Cu(i)-catalyzed azide–alkyne cycloaddition (CuAAC) to obtain the PAMAM G1-β-CD dendrimer with high yield. The PAMAM G1-β-CD was characterized by 1H- and 13C-NMR and mass spectrometry studies. Moreover, the PAMAM G1-β-CD dendrimer showed remarkably higher water solubility than native β-CD. Finally, we studied the toxicity of PAMAM G1-β-CD dendrimer in four different cell lines, human breast cancer cells (MCF-7 and MDA-MB-231), human cervical adenocarcinoma cancer cells (HeLa) and pig kidney epithelial cells (LLC-PK1). The PAMAM G1-β-CD dendrimer did not present any cytotoxicity in cell lines tested which shows the potentiality of this new class of dendrimers. The toxicity of the poly(amidoamine) dendrimers (PAMAM) caused by the peripheral amino groups has been a limitation for their use as drug carriers in clinical applications.![]()
Collapse
Affiliation(s)
- Kendra Sorroza-Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - Israel González-Méndez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - Ricardo D Martínez-Serrano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - José D Solano
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - Andrea Ruiu
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| | - Javier Illescas
- Tecnológico Nacional de México/Instituto Tecnológico de Toluca Av. Tecnológico S/N, Col. Agrícola Bellavista CP 52149 Metepec México
| | - Xiao Xia Zhu
- Département de Chimie, Université de Montréal C.P. 6128, Succursale Centre-ville Montreal QC H3C 3J7 Canada
| | - Ernesto Rivera
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria CP 04510 México City México
| |
Collapse
|
15
|
Nawaz W, Xu S, Li Y, Huang B, Wu X, Wu Z. Nanotechnology and immunoengineering: How nanotechnology can boost CAR-T therapy. Acta Biomater 2020; 109:21-36. [PMID: 32294554 DOI: 10.1016/j.actbio.2020.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/29/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR) therapy has achieved remarkable clinical efficacy against hematological cancers and has been approved by FDA for treatment of B-cell tumors. However, the complex manufacturing process and limited success in solid tumors hamper its widespread applications, thus prompting the development of new strategies for overcoming the abovementioned hurdles. In the last decade, nanotechnology has provided sustainable strategies for improving cancer immunotherapy through vaccine development and delivery of immunomodulatory drugs. Nanotechnology can boost CAR-T therapy and may overcome the existing challenges by emerging as a carrier for CAR-T therapy or in combination with CAR-T, it may inhibit solid tumors more effectively than conventional approaches. The revealing of cellular mechanisms, barriers and potential strategies that could be used to manipulate and/or modify cells would enable unprecedented advances in nanotechnology for biologics delivery. This review outlines the journey and barriers of nanoparticles (NPs) across the cell. Subsequently, the approaches to tackle the barriers and strategies to modulate NPs as a carrier for CAR-T therapy are discussed. Finally, the role of NPs in CAR-T therapy and the potential challenges are summarized. This review aims to provide the readers with a detailed overview of NP-based CAR-T therapy research and distil this information into an accessible form conducive to design desired CAR-T therapy using NP approach. STATEMENT OF SIGNIFICANCE: Chimeric antigen receptor (CAR) T-cell therapy is the most vibrant field in immuno-oncology today, with enormous benefits to patients with B-cell malignancies. However, a rapid and straightforward procedure for CAR-T generation is an exigent need to broaden its therapeutic avenue. Nanotechnology has emerged as a novel alternative approach for CAR-T generation. To the best of our knowledge, this is the first in-depth review that briefly highlights the various aspects of nanotechnology in CAR-T therapy, including the strategies to brand NPs as an effective carrier for CAR cargo, its potential advantages, challenges, and future roadmap. It provides readers with a detailed overview of NP-based CAR-T therapy research, and researchers would be able to distill this information into an accessible form conducive to design the desired CAR therapy using the nanotechnology approach.
