1
|
Pathak A, Jain NK, Jain K. Dendrimer-mediated targeting of angiogenic biomarkers: therapeutic intervention against cancer. Expert Opin Drug Deliv 2024; 21:1235-1250. [PMID: 39161976 DOI: 10.1080/17425247.2024.2394631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Development of novel vascular networks is a fundamental requirement for tumor growth and progression. In the last decade, biomarkers and underlying molecular pathways of angiogenesis have been intensely investigated to disrupt the initiation and progression of tumor angiogenesis. However, the clinical applications of anti-angiogenic agents are constrained due to toxic side effects, acquired drug resistance, and unavailability of validated biomarkers. AREA COVERED This review discusses the development of dendrimeric nanocarriers that could be a promising domain to explore for the eradication of current challenges associated with angiogenesis-based cancer therapy. Novel drug-delivery approaches with subtle readouts and better understanding of molecular mechanisms have revealed that dendrimers comprise innate anti-angiogenic activity and incorporation of anti-angiogenic agents or gene-silencing RNA could lead to synergistic anti-angiogenic and anticancer effects with reduced side effects. EXPERT OPINION Dendrimer-mediated targeting of angiogenic biomarkers has efficiently led to the vascular normalization, and rational linking of dendrimers with anti-angiogenic agent or siRNA or both might be a potential area to eradicate the current challenges of angiogenesis-based cancer therapy. However, drawbacks associated with the dendrimers-mediated targeting of angiogenic biomarkers, such as poor stability or small expression of these biomarkers on the normal cells, limit their application at market scale.
Collapse
Affiliation(s)
- Anchal Pathak
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| | - Narendra Kumar Jain
- Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar, India
| | - Keerti Jain
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, India
| |
Collapse
|
2
|
Chiu FC, Kuo HM, Yu CL, Selvam P, Su IL, Tseng CC, Yuan CH, Wen ZH. Marine-derived antimicrobial peptide piscidin-1 triggers extrinsic and intrinsic apoptosis in oral squamous cell carcinoma through reactive oxygen species production and inhibits angiogenesis. Free Radic Biol Med 2024; 220:28-42. [PMID: 38679300 DOI: 10.1016/j.freeradbiomed.2024.04.235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Cancer of the head and neck encompasses a wide range of cancers, including oral and oropharyngeal cancers. Oral cancer is often diagnosed at advanced stages and has a dismal prognosis. Piscidin-1, a marine antimicrobial peptide (AMP) containing approximately 22 amino acids, also exhibits significant anticancer properties. We investigated the possible anti-oral cancer effects of piscidin-1 and clarified the mechanisms underlying these effects. We treated the oral squamous cell carcinoma cell lines OC2 and SCC4 with piscidin-1. Cell viability and the expression of different hallmark apoptotic molecules, including reactive oxygen species (ROS), were tested using the appropriate MTT assay, flow cytometry and western blotting assays, and human umbilical vein endothelial cell (HUVEC) wound healing, migration, and tube formation (angiogenesis) assays. Piscidin-1 increases cleaved caspase 3 levels to induce apoptosis. Piscidin-1 also increases ROS levels and intensifies oxidative stress in the endoplasmic reticulum and mitochondria, causing mitochondrial dysfunction. Additionally, it decreases the oxygen consumption rates and activity of mitochondrial complexes I-V. As expected, the antioxidants MitoTEMPOL and N-acetylcysteine reduce piscidin-1-induced ROS generation and intracellular calcium accumulation. Piscidin-1 also inhibits matrix metalloproteinase (MMP)-2/-9 expression in HUVECs, affecting migration and tube formation angiogenesis. We demonstrated that piscidin-1 can promote apoptosis via both intrinsic and extrinsic apoptotic pathways and findings indicate that piscidin-1 has anti-proliferative and anti-angiogenic properties in oral cancer treatment. Our study on piscidin-1 thus provides a basis for future translational anti-oral cancer drug research and a new theoretical approach for anti-oral cancer clinical research.
Collapse
Affiliation(s)
- Fu-Ching Chiu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833301, Taiwan
| | - Chen-Ling Yu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Padhmavathi Selvam
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - I-Li Su
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Antai Medical Care Corporation, Antai Tian-Sheng Memorial Hospital, Pingtung, 92842, Taiwan
| | - Chung-Chih Tseng
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan
| | - Chien-Han Yuan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Department of Otolaryngology, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan; Department of Otolaryngology, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
3
|
Elvitigala KCML, Mohan L, Mubarok W, Sakai S. Phototuning of Hyaluronic-Acid-Based Hydrogel Properties to Control Network Formation in Human Vascular Endothelial Cells. Adv Healthc Mater 2024; 13:e2303787. [PMID: 38684108 PMCID: PMC11468695 DOI: 10.1002/adhm.202303787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/06/2024] [Indexed: 05/02/2024]
Abstract
In vitro network formation by endothelial cells serves as a fundamental model for studies aimed at understanding angiogenesis. The morphogenesis of these cells to form a network is intricately regulated by the mechanical and biochemical properties of the extracellular matrix. Here the effects of modulating these properties in hydrogels derived from phenolated hyaluronic acid (HA-Ph) and phenolated gelatin (Gelatin-Ph) are presented. Visible-light irradiation in the presence of tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate and sodium persulfate induces the crosslinking of these polymers, thereby forming a hydrogel and degrading HA-Ph. Human vascular endothelial cells form networks on the hydrogel prepared by visible-light irradiation for 45 min (42 W cm-2 at 450 nm) but not on the hydrogels prepared by irradiation for 15, 30, or 60 min. The irradiation time-dependent degradation of HA-Ph and the changes in the mechanical stiffness of the hydrogels, coupled with the expressions of RhoA and β-actin genes and CD44 receptors in the cells, reveal that the network formation is synergistically influenced by the hydrogel stiffness and HA-Ph degradation. These findings highlight the potential of tailoring HA-based hydrogel properties to modulate human vascular endothelial cell responses, which is critical for advancing their application in vascular tissue engineering.
