1
|
Singh GJP, Peri SP. Scale-Up and Postapproval Changes in Orally Inhaled Drug Products: Scientific and Regulatory Considerations. J Aerosol Med Pulm Drug Deliv 2024. [PMID: 39648823 DOI: 10.1089/jamp.2024.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024] Open
Abstract
Approved drug products may be subject to change(s) for a variety of reasons. The changes may include, but are not limited to, increase in batch size, alteration of the drug product constituent(s), improvement in the manufacturing process, and shift in manufacturing sites. The extent of pharmaceutical testing and the regulatory pathway for timely implementation of any change in the approved product and/or process depends upon the nature and extent of change. The U.S. Food and Drug Administration (FDA) has published guidelines that outline its expectations for the Scale-Up and Postapproval Changes (SUPAC) in the solid oral immediate and modified release (MR) products, and semisolid formulations. However, to date, no such guidelines have been issued to address SUPAC in the orally inhaled drug products (OIDPs), and this article represents a seminal contribution in this direction. It is hoped that it will inspire contributions from the relevant multidisciplinary experts from the pharmaceutical industry and the agency in accomplishing formal regulatory guidelines relevant to the OIDP SUPAC. The OIDPs are complex drug-device combination products. Therefore, a conceptualization of SUPAC guidelines for these products warrants consideration of contributions of effect of change(s) in individual components (drug substance, formulation, device) as well as a compound effect that a single or multiple changes may have on product performance, and its safety and efficacy. This article provides a discussion of scientific aspects and regulatory bases relevant to the development of SUPAC for OIDPs, and it attempts to outline considerations that may be applicable in addressing issues related to the OIDP SUPAC in the context of human drugs. The authors' statements should not be viewed as recommendations from any regulatory agency, as the applicable guidelines would be determined on case-by-case evaluation by the relevant authorities.
Collapse
|
2
|
Berkenfeld K, Carneiro S, Corzo C, Laffleur F, Salar-Behzadi S, Winkeljann B, Esfahani G. Formulation strategies, preparation methods, and devices for pulmonary delivery of biologics. Eur J Pharm Biopharm 2024; 204:114530. [PMID: 39393712 DOI: 10.1016/j.ejpb.2024.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Biological products, including vaccines, blood components, and recombinant therapeutic proteins, are derived from natural sources such as humans, animals, or microorganisms and are typically produced using advanced biotechnological methods. The success of biologics, particularly monoclonal antibodies, can be attributed to their favorable safety profiles and target specificity. However, their large molecular size presents significant challenges in drug delivery, particularly in overcoming biological barriers. Pulmonary delivery has emerged as a promising route for administering biologics, offering non-invasive delivery with rapid absorption, high systemic bioavailability, and avoidance of first-pass metabolism. This review first details the anatomy and physiological barriers of the respiratory tract and the associated challenges of pulmonary drug delivery (PDD). It further discusses innovations in PDD, the impact of particle size on drug deposition, and the use of secondary particles, such as nanoparticles, to enhance bioavailability and targeting. The review also explains various devices used for PDD, including dry powder inhalers (DPIs) and nebulizers, highlighting their advantages and limitations in delivering biologics. The role of excipients in improving the stability and performance of inhalation products is also addressed. Since dry powders are considered the suitable format for delivering biomolecules, particular emphasis is placed on the excipients used in DPI development. The final section of the article reviews and compares various dry powder manufacturing methods, clarifying their clinical relevance and potential for future applications in the field of inhalable drug formulation.
Collapse
Affiliation(s)
- Kai Berkenfeld
- Laboratory of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Street 3, 53121 Bonn, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Simone Carneiro
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Carolina Corzo
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Sharareh Salar-Behzadi
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany; Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, München 80799, Germany; RNhale GmbH, München 81371, Germany; Comprehensive Pneumology Center Munich (CPC-M), Helmholtz Munich, German Center for Lung Research (DZL), 81377 Munich, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS)
| | - Golbarg Esfahani
- Department of Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, Halle 06120, Saale, Germany; Pharmaceutical Engineering and Technology Research Scientists (PETRS).
| |
Collapse
|
3
|
Devireddy VSR, Shafi H, Verma S, Singh S, Chakradhar JVUS, Kothuri N, Bansode H, Raman SK, Sharma D, Azmi L, Verma RK, Misra A. Comparative Preclinical Pharmacokinetics and Disposition of Favipiravir Following Pulmonary and Oral Administration as Potential Adjunct Therapy Against Airborne RNA Viruses. Pharm Res 2024; 41:2189-2198. [PMID: 39419926 DOI: 10.1007/s11095-024-03782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Favipiravir is administered orally, even against airborne RNA viruses, in a loading-dose/maintenance dose regimen. We investigated whether-(a) pulmonary delivery of favipiravir would generate high concentrations in the luminal side of the respiratory tract; and (b) avoiding first-pass metabolism by the liver by inhaled drug would generate comparable pharmacokinetics (PK) with doses significantly smaller than the oral maintenance dose. METHODS A dry powder inhalation (DPI) of favipiravir formulated by mixing with Inhalac 400® was prepared and characterized. Inhalations of ~ 120 µg dose strength, with or without a prior oral loading dose were administered to mice. Comparator mice received human-equivalent oral doses (3 mg). Three mice per sampling time point were sacrificed and favipiravir concentrations in the blood plasma, bronchio-alveolar lavage fluid (BALF) and lung tissue homogenate determined by HPLC. RESULTS One-compartment PK modeling of concentration-time data indicated that the area under the curve (AUC0-24 h) generated in the BALF recovered from mice receiving inhalations of ~ 1/25th of the oral dose subsequent to an oral loading dose was 86.72 ± 4.48 µg⋅mL-1⋅h. This was consistently higher than the AUC observed in the BALF of orally-dosed mice (56.71 ± 53.89 µg mL-1⋅h). In blood serum, the respective values of AUC were 321.55 ± 124.91 and 354.71 ± 99.60 µg⋅mL-1⋅h. CONCLUSION Pulmonary delivery of significantly smaller doses of favipiravir generates meaningful drug disposition and pharmacokinetics at the site of respiratory viral infections. We provide the rationale for designing a self-administered, non-invasive, low-cost, targeted drug delivery system against airborne RNA virus infection.
Collapse
Affiliation(s)
- Venkata Siva Reddy Devireddy
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10A, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, India
| | - Hasham Shafi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10A, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sonia Verma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10A, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, India
| | - Sanjay Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10A, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - J V U S Chakradhar
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10A, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Naresh Kothuri
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10A, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Himanshu Bansode
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10A, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Sunil Kumar Raman
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10A, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Deepak Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10A, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Lubna Azmi
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10A, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology, Sector 81, Sahibzada Ajit Singh Nagar, 140306, India
| | - Amit Misra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Sector 10A, Janakipuram Extension, Sitapur Road, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Chen J, Ye Y, Yang Q, Fan Z, Shao Y, Wei X, Shi K, Dong J, Ma Y, Zhu J. Understanding the role of swirling flow in dry powder inhalers: Implications for design considerations and pulmonary delivery. J Control Release 2024; 373:410-425. [PMID: 39038545 DOI: 10.1016/j.jconrel.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/09/2024] [Accepted: 07/13/2024] [Indexed: 07/24/2024]
Abstract
Dry powder inhalers (DPIs) are widely employed to treat respiratory diseases, offering numerous advantages such as high dose capacity and stable formulations. However, they usually face challenges in achieving sufficient pulmonary drug delivery and minimizing excessive oropharyngeal deposition. This review provides a new viewpoint to address these challenges by focusing on the role of swirling flow, a crucial yet under-researched aspect that induces strong turbulence. In the review, we comprehensively discuss both key classic designs (tangential inlet, swirling chamber, grid mesh, and mouthpiece) and innovative designs in inhalers, exploring how the induced swirling flow initiates powder dispersion and promotes delivery efficiency. Valuable design considerations to effectively coordinate inhalers with formulations and patients are also provided. It is highlighted that the delicate manipulation of swirling flow is essential to maximize benefits. By emphasizing the role of swirling flow and its potential application, this review offers promising insights for advancing DPI technology and optimizing therapeutic outcomes in inhaled therapy.
Collapse
Affiliation(s)
- Jiale Chen
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China
| | - Yuqing Ye
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China; Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China.
| | - Qingliang Yang
- College of Pharmaceutical Science, Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ziyi Fan
- Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Yuanyuan Shao
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China
| | - Xiaoyang Wei
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China
| | - Kaiqi Shi
- Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China
| | - Jie Dong
- Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China
| | - Ying Ma
- Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Suzhou Inhal Pharma Co., Ltd, 502-Bldf A SIP, 108 Yuxin Road, Suzhou 215125, China
| | - Jesse Zhu
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315100, China; Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada; Eastern Institute of Technology, Ningbo 315200, China.
| |
Collapse
|
5
|
Kassaee SN, Richard D, Ayoko GA, Islam N. Lipid polymer hybrid nanoparticles against lung cancer and their application as inhalable formulation. Nanomedicine (Lond) 2024; 19:2113-2133. [PMID: 39143915 PMCID: PMC11486133 DOI: 10.1080/17435889.2024.2387530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
Lung cancer is a leading cause of global cancer mortality, often treated with chemotherapeutic agents. However, conventional approaches such as oral or intravenous administration of drugs yield low bioavailability and adverse effects. Nanotechnology has unlocked new gateways for delivering medicine to their target sites. Lipid-polymer hybrid nanoparticles (LPHNPs) are one of the nano-scaled delivery platforms that have been studied to exploit advantages of liposomes and polymers, enhancing stability, drug loading, biocompatibility and controlled release. Pulmonary administration of drug-loaded LPHNPs enables direct lung deposition, rapid onset of action and heightened efficacy at low doses of drugs. In this manuscript, we will review the potential of LPHNPs in management of lung cancer through pulmonary administration.