Collapse
|
16
|
Taharabaru T, Yokoyama R, Higashi T, Mohammed AFA, Inoue M, Maeda Y, Niidome T, Onodera R, Motoyama K. Genome Editing in a Wide Area of the Brain Using Dendrimer-Based Ternary Polyplexes of Cas9 Ribonucleoprotein. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21386-21397. [PMID: 32315156 DOI: 10.1021/acsami.9b21667] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A preassembled Cas9/single-guide RNA complex (Cas9 ribonucleoprotein; Cas9 RNP) induces genome editing efficiently, with small off-target effects compared with the conventional techniques, such as plasmid DNA and mRNA systems. However, penetration of Cas9 RNP through the cell membrane is low. In particular, the incorporation of Cas9 RNP into neurons and the brain is challenging. In the present study, we have reported the use of a dendrimer (generation 3; G3)/glucuronylglucosyl-β-cyclodextrin conjugate (GUG-β-CDE (G3)) as a carrier of Cas9 RNP and evaluated genome editing activity in the neuron and the brain. A Cas9 RNP ternary complex with GUG-β-CDE (G3) was prepared by only mixing the components. The resulting complex exhibited higher genome editing activity than the complex with the dendrimer (G3), Lipofectamine 3000 or Lipofectamine CRISPRMAX in SH-SY5Y cells, a human neuroblastoma cell line. In addition, GUG-β-CDE (G3) enhanced the genome editing activity of Cas9 RNP in the whole mouse brain after a single intraventricular administration. Thus, GUG-β-CDE (G3) is a useful Cas9 RNP carrier that can induce genome editing in the neuron and brain.
Collapse
Affiliation(s)
- Toru Taharabaru
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryoma Yokoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ahmed Fouad Abdelwahab Mohammed
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Masamichi Inoue
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Program for Leading Graduate Schools 'Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program', Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Maeda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Program for Leading Graduate Schools 'Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program', Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
17
|
Synthesis, characterization and applications of copolymer of β – cyclodextrin: a review. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02058-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Meng Z, O'Keeffe-Ahern J, Lyu J, Pierucci L, Zhou D, Wang W. A new developing class of gene delivery: messenger RNA-based therapeutics. Biomater Sci 2018; 5:2381-2392. [PMID: 29063914 DOI: 10.1039/c7bm00712d] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gene therapy has long been held as having the potential to become a front line treatment for various genetic disorders. However, the direct delivery of nucleic acids to correct a genetic disorder has numerous limitations owing to the inability of naked nucleic acids (DNA and RNA) to traverse the cell membrane. Recently, messenger RNA (mRNA) based delivery has become a more attractive alternative to DNA due to the relatively easier transfection process, higher efficiency and safety profile. As with all gene therapies, the central challenge that remains is the efficient delivery of nucleic acids intracellularly. This review presents the recent progress in mRNA delivery, focusing on comparing the advantages and limitations of non-viral based delivery vectors.
Collapse
Affiliation(s)
- Zhao Meng
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | | | | | | | | | | |
Collapse
|
19
|
Alfei S, Taptue GB, Catena S, Bisio A. Synthesis of Water-soluble, Polyester-based Dendrimer Prodrugs for Exploiting Therapeutic Properties of Two Triterpenoid Acids. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2124-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
He D, Lin H, Yu Y, Shi L, Tu J. Precisely Defined Polymers for Efficient Gene Delivery. Top Curr Chem (Cham) 2018; 376:2. [PMID: 29335799 DOI: 10.1007/s41061-017-0183-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/27/2017] [Indexed: 01/03/2023]
|
21
|
Guo Z, Lin L, Chen J, Zhou X, Chan HF, Chen X, Tian H, Chen M. Poly(ethylene glycol)-poly-l-glutamate complexed with polyethyleneimine−polyglycine for highly efficient gene delivery in vitro and in vivo. Biomater Sci 2018; 6:3053-3062. [DOI: 10.1039/c8bm00503f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The highly efficient gene delivery system with effective serum resistant capacity is promising for cancer therapy.