Collapse
Affiliation(s)
| | - Lakshmi Mohan
- Department of BioengineeringHenry Samueli School of EngineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Wildan Mubarok
- Department of Materials Engineering ScienceGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka560‐8531Japan
| | - Shinji Sakai
- Department of Materials Engineering ScienceGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka560‐8531Japan
| |
Collapse
|
4
|
Ravi K, Manoharan TJM, Wang KC, Pockaj B, Nikkhah M. Engineered 3D ex vivo models to recapitulate the complex stromal and immune interactions within the tumor microenvironment. Biomaterials 2024; 305:122428. [PMID: 38147743 PMCID: PMC11098715 DOI: 10.1016/j.biomaterials.2023.122428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/28/2023]
Abstract
Cancer thrives in a complex environment where interactions between cellular and acellular components, surrounding the tumor, play a crucial role in disease development and progression. Despite significant progress in cancer research, the mechanism driving tumor growth and therapeutic outcomes remains elusive. Two-dimensional (2D) cell culture assays and in vivo animal models are commonly used in cancer research and therapeutic testing. However, these models suffer from numerous shortcomings including lack of key features of the tumor microenvironment (TME) & cellular composition, cost, and ethical clearance. To that end, there is an increased interest in incorporating and elucidating the influence of TME on cancer progression. Advancements in 3D-engineered ex vivo models, leveraging biomaterials and microengineering technologies, have provided an unprecedented ability to reconstruct native-like bioengineered cancer models to study the heterotypic interactions of TME with a spatiotemporal organization. These bioengineered cancer models have shown excellent capabilities to bridge the gap between oversimplified 2D systems and animal models. In this review article, we primarily provide an overview of the immune and stromal cellular components of the TME and then discuss the latest state-of-the-art 3D-engineered ex vivo platforms aiming to recapitulate the complex TME features. The engineered TME model, discussed herein, are categorized into three main sections according to the cellular interactions within TME: (i) Tumor-Stromal interactions, (ii) Tumor-Immune interactions, and (iii) Complex TME interactions. Finally, we will conclude the article with a perspective on how these models can be instrumental for cancer translational studies and therapeutic testing.
Collapse
Affiliation(s)
- Kalpana Ravi
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | | | - Kuei-Chun Wang
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA
| | | | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ, 85287, USA; Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
5
|
Pathak A, Pal AK, Roy S, Nandave M, Jain K. Role of Angiogenesis and Its Biomarkers in Development of Targeted Tumor Therapies. Stem Cells Int 2024; 2024:9077926. [PMID: 38213742 PMCID: PMC10783989 DOI: 10.1155/2024/9077926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Angiogenesis plays a significant role in the human body, from wound healing to tumor progression. "Angiogenic switch" indicates a time-restricted event where the imbalance between pro- and antiangiogenic factors results in the transition from prevascular hyperplasia to outgrowing vascularized tumor, which eventually leads to the malignant cancer progression. In the last decade, molecular players, i.e., angiogenic biomarkers and underlying molecular pathways involved in tumorigenesis, have been intensely investigated. Disrupting the initiation and halting the progression of angiogenesis by targeting these biomarkers and molecular pathways has been considered as a potential treatment approach for tumor angiogenesis. This review discusses the currently known biomarkers and available antiangiogenic therapies in cancer, i.e., monoclonal antibodies, aptamers, small molecular inhibitors, miRNAs, siRNAs, angiostatin, endostatin, and melatonin analogues, either approved by the U.S. Food and Drug Administration or currently under clinical and preclinical investigations.
Collapse
Affiliation(s)
- Anchal Pathak
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| | - Ajay Kumar Pal
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Keerti Jain
- Drug Delivery and Nanomedicine Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Lucknow, India
| |
Collapse
|
6
|
Xie D, Jia S, Ping D, Wang D, Cao L. Scaffold-based three-dimensional cell model of pancreatic cancer is more suitable than scaffold-free three-dimensional cell model of pancreatic cancer for drug discovery. Cytotechnology 2022; 74:657-667. [PMID: 36389286 PMCID: PMC9652184 DOI: 10.1007/s10616-022-00553-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 10/03/2022] [Indexed: 11/03/2022] Open
Abstract
Pancreatic cancer is one of the deadliest malignancies. Three-dimensional (3D) pancreatic cancer cell models for drug screening have been established to improve treatment for pancreatic cancer. However, few studies focus on different drug responses and drug-related molecular mechanisms in various types of 3D cell models. In this study, we constructed 3D scaffold-free cell models and 3D scaffold-based cell models of pancreatic cancer, evaluated chemotherapeutic drug responses in different 3D models, assessed clinical relevance of the models, and investigated molecular mechanisms of chemoresistance and drug pathways in different 3D models. Both types of 3D models showed resistance to chemotherapeutic drugs, and scaffold-based pancreatic cancer models could better reflect in vivo drug efficacy than 2D and scaffold-free pancreatic cancer models did. Increased cell adhesion, extracellular matrix (ECM) synthesis and drug transport were essential for drug resistance in 3D models, and anti-apoptosis might contribute to extreme chemoresistance in scaffold-free models. Moreover, scaffold-based pancreatic cancer models were more suitable than scaffold-free models for drug pathway research.
Collapse
Affiliation(s)
- Dafei Xie
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000 China
- Department of General Surgery, Zhejiang Hospital, Hangzhou, 310000 China
| | - Shengnan Jia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000 China
| | - Dongnan Ping
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000 China
| | - Dong Wang
- Department of General Surgery, Zhejiang Hospital, Hangzhou, 310000 China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000 China
| |
Collapse
|
7
|
Wang R, Zhang C, Li D, Yao Y. Tumor-on-a-chip: Perfusable vascular incorporation brings new approach to tumor metastasis research and drug development. Front Bioeng Biotechnol 2022; 10:1057913. [PMID: 36483772 PMCID: PMC9722735 DOI: 10.3389/fbioe.2022.1057913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 07/21/2023] Open
Abstract
The extracellular matrix interacts with cancer cells and is a key factor in the development of cancer. Traditional two-dimensional models cannot mimic the natural in situ environment of cancer tissues, whereas three-dimensional (3D) models such as spherical culture, bioprinting, and microfluidic approaches can achieve in vitro reproduction of certain structures and components of the tumor microenvironment, including simulation of the hypoxic environment of tumor tissue. However, the lack of a perfusable vascular network is a limitation of most 3D models. Solid tumor growth and metastasis require angiogenesis, and tumor models with microvascular networks have been developed to better understand underlying mechanisms. Tumor-on-a-chip technology combines the advantages of microfluidics and 3D cell culture technology for the simulation of tumor tissue complexity and characteristics. In this review, we summarize progress in constructing tumor-on-a-chip models with efficiently perfused vascular networks. We also discuss the applications of tumor-on-a-chip technology to studying the tumor microenvironment and drug development. Finally, we describe the creation of several common tumor models based on this technology to provide a deeper understanding and new insights into the design of vascularized cancer models. We believe that the tumor-on-a-chip approach is an important development that will provide further contributions to the field.