Collapse
Affiliation(s)
- Seyedeh Negin Kassaee
- School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Derek Richard
- Centre for Genomics & Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Godwin A. Ayoko
- School of Chemistry & Physics & Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| | - Nazrul Islam
- School of Clinical Sciences, Queensland University of Technology (QUT), Brisbane, QLDQLD4001, Australia
| |
Collapse
|
6
|
Sutar AD, Verma RK, Shukla R. Quality by Design in Pulmonary Drug Delivery: A Review on Dry Powder Inhaler Development, Nanotherapy Approaches, and Regulatory Considerations. AAPS PharmSciTech 2024; 25:178. [PMID: 39095623 DOI: 10.1208/s12249-024-02900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Dry powder inhalers (DPIs) are state-of-the-art pulmonary drug delivery systems. This article explores the transformative impact of nanotechnology on DPIs, emphasizing the Quality Target Product Profile (QTPP) with a focus on aerodynamic performance and particle characteristics. It navigates global regulatory frameworks, underscoring the need for safety and efficacy standards. Additionally, it highlights the emerging field of nanoparticulate dry powder inhalers, showcasing their potential to enhance targeted drug delivery in respiratory medicine. This concise overview is a valuable resource for researchers, physicians, and pharmaceutical developers, providing insights into the development and commercialization of advanced inhalation systems.
Collapse
Affiliation(s)
- Ashish Dilip Sutar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology Lab, Institute of Nano Science and Technology (INST), Sector-81, Mohali, Punjab, 160062, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
7
|
Cazzola M, Ora J, Maniscalco M, Rogliani P. A clinician's guide to single vs multiple inhaler therapy for COPD. Expert Rev Respir Med 2024; 18:457-468. [PMID: 39044348 DOI: 10.1080/17476348.2024.2384702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION In the management of chronic obstructive pulmonary disease (COPD), inhalation therapy plays a pivotal role. However, clinicians often face the dilemma of choosing between single and multiple inhaler therapies for their patients. This choice is critical because it can affect treatment efficacy, patient adherence, and overall disease management. AREAS COVERED This article examines the advantages and factors to be taken into consideration when selecting between single and multiple inhaler therapies for COPD. EXPERT OPINION Both single and multiple inhaler therapies must be considered in COPD management. While single inhaler therapy offers simplicity and convenience, multiple inhaler therapy provides greater flexibility and customization. Clinicians must carefully evaluate individual patient needs and preferences to determine the most appropriate inhaler therapy regimen. Through personalized treatment approaches and shared decision-making, clinicians can optimize COPD management and improve patient well-being. Nevertheless, further research is required to compare the effectiveness of single versus multiple inhaler strategies through rigorous clinical trials, free from industry bias, to determine the optimal inhaler strategy. Smart inhaler technology appears to have the potential to enhance adherence and personalized management, but the relative merits of smart inhalers in single inhaler regimens versus multiple inhaler regimens remain to be determined.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital "Fondazione Policlinico Tor Vergata", Rome, Italy
| | - Mauro Maniscalco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, Telese Terme, Italy
| | - Paola Rogliani
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
- Division of Respiratory Medicine, University Hospital "Fondazione Policlinico Tor Vergata", Rome, Italy
| |
Collapse
|
8
|
Pasero L, Susa F, Limongi T, Pisano R. A Review on Micro and Nanoengineering in Powder-Based Pulmonary Drug Delivery. Int J Pharm 2024; 659:124248. [PMID: 38782150 DOI: 10.1016/j.ijpharm.2024.124248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Pulmonary delivery of drugs has emerged as a promising approach for the treatment of both lung and systemic diseases. Compared to other drug delivery routes, inhalation offers numerous advantages including high targeting, fewer side effects, and a huge surface area for drug absorption. However, the deposition of drugs in the lungs can be limited by lung defence mechanisms such as mucociliary and macrophages' clearance. Among the delivery devices, dry powder inhalers represent the optimal choice due to their stability, ease of use, and absence of propellants. In the last decades, several bottom-up techniques have emerged over traditional milling to produce inhalable powders. Among these techniques, the most employed ones are spray drying, supercritical fluid technology, spray freeze-drying, and thin film freezing. Inhalable dry powders can be constituted by micronized drugs attached to a coarse carrier (e.g., lactose) or drugs embedded into a micro- or nanoparticle. Particulate-based formulations are commonly composed of polymeric micro- and nanoparticles, liposomes, solid lipid nanoparticles, dendrimers, nanocrystals, extracellular vesicles, and inorganic nanoparticles. Moreover, engineered formulations including large porous particles, swellable microparticles, nano-in-microparticles, and effervescent nanoparticles have been developed. Particle engineering has also a crucial role in tuning the physical-chemical properties of both carrier-based and carrier-free inhalable powders. This approach can increase powder flowability, deposition, and targeting by customising particle surface features.
Collapse
Affiliation(s)
- Lorena Pasero
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| | - Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| | - Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy; Department of Drug Science and Technology, University of Turin, 9 P. Giuria Street, 10125 Torino, Italy.
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| |
Collapse
|
9
|
Simonsson A, Bramer T, Wimbush A, Alderborn G. Effect of drug load on the aerosolisation propensity of binary adhesive mixtures for inhalation. Int J Pharm 2024; 657:124122. [PMID: 38621619 DOI: 10.1016/j.ijpharm.2024.124122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The aim of this study was to investigate how the propensity for aerosolisation in binary adhesive mixtures was affected by the drug load, and to determine whether these findings could be linked to different blend states. Binary blends of two different lactose carriers, each with varying size and morphology, were prepared together with budesonide. In vitro aerosolisation studies were conducted at four different pressure drops, ranging from 0.5 to 4 kPa, utilising a Next Generation Impactor. Several dispersion parameters were derived from the relationship between the quantity of dispersed API and the pressure drop. The evolution of the parameters with drug load was complex, especially at low drug loads. While similar responses were observed for both carriers, the range of drug load that could be used varied significantly. The choice of carrier not only influenced the capacity for drug loading but also affected the spatial distribution of the API within the mixture, which, in turn, affected its aerosolisation propensity. Thus, the drug dispersion process could be linked to different configurations of the lactose carrier and budesonide in the blends, i.e. blend states. In conclusion, the study suggests that the concept of blend states can provide an explanation for the complex dispersion process observed in adhesive blends.
Collapse
Affiliation(s)
- Anna Simonsson
- Department of Pharmaceutical Biosciences and the Swedish Drug Delivery Center (SweDeliver), Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| | - Tobias Bramer
- Inhalation Product Development, Pharmaceutical Technology & Development, AstraZeneca Gothenburg, Sweden
| | - Alex Wimbush
- Inhalation Product Development, Pharmaceutical Technology & Development, AstraZeneca Gothenburg, Sweden
| | - Göran Alderborn
- Department of Pharmaceutical Biosciences and the Swedish Drug Delivery Center (SweDeliver), Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| |
Collapse
|
10
|
Patil SM, Diorio AM, Kommarajula P, Kunda NK. A quality-by-design strategic approach for the development of bedaquiline-pretomanid nanoparticles as inhalable dry powders for TB treatment. Int J Pharm 2024; 653:123920. [PMID: 38387819 DOI: 10.1016/j.ijpharm.2024.123920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis (M.tb) and is the second leading cause of death from an infectious disease globally. The disease mainly affects the lungs and forms granulomatous lesions that encapsulate the bacteria, making treating TB challenging. The current treatment includes oral administration of bedaquiline (BDQ) and pretomanid (PTD); however, patients suffer from severe systemic toxicities, low lung drug concentration, and non-adherence. In this study, we developed BDQ-PTD loaded nanoparticles as inhalable dry powders for pulmonary TB treatment using a Quality-by-Design (QbD) approach. The BDQ-PTD combination showed an additive/synergistic effect for M.tb inhibition in vitro, and the optimized drug ratio (1:4) was successfully loaded into polymeric nanoparticles (PLGA NPs). The QbD approach was implemented by identifying the quality target product profile (QTPPs), critical quality attributes (CQAs), and critical process parameters (CPPs) to develop efficient design space for dry powder preparation using spray drying. The three-factorial and three-level Box-Behnken Design was used to assess the effect of process parameters (CPPs) on product quality (CQAs). The Design of Experiments (DoE) analysis showed different regression models for product quality responses and helped optimize process parameters to meet QTPPs. The optimized dry powder showed excellent yield (72 ± 2 % w/w), high drug (BDQ-PTD) loading, low moisture content (<1% w/w), and spherical morphology. Further, aerosolization performance revealed the suitability of powder for deposition in the respiratory airways of the lungs (MMAD 2.4 µm and FPF > 75 %). In conclusion, the QbD approach helped optimize process parameters and develop dry powder with a suitable quality profile for inhalation delivery in TB patients.