Collapse
Affiliation(s)
- Zhaopei Guo
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao 999078
- China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xingzhi Zhou
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao 999078
- China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine
- School of Biomedical Science
- The Chinese University of Hong Kong
- Hong Kong
- China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao 999078
- China
| |
Collapse
|
22
|
Ceborska M. Folate appended cyclodextrins for drug, DNA, and siRNA delivery. Eur J Pharm Biopharm 2017; 120:133-145. [DOI: 10.1016/j.ejpb.2017.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 12/11/2022]
|
23
|
Synthesis and characterization of polyester-based dendrimers containing peripheral arginine or mixed amino acids as potential vectors for gene and drug delivery. Macromol Res 2017. [DOI: 10.1007/s13233-017-5160-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
A clue to unprecedented strategy to HIV eradication: "Lock-in and apoptosis". Sci Rep 2017; 7:8957. [PMID: 28827668 PMCID: PMC5567282 DOI: 10.1038/s41598-017-09129-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/24/2017] [Indexed: 11/13/2022] Open
Abstract
Despite the development of antiretroviral therapy against HIV, eradication of the virus from the body, as a means to a cure, remains in progress. A “kick and kill” strategy proposes “kick” of the latent HIV to an active HIV to eventually be “killed”. Latency-reverting agents that can perform the “kick” function are under development and have shown promise. Management of the infected cells not to produce virions after the “kick” step is important to this strategy. Here we show that a newly synthesized compound, L-HIPPO, captures the HIV-1 protein Pr55Gag and intercepts its function to translocate the virus from the cytoplasm to the plasma membrane leading to virion budding. The infecting virus thus “locked-in” subsequently induces apoptosis of the host cells. This “lock-in and apoptosis” approach performed by our novel compound in HIV-infected cells provides a means to bridge the gap between the “kick” and “kill” steps of this eradication strategy. By building upon previous progress in latency reverting agents, our compound appears to provide a promising step toward the goal of HIV eradication from the body.
Collapse
|
25
|
Arima H, Motoyama K, Higashi T. Potential Use of Cyclodextrins as Drug Carriers and Active Pharmaceutical Ingredients. Chem Pharm Bull (Tokyo) 2017; 65:341-348. [PMID: 28381674 DOI: 10.1248/cpb.c16-00779] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclodextrins (CyDs) are extensively used in various fields, and especially have been widely utilized as pharmaceutical excipients and drug carriers in the pharmaceutical field. Owing to the multi-functional and biocompatible characteristics, CyDs can improve the undesirable properties of drug molecules. This review outlines the current application of CyDs in pharmaceutical formulations, focusing on their use as CyD-based drug carriers for several kinds of drugs. Additionally, CyDs have great potential as active pharmaceutical ingredients against various diseases with few side effects.
Collapse
Affiliation(s)
- Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University
| | | | | |
Collapse
|
26
|
Sun J, Sheng R, Luo T, Wang Z, Li H, Cao A. Synthesis of diblock/statistical cationic glycopolymers with pendant galactose and lysine moieties: gene delivery application and intracellular behaviors. J Mater Chem B 2016; 4:4696-4706. [PMID: 32263242 DOI: 10.1039/c6tb00969g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new series of cationic block copolymers PHML-b-PMAGal and statistical copolymers P(HML-st-MAGal) with pendant natural galactose and (l-)-lysine moieties were prepared via RAFT (reversible addition-fragmentation chain-transfer) polymerization. The block/statistical copolymers showed a high plasmid DNA binding affinity (N/P < 2) and the as-formed polyplexes were spherical nanoparticles with the average size of 100-300 nm and surface zeta potentials of +30.2 to +46.3 mV. The cytotoxicity and gene transfection efficacy of the PHML-b-PMAGal and P(HML-st-MAGal) vectors strongly depend on the polymer architectures (block/statistical) and the galactose content. Notably, the statistical copolymer P(HML40-st-MAGal4) with 4.8% galactose content showed the highest gene transfection efficiency among the synthesized cationic polymers, 6.8-fold higher than that of the "gold standard" bPEI-25k in the presence of 10% FBS (fetal bovine serum) in various cell lines. An intracellular uptake mechanism (with 10% FBS) study demonstrated that the P(HML40-st-MAGal4)/pDNA polyplexes entered H1299 cells mainly through caveolae-mediated endocytosis and microtubule-dependent endocytosis pathways. Moreover, the fluorescence imaging study showed that the P(HML40-st-MAGal4)/pDNA polyplexes possessed an obvious "lysosomal escaping" effect that led to efficient pDNA release, which might interpret the fact of the significant increase of the related gene transfection efficiency. Moreover, it could be anticipated that the P(HML40-st-MAGal4) cationic glycopolymer might be employed as a low toxic, highly efficient and serum-compatible gene carrier for practical applications.