Collapse
Affiliation(s)
| | | | - Danxue Li
- *Correspondence: Danxue Li, ; Yang Yao,
| | - Yang Yao
- *Correspondence: Danxue Li, ; Yang Yao,
| |
Collapse
|
8
|
Elvitigala KCML, Mubarok W, Sakai S. Human Umbilical Vein Endothelial Cells Form a Network on a Hyaluronic Acid/Gelatin Composite Hydrogel Moderately Crosslinked and Degraded by Hydrogen Peroxide. Polymers (Basel) 2022; 14:polym14225034. [PMID: 36433161 PMCID: PMC9696239 DOI: 10.3390/polym14225034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
The study of the capillary-like network formation of human umbilical vein endothelial cells (HUVECs) in vitro is important for understanding the factors that promote or inhibit angiogenesis. Here, we report the behavior of HUVECs on the composite hydrogels containing hyaluronic acid (HA) and gelatin with different degrees of degradation, inducing the different physicochemical properties of the hydrogels. The hydrogels were obtained through horseradish peroxidase (HRP)-catalyzed hydrogelation consuming hydrogen peroxide (H2O2, 16 ppm) supplied from the air, and the degradation degree was tuned by altering the exposure time to the air. The HUVECs on the composite hydrogel with intermediate stiffness (1.2 kPa) obtained through 120 min of the exposure were more elongated than those on the soft (0.4 kPa) and the stiff (2.4 kPa) composite hydrogels obtained through 15 min and 60 min of the exposure, respectively. In addition, HUVECs formed a capillary-like network only on the stiff composite hydrogel although those on the hydrogels with comparable stiffness but containing gelatin alone or alginate instead of HA did not form the network. These results show that the HA/gelatin composite hydrogels obtained through the H2O2-mediated crosslinking and degradation could be a tool for studies using HUVECs to understand the promotion and inhibition of angiogenesis.
Collapse
|
9
|
Katz RR, West JL. Reductionist Three-Dimensional Tumor Microenvironment Models in Synthetic Hydrogels. Cancers (Basel) 2022; 14:cancers14051225. [PMID: 35267532 PMCID: PMC8909517 DOI: 10.3390/cancers14051225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Tumors exist in a complex, three-dimensional environment which helps them to survive, grow, metastasize, and resist drug treatment. Simple, reproducible, in vitro models of this environment are necessary in order to better understand tumor behavior. Naturally derived polymers are great 3D cell culture substrates, but they often lack the tunability and batch-to-batch consistency which can be found in synthetic polymer systems. In this review, we describe the current state of and future directions for tumor microenvironment models in synthetic hydrogels. Abstract The tumor microenvironment (TME) plays a determining role in everything from disease progression to drug resistance. As such, in vitro models which can recapitulate the cell–cell and cell–matrix interactions that occur in situ are key to the investigation of tumor behavior and selecting effective therapeutic drugs. While naturally derived matrices can retain the dimensionality of the native TME, they lack tunability and batch-to-batch consistency. As such, many synthetic polymer systems have been employed to create physiologically relevant TME cultures. In this review, we discussed the common semi-synthetic and synthetic polymers used as hydrogel matrices for tumor models. We reviewed studies in synthetic hydrogels which investigated tumor cell interactions with vasculature and immune cells. Finally, we reviewed the utility of these models as chemotherapeutic drug-screening platforms, as well as the future directions of the field.
Collapse
Affiliation(s)
- Rachel R. Katz
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, USA;
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, USA;
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA
- Correspondence:
| |
Collapse
|
10
|
Patient-derived functional organoids as a personalized approach for drug screening against hepatobiliary cancers. Adv Cancer Res 2022; 156:319-341. [DOI: 10.1016/bs.acr.2022.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Becker L, Janssen N, Layland SL, Mürdter TE, Nies AT, Schenke-Layland K, Marzi J. Raman Imaging and Fluorescence Lifetime Imaging Microscopy for Diagnosis of Cancer State and Metabolic Monitoring. Cancers (Basel) 2021; 13:cancers13225682. [PMID: 34830837 PMCID: PMC8616063 DOI: 10.3390/cancers13225682] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/05/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Hurdles for effective tumor therapy are delayed detection and limited effectiveness of systemic drug therapies by patient-specific multidrug resistance. Non-invasive bioimaging tools such as fluorescence lifetime imaging microscopy (FLIM) and Raman-microspectroscopy have evolved over the last decade, providing the potential to be translated into clinics for early-stage disease detection, in vitro drug screening, and drug efficacy studies in personalized medicine. Accessing tissue- and cell-specific spectral signatures, Raman microspectroscopy has emerged as a diagnostic tool to identify precancerous lesions, cancer stages, or cell malignancy. In vivo Raman measurements have been enabled by recent technological advances in Raman endoscopy and signal-enhancing setups such as coherent anti-stokes Raman spectroscopy or surface-enhanced Raman spectroscopy. FLIM enables in situ investigations of metabolic processes such as glycolysis, oxidative stress, or mitochondrial activity by using the autofluorescence of co-enzymes NADH and FAD, which are associated with intrinsic proteins as a direct measure of tumor metabolism, cell death stages and drug efficacy. The combination of non-invasive and molecular-sensitive in situ techniques and advanced 3D tumor models such as patient-derived organoids or microtumors allows the recapitulation of tumor physiology and metabolism in vitro and facilitates the screening for patient-individualized drug treatment options.
Collapse
Affiliation(s)
- Lucas Becker
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Nicole Janssen
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| | - Shannon L Layland
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
| | - Thomas E Mürdter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| | - Anne T Nies
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, 72076 Tübingen, Germany
| | - Katja Schenke-Layland
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
- Cardiovascular Research Laboratories, Department of Medicine/Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90073, USA
| | - Julia Marzi
- Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| |
Collapse
|
12
|
Schirmer L, Atallah P, Freudenberg U, Werner C. Chemokine-Capturing Wound Contact Layer Rescues Dermal Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100293. [PMID: 34278740 PMCID: PMC8456214 DOI: 10.1002/advs.202100293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/07/2021] [Indexed: 05/09/2023]
Abstract
Excessive inflammation often impedes the healing of chronic wounds. Scavenging of chemokines by multiarmed poly(ethylene glycol)-glycosaminoglycan (starPEG-GAG) hydrogels has recently been shown to support regeneration in a diabetic mouse chronic skin wound model. Herein, a textile-starPEG-GAG composite wound contact layer (WCL) capable of selectively sequestering pro-inflammatory chemokines is reported. Systematic variation of the local and integral charge densities of the starPEG-GAG hydrogel component allows for tailoring its affinity profile for biomolecular signals of the wound milieu. The composite WCL is subsequently tested in a large animal (porcine) model of human wound healing disorders. Dampening excessive inflammatory signals without affecting the levels of pro-regenerative growth factors, the starPEG-GAG hydrogel-based WCL treatment induced healing with increased granulation tissue formation, angiogenesis, and deposition of connective tissue (collagen fibers). Thus, this biomaterials technology expands the scope of a new anti-inflammatory therapy toward clinical use.