Collapse
Affiliation(s)
- Suyash M Patil
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Alec M Diorio
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Parasharamulu Kommarajula
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA.
| |
Collapse
|
11
|
Peng S, Wang W, Zhang R, Wu C, Pan X, Huang Z. Nano-Formulations for Pulmonary Delivery: Past, Present, and Future Perspectives. Pharmaceutics 2024; 16:161. [PMID: 38399222 PMCID: PMC10893528 DOI: 10.3390/pharmaceutics16020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
With the development of nanotechnology and confronting the problems of traditional pharmaceutical formulations in treating lung diseases, inhalable nano-formulations have attracted interest. Inhalable nano-formulations for treating lung diseases allow for precise pulmonary drug delivery, overcoming physiological barriers, improving aerosol lung deposition rates, and increasing drug bioavailability. They are expected to solve the difficulties faced in treating lung diseases. However, limited success has been recorded in the industrialization translation of inhalable nano-formulations. Only one relevant product has been approved by the FDA to date, suggesting that there are still many issues to be resolved in the clinical application of inhalable nano-formulations. These systems are characterized by a dependence on inhalation devices, while the adaptability of device formulation is still inconclusive, which is the most important issue impeding translational research. In this review, we categorized various inhalable nano-formulations, summarized the advantages of inhalable nano-formulations over conventional inhalation formulations, and listed the inhalable nano-formulations undergoing clinical studies. We focused on the influence of inhalation devices on nano-formulations and analyzed their adaptability. After extensive analysis of the drug delivery mechanisms, technical processes, and limitations of different inhalation devices, we concluded that vibrating mesh nebulizers might be most suitable for delivering inhalable nano-formulations, and related examples were introduced to validate our view. Finally, we presented the challenges and outlook for future development. We anticipate providing an informative reference for the field.
Collapse
Affiliation(s)
- Siyuan Peng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Rui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
McEvoy C, Argula R, Sahay S, Shapiro S, Eagan C, Hickey AJ, Smutney C, Dillon C, Winkler T, Davis BN, Broderick M, Burger C. Tyvaso DPI: Drug-device characteristics and patient clinical considerations. Pulm Pharmacol Ther 2023; 83:102266. [PMID: 37967762 DOI: 10.1016/j.pupt.2023.102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
Tyvaso DPI is a drug-device combination therapy comprised of a small, portable, reusable, breath-powered, dry powder inhaler (DPI) for the delivery of treprostinil. It is approved for the treatment of pulmonary arterial hypertension and pulmonary hypertension associated with interstitial lung disease. Tyvaso DPI utilizes single-use prefilled cartridges to ensure proper dosing. Unlike nebulizer devices, administration of Tyvaso DPI is passive and does not require coordination with the device. The low-flow rate design results in targeted delivery to the peripheral lungs due to minimal drug loss from impaction in the oropharynx. The inert fumaryl diketopiperazine (FDKP) excipient forms microparticles that carry treprostinil into the airways, with a high fraction of the particles in the respirable range. In a clinical study in patients with pulmonary arterial hypertension, Tyvaso DPI had similar exposure and pharmacokinetics, low incidence of adverse events, and high patient satisfaction compared with nebulized treprostinil solution. Tyvaso DPI may be considered as a first prostacyclin agent or for those that do not tolerate other prostacyclin formulations, patients with pulmonary comorbidities, patients with mixed Group 1 and Group 3 pulmonary hypertension, or those that prefer an active lifestyle and need a portable, non-invasive treatment. Tyvaso DPI is a patient-preferred, maintenance-free, safe delivery option that may improve patient compliance and adherence.
Collapse
Affiliation(s)
- Colleen McEvoy
- Division of Pulmonary and Critical Care Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Rahul Argula
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Sandeep Sahay
- Division of Pulmonary, Critical Care & Sleep Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Shelley Shapiro
- Cardiology Division, Greater Los Angeles VA Healthcare System, Department of Pulmonary Critical Care, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Christina Eagan
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - Chris Dillon
- United Therapeutics Corporation, Research Triangle Park, NC, USA
| | - Thomas Winkler
- United Therapeutics Corporation, Research Triangle Park, NC, USA
| | - Brittany N Davis
- United Therapeutics Corporation, Research Triangle Park, NC, USA
| | | | - Charles Burger
- Division of Pulmonary, Allergy and Sleep Medicine, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
13
|
Magramane S, Vlahović K, Gordon P, Kállai-Szabó N, Zelkó R, Antal I, Farkas D. Inhalation Dosage Forms: A Focus on Dry Powder Inhalers and Their Advancements. Pharmaceuticals (Basel) 2023; 16:1658. [PMID: 38139785 PMCID: PMC10747137 DOI: 10.3390/ph16121658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
In this review, an extensive analysis of dry powder inhalers (DPIs) is offered, focusing on their characteristics, formulation, stability, and manufacturing. The advantages of pulmonary delivery were investigated, as well as the significance of the particle size in drug deposition. The preparation of DPI formulations was also comprehensively explored, including physico-chemical characterization of powders, powder processing techniques, and formulation considerations. In addition to manufacturing procedures, testing methods were also discussed, providing insights into the development and evaluation of DPI formulations. This review also explores the design basics and critical attributes specific to DPIs, highlighting the significance of their optimization to achieve an effective inhalation therapy. Additionally, the morphology and stability of 3 DPI capsules (Spiriva, Braltus, and Onbrez) were investigated, offering valuable insights into the properties of these formulations. Altogether, these findings contribute to a deeper understanding of DPIs and their development, performance, and optimization of inhalation dosage forms.
Collapse
Affiliation(s)
- Sabrina Magramane
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Kristina Vlahović
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Péter Gordon
- Department of Electronics Technology, Budapest University of Technology and Economics, Egry J. Str. 18, H-1111 Budapest, Hungary;
| | - Nikolett Kállai-Szabó
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Romána Zelkó
- Department of Pharmacy Administration, Semmelweis University, Hőgyes Str. 7–9, H-1092 Budapest, Hungary;
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Dóra Farkas
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| |
Collapse
|
14
|
Wang B, Xiang J, He B, Tan S, Zhou W. Enhancing bioavailability of natural extracts for nutritional applications through dry powder inhalers (DPI) spray drying: technological advancements and future directions. Front Nutr 2023; 10:1190912. [PMID: 37476406 PMCID: PMC10354342 DOI: 10.3389/fnut.2023.1190912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Natural ingredients have many applications in modern medicine and pharmaceutical projects. However, they often have low solubility, poor chemical stability, and low bioavailability in vivo. Spray drying technology can overcome these challenges by enhancing the properties of natural ingredients. Moreover, drug delivery systems can be flexibly designed to optimize the performance of natural ingredients. Among the various drug delivery systems, dry powder inhalation (DPI) has attracted much attention in pharmaceutical research. Therefore, this review will focus on the spray drying of natural ingredients for DPI and discuss their synthesis and application.
Collapse
Affiliation(s)
- Bo Wang
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Jia Xiang
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Binsheng He
- Academician Workstation, Changsha Medical University, Changsha, China
| | - Songwen Tan
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Wenhu Zhou
- Academician Workstation, Changsha Medical University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Laitano R, Calzetta L, Cavalli F, Cazzola M, Rogliani P. Delivering monoclonal antibodies via inhalation: a systematic review of clinical trials in asthma and COPD. Expert Opin Drug Deliv 2023; 20:1041-1054. [PMID: 37342873 DOI: 10.1080/17425247.2023.2228681] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Advances in understanding the pathophysiology of asthma and chronic obstructive pulmonary disease (COPD) led to investigation of biologic drugs targeting specific inflammatory pathways. No biologics are licensed for COPD while all the approved monoclonal antibodies (mAbs) for severe asthma treatment are systemically administered. Systemic administration is associated with low target tissue exposure and risk of systemic adverse events. Thus, delivering mAbs via inhalation may be an attractive approach for asthma and COPD treatment due to direct targeting of the airways. AREAS COVERED This systematic review of randomized control trials (RCTs) evaluated the potential role of delivering mAbs via inhalation in asthma and COPD treatment. Five RCTs were deemed eligible for a qualitative analysis. EXPERT OPINION Compared to systemic administration, delivering mAbs via inhalation is associated with rapid onset of action, greater efficacy at lower doses, minimal systemic exposure, and lower risk of adverse events. Although some of the inhaled mAbs included in this study showed a certain level of efficacy and safety in asthmatic patients, delivering mAbs via inhalation is still challenging and controversial. Further adequately powered and well-designed RCTs are needed to assess the potential role of inhaled mAbs in the treatment of asthma and COPD.
Collapse
Affiliation(s)
- Rossella Laitano
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Francesco Cavalli
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
16
|
Bourlon M, Feng Y, Garcia-Contreras L. Designing Aerosol Therapies Based on the Integrated Evaluation of In Vitro, In Vivo, and In Silico Data. Pharmaceutics 2023; 15:1695. [PMID: 37376143 DOI: 10.3390/pharmaceutics15061695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/28/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the advantages of the pulmonary route of administration and inhalable dosage forms, other routes of administration and dosage forms are often considered first to treat lung diseases. This occurs, in part, due to the perceived limitations of inhaled therapies resulting from the improper design and interpretation of their in vitro and in vivo evaluation. The present study outlines the elements that should be considered in the design, performance, and interpretation of the results of the preclinical evaluation of novel inhaled therapies. These elements are illustrated using an optimized model poly(lactic-co-glycolic) acid (PLGA) microparticle (MP) formulation to optimize the site of MPs deposition. The different expressions of MP size were determined, and their aerosol performance in devices used for animal (Microsprayer® and Insufflator®) and human studies (nebulizer and DPIs) was assessed using inertial impaction. Radiolabeled MPs were delivered to the lungs of rats by spray instillation to determine their site of deposition using single-photon emission computed tomography (SPECT) imaging. Recommendations to optimize the in vitro determinations are given, as well as suggestions to evaluate and interpret in vivo data in the context of the anatomy and physiology of the animal model and the corresponding in vitro data. Recommendations for the proper selection of in vitro parameters to inform in silico modeling are also given, as well as their integration with in vivo data.