Collapse
Affiliation(s)
- Jingjing Sun
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, CAS. Lingling Road 345, Shanghai, 200032, China.
| | | | | | | | | | | |
Collapse
|
27
|
Tailoring the dendrimer core for efficient gene delivery. Acta Biomater 2016; 35:1-11. [PMID: 26923528 DOI: 10.1016/j.actbio.2016.02.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/16/2016] [Accepted: 02/22/2016] [Indexed: 01/01/2023]
Abstract
Dendrimers have been widely used as non-viral gene vectors due to well-defined chemical structures, high density of cationic charges and ease of surface modification. Although a large number of studies have reported the important roles of dendrimer architecture, component, generation and surface functionality in gene delivery, the effect of dendrimer core on this issue still remains unclear. Recent literatures suggest that a slight alternation in dendrimer core has a profound effect in the transfection efficacy and biocompatibility. In this review, we will discuss the transfection mechanism of dendrimers with different types of cores in respect of flexibility, hydrophobicity and functionality. We hope to open a possibility of designing efficient dendrimers for gene delivery by choosing a proper dendrimer core. STATEMENT OF SIGNIFICANCE As a branch of researches on dendrimers and dendritic polymers, the design of biocompatible and high efficient polymeric gene carriers has attracted increasing attentions during these years. Although the effect of dendrimer generation, species, architecture and surface functionality on gene delivery have been widely reported, the effect of dendrimer core on this issue still remains unclear. Recent literatures suggest that a minor variation on the dendrimer core has a profound effect in the transfection efficacy and biocompatibility. This critical review summarized the dendrimers with different types of cores and discussed the transfection mechanism with particular focus on the flexibility, hydrophobicity, and functionality. It is hoped to provide a new insight to design efficient and safe dendrimer-based gene vectors by choosing a proper core. To the best of our knowledge, this is the first review on the effect of dendrimer core on gene delivery. The findings obtained in this filed are of central importance in the design of efficient polymeric gene vectors. This article will appeal a wide readership such as physical chemist, dendrimer chemist, biological chemist, pharmaceutical scientist, and biomaterial researchers. We hope that this review article can be published by Acta Biomaterialia, a top journal that publishes important reviews in the field of biomaterials science.