Collapse
Affiliation(s)
- Lucas Schirmer
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Str. 6Dresden01069Germany
| | - Passant Atallah
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Str. 6Dresden01069Germany
| | - Uwe Freudenberg
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Str. 6Dresden01069Germany
| | - Carsten Werner
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Str. 6Dresden01069Germany
- Technische Universität DresdenCenter for Regenerative Therapies DresdenFetscherstr. 105Dresden01307Germany
| |
Collapse
|
13
|
Jaeschke A, Harvey NR, Tsurkan M, Werner C, Griffiths LR, Haupt LM, Bray LJ. Techniques for RNA extraction from cells cultured in starPEG-heparin hydrogels. Open Biol 2021; 11:200388. [PMID: 34062095 PMCID: PMC8169204 DOI: 10.1098/rsob.200388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Three-dimensional (3D) cell culture models that provide a biologically relevant microenvironment are imperative to investigate cell–cell and cell–matrix interactions in vitro. Semi-synthetic star-shaped poly(ethylene glycol) (starPEG)–heparin hydrogels are widely used for 3D cell culture due to their highly tuneable biochemical and biomechanical properties. Changes in gene expression levels are commonly used as a measure of cellular responses. However, the isolation of high-quality RNA presents a challenge as contamination of the RNA with hydrogel residue, such as polymer or glycosaminoglycan fragments, can impact template quality and quantity, limiting effective gene expression analyses. Here, we compare two protocols for the extraction of high-quality RNA from starPEG–heparin hydrogels and assess three subsequent purification techniques. Removal of hydrogel residue by centrifugation was found to be essential for obtaining high-quality RNA in both isolation methods. However, purification of the RNA did not result in further improvements in RNA quality. Furthermore, we show the suitability of the extracted RNA for cDNA synthesis of three endogenous control genes confirmed via quantitative polymerase chain reaction (qPCR). The methods and techniques shown can be tailored for other hydrogel models based on natural or semi-synthetic materials to provide robust templates for all gene expression analyses.
Collapse
Affiliation(s)
- Anna Jaeschke
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia.,School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Australia
| | - Nicholas R Harvey
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia.,Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Mikhail Tsurkan
- Leibniz Institute of Polymer Research Dresden, Saxony, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Saxony, Germany
| | - Lyn R Griffiths
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia.,Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Larisa M Haupt
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia.,Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Kelvin Grove, Australia.,ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Laura J Bray
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia.,ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Kelvin Grove, Australia.,School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
14
|
Dura G, Crespo-Cuadrado M, Waller H, Peters DT, Ferreira AM, Lakey JH, Fulton DA. Hydrogels of engineered bacterial fimbriae can finely tune 2D human cell culture. Biomater Sci 2021; 9:2542-2552. [PMID: 33571331 DOI: 10.1039/d0bm01966f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Demand continues to grow for biomimetic materials able to create well-defined environments for modulating the behaviour of living cells in culture. Here, we describe hydrogels based upon the polymeric bacterial fimbriae protein capsular antigen fragment 1 (Caf1) that presents tunable biological properties for enhanced tissue cell culture applications. We demonstrate how Caf1 hydrogels can regulate cellular functions such as spreading, proliferation and matrix deposition of human dermal fibroblast cells (hDFBs). Caf1 hydrogels exploring a range of mechanical properties were prepared using copolymers featuring controlled compositions of inert wild-type Caf1 subunits and a mutant subunit displaying the RGDS peptide motif. The hydrogels showed excellent cytocompatibility with hDFBs and the ability to modulate both cell morphology and matrix deposition. Interestingly, Caf1 hydrogels displaying faster stress relaxation were demonstrated to show the highest metabolic activities of growing cells in comparison with other Caf1 hydrogel formulations. The stiffest Caf1 hydrogel impacted cellular morphology, inducing alignment of the cells. This work is significant as it clearly indicates that Caf1-based hydrogels offer tuneable biochemical and mechanical substrates conditions suitable for cell culture applications.
Collapse
Affiliation(s)
- Gema Dura
- Chemical Nanoscience Laboratory, Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
| | | | | | | | | | | | | |
Collapse
|
15
|
Ma R, Mandell J, Lu F, Heim T, Schoedel K, Duensing A, Watters RJ, Weiss KR. Do Patient-derived Spheroid Culture Models Have Relevance in Chondrosarcoma Research? Clin Orthop Relat Res 2021; 479:477-490. [PMID: 32469486 PMCID: PMC7899730 DOI: 10.1097/corr.0000000000001317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/27/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND In high-grade chondrosarcoma, 5-year survival is lower than 50%. Therefore, it is important that preclinical models that mimic the disease with the greatest possible fidelity are used to potentially develop new treatments. Accumulating evidence suggests that two-dimensional (2-D) cell culture may not accurately represent the tumor's biology. It has been demonstrated in other cancers that three-dimensional (3-D) cancer cell spheroids may recapitulate tumor biology and response to treatment with greater fidelity than traditional 2-D techniques. To our knowledge, the formation of patient-derived chondrosarcoma spheroids has not been described. QUESTIONS/PURPOSES (1) Can patient-derived chondrosarcoma spheroids be produced? (2) Do spheroids recapitulate human chondrosarcoma better than 2-D cultures, both morphologically and molecularly? (3) Can chondrosarcoma spheroids provide an accurate model to test novel treatments? METHODS Experiments to test the feasibility of spheroid formation of chondrosarcoma cells were performed using HT-1080, an established chondrosarcoma cell line, and two patient-derived populations, TP19-S26 and TP19-S115. Cells were cultured in flasks, trypsinized, and seeded into 96-well ultra-low attachment plates with culture media. After spheroids formed, they were monitored daily by bright-field microscopy. Spheroids were fixed using paraformaldehyde and embedded in agarose. After dehydration with isopropanol, paraffin-embedded spheroids were sectioned, and slides were stained with hematoxylin and eosin. To compare differences and similarities in gene expression between 2-D and 3-D chondrosarcoma cultures and primary tumors, and to determine whether these spheroids recapitulated the biology of chondrosarcoma, RNA was extracted from 2-D cultures, spheroids, and tumors. Quantitative polymerase chain reaction was performed to detect chondrosarcoma markers of interest, including vascular endothelial growth factor alpha, hypoxia-inducible factor 1α, COL2A1, and COL10A1. To determine whether 2-D and 3-D cultures responded differently to novel chondrosarcoma treatments, we compared their sensitivities to disulfiram and copper chloride treatment. To test their sensitivity to disulfiram and copper chloride treatment, 10,000 cells were seeded into 96-well plates for 2-D culturing and 3000 cells in each well for 3-D culturing. After treating the cells with disulfiram