Collapse
Affiliation(s)
- Margaret Bourlon
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Yu Feng
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - Lucila Garcia-Contreras
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
17
|
Thalberg K, Ahmadi R, Stuckel J, Elfman P, Svensson M. The match between adhesive mixture powder formulations for inhalation and the inhaler device. Eur J Pharm Sci 2023; 186:106457. [PMID: 37116546 DOI: 10.1016/j.ejps.2023.106457] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
The device or the formulation? Which one governs drug dispersibility from the inhaler? To address this question, three budesonide-containing reservoir DPIs: Novopulmon Novolizer®, Giona Easyhaler® and DuoResp Spiromax®, were analyzed using the Next Generation Impactor, NGI. Thereafter, the devices were carefully opened, emptied, and formulations were switched between devices. Finally, three 'prototype' formulations with carriers of different particle size were produced and tested in the Novolizer and Easyhaler devices. Among the DPI products, the two devices which have a flow path with a cyclone-type geometry, i.e., the Novolizer and the Spiromax, yielded a fine particle fraction, FPF, above 40%. The Easyhaler, which has a straight mouthpiece outlet, produced an FPF of 18 %. When the Novopulmon and the DuoResp formulations were assayed in the Easyhaler device, poor fine particle fractions were obtained. To the contrary, the Giona formulation produced a high FPF when tested in the Novolizer device. The results clearly show that the device is the dominating factor to dispersibility for the investigated products. Along the same lines, all three 'prototype' formulations produced high fine particle fractions in the Novolizer device, with the formulation with the largest carrier giving the best performance. Tested in the Easyhaler device, the prototype formulations produced low fine particle fractions, but interestingly, the formulation with the smallest carrier particle size yielded the highest FPF. It can be concluded that there is a link between inhaler design and the effect of carrier particle size, where larger carriers provide better dispersion in cyclone-type devices while smaller carriers seem to be more beneficial for inhalers which has a straight flow path for the powder formulation.
Collapse
Affiliation(s)
- Kyrre Thalberg
- Department of Food Technology, Engineering and Nutrition, Lund University, Sweden; Emmace Consulting AB, Lund, Sweden.
| | - Rasia Ahmadi
- Department of Food Technology, Engineering and Nutrition, Lund University, Sweden; Present address: AstraZeneca AB, Södertälje, Sweden
| | | | | | | |
Collapse
|
18
|
Sarangi S, Simonsson A, Frenning G. Segregation in inhalable powders: Quantification of the effect of vibration on adhesive mixtures. Eur J Pharm Biopharm 2023; 187:107-119. [PMID: 37100091 DOI: 10.1016/j.ejpb.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
The objective of this investigation was to study the effect of induced vibrations on adhesive mixtures containing budesonide and salbutamol sulphate as active pharmaceutical ingredients (APIs) and InhaLac 70 as carrier. A series of adhesive mixtures with varied API concentration (1-4%) was prepared for each API. Half of the adhesive mixture was stressed on a vibrating sieve under conditions resembling hopper flow. Based on scanning electron micrographs, it was concluded that InhaLac 70 contains particles of two distinct shapes, one irregular with groves and valleys and the other more regular with well defined edges. The dispersibility of the control and stressed mixtures was studied using a next generation impactor. The stressed mixtures containing 1 and 1.5% API displayed a significant reduction in fine particle dose (FPD) compared to the control. The reduction in FPD resulted from a loss of API from the adhesive mixture during vibration and as a consequence of restructuring and self agglomeration resulting in reduced dispersibility. However, no significant difference was observed for mixtures with larger weight fractions of API (2 and 4% API) but these have a drawback of reduced fine particle fraction (FPF). It is concluded that vibrations induced on the adhesive mixtures during handling potentially have a significant effect on the dispersibility of the API and the total amount of drug delivered to the lungs.
Collapse
Affiliation(s)
- Sohan Sarangi
- Department of Pharmaceutical Biosciences and Swedish Drug Delivery Centre, Uppsala University, Box 591, 751 24 Uppsala, Sweden
| | - Anna Simonsson
- Department of Pharmaceutical Biosciences and Swedish Drug Delivery Centre, Uppsala University, Box 591, 751 24 Uppsala, Sweden
| | - Göran Frenning
- Department of Pharmaceutical Biosciences and Swedish Drug Delivery Centre, Uppsala University, Box 591, 751 24 Uppsala, Sweden.
| |
Collapse
|
19
|
Gaikwad SS, Pathare SR, More MA, Waykhinde NA, Laddha UD, Salunkhe KS, Kshirsagar SJ, Patil SS, Ramteke KH. Dry Powder Inhaler with the technical and practical obstacles, and forthcoming platform strategies. J Control Release 2023; 355:292-311. [PMID: 36739908 DOI: 10.1016/j.jconrel.2023.01.083] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023]
Abstract
A Dry Powder Inhaler (DPI) is a technique as well as a device used to inhale formulation which is in the form of dry powder, and is inhaled through the nose or mouth. It was developed for the purpose of treating conditions like chronic obstructive pulmonary disease (COPD), Asthma, and even cystic fibrosis etc. The aim of the review is to discuss the different methods of preparation of dry powders along with the characterization of DPI. Here we present the outline of different methods like supercritical fluid extraction (SCF), spray drying, and milling. The review focussed on various devices including single and multi-dose devices used in the DPI. It also highlights on recent advances in the DPI including nano particulate system, siRNA-based medication, liposomes, and pro-liposomes based delivery. In COVID-19 silver nanoparticles-based DPIs provide very prominent results in the infected lungs. Moreover, this review states that the AI-based DPI development provides and improvement in the bioavailability and effectiveness of the drug along with the role of artificial neural networks (ANN). The study also showed that nasally administered drugs (nose to brain) can easily cross the blood-brain barrier (BBB) and enter the central nervous system (CNS) through the olfactory and trigeminal pathway which provides effective CNS concentrations at lower dosage. It is suggested that DPIs not only target respiratory complications but also treat CNS complications too. This review provides support and guides the researcher in the recent development and evaluation of DPI.
Collapse
Affiliation(s)
- Sachin S Gaikwad
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India; Department of Pharmaceutics, MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India.
| | - Snehal R Pathare
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Mayur A More
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Nikita A Waykhinde
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Umesh D Laddha
- Department of Pharmaceutics, MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India
| | - Kishor S Salunkhe
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Sanjay J Kshirsagar
- Department of Pharmaceutics, MET's Institute of Pharmacy, Affiliated to Savitribai Phule Pune University, Bhujbal Knowledge City, Adgaon, Nashik 422003, India
| | - Sakshi S Patil
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India
| | - Kuldeep H Ramteke
- Department of Pharmaceutics, Shivajirao Pawar College of Pharmacy, Pachegaon, Newasa, Ahmednagar Pin: 413725, Affiliated to Dr. Babasaheb Ambedkar Technological University, Lonare, India
| |
Collapse
|
20
|
Khanal D, Kim J, Zhang J, Ke WR, Holl MMB, Chan HK. Optical photothermal infrared spectroscopy for nanochemical analysis of pharmaceutical dry powder aerosols. Int J Pharm 2023; 632:122563. [PMID: 36586629 DOI: 10.1016/j.ijpharm.2022.122563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
The aim of this research was to chemically analyse the distribution of drugs and excipients in pharmaceutical dry powder inhalation (DPI) aerosol particles of various sizes in solid state. The conventional wet assay of the chemical composition of particles after collection in a cascade impactor lacks the capability to differentiate spatially resolved morphology and chemical composition of particles in complex DPI formulations. In this proof-of-concept study, we aim to demonstrate the feasibility of using optical photothermal infrared spectroscopy (O-PTIR) to characterize micro- to nano-scale chemical composition of size-segregated particles of pharmaceutical DPI formulations. These formulations were prepared by spray drying a solution or a suspension comprising an inhaled corticosteroid fluticasone propionate, a long-acting β2-agonist salmeterol xinafoate, and excipient lactose. The active ingredients fluticasone propionate and salmeterol xinafoate are widely used for the treatment of asthma and chronic obstructive pulmonary disease. Spatially resolved O-PTIR spectra acquired from the particles collected from stages 1-7 of a Next Generation Impactor (NGI) for both formulations confirmed the presence of peaks related to fluticasone propionate (1746 cm-1, 1702 cm-1, 1661 cm-1 and 1612 cm-1), salmeterol xinafoate (1582 cm-1), and lactose (1080 cm-1). There was no significant difference in the drug to lactose peak ratio among various size fractions of particles spray dried from solution indicating a homogeneity in drug and lactose content in the aerosol formulation. In contrast, the suspension-spray dried formulation showed the drug content increased while the lactose content decreased in the particles collected down the NGI from stage 1 to stage 7, indicating heterogeneity in the ratio of drug-excipient distribution. The qualitative chemical compositions from O-PTIR were comparable to conventional wet chemical assays of various size fractions, indicating the suitability of O-PTIR to serve as a valuable analytical platform for screening the physicochemical properties of DPIs in solid state.
Collapse
Affiliation(s)
- Dipesh Khanal
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Jinhee Kim
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jing Zhang
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wei-Ren Ke
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Mark M Banaszak Holl
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia; Department of Mechanical and Materials Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Division of Pulmonology, Allergy, and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Hak Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
21
|
Karas J, Pavloková S, Hořavová H, Gajdziok J. Optimization of Spray Drying Process Parameters for the Preparation of Inhalable Mannitol-Based Microparticles Using a Box-Behnken Experimental Design. Pharmaceutics 2023; 15:pharmaceutics15020496. [PMID: 36839819 PMCID: PMC9960250 DOI: 10.3390/pharmaceutics15020496] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Inhalation is used for local therapy of the lungs and as an alternative route for systemic drug delivery. Modern powder inhalation systems try to target the required site of action/absorption in the respiratory tract. Large porous particles (LPPs) with a size >5 μm and a low mass density (usually measured as bulk or tapped) of <0.4 g/cm3 can avoid protective lung mechanisms. Their suitable aerodynamic properties make them perspective formulations for deep lung deposition. This experiment studied the effect of spray-drying process parameters on LPP properties. An experimental design of twelve experiments with a central point was realized using the Box-Behnken method. Three process parameters (drying temperature, pump speed, and air speed) were combined on three levels. Particles were formed from a D-mannitol solution, representing a perspective material for lung microparticles. The microparticles were characterized in terms of physical size (laser diffraction), aerodynamic diameter (aerodynamic particle sizer), morphology (SEM), and densities. The novelty and main goal of this research were to describe how the complex parameters of the spray-drying process affect the properties of mannitol LPPs. New findings can provide valuable data to other researchers, leading to the easy tuning of the properties of spray-dried particles by changing the process setup.