Collapse
|
28
|
Wang H, Wei H, Huang Q, Liu H, Hu J, Cheng Y, Xiao J. Nucleobase-modified dendrimers as nonviral vectors for efficient and low cytotoxic gene delivery. Colloids Surf B Biointerfaces 2015; 136:1148-55. [DOI: 10.1016/j.colsurfb.2015.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/10/2015] [Accepted: 11/07/2015] [Indexed: 12/30/2022]
|
29
|
Dehshahri A, Sadeghpour H. Surface decorations of poly(amidoamine) dendrimer by various pendant moieties for improved delivery of nucleic acid materials. Colloids Surf B Biointerfaces 2015; 132:85-102. [PMID: 26022400 DOI: 10.1016/j.colsurfb.2015.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 12/22/2022]
|
30
|
He B, Wang Y, Shao N, Chang H, Cheng Y. Polymers modified with double-tailed fluorous compounds for efficient DNA and siRNA delivery. Acta Biomater 2015; 22:111-9. [PMID: 25937003 DOI: 10.1016/j.actbio.2015.04.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/17/2015] [Accepted: 04/24/2015] [Indexed: 12/11/2022]
Abstract
Cationic polymers are widely used as gene carriers, however, these polymers are usually associated with low transfection efficacy and non-negligible toxicity. Fluorination on polymers significantly improves their performances in gene delivery, but a high density of fluorous chains must be conjugated on a single polymer. Here we present a new strategy to construct fluorinated polymers with minimal fluorous chains for efficient DNA and siRNA delivery. A double-tailed fluorous compound 2-chloro-4,6-bis[(perfluorohexyl)propyloxy]-1,3,5-triazine (CBT) was conjugated on dendrimers of different generations and low molecular weight polyethylenimine via a facile synthesis. The yielding products with average numbers of 1-2 conjugated CBT moieties showed much improved EGFP and luciferase transfection efficacy compared to unmodified polymers. In addition, these polymers show high siRNA delivery efficacy on different cell lines. Among the synthesized polymers, generation 1 (G1) dendrimer modified with an average number of 1.9 CBT moieties (G1-CBT1.9) shows the highest efficacy when delivering both DNA and siRNA and its efficacy approaches that of Lipofectamine 2000. G1-CBT1.9 also shows efficient gene silencing in vivo. All of the CBT-modified polymers exhibit minimal toxicity on the cells at their optimal transfection conditions. This study provides a new strategy to design efficient fluorous polymers for DNA and siRNA delivery.
Collapse
|
31
|
Gallego-Yerga L, Blanco-Fernández L, Urbiola K, Carmona T, Marcelo G, Benito JM, Mendicuti F, Tros de Ilarduya C, Ortiz Mellet C, García Fernández JM. Host-Guest-Mediated DNA Templation of Polycationic Supramolecules for Hierarchical Nanocondensation and the Delivery of Gene Material. Chemistry 2015; 21:12093-104. [PMID: 26184887 DOI: 10.1002/chem.201501678] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 12/14/2022]
Abstract
Only a few examples of monodisperse molecular entities that can compact exogenous nucleic acids into nanocomplexes, protect the cargo from the biological environment, facilitate cell internalization, and promote safe transfection have been reported up to date. Although these species open new venues for fundamental studies on the structural requirements that govern the intervening processes and their application in nonviral gene-vector design, the synthesis of these moieties generally requires a relatively sophisticated chemistry, which hampers further development in gene therapy. Herein, we report an original strategy for the reversible complexation and delivery of DNA based on the supramolecular preorganization of a β-cyclodextrin-scaffolded polycationic cluster facilitated by bisadamantane guests. The resulting gemini-type, dual-cluster supramolecules can then undergo DNA-templated self-assembly at neutral pH value by bridging parallel DNA oligonucleotide fragments. This hierarchical DNA condensation mechanism affords transfectious nanoparticles with buffering capabilities, thus facilitating endosomal escape following cell internalization. Protonation also destabilizes the supramolecular dimers and consequently the whole supramolecular edifice, thus assisting DNA release. Our advanced hypotheses are supported by isothermal titration calorimetry, NMR and circular dichroism spectroscopic analysis, gel electrophoresis, dynamic light scattering, TEM, molecular mechanics, molecular dynamics, and transfection studies conducted in vitro and in vivo.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/Prof. García González 1, 41012 Sevilla (Spain)
| | - Laura Blanco-Fernández
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080, Pamplona (Spain)
| | - Koldo Urbiola
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080, Pamplona (Spain)
| | - Thais Carmona
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Edificio de Farmacia, Campus Universitario, Ctra, Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid (Spain)
| | - Gema Marcelo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Edificio de Farmacia, Campus Universitario, Ctra, Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid (Spain)
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - University of Sevilla, Avda. Americo Vespucio 49, 41092 Sevilla (Spain)
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Edificio de Farmacia, Campus Universitario, Ctra, Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid (Spain).
| | - Conchita Tros de Ilarduya
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080, Pamplona (Spain).