and copper for 48 hours, we detected cell viability using quantitative presto-blue staining and measured via plate reader. RESULTS Cell-line and patient-derived spheroids were cultured and monitored over 12 days. Qualitatively, we observed that HT-1080 demonstrated unlimited growth, while TP19-S26 and TP19-S115 contracted during culturing relative to their initial size. Hematoxylin and eosin staining of HT-1080 spheroids revealed that cell-cell attachments were more pronounced at the periphery of the spheroid structure than at the core, while the core was less dense. Spheroids derived from the intermediate-grade chondrosarcoma TP19-S26 were abundant in extracellular matrix, and spheroids derived from the dedifferentiated chondrosarcoma TP19-S115 had a higher cellularity and heterogeneity with spindle cells at the periphery. In the HT-1080 cells, differences in gene expression were appreciated with spheroids demonstrating greater expressions of VEGF-α (1.01 ± 0.16 versus 6.48 ± 0.55; p = 0.003), COL2A1 (1.00 ± 0.10 versus 7.46 ± 2.52; p < 0.001), and COL10A1 (1.01 ± 0.19 versus 22.53 ± 4.91; p < 0.001). Differences in gene expressions were also noted between primary tumors, spheroids, and 2-D cultures in the patient-derived samples TP19-S26 and TP19-S115. TP19-S26 is an intermediate-grade chondrosarcoma. With the numbers we had, we could not detect a difference in VEGF-α and HIF1α gene expression compared with the primary tumor. COL2A1 (1.00 ± 0.14 versus 1.76 ± 0.10 versus 335.66 ± 31.13) and COL10A1 (1.06 ± 0.378 versus 5.98 ± 0.45 versus 138.82 ± 23.4) expressions were both greater in the tumor (p (COL2A1) < 0.001; p (COL10A1) < 0.0001) and 3-D cultures (p (COL2A1) = 0.004; p (COL10A1) < 0.0001) compared with 2-D cultures. We could not demonstrate a difference in VEGF-α and HIF1α expressions in TP19-S115, a dedifferentiated chondrosarcoma, in the tumor compared with 2-D and 3-D cultures. COL2A1 (1.00 ± 0.02 versus 1.86 ± 0.18 versus 2.95 ± 0.56) and COL10A1 (1.00 ± 0.03 versus 5.52 ± 0.66 versus 3.79 ± 0.36) expressions were both greater in spheroids (p (COL2A1) = 0.003; p (COL10A1) < 0.0001) and tumors (p (COL2A1) < 0.001; p (COL10A1) < 0.0001) compared with 2-D cultures. Disulfiram-copper chloride treatment demonstrated high cytotoxicity in HT-1080 and SW-1353 chondrosarcoma cells grown in the 2-D monolayer, but 3-D spheroids were highly resistant to this treatment. CONCLUSION We provide preliminary findings that it is possible to generate 3-D spheroids from chondrosarcoma cell lines and two human chondrosarcomas (one dedifferentiated chondrosarcoma and one intermediate-grade chondrosarcoma). Chondrosarcoma spheroids derived from human tumors demonstrated morphology more reminiscent of primary tumors than cells grown in 2-D culture. Spheroids displayed similar expressions of cartilage markers as the primary tumor, and we observed a higher expression of collagen markers in the spheroids compared with cells grown in monolayer. Spheroids also demonstrated greater chemotherapy resistance than monolayer cells, but more patient-derived spheroids are needed to further conclude that 3-D cultures may mimic the chemoresistance that chondrosarcomas demonstrate clinically. Additional studies on patient-derived chondrosarcoma spheroids are warranted. CLINICAL RELEVANCE Chondrosarcomas demonstrate resistance to chemotherapy and radiation, and we believe that if they can be replicated, models such as 3-D spheroids may provide a method to test novel treatments for human chondrosarcoma. Additional comprehensive genomic studies are required to compare 2-D and 3-D models with the primary tumor to determine the most effective way to study this disease in vitro.
Collapse
Affiliation(s)
- Ruichen Ma
- R. Ma, J. Mandell, F. Lu, T. Heim, R. Watters, K. R. Weiss, Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine Department of Orthopaedic Surgery, Pittsburgh, PA, USA
- R. Ma, F. Lu, School of Medicine, Tsinghua University, Beijing, China
- J. Mandell, Department of Infectious Diseases and Microbiology, University of Pittsburgh, PA, USA
- K. Schoedel, A. Duensing, K. R. Weiss, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- A. Duensing, R. Watters, K. R. Weiss, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jonathan Mandell
- R. Ma, J. Mandell, F. Lu, T. Heim, R. Watters, K. R. Weiss, Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine Department of Orthopaedic Surgery, Pittsburgh, PA, USA
- R. Ma, F. Lu, School of Medicine, Tsinghua University, Beijing, China
- J. Mandell, Department of Infectious Diseases and Microbiology, University of Pittsburgh, PA, USA
- K. Schoedel, A. Duensing, K. R. Weiss, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- A. Duensing, R. Watters, K. R. Weiss, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Feiqi Lu
- R. Ma, J. Mandell, F. Lu, T. Heim, R. Watters, K. R. Weiss, Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine Department of Orthopaedic Surgery, Pittsburgh, PA, USA
- R. Ma, F. Lu, School of Medicine, Tsinghua University, Beijing, China
- J. Mandell, Department of Infectious Diseases and Microbiology, University of Pittsburgh, PA, USA
- K. Schoedel, A. Duensing, K. R. Weiss, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- A. Duensing, R. Watters, K. R. Weiss, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Tanya Heim
- R. Ma, J. Mandell, F. Lu, T. Heim, R. Watters, K. R. Weiss, Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine Department of Orthopaedic Surgery, Pittsburgh, PA, USA
- R. Ma, F. Lu, School of Medicine, Tsinghua University, Beijing, China
- J. Mandell, Department of Infectious Diseases and Microbiology, University of Pittsburgh, PA, USA
- K. Schoedel, A. Duensing, K. R. Weiss, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- A. Duensing, R. Watters, K. R. Weiss, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Karen Schoedel
- R. Ma, J. Mandell, F. Lu, T. Heim, R. Watters, K. R. Weiss, Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine Department of Orthopaedic Surgery, Pittsburgh, PA, USA
- R. Ma, F. Lu, School of Medicine, Tsinghua University, Beijing, China
- J. Mandell, Department of Infectious Diseases and Microbiology, University of Pittsburgh, PA, USA
- K. Schoedel, A. Duensing, K. R. Weiss, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- A. Duensing, R. Watters, K. R. Weiss, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anette Duensing
- R. Ma, J. Mandell, F. Lu, T. Heim, R. Watters, K. R. Weiss, Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine Department of Orthopaedic Surgery, Pittsburgh, PA, USA
- R. Ma, F. Lu, School of Medicine, Tsinghua University, Beijing, China
- J. Mandell, Department of Infectious Diseases and Microbiology, University of Pittsburgh, PA, USA
- K. Schoedel, A. Duensing, K. R. Weiss, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- A. Duensing, R. Watters, K. R. Weiss, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Rebecca J Watters
- R. Ma, J. Mandell, F. Lu, T. Heim, R. Watters, K. R. Weiss, Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine Department of Orthopaedic Surgery, Pittsburgh, PA, USA
- R. Ma, F. Lu, School of Medicine, Tsinghua University, Beijing, China
- J. Mandell, Department of Infectious Diseases and Microbiology, University of Pittsburgh, PA, USA
- K. Schoedel, A. Duensing, K. R. Weiss, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- A. Duensing, R. Watters, K. R. Weiss, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kurt R Weiss
- R. Ma, J. Mandell, F. Lu, T. Heim, R. Watters, K. R. Weiss, Musculoskeletal Oncology Laboratory, University of Pittsburgh School of Medicine Department of Orthopaedic Surgery, Pittsburgh, PA, USA
- R. Ma, F. Lu, School of Medicine, Tsinghua University, Beijing, China