Collapse
|
22
|
Mahar R, Chakraborty A, Nainwal N, Bahuguna R, Sajwan M, Jakhmola V. Application of PLGA as a Biodegradable and Biocompatible Polymer for Pulmonary Delivery of Drugs. AAPS PharmSciTech 2023; 24:39. [PMID: 36653547 DOI: 10.1208/s12249-023-02502-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Pulmonary administration of biodegradable polymeric formulation is beneficial in the treatment of various respiratory diseases. For respiratory delivery, the polymer must be non-toxic, biodegradable, biocompatible, and stable. Poly D, L-lactic-co-glycolic acid (PLGA) is a widely used polymer for inhalable formulations because of its attractive mechanical and processing characteristics which give great opportunities to pharmaceutical industries to formulate novel inhalable products. PLGA has many pharmaceutical applications and its biocompatible nature produces non-toxic degradation products. The degradation of PLGA takes place through the non-enzymatic hydrolytic breakdown of ester bonds to produce free lactic acid and glycolic acid. The biodegradation products of PLGA are eliminated in the form of carbon dioxide (CO2) and water (H2O) by the Krebs cycle. The biocompatible properties of PLGA are investigated in various in vivo and in vitro studies. The high structural integrity of PLGA particles provides better stability, excellent drug loading, and sustained drug release. This review provides detailed information about PLGA as an inhalable grade polymer, its synthesis, advantages, physicochemical properties, biodegradability, and biocompatible characteristics. The important formulation aspects that must be considered during the manufacturing of inhalable PLGA formulations and the toxicity of PLGA in the lungs are also discussed in this paper. Additionally, a thorough overview is given on the application of PLGA as a particulate carrier in the treatment of major respiratory diseases, such as cystic fibrosis, lung cancer, tuberculosis, asthma, and pulmonary hypertension.
Collapse
Affiliation(s)
- Riya Mahar
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| | - Arpita Chakraborty
- School of Pharmaceutical Sciences, Sardar Bhagwan Singh University, Balawala, Dehradun, 248001, Uttarakhand, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, Uttarakhand, India.
| | - Richa Bahuguna
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Premnagar, Dehradun, 248007, Uttarakhand, India
| | - Meenakshi Sajwan
- Department of Pharmacy, GRD (PG) IMT, 214 Raipur Road, Dehradun, 248001, India
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
23
|
Alfano FO, Sommerfeld M, Di Maio FP, Di Renzo A. DEM analysis of powder deaggregation and discharge from the capsule of a carrier-based Dry Powder Inhaler. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
24
|
Boosting Lung Accumulation Of Gallium With Inhalable Nano-Embedded Microparticles For The Treatment Of Bacterial Pneumonia. Int J Pharm 2022; 629:122400. [DOI: 10.1016/j.ijpharm.2022.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
|
25
|
Amran M, Khafagy ES, Mokhtar HI, Zaitone SA, Moustafa YM, Gad S. Formulation and Evaluation of Novel Additive-Free Spray-Dried Triamcinolone Acetonide Microspheres for Pulmonary Delivery: A Pharmacokinetic Study. Pharmaceutics 2022; 14:2354. [PMID: 36365172 PMCID: PMC9693995 DOI: 10.3390/pharmaceutics14112354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
This work aimed to establish a simple method to produce additive-free triamcinolone acetonide (TAA) microspheres suitable for pulmonary delivery, and therefore more simple manufacturing steps will be warranted. The spray-drying process involved the optimization of the TAA feed ratio in a concentration range of 1-3% w/v from different ethanol/water compositions with/without adding ammonium bicarbonate as a blowing agent. Characterization of the formulas was performed via scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction. Our results indicated that the size and morphology of spray-dried TAA particles were dependent on the feed and solvent concentrations in the spray-dried formulations. Furthermore, adding the blowing agent, ammonium bicarbonate, did not produce a significant enhancement in particle characteristics. We prepared additive-free TAA microspheres and found that TAA formulation #1 had optimal physical properties in terms of diameter (2.24 ± 0.27 µm), bulk density (0.95 ± 0.05), tapped density (1.18 ± 0.07), and flowability for deposition during the pulmonary tract, from a centric airway to the alveoli as indicated by Carr's index = 19 ± 0.01. Hence, formulation #1 was selected to be tested for pharmacokinetic characters. Rats received pulmonary doses of TAA formula #1 and then the TTA concentration in plasma, fluid broncho-alveolar lavage, and lung tissues was determined by HPLC. The TAA concentration at 15 min was 0.55 ± 0.02 µg/mL in plasma, 16.74 ± 2 µg/mL in bronchoalveolar lavage, and 8.96 ± 0.65 µg/mL in lung homogenates, while at the 24 h time point, the TAA concentration was 0.03 ± 0.02 µg/mL in plasma, 1.48 ± 0.27 µg/mL in bronchoalveolar lavage, and 3.79 ± 0.33 µg/mL in lung homogenates. We found that TAA remained in curative concentrations in the rat lung tissues for at least 24 h after pulmonary administration. Therefore, we can conclude that additive-free spray-dried TAA microspheres were promising for treating lung diseases. The current novel preparation technology has applications in the design of preparations for TAA or other therapeutic agents designed for pulmonary delivery.
Collapse
Affiliation(s)
- Mohammed Amran
- Department of Pharmacy, Faculty of Medicine and Health Sciences, Thamar University, Thamar 425897, Yemen
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan 62001, Iraq
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hatem I. Mokhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University, Kantra 41636, Egypt
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Yasser M. Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo, Cairo 11829, Egypt
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
26
|
Abiona O, Wyatt D, Koner J, Mohammed A. The Optimisation of Carrier Selection in Dry Powder Inhaler Formulation and the Role of Surface Energetics. Biomedicines 2022; 10:2707. [PMID: 36359226 PMCID: PMC9687551 DOI: 10.3390/biomedicines10112707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2023] Open
Abstract
This review examines the effects of particle properties on drug-carrier interactions in the preparation of a dry powder inhaler (DPI) formulation, including appropriate mixing technology. The interactive effects of carrier properties on DPI formulation performance make it difficult to establish a direct cause-and-effect relationship between any one carrier property and its effect on the performance of a DPI formulation. Alpha lactose monohydrate remains the most widely used carrier for DPI formulations. The physicochemical properties of α-lactose monohydrate particles, such as particle size, shape and solid form, are profoundly influenced by the method of production. Therefore, wide variations in these properties are inevitable. In this review, the role of surface energetics in the optimisation of dry powder inhaler formulations is considered in lactose carrier selection. Several useful lactose particle modification methods are discussed as well as the use of fine lactose and force control agents in formulation development. It is concluded that where these have been investigated, the empirical nature of the studies does not permit early formulation prediction of product performance, rather they only allow the evaluation of final formulation quality. The potential to leverage particle interaction dynamics through the use of an experimental design utilising quantifiable lactose particle properties and critical quality attributes, e.g., surface energetics, is explored, particularly with respect to when a Quality-by-Design approach has been used in optimisation.
Collapse
Affiliation(s)
- Olaitan Abiona
- Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK
| | - David Wyatt
- Aston Particle Technologies Ltd., Aston Triangle, Birmingham B4 7ET, UK
| | - Jasdip Koner
- Aston Particle Technologies Ltd., Aston Triangle, Birmingham B4 7ET, UK
| | - Afzal Mohammed
- Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
27
|
Spasov G, Rossi R, Vanossi A, Cottini C, Benassi A. A critical analysis of the CFD-DEM simulation of pharmaceutical aerosols deposition in extra-thoracic airways. Int J Pharm 2022; 629:122331. [DOI: 10.1016/j.ijpharm.2022.122331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
|
28
|
Adhikari BR, Gordon KC, Das SC. Solid state of inhalable high dose powders. Adv Drug Deliv Rev 2022; 189:114468. [PMID: 35917868 DOI: 10.1016/j.addr.2022.114468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 01/24/2023]
Abstract
High dose inhaled powders have received increased attention for treating lung infections. These powders can be prepared using techniques such as spray drying, spray-freeze drying, crystallization, and milling. The selected preparation technique is known to influence the solid state of the powders, which in turn can potentially modulate aerosolization and aerosolization stability. This review focuses on how and to what extent the change in solid state of high dose powders can influence aerosolization. It also discusses the commonly used solid state characterization techniques and the application of potential strategies to improve the physical and chemical stability of the amorphous powders for high dose delivery.