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/Prof. García González 1, 41012 Sevilla (Spain).
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - University of Sevilla, Avda. Americo Vespucio 49, 41092 Sevilla (Spain).
| |
Collapse
|
32
|
Arima H, Hayashi Y, Higashi T, Motoyama K. Recent advances in cyclodextrin delivery techniques. Expert Opin Drug Deliv 2015; 12:1425-41. [DOI: 10.1517/17425247.2015.1026893] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
33
|
Yang J, Zhang Q, Chang H, Cheng Y. Surface-Engineered Dendrimers in Gene Delivery. Chem Rev 2015; 115:5274-300. [PMID: 25944558 DOI: 10.1021/cr500542t] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiepin Yang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Qiang Zhang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Hong Chang
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Yiyun Cheng
- Shanghai
Key Laboratory of
Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
34
|
Shao N, Wang H, He B, Wang Y, Xiao J, Wang Y, Zhang Q, Li Y, Cheng Y. Hydrogen-bonding dramatically modulates the gene transfection efficacy of surface-engineered dendrimers. Biomater Sci 2015; 3:500-508. [PMID: 26222293 DOI: 10.1039/c4bm00335g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Dendrimers have shown great promise in the design of efficient gene vectors. However, high transfection efficacy is usually associated with serious cytotoxicity for these cationic polymers. Here, we report a facile strategy to prepare surface-engineered dendrimers with a dramatic transfection efficacy and reduced cytotoxicity. Surface-engineered dendrimers with multiple hydrogen bonding ligands such as guanamine and nucleobase derivatives show superior efficacy and low cytotoxicity on commonly used cells as well as 3D tumor spheroids to representative transfection reagents such as Lipofectamine 2000. Complementary multiple hydrogen bonding interactions between the modified ligands and DNA nucleobases play essential roles in efficient gene transfection. The hydrogen-bond modulation strategy represents a promising tool in the design of highly efficient and less cytotoxic gene materials.
Collapse
Affiliation(s)
- Naimin Shao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Appelhans D, Klajnert-Maculewicz B, Janaszewska A, Lazniewska J, Voit B. Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications. Chem Soc Rev 2015; 44:3968-96. [DOI: 10.1039/c4cs00339j] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential of dendritic glycopolymers based on dendritic polyamine scaffolds for biomedical applications is presented and compared with that of the structurally related anti-adhesive dendritic glycoconjugates.
Collapse
Affiliation(s)
- Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Barbara Klajnert-Maculewicz
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Anna Janaszewska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Joanna Lazniewska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-236 Lodz
- Poland
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
- Organic Chemistry of Polymers
- Technische Universität Dresden
| |
Collapse
|
36
|
Chang H, Zhang Y, Li L, Cheng Y. Efficient delivery of small interfering RNA into cancer cells using dodecylated dendrimers. J Mater Chem B 2015; 3:8197-8202. [DOI: 10.1039/c5tb01257k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Dodecylated dendrimers show significantly improved gene silencing efficacy after dodecylation. Among the dendrimers, G4-23C12 shows the highest gene knockdown efficacy.
Collapse
Affiliation(s)
- Hong Chang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Yueming Zhang
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology
- School of Life Sciences
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
37
|
Abstract
Switchable DNA condensers based on β-CD bearing imidazolium and hydrolysable linkages were synthesized, showing base or enzyme-responsive switchable condensation ability.