- J. Mandell, Department of Infectious Diseases and Microbiology, University of Pittsburgh, PA, USA
- K. Schoedel, A. Duensing, K. R. Weiss, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- A. Duensing, R. Watters, K. R. Weiss, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Koch MK, Jaeschke A, Murekatete B, Ravichandran A, Tsurkan M, Werner C, Soon P, Hutmacher DW, Haupt LM, Bray LJ. Stromal fibroblasts regulate microvascular-like network architecture in a bioengineered breast tumour angiogenesis model. Acta Biomater 2020; 114:256-269. [PMID: 32707406 DOI: 10.1016/j.actbio.2020.07.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
Abstract
The plasticity of the tumour microenvironment is a key contributor to cancer development and progression. Here, we present a bioengineered breast tumour angiogenesis model comprised of mammary derived epithelial, endothelial and fibroblast cells, to dissect the mechanisms of cancer-associated fibroblasts (CAFs) on microvascular-like network formation and epithelial spheroid morphology. Primary patient-derived mammary endothelial cells, normal breast fibroblasts (NBF, patient matched) and CAFs were cultured within three-dimensional (3D) semi-synthetic hydrogels where CAFs promoted an increase in the density and morphology of the microvascular-like network. The mammary microenvironment also increased the number of MCF-10a epithelial spheroids when compared with a non-mammary microenvironment, and a malignant mammary microenvironment resulted in further morphological differences in the epithelial spheroids. The morphological changes observed following interactions between breast CAFs and endothelial cells, highlight the plasticity of the malignant stroma in tumour vascularisation. Our in vitro bioengineered breast cancer microenvironment provides a robust model to study cell-cell and cell-matrix interactions. Statement of Significance In recent years there has been an increase in the sophistication of 3D culture models, however less attention has been paid to the cell source utilised. In this study, we describe the influence of a normal and malignant stromal microenvironment on vessel-like behaviour in a 3D model. Using a semi-synthetic hydrogel, we studied the effects of mammary-derived cancer-associated fibroblasts and normal fibroblasts on human umbilical vein endothelial cells or human mammary microvascular endothelial cells. An increase in vessel-like network and epithelial cell density was seen in a mammary versus non-mammary microenvironment. This study highlights the importance of using tissue-specific endothelial cells in cancer research and demonstrates the microenvironmental impact of fibroblasts on endothelial and epithelial growth and morphology.
Collapse
Affiliation(s)
- Maria K Koch
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia; School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Anna Jaeschke
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia; School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Berline Murekatete
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia
| | | | | | | | - Patsy Soon
- South Western Sydney Clinical School, University of New South Wales, Australia; Department of Surgery, Bankstown Hospital, South Western Sydney Local Health District, Australia; Ingham Institute for Applied Medical Research, Australia
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia; School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Australia
| | - Larisa M Haupt
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia; Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Australia
| | - Laura J Bray
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Australia; School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia.
| |
Collapse
|
17
|
Wang X, Li X, Ding J, Long X, Zhang H, Zhang X, Jiang X, Xu T. 3D bioprinted glioma microenvironment for glioma vascularization. J Biomed Mater Res A 2020; 109:915-925. [PMID: 32779363 DOI: 10.1002/jbm.a.37082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Abstract
Glioblastoma is the most frequently diagnosed primary malignant brain tumor with unfavourable prognosis and high mortality. One of its key features is the extensive abnormal vascular network. Up to now, the mechanism of angiogenesis and the origin of tumor vascularization remain controversial. It is essential to establish an ideal preclinical tumor model to elucidate the mechanism of tumor vascularization, and the role of tumor cells in this process. In this study, both U118 cell and GSC23 cell exhibited good printability and cell proliferation. Compared with 3D-U118, 3D-GSC23 had a greater ability to form cell spheroids, to secrete vascular endothelial growth factor (VEGFA), and to form tubule-like structures in vitro. More importantly, 3D-glioma stem cells (GSC)23 cells had a greater power to transdifferentiate into functional endothelial cells, and blood vessels composed of tumor cells with an abnormal endothelial phenotype was observed in vivo. In summary, 3D bioprinted hydrogel scaffold provided a suitable tumor microenvironment (TME) for glioma cells and GSCs. This bioprinted model supported a novel TME for the research of glioma cells, especially GSCs in glioma vascularization and therapeutic targeting of tumor angiogenesis.
Collapse
Affiliation(s)
- Xuanzhi Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Xinda Li
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, China
| | - Jinju Ding
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Xiaoyan Long
- Department of research and development, East China Institute of Digital Medical Engineering, Shangrao, People's Republic of China
| | - Haitao Zhang
- Department of research and development, East China Institute of Digital Medical Engineering, Shangrao, People's Republic of China
| | - Xinzhi Zhang
- Department of research and development, Medprin Regenerative Medical Technologies Co., Ltd, Shenzhen, People's Republic of China
| | - Xiaochun Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Tao Xu
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, China.,Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, China
| |
Collapse
|
18
|
Oh YS, Choi MH, Shin JI, Maza PAMA, Kwak JY. Co-Culturing of Endothelial and Cancer Cells in a Nanofibrous Scaffold-Based Two-Layer System. Int J Mol Sci 2020; 21:ijms21114128. [PMID: 32531897 PMCID: PMC7312426 DOI: 10.3390/ijms21114128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is critical for local tumor growth. This study aimed to develop a three-dimensional two-layer co-culture system to investigate effects of cancer cells on the growth of endothelial cells (ECs). Poly(ε-caprolactone) (PCL) nanofibrous membranes were generated via electrospinning of PCL in chloroform (C-PCL-M) and chloroform and dimethylformamide (C/DMF-PCL-M). We assembled a two-layer co-culture system using C-PCL-M and C/DMF-PCL-M for EC growth in the upper layer with co-cultured cancer cells in the lower layer. In the absence of vascular endothelial growth factor (VEGF), growth of bEND.3 ECs decreased on C/DMF-PCL-M but not on C-PCL-M with time. Growth of bEND.3 cells on C/DMF-PCL-M was enhanced through co-culturing of CT26 cancer cells and enhanced growth of bEND.3 cells was abrogated with anti-VEGF antibodies and sorafenib. However, EA.hy926 ECs displayed steady growth and proliferation on C/DMF-PCL-M, and their growth was not further increased through co-culturing of cancer cells. Moreover, chemical hypoxia in CT26 cancer cells upon treatment with CoCl2 enhanced the growth of co-cultured bEND.3 cells in the two-layer system. Thus, EC growth on the nanofibrous scaffold is dependent on the types of ECs and composition of nanofibers and this co-culture system can be used to analyze EC growth induced by cancer cells.