Collapse
Affiliation(s)
| | - Keith C Gordon
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
29
|
Ruzycki CA, Tavernini S, Martin AR, Finlay WH. Characterization of dry powder inhaler performance through experimental methods. Adv Drug Deliv Rev 2022; 189:114518. [PMID: 36058349 DOI: 10.1016/j.addr.2022.114518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/24/2023]
Abstract
Experimental methods provide means for the quality control of existing DPIs and for exploring the influence of formulation and device parameters well in advance of clinical trials for novel devices and formulations. In this review, we examine the state of the art of in vitro testing of DPIs, with a focus primarily on the development of accurate in vitro-in vivo correlations. Aspects of compendial testing are discussed, followed by the influence of flow profiles on DPI performance, the characterization of extrathoracic deposition using mouth-throat geometries, and the characterization of regional thoracic deposition. Additional experimental methods that can inform the timing of bolus delivery, the influence of environmental conditions, and the development of electrostatic charge on aerosolized DPI powders are reviewed. We conclude with perspectives on current in vitro methods and identify potential areas for future investigation, including the estimation of variability in deposition, better characterization of existing compendial methods, optimization of formulation and device design to bypass extrathoracic deposition, and the use of novel tracheobronchial filters that aim to provide more clinically relevant measures of performance directly from in vitro testing.
Collapse
Affiliation(s)
- Conor A Ruzycki
- Lovelace Biomedical, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA.
| | - Scott Tavernini
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Andrew R Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Warren H Finlay
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
30
|
Huang F, Zhou X, Dai W, Yu J, Zhou Z, Tong Z, Yu A. In Vitro and In Silico Investigations on Drug Delivery in the Mouth-Throat Models with Handihaler®. Pharm Res 2022; 39:3005-3019. [PMID: 36071350 DOI: 10.1007/s11095-022-03386-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
This work aimed to evaluate the relative inhalation parameters that affect the deposition of inhaled aerosols, including mouth-throat morphology, airflow rate, and initial condition of emitted particles. In vitro experiments were conducted using the US Pharmacopeia (USP) throat and a realistic mouth-throat (RMT) with Handihaler®. Then, in silico study of the gas-solid flow was performed by computational fluid dynamics and discrete phase method. Results indicated that aerosol deposition in RMT was higher compared to that in USP throat at an airflow rate of 30 L/min, with 33.16 ± 7.84% and 21.11 ± 7.1% lung deposition in USP throat and RMT models, respectively, which showed a better correlation with in vivo data from the literature. Increasing airflow rate resulted in better drug aerosolization, while the fine particle dose trend ascended before declining, with the peak value obtained at a flow rate of 40 L/min. Overall, the effect of geometrical variation was more significant. Additionally, in silico results demonstrated clearly that the initial conditions of the emitted particles from inhalers affected the subsequent deposition. Larger momentum possessed by the central aerosol jet entering the mouth directly led to stronger impaction, which resulted in the deposition in the front region of mouth-throat models. This study is beneficial to develop an in silico method to understand the underlying mechanisms of in vivo mouth-throat deposition.
Collapse
Affiliation(s)
- Fen Huang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.,Department of Chemical Engineering, Monash University, Clayton, Vic, 3800, Australia
| | - Xudong Zhou
- Department of Chemical Engineering, Monash University, Clayton, Vic, 3800, Australia
| | - Wen Dai
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Jiaqi Yu
- Institute for Process Modelling and Optimization, JITRI, Suzhou, 215000, China
| | - Zongyan Zhou
- Jiangxi Provincial Key Laboratory for Simulation and Modelling of Particulate Systems, Jiangxi University of Science and Technology, Nanchang, 330013, China
| | - Zhenbo Tong
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Aibing Yu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.,Department of Chemical Engineering, Monash University, Clayton, Vic, 3800, Australia
| |
Collapse
|
31
|
Sun Y, Yu D, Li J, Zhao J, Feng Y, Zhang X, Mao S. Elucidation of lactose fine size and drug shape on rheological properties and aerodynamic behavior of dry powders for inhalation. Eur J Pharm Biopharm 2022; 179:47-57. [PMID: 36029939 DOI: 10.1016/j.ejpb.2022.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
Abstract
Pulmonary drug delivery has gained great attention in local or systemic diseases therapy, however it is still difficult to scale-up DPI production due to the complexity of interactions taking place in DPI systems and limited understanding between flowability and inter-particle interactions in DPI formulations. Therefore, finding some quantitative parameters related to DPI delivery performance for predicting the in vitro drug deposition behavior is essential. Therefore, this study introduces a potential model for predicting aerodynamic performance of carrier-based DPIs, as well to find more relevant fine powder size and optimal shape to improve aerodynamic performance. Using salbutamol sulfate as a model drug, Lactohale®206 as coarse carrier, Lactohale®300, Lactohale®230, and Lactohale®210 as third fine components individually, the mixtures were prepared at 1% (w/w) drug content accompanied with carriers and the third component (ranging from 3 - 7%), influence of lactose fines size on DPI formulation's rheological and aerodynamic properties was investigated. The optimum drug particle shape was also confirmed by computer fluid dynamics model. This study proved that pulmonary deposition efficiency could be improved by decreasing lactose fines size. Only fines in the size range of 0-11 μm have a good linear relationship with FPF, attributed to the fluidization energy enhancement and aggregates mechanism. Once exceeding 11 μm, fine lactose would act as a second carrier, with increased drug adhesion. Computational fluid dynamics (CFD) models indicated fibrous drug particles were beneficial to transfer to the deep lung. Furthermore, good correlations between rheological parameters and FPF of ternary mixtures with different lactose fines were established, and it was disclosed that the FPF was more dependent on interaction parameters than that of flowability.
Collapse
Affiliation(s)
- Ying Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Duo Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiayi Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianan Zhao
- School of Chemical Engineering, Oklahoma State University, Stillwater 74074, USA
| | - Yu Feng
- School of Chemical Engineering, Oklahoma State University, Stillwater 74074, USA
| | - Xin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
32
|
Modelling Deaggregation Due to Normal Carrier–Wall Collision in Dry Powder Inhalers. Processes (Basel) 2022. [DOI: 10.3390/pr10081661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Powder deaggregation in Dry Powder Inhalers (DPI) with carrier-based formulations is a key process for the effectiveness of drug administration. Carrier-wall collisions are one of the recognised mechanisms responsible for active pharmaceutical ingredient (API) aerosolisation, and DPI geometries are designed to maximise their efficacy. The detachment of fine and cohesive API particles is investigated at a fundamental level by simulating with DEM the normal collision of a carrier sphere with an API particle attached. The impact velocity at which detachment occurs (escape velocity) is determined as a function of key parameters, such as cohesiveness, coefficient of restitution, static and rolling friction. An analytical model for the escape velocity is then derived, examining the role of the initial position of the particle, cohesion model and particle size. Finally, the results are framed in the context of DPI inhalers, comparing the results obtained with impact velocities typically recorded in commercial devices.
Collapse
|
33
|
Deagglomeration of selected high-load API-carrier particles in swirl-based dry powder inhalers. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
34
|
Manipulation of Spray-Drying Conditions to Develop an Inhalable Ivermectin Dry Powder. Pharmaceutics 2022; 14:pharmaceutics14071432. [PMID: 35890327 PMCID: PMC9325229 DOI: 10.3390/pharmaceutics14071432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, predominantly affects the respiratory tract. As a consequence, it seems intuitive to develop antiviral agents capable of targeting the virus right on its main anatomical site of replication. Ivermectin, a U.S. FDA-approved anti-parasitic drug, was originally shown to inhibit SARS-CoV-2 replication in vitro, albeit at relatively high concentrations, which is difficult to achieve in the lung. In this study, we tested the spray-drying conditions to develop an inhalable dry powder formulation that could ensure sufficient antiviral drug concentrations, which are difficult to achieve in the lungs based on the oral dosage used in clinical trials. Here, by using ivermectin as a proof-of-concept, we evaluated spray-drying conditions that could lead to the development of antivirals in an inhalable dry powder formulation, which could then be used to ensure sufficient drug concentrations in the lung. Thus, we used ivermectin in proof-of-principle experiments to evaluate our system, including physical characterization and in vitro aerosolization of prepared dry powder. The ivermectin dry powder was prepared with a mini spray-dryer (Buchi B-290), using a 23 factorial design and manipulating spray-drying conditions such as feed concentration (0.2% w/v and 0.8% w/v), inlet temperature (80 °C and 100 °C) and presence/absence of L-leucine (0% and 10%). The prepared dry powder was in the size range of 1−5 μm and amorphous in nature with wrinkle morphology. We observed a higher fine particle fraction (82.5 ± 1.4%) in high feed concentration (0.8% w/v), high inlet temperature (100 °C) and the presence of L-leucine (10% w/w). The stability study conducted for 28 days confirmed that the spray-dried powder was stable at 25 ± 2 °C/<15% RH and 25 ± 2 °C/ 53% RH. Interestingly, the ivermectin dry powder formulation inhibited SARS-CoV-2 replication in vitro with a potency similar to ivermectin solution (EC50 values of 15.8 µM and 14.1 µM, respectively), with a comparable cell toxicity profile in Calu-3 cells. In summary, we were able to manipulate the spray-drying conditions to develop an effective ivermectin inhalable dry powder. Ongoing studies based on this system will allow the development of novel formulations based on single or combinations of drugs that could be used to inhibit SARS-CoV-2 replication in the respiratory tract.