Collapse
Affiliation(s)
- Ping Hu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yong Chen
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Yu Liu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
38
|
Frampton MB, Jones TRB, Zelisko PM. Cyclotetrasiloxane frameworks for the chemoenzymatic synthesis of oligoesters. RSC Adv 2015. [DOI: 10.1039/c4ra14828b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The lipase-mediated synthesis of branched and polycyclic polyester systems based on a cyclotetrasiloxane core.
Collapse
Affiliation(s)
- M. B. Frampton
- Department of Chemistry and Centre for Biotechnology
- Brock University
- St. Catharines
- Canada
| | - T. R. B. Jones
- Department of Chemistry and Centre for Biotechnology
- Brock University
- St. Catharines
- Canada
| | - P. M. Zelisko
- Department of Chemistry and Centre for Biotechnology
- Brock University
- St. Catharines
- Canada
| |
Collapse
|
39
|
Méndez-Ardoy A, Díaz-Moscoso A, Ortiz Mellet C, Di Giorgio C, Vierling P, Benito JM, García Fernández JM. Harmonized tuning of nucleic acid and lectin binding properties with multivalent cyclodextrins for macrophage-selective gene delivery. RSC Adv 2015. [DOI: 10.1039/c5ra16087a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polycationic amphiphilic cyclodextrins (paCDs) have been shown to behave as efficient non-viral gene carriers paralleling the efficacy of commercial vectors towards a variety of cell lines.
Collapse
Affiliation(s)
- Alejandro Méndez-Ardoy
- Departamento de Química Orgánica
- Facultad de Química
- Univ. Sevilla
- C/Prof. García González 1
- E-41012 Sevilla
| | | | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Univ. Sevilla
- C/Prof. García González 1
- E-41012 Sevilla
| | - Christophe Di Giorgio
- Institut de Chimie de Nice
- ICN – Université de Nice Sophia Antipolis – CNRS UMR 7272
- F-06100 Nice
- France
| | - Pierre Vierling
- Institut de Chimie de Nice
- ICN – Université de Nice Sophia Antipolis – CNRS UMR 7272
- F-06100 Nice
- France
| | - Juan M. Benito
- Instituto de Investigaciones Químicas
- CSIC – Univ. Sevilla
- E-41092 Sevilla
- Spain
| | | |
Collapse
|
40
|
Hayashida K, Higashi T, Kono D, Motoyama K, Wada K, Arima H. Preparation and evaluation of cyclodextrin polypseudorotaxane with PEGylated liposome as a sustained release drug carrier. Beilstein J Org Chem 2014; 10:2756-64. [PMID: 25550741 PMCID: PMC4273225 DOI: 10.3762/bjoc.10.292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 11/05/2014] [Indexed: 12/29/2022] Open
Abstract
Cyclodextrins (CDs) can form polypseudorotaxanes (PPRXs) with drugs or drug carriers possessing linear polymers such as polyethylene glycol (PEG). On the other hand, PEGylated liposomes have been utilized as a representative anticancer drug carrier. However, little is known about the formation of CD PPRX with PEGylated liposome. In the present study, we first report the formation of CD PPRX with PEGylated liposome and evaluate it as a sustained release drug carrier. PEGylated liposome encapsulating doxorubicin was disrupted by the addition of α-CD. Meanwhile, γ-CD included two PEG chains and/or one bending PEG chain of PEGylated liposome and formed PPRX without the disruption of the membrane integrity of the PEGylated liposome. Moreover, the release of doxorubicin and/or PEGylated liposome encapsulating doxorubicin from the PPRX was prolonged in accordance with the matrix type release mechanism. These findings suggest the potential of γ-CD PPRX as sustained release carriers for PEGylated liposome products.