Collapse
Affiliation(s)
- Ye-Seul Oh
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Korea;
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon 16499, Korea; (M.-H.C.); (J.-I.S.); (P.A.M.A.M.)
| | - Min-Ho Choi
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon 16499, Korea; (M.-H.C.); (J.-I.S.); (P.A.M.A.M.)
- Immune Network Pioneer Research Center & 3D Immune System Imaging Core Center, Ajou University, Suwon 16499, Korea
| | - Jung-In Shin
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon 16499, Korea; (M.-H.C.); (J.-I.S.); (P.A.M.A.M.)
| | - Perry Ayn Mayson A. Maza
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon 16499, Korea; (M.-H.C.); (J.-I.S.); (P.A.M.A.M.)
| | - Jong-Young Kwak
- Department of Pharmacology, School of Medicine, Ajou University, Suwon 16499, Korea;
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon 16499, Korea; (M.-H.C.); (J.-I.S.); (P.A.M.A.M.)
- Immune Network Pioneer Research Center & 3D Immune System Imaging Core Center, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-5064
| |
Collapse
|
19
|
Dikici S, Claeyssens F, MacNeil S. Bioengineering Vascular Networks to Study Angiogenesis and Vascularization of Physiologically Relevant Tissue Models in Vitro. ACS Biomater Sci Eng 2020; 6:3513-3528. [PMID: 32582840 PMCID: PMC7304666 DOI: 10.1021/acsbiomaterials.0c00191] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022]
Abstract
Angiogenesis assays are essential for studying aspects of neovascularization and angiogenesis and investigating drugs that stimulate or inhibit angiogenesis. To date, there are several in vitro and in vivo angiogenesis assays that are used for studying different aspects of angiogenesis. Although in vivo assays are the most representative of native angiogenesis, they raise ethical questions, require considerable technical skills, and are expensive. In vitro assays are inexpensive and easier to perform, but the majority of them are only two-dimensional cell monolayers which lack the physiological relevance of three-dimensional structures. Thus, it is important to look for alternative platforms to study angiogenesis under more physiologically relevant conditions in vitro. Accordingly, in this study, we developed polymeric vascular networks to be used to study angiogenesis and vascularization of a 3D human skin model in vitro. Our results showed that this platform allowed the study of more than one aspect of angiogenesis, endothelial migration and tube formation, in vitro when combined with Matrigel. We successfully reconstructed a human skin model, as a representative of a physiologically relevant and complex structure, and assessed the suitability of the developed in vitro platform for studying endothelialization of the tissue-engineered skin model.
Collapse
Affiliation(s)
- Serkan Dikici
- Department of Materials
Science
and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Frederik Claeyssens
- Department of Materials
Science
and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Sheila MacNeil
- Department of Materials
Science
and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| |
Collapse
|
20
|
Nie J, Gao Q, Fu J, He Y. Grafting of 3D Bioprinting to In Vitro Drug Screening: A Review. Adv Healthc Mater 2020; 9:e1901773. [PMID: 32125787 DOI: 10.1002/adhm.201901773] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/09/2023]
Abstract
The inadequacy of conventional cell-monolayer planar cultures and animal experiments in predicting the toxicity and clinical efficacy of drug candidates has led to an imminent need for in vitro methods with the ability to better represent in vivo conditions and facilitate the systematic investigation of drug candidates. Recent advances in 3D bioprinting have prompted the precise manipulation of cells and biomaterials, rendering it a promising technology for the construction of in vitro tissue/organ models and drug screening devices. This review presents state-of-the-art in vitro methods used for preclinical drug screening and discusses the limitations of these methods. In particular, the significance of constructing 3D in vitro tissue/organ models and microfluidic analysis devices for drug screening is emphasized, and a focus is placed on the grafting process of 3D bioprinting technology to the construction of such models and devices. The in vitro methods for drug screening are generalized into three types: mini-tissue, organ-on-a-chip, and tissue/organ construct. The revolutionary process of the in vitro methods is demonstrated in detail, and relevant studies are listed as examples. Specifically, the tumor model is adopted as a precedent to illustrate the possible grafting of 3D bioprinting to antitumor drug screening.
Collapse
Affiliation(s)
- Jing Nie
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang University Hangzhou 310027 China
| |
Collapse
|
21
|
Zhang G, Varkey M, Wang Z, Xie B, Hou R, Atala A. ECM concentration and cell‐mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue. Biotechnol Bioeng 2020; 117:1148-1158. [DOI: 10.1002/bit.27250] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Guangliang Zhang
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
- Ruihua Affiliated Hospital of Soochow University Suzhou China
| | - Mathew Varkey
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
| | - Zhan Wang
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
| | - Beibei Xie
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
- Ruihua Affiliated Hospital of Soochow University Suzhou China
| | - Ruixing Hou
- Ruihua Affiliated Hospital of Soochow University Suzhou China
| | - Anthony Atala
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
| |
Collapse
|
22
|
Glycosaminoglycan-based hydrogels with programmable host reactions. Biomaterials 2020; 228:119557. [DOI: 10.1016/j.biomaterials.2019.119557] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/06/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
|
23
|
Husman D, Welzel PB, Vogler S, Bray LJ, Träber N, Friedrichs J, Körber V, Tsurkan MV, Freudenberg U, Thiele J, Werner C. Multiphasic microgel-in-gel materials to recapitulate cellular mesoenvironments in vitro. Biomater Sci 2020; 8:101-108. [DOI: 10.1039/c9bm01009b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-instructive biohybrid microgel-in-gel materials can guide the faithful in vitro reconstitution of tissues.
Collapse
|
24
|
Schutrum BE, Whitman MA, Fischbach C. Biomaterials-Based Model Systems to Study Tumor–Microenvironment Interactions. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Zucchelli E, Majid QA, Foldes G. New artery of knowledge: 3D models of angiogenesis. VASCULAR BIOLOGY 2019; 1:H135-H143. [PMID: 32923965 PMCID: PMC7439835 DOI: 10.1530/vb-19-0026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Angiogenesis and vasculogenesis are complex processes by which new blood vessels are formed and expanded. They play a pivotal role not only in physiological development and growth and tissue and organ repair, but also in a range of pathological conditions, from tumour formation to chronic inflammation and atherosclerosis. Understanding the multistep cell-differentiation programmes and identifying the key molecular players of physiological angiogenesis/vasculogenesis are critical to tackle pathological mechanisms. While many questions are yet to be answered, increasingly sophisticated in vitro, in vivo and ex vivo models of angiogenesis/vasculogenesis, together with cutting-edge imaging techniques, allowed for recent major advances in the field. This review aims to summarise the three-dimensional models available to study vascular network formation and to discuss advantages and limitations of the current systems.