Collapse
|
35
|
Nainwal N, Sharma Y, Jakhmola V. Dry powder inhalers of antitubercular drugs. Tuberculosis (Edinb) 2022; 135:102228. [PMID: 35779497 DOI: 10.1016/j.tube.2022.102228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 12/15/2022]
Abstract
Despite advancements in the medical and pharmaceutical fields, tuberculosis remains a major health problem globally. Patients do not widely accept the conventional approach to treating tuberculosis (TB) due to prolonged treatment periods with multiple high doses of drugs and associated side effects. A pulmonary route is a non-invasive approach to delivering drugs, hormones, nucleic acid, steroids, proteins, and peptides directly to the lungs, improving the efficacy of the treatment and consequently decreasing the adverse effect of the treatment. This route has been successfully developed for the treatment of various respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), tuberculosis (TB), lung cancer, and other pulmonary infections. The major approaches of inhalation delivery systems include nebulizers, metered-dose inhalers (MDIs), and dry powder inhalers (DPIs). However, dry powder inhalers (DPIs) are more advantageous due to their stability and ability to deliver a high dose of the drug to the lungs. The present review analyzes the modern therapeutic approach of inhaled dry powders, with a special focus on novel drug delivery system (NDDS) based DPIs for the treatment of TB. The article also discussed the challenges of preparing inhalable dry powder formulations for the treatment of TB. The clinical development of inhalable anti-TB drugs is also reviewed.
Collapse
Affiliation(s)
- Nidhi Nainwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India.
| | - Yuwanshi Sharma
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India.
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
36
|
Optimization of Particle Properties of Nanocrystalline Solid Dispersion Based Dry Powder for Inhalation of Voriconazole. J Pharm Sci 2022; 111:2592-2605. [PMID: 35700797 DOI: 10.1016/j.xphs.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022]
Abstract
A one-step spray drying based process was employed to generate ready-to-use nanocrystalline solid dispersion (NCSD) dry powder for inhalation (DPI) of voriconazole (VRC). The solid dispersion was prepared by spray drying VRC, MAN (mannitol) and soya lecithin (LEC) from mixture of methanol-water. Various formulation and process related parameters were screened, including LEC, inlet temperature, total solid content and feed flow rate to generate particles of geometric size ≤5 µm. Aerosil® 200 was explored as the quaternary excipient either during spray drying or by physically mixing with the optimized ternary NCSD. The powders were extensively characterized for solid form, primary particle size, assay, embedded nanocrystal size, morphology, porosity, density and moisture content. Aerodynamic properties were studied using next generation impactor (NGI), while surface elemental composition and topography were investigated using SEM-EDS (scanning electron microscopy- energy dispersive spectroscopy) and AFM (atomic force microscopy), respectively. At selected inlet temperature of 120 ˚C, total solid content and feed flow rate significantly impacted the size of primary NCSD particles. Size of primary particles increased with increase in total solid content and feed flow rate of the solution. VRC nanocrystals were obtained in polymorphic Form B whereas the matrix of MAN consisted of mixture of polymorphic Forms α, β and δ. SEM-EDS analysis confirmed deposition of Aerosil® 200 on surface of spray dried particles. In addition to increased porosity and reduced density, increase in surface roughness of particles (evident from AFM topographic analysis) contributed to enhanced powder deposition at stages 3 and 4 in NGI. In comparison, physical blending of NCSD with Aerosil® 200 showed improvement in aerosolization due to flow enhancement property.
Collapse
|
37
|
High dose nanocrystalline solid dispersion powder of voriconazole for inhalation. Int J Pharm 2022; 622:121827. [PMID: 35589006 DOI: 10.1016/j.ijpharm.2022.121827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022]
Abstract
In the current work, we aimed to deliver high dose of voriconazole (VRC) to lung through dry powder for inhalation (DPIs). Furthermore, the research tested the hypothesis that drug nanocrystals can escape the clearance mechanisms in lung by virtue of their size and rapid dissolution. High dose nanocrystalline solid dispersion (NCSD) based DPI of VRC was prepared using a novel spray drying process. Mannitol (MAN) and soya lecithin (LEC) were used as crystallization inducer and stabilizer, respectively. The powders were characterized for physicochemical and aerodynamic properties. Chemical interactions contributing to generation and stabilization of VRC nanocrystals in the matrix of MAN were established using computational studies. Performance of NCSD (VRC-N) was compared with microcrystalline solid dispersion (VRC-M) in terms of dissolution, uptake in A549 and RAW 264.7 cells. Plasma and lung distribution of VRC-N and VRC-M in Balb/c mice upon insufflation was compared with the intravenous product. In VRC-N, drug nanocrystals of size 645.86 ± 56.90 nm were successfully produced at VRC loading of 45%. MAN created physical barrier to crystal growth by interacting with N- of triazole and F- of pyrimidine ring of VRC. An increase in drug loading to 60% produced VRC crystals of size 4800 ± 200 nm (VRC-M). The optimized powders were crystalline and showed deposition at stage 2 and 3 in NGI. In comparison to VRC-M, more than 80% of VRC-N dissolved rapidly in around 5-10 mins, therefore, showed higher and lower drug uptake into A549 and RAW 264.7 cells, respectively. In contrast to intravenous product, insufflation of VRC-N and VRC-M led to higher drug concentrations in lung in comparison to plasma. VRC-N showed higher lung AUC0-24 due to escape of macrophage clearance.
Collapse
|
38
|
Kumar R, Mehta P, Shankar KR, Rajora MAK, Mishra YK, Mostafavi E, Kaushik A. Nanotechnology-Assisted Metered-Dose Inhalers (MDIs) for High-Performance Pulmonary Drug Delivery Applications. Pharm Res 2022; 39:2831-2855. [PMID: 35552983 PMCID: PMC9097569 DOI: 10.1007/s11095-022-03286-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Respiratory disorders pose a major threat to the morbidity and mortality to public health. Here we reviewed the nanotechnology based pulmonary drug delivery using metered dose inhalers. METHODS Major respiratory diseases such as chronic obstructive pulmonary diseases (COPD), asthma, acute lower respiratory tract infections, tuberculosis (TB) and lung cancer. At present, common treatments for respiratory disorders include surgery, radiation, immunotherapy, and chemotherapy or a combination. The major challenge is development of systemic delivery of the chemotherapeutic agents to the respiratory system. Conventional delivery of chemotherapy has various limitation and adverse side effected. Hence, targeted, and systemic delivery need to be developed. Towards this direction nanotechnology, based controlled, targeted, and systemic drug delivery systems are potential candidate to enhance therapeutic efficacy with minimum side effect. Among different route of administration, pulmonary delivery has unique benefits such as circumvents first pass hepatic metabolism and reduces dose and side effects. RESULTS Respiratory disorders pose a major threat to the morbidity and mortality to public health globally. Pulmonary delivery can be achieved through various drug delivery devices such as nebulizers, dry powder inhalers, and metered dose inhalers. Among them, metered dose inhalers are the most interesting and first choice of clinician over others. This review focused on nanotechnology based pulmonary drug delivery using metered dose inhalers. This report focused on delivery of various types of therapeutics using nanocarriers such as polymeric nanoparticles and micelles, dendrimers, lipid nanocarriers such as liposomes, solid lipid nanostructures and nanostructured lipid carriers, and other using metered dose inhalers discussed comprehensively. This report provides insight about the effect of parameters of MDI such as co-solvent, propellants, actuators shape, nozzle diameters, and jet lengths, and respiratory flow rate, and particle size of co-suspension of drug on aerodynamics and lung deposition of formulation. This review also provided the insight about various metered dose inhalers market scenario and digital metered dose inhalers. CONCLUSION This report concluded the clinical potential of metered dose inhalers, summary of current progress and future perspectives towards the smart digital metered dose inhalers development.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68105, USA.
| | - Piyush Mehta
- Pharmaceutical Technology Center, Department of Aerosol, Zydus Life Sciences Ltd., Ahmedabad, Gujarat, India
| | | | - Manju A K Rajora
- College of Nursing, All India Institute of Medical Sciences, New Delhi, 100029, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, USA
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL, USA.
| |
Collapse
|
39
|
Capsule-Based Dry Powder Inhaler Evaluation Using CFD-DEM Simulations and Next Generation Impactor Data. Eur J Pharm Sci 2022; 175:106226. [DOI: 10.1016/j.ejps.2022.106226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/03/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
|
40
|
Spahn JE, Zhang F, Smyth HDC. Mixing of dry powders for inhalation: A review. Int J Pharm 2022; 619:121736. [PMID: 35405281 DOI: 10.1016/j.ijpharm.2022.121736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 12/01/2022]
Abstract
The process of solids mixing is applied across a considerable range of industries. Pharmaceutical science is one of those industries that utilizes solids mixing extensively. Specifically, solids mixing as a key factor in the preparation of dry powder inhalers using the ordered mixing process will be discussed here. This review opens with a history of dry powder mixing theory, continues to ordered mixing in the preparation for dry powder inhalers, details key interparticulate interactions, explains formulation components for dry powder blends, and finally discusses different types of mixers used in the production of dry powder blends for inhalation. Lastly, the authors offer some suggestions for future work on this topic.
Collapse
Affiliation(s)
- Jamie E Spahn
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX, USA
| | - Feng Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX, USA
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX, USA.
| |
Collapse
|
41
|
Scherließ R, Bock S, Bungert N, Neustock A, Valentin L. Particle engineering in dry powders for inhalation. Eur J Pharm Sci 2022; 172:106158. [DOI: 10.1016/j.ejps.2022.106158] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
|
42
|
Jadhav P, Patil P, Bhagwat D, Gaikwad V, Mehta PP. Recent advances in orthogonal analytical techniques for microstructural understanding of inhalable particles: Present status and future perspective. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Ye Y, Ma Y, Zhu J. The future of dry powder inhaled therapy: Promising or Discouraging for systemic disorders? Int J Pharm 2022; 614:121457. [PMID: 35026316 PMCID: PMC8744475 DOI: 10.1016/j.ijpharm.2022.121457] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 12/25/2022]
Abstract
Dry powder inhalation therapy has been shown to be an effective method for treating respiratory diseases like asthma, Chronic Obstructive Pulmonary Diseases and Cystic Fibrosis. It has also been widely accepted and used in clinical practices. Such success has led to great interest in inhaled therapy on treating systemic diseases in the past two decades. The current coronavirus (COVID-19) pandemic also has increased such interest and is triggering more potential applications of dry powder inhalation therapy in vaccines and antivirus drugs. Would the inhaled dry powder therapy on systemic disorders be as encouraging as expected? This paper reviews the marketed and in-development dry powder inhaler (DPI) products on the treatment of systemic diseases, their status in clinical trials, as well as the potential for COVID-19 treatment. The advancements and unmet problems on DPI systems are also summarized. With countless attempts behind and more challenges ahead, it is believed that the dry powder inhaled therapy for the treatment of systemic disorders still holds great potential and promise.