Collapse
Affiliation(s)
- Kayoko Hayashida
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Daichi Kono
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Koki Wada
- Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji, Shizuoka 417-8539, Japan
| | - Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program”, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
41
|
Wang F, Wang Y, Wang H, Shao N, Chen Y, Cheng Y. Synergistic effect of amino acids modified on dendrimer surface in gene delivery. Biomaterials 2014; 35:9187-98. [DOI: 10.1016/j.biomaterials.2014.07.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 07/19/2014] [Indexed: 01/09/2023]
|
42
|
Wang M, Cheng Y. The effect of fluorination on the transfection efficacy of surface-engineered dendrimers. Biomaterials 2014; 35:6603-13. [PMID: 24818889 DOI: 10.1016/j.biomaterials.2014.04.065] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/16/2014] [Indexed: 01/01/2023]
|
43
|
Anno T, Higashi T, Hayashi Y, Motoyama K, Jono H, Ando Y, Arima H. Potential use of glucuronylglucosyl-β-cyclodextrin/dendrimer conjugate (G2) as a siRNA carrier for the treatment of familial amyloidotic polyneuropathy. J Drug Target 2014; 22:883-90. [DOI: 10.3109/1061186x.2014.939984] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Ueki A, Un K, Mino Y, Yoshida M, Kawakami S, Ando H, Ishida H, Yamashita F, Hashida M, Kiso M. Synthesis and evaluation of glyco-coated liposomes as drug carriers for active targeting in drug delivery systems. Carbohydr Res 2014; 405:78-86. [PMID: 25500195 DOI: 10.1016/j.carres.2014.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 01/04/2023]
Abstract
Novel sugar-conjugated cholesterols, β-Gal-, α-Man-, β-Man-, α-Fuc-, and β-Man-6P-S-β-Ala-Chol, were synthesized and incorporated into liposomes. In vitro experiments using the glyco-coated liposomes showed that the glyco-coated liposomes are efficiently taken up by cells expressing carbohydrate-binding receptors selectively. Glyco-coated liposomes are promising candidates for drug delivery vehicles.
Collapse
Affiliation(s)
- Akiharu Ueki
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Institute for Integrated Cell-Material Science (WPI program), Kyoto University, Yoshida-ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Keita Un
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
| | - Yuka Mino
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Mitsuru Yoshida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
| | - Shigeru Kawakami
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
| | - Hiromune Ando
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Institute for Integrated Cell-Material Science (WPI program), Kyoto University, Yoshida-ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan
| | - Mitsuru Hashida
- Institute for Integrated Cell-Material Science (WPI program), Kyoto University, Yoshida-ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8302, Japan.
| | - Makoto Kiso
- Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan; Institute for Integrated Cell-Material Science (WPI program), Kyoto University, Yoshida-ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
45
|
Chaplot SP, Rupenthal ID. Dendrimers for gene delivery – a potential approach for ocular therapy? J Pharm Pharmacol 2013; 66:542-56. [DOI: 10.1111/jphp.12104] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/15/2013] [Indexed: 12/12/2022]
Abstract
Abstract
Objectives
A vast number of blinding diseases have genetic aetiologies and may be treated by molecular based therapies such as antisense oligonucleotides or short interfering RNA. However, treatment success of ocular gene therapy is highly dependent on efficient delivery of such molecules.
Key findings
The majority of clinical studies for ocular gene therapy utilize viral vectors. While these have proven highly efficient, they show limited loading capacity and pose significant safety risks owing to their oncogenic and immunogenic effects. Non-viral gene carriers have emerged as a promising alternative with dendrimers providing great potential for gene therapy because of their size, shape and high density of modifiable surface groups. However, while dendrimers have been used extensively for drug and gene delivery to other organs, only a few studies have been reported on the eye.
Summary
This review focuses on the development of dendrimers for gene delivery with special emphasis on ocular gene therapy. Different synthesis approaches and types of dendrimers are discussed. Ocular gene therapy targets are highlighted with an overview of current clinical studies. The use of dendrimers in ocular gene delivery in comparison to liposomes and nanoparticles is also discussed. Finally, future prospects of tailored multifunctional dendrimers for ocular gene therapy are highlighted.
Collapse
Affiliation(s)
- Sahil P Chaplot
- Drug Delivery Research Unit, School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
46
|
|