Collapse
Affiliation(s)
- Yuqing Ye
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada; Ningbo Inhale Pharma, 2260 Yongjiang Avenue, Ningbo National High-Tech Zone, Ningbo, 315000, China
| | - Ying Ma
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada; Ningbo Inhale Pharma, 2260 Yongjiang Avenue, Ningbo National High-Tech Zone, Ningbo, 315000, China
| | - Jesse Zhu
- University of Western Ontario, 1151 Richmond Street, London, N6A 3K7, Canada.
| |
Collapse
|
44
|
Cui Y, Huang Y, Zhang X, Lu X, Xue J, Wang G, Hu P, Yue X, Zhao Z, Pan X, Wu C. A real-time and modular approach for quick detection and mechanism exploration of DPIs with different carrier particle sizes. Acta Pharm Sin B 2022; 12:437-450. [PMID: 35127397 PMCID: PMC8799997 DOI: 10.1016/j.apsb.2021.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/09/2021] [Accepted: 05/06/2021] [Indexed: 12/18/2022] Open
Abstract
Dry powder inhalers (DPIs) had been widely used in lung diseases on account of direct pulmonary delivery, good drug stability and satisfactory patient compliance. However, an indistinct understanding of pulmonary delivery processes (PDPs) hindered the development of DPIs. Most current evaluation methods explored the PDPs with over-simplified models, leading to uncompleted investigations of the whole or partial PDPs. In the present research, an innovative modular process analysis platform (MPAP) was applied to investigate the detailed mechanisms of each PDP of DPIs with different carrier particle sizes (CPS). The MPAP was composed of a laser particle size analyzer, an inhaler device, an artificial throat and a pre-separator, to investigate the fluidization and dispersion, transportation, detachment and deposition process of DPIs. The release profiles of drug, drug aggregation and carrier were monitored in real-time. The influence of CPS on PDPs and corresponding mechanisms were explored. The powder properties of the carriers were investigated by the optical profiler and Freeman Technology four powder rheometer. The next generation impactor was employed to explore the aerosolization performance of DPIs. The novel MPAP was successfully applied in exploring the comprehensive mechanism of PDPs, which had enormous potential to be used to investigate and develop DPIs.
Collapse
Key Words
- AE, aerated energy
- APIs, active pharmaceutical ingredients
- AR, aeration ratio
- BFE, basic flow Energy
- C.OPT, optical concentration
- CFD-DEM, computational fluid dynamics-discrete element method
- CPS, carrier particle size
- Carrier particle size
- DPIs, dry powder inhalers
- Dry powder inhaler
- ED, emitted dose
- EDXS, energy-dispersive X-ray spectroscopy
- FC, centrifugal force
- FD, drag force
- FF, friction force
- FG, gravity
- FI, interaction force
- FP, press-on force
- FPD, fine particle dose
- FPF, fine particle fraction
- FT4, Freeman Technology 4
- HPLC, high performance liquid chromatography
- HPMC, hydroxypropyl methyl cellulose
- LAC, lactose
- MFV, minimum fluidization velocity
- MMAD, mass median aerodynamic diameter
- MOC, micro orifice collector
- MPAP, modular process analysis platform
- MSS, micronized salbutamol sulfate
- NGI, Next Generation Impactor
- O, oxygen
- PD, pressure drop
- PDP, pulmonary delivery process
- PSF, particle size fractions
- Pulmonary delivery process
- Quick detection
- R, release amount
- RAUC, total release amount
- Real-time monitor
- Rmax, maximum of release amount
- S, stopping distance
- SE, specific energy
- SEM, scanning electron microscope
- SSA, specific surface area
- T, time
- TE, total engery
- Tmax, the time to reach Rmax
- Tt, terminal time
- U0, air flow rate
- V0, velocity
- dQ3, the volume percentage of particles within certain range
- dae, aerodynamic diameter
Collapse
|
45
|
Park H, Han CS, Park CW, Kim K. Newly designed mouthpiece to improve spray characteristics of pharmaceutical particles in dry powder inhaler. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Zillen D, Beugeling M, Hinrichs WL, Frijlink HW, Grasmeijer F. Natural and bioinspired excipients for dry powder inhalation formulations. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Surface energy considerations in ternary powder blends for inhalation. Int J Pharm 2021; 609:121189. [PMID: 34662648 DOI: 10.1016/j.ijpharm.2021.121189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022]
Abstract
The need for optimisation of DPI formulations is a main research motivation in respiratory drug delivery. Well-established formulations like carrier-based blends still show a lack of efficiency. The addition of extrinsic fine excipients is extensively discussed since decades, supported by a wide range of solid-state characteristics to understand their mechanism and classify influencing parameters. The first part of this study aims at comparing the surface energies of lactose fines and their corresponding influence on the aerodynamic performance of the respective ternary blends. Five different fine lactose qualities with varying origins were used, which were distinguishable in terms of surface energy, but comparable regarding particle size, moisture content and chemical composition. It demonstrates the crucial influence of adhesion properties of fines, based on different surface energies. Secondly, one specific fine lactose quality was used on fundamentally different lactose carriers, which highlights the negligible influence of carrier properties if extrinsic fines are preferentially capable of excipient-drug interactions.
Collapse
|
48
|
Benque B, Khinast JG. Carrier particle emission and dispersion in transient CFD-DEM simulations of a capsule-based DPI. Eur J Pharm Sci 2021; 168:106073. [PMID: 34774996 DOI: 10.1016/j.ejps.2021.106073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022]
Abstract
The dispersion of carrier-based formulations in capsule-based dry powder inhalers depends on several factors, including the patient's inhalation profile and the motion of capsule within the device. In the present study, coupled computational fluid dynamics and discrete element method simulations of a polydisperse cohesive lactose carrier in an Aerolizer® inhaler were conducted at a constant flow rate of 100 L/min and considering an inhalation profile of asthmatic children between 5 and 17 years approximated from literature data. In relevant high-speed photography experiments, it was observed that the powder was distributed to both capsule ends before being ejected from the capsule. Several methods of ensuring similar behavior in the simulations were presented. Both the constant flow rate simulation and the profile simulations showed a high powder retention in the capsule (7.37-19.00%). Although the inhaler retention was negligible in the constant flow rate simulation due to consistently high air velocities in the device, it reached values of around 7% in most of the profile simulations. In all simulations, some of the carrier powder was ejected from the capsule as particle clusters. These clusters were larger in the profile simulation than in the constant flow rate simulation. Of the powder discharged from the capsule, a high percentage was bound in clusters in the profile simulation in the beginning and at the end of the inhalation profile while no more than 10% of the powder ejected from the capsule in the 100 L/min constant flow rate simulation were in clusters at any time. The powder emission from the capsule was studied, indicating a strong dependency of the powder mass flow from the capsule on the angular capsule position. When the capsule holes face the inhaler's air inlets, the air flow into the capsule restricts the powder discharge. The presented results provide a detailed view of some aspects of the powder flow and dispersion of a cohesive carrier in a capsule-based inhaler device. Furthermore, the importance of considering inhalation profiles in addition to conventional constant flow rate simulations was confirmed.
Collapse
Affiliation(s)
- Benedict Benque
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria; Research Center Pharmaceutical Engineering, Inffeldgasse 13, 8010 Graz, Austria
| | - Johannes G Khinast
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria; Research Center Pharmaceutical Engineering, Inffeldgasse 13, 8010 Graz, Austria.
| |
Collapse
|
49
|
Targeting of Inhaled Therapeutics to the Small Airways: Nanoleucine Carrier Formulations. Pharmaceutics 2021; 13:pharmaceutics13111855. [PMID: 34834270 PMCID: PMC8624185 DOI: 10.3390/pharmaceutics13111855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Current dry powder formulations for inhalation deposit a large fraction of their emitted dose in the upper respiratory tract where they contribute to off-target adverse effects and variability in lung delivery. The purpose of the current study is to design a new formulation concept that more effectively targets inhaled dry powders to the large and small airways. The formulations are based on adhesive mixtures of drug nanoparticles and nanoleucine carrier particles prepared by spray drying of a co-suspension of leucine and drug particles from a nonsolvent. The physicochemical and aerosol properties of the resulting formulations are presented. The formulations achieve 93% lung delivery in the Alberta Idealized Throat model that is independent of inspiratory flow rate and relative humidity. Largely eliminating URT deposition with a particle size larger than solution pMDIs is expected to improve delivery to the large and small airways, while minimizing alveolar deposition and particle exhalation.
Collapse
|
50
|
Alfano FO, Benassi A, Gaspari R, Di Renzo A, Di Maio FP. Full-Scale DEM Simulation of Coupled Fluid and Dry-Coated Particle Flow in Swirl-Based Dry Powder Inhalers. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Andrea Benassi
- DP Manufacturing & Innovation, Chiesi Farmaceutici SpA, 43122 Parma, Italy
- International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Roberto Gaspari
- DP Manufacturing & Innovation, Chiesi Farmaceutici SpA, 43122 Parma, Italy
| | | | | |
Collapse
|