Collapse
Affiliation(s)
| | - Qasim A Majid
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Gabor Foldes
- National Heart and Lung Institute, Imperial College London, London, UK.,Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
Nogo-A targeted therapy promotes vascular repair and functional recovery following stroke. Proc Natl Acad Sci U S A 2019; 116:14270-14279. [PMID: 31235580 DOI: 10.1073/pnas.1905309116] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Stroke is a major cause of serious disability due to the brain's limited capacity to regenerate damaged tissue and neuronal circuits. After ischemic injury, a multiphasic degenerative and inflammatory response is coupled with severely restricted vascular and neuronal repair, resulting in permanent functional deficits. Although clinical evidence indicates that revascularization of the ischemic brain regions is crucial for functional recovery, no therapeutics that promote angiogenesis after cerebral stroke are currently available. Besides vascular growth factors, guidance molecules have been identified to regulate aspects of angiogenesis in the central nervous system (CNS) and may provide targets for therapeutic angiogenesis. In this study, we demonstrate that genetic deletion of the neurite outgrowth inhibitor Nogo-A or one of its corresponding receptors, S1PR2, improves vascular sprouting and repair and reduces neurological deficits after cerebral ischemia in mice. These findings were reproduced in a therapeutic approach using intrathecal anti-Nogo-A antibodies; such a therapy is currently in clinical testing for spinal cord injury. These results provide a basis for a therapeutic blockage of inhibitory guidance molecules to improve vascular and neural repair after ischemic CNS injuries.
Collapse
|
27
|
Bayat N, Izadpanah R, Ebrahimi-Barough S, Norouzi Javidan A, Ai A, Mokhtari Ardakan MM, Saberi H, Ai J. The Anti-Angiogenic Effect of Atorvastatin in Glioblastoma Spheroids Tumor Cultured in Fibrin Gel: in 3D in Vitro Model. Asian Pac J Cancer Prev 2018; 19:2553-2560. [PMID: 30256055 PMCID: PMC6249458 DOI: 10.22034/apjcp.2018.19.9.2553] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose: Glioblastoma multiform (GBM) is the most aggressive glial neoplasm. Researchers have exploited the fact that GBMs are highly vascularized tumors. Anti-angiogenic strategies including those targeting VEGF pathway have been emerged for treatment of GBM. Previously, we reported the anti-inflammatory effect of atorvastatin on GBM cells. In this study, we investigated the anti-angiogenesis and apoptotic activity of atorvastatin on GBM cells. Methods: Different concentrations of atorvastatin (1, 5, 10µM) were used on engineered three-dimensional (3D) human tumor models using glioma spheroids and Human Umbilical Vein Endothelial cells (HUVECs) in fibrin gel as tumor models. To reach for these aims, angiogenesis as tube-like structures sprouting of HUVECs were observed after 24 hour treatment with different concentrations of atorvastatin into the 3-D fibrin matrix and we focused on it by angiogenesis antibody array. After 48 hours exposing with different concentrations of atorvastatin, cell migration of HUVECs were investigated. After 24 and 48 hours exposing with different concentrations of atorvastatin VEGF, CD31, caspase-3 and Bcl-2 genes expression by real time PCR were assayed. Results: The results showed that atorvastatin has potent anti-angiogenic effect and apoptosis inducing effect against glioma spheroids. Atorvastatin down-regulated the expression of VEGF, CD31 and Bcl-2, and induced the expression of caspase-3 especially at 10µM concentration. These effects are dose dependent. Conclusion: These results suggest that this biomimetic model with fibrin may provide a vastly applicable 3D culture system to study the effect of anti-cancer drugs such as atorvastatin on tumor malignancy in vitro and in vivo and atorvastatin could be used as agent for glioblastoma treatment.
Collapse
Affiliation(s)
- Neda Bayat
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ferreira LP, Gaspar VM, Mano JF. Design of spherically structured 3D in vitro tumor models -Advances and prospects. Acta Biomater 2018; 75:11-34. [PMID: 29803007 PMCID: PMC7617007 DOI: 10.1016/j.actbio.2018.05.034] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 12/29/2022]
Abstract
Three-dimensional multicellular tumor models are receiving an ever-growing focus as preclinical drug-screening platforms due to their potential to recapitulate major physiological features of human tumors in vitro. In line with this momentum, the technologies for assembly of 3D microtumors are rapidly evolving towards a comprehensive inclusion of tumor microenvironment elements. Customized spherically structured platforms, including microparticles and microcapsules, provide a robust and scalable technology to imprint unique biomolecular tumor microenvironment hallmarks into 3D in vitro models. Herein, a comprehensive overview of novel advances on the integration of tumor-ECM components and biomechanical cues into 3D in vitro models assembled in spherical shaped platforms is provided. Future improvements regarding spatiotemporal/mechanical adaptability, and degradability, during microtumors in vitro 3D culture are also critically discussed considering the realistic potential of these platforms to mimic the dynamic tumor microenvironment. From a global perspective, the production of 3D multicellular spheroids with tumor ECM components included in spherical models will unlock their potential to be used in high-throughput screening of therapeutic compounds. It is envisioned, in a near future, that a combination of spherically structured 3D microtumor models with other advanced microfluidic technologies will properly recapitulate the flow dynamics of human tumors in vitro. STATEMENT OF SIGNIFICANCE The ability to correctly mimic the complexity of the tumor microenvironment in vitro is a key aspect for the development of evermore realistic in vitro models for drug-screening and fundamental cancer biology studies. In this regard, conventional spheroid-based 3D tumor models, combined with spherically structured biomaterials, opens the opportunity to precisely recapitulate complex cell-extracellular matrix interactions and tumor compartmentalization. This review provides an in-depth focus on current developments regarding spherically structured scaffolds engineered into in vitro 3D tumor models, and discusses future advances toward all-encompassing platforms that may provide an improved in vitro/in vivo correlation in a foreseeable future.
Collapse
Affiliation(s)
- L P Ferreira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - V M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - J F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
29
|
Blache U, Ehrbar M. Inspired by Nature: Hydrogels as Versatile Tools for Vascular Engineering. Adv Wound Care (New Rochelle) 2018; 7:232-246. [PMID: 29984113 PMCID: PMC6032659 DOI: 10.1089/wound.2017.0760] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/21/2022] Open
Abstract
Significance: Diseases related to vascular malfunction, hyper-vascularization, or lack of vascularization are among the leading causes of morbidity and mortality. Engineered, vascularized tissues as well as angiogenic growth factor-releasing hydrogels could replace defective tissues. Further, treatments and testing of novel vascular therapeutics will benefit significantly from models that allow for the study of vascularized tissues under physiological relevant in vitro conditions. Recent Advances: Inspired by fibrin, the provisional matrix during wound healing, naturally derived and synthetic hydrogel scaffolds have been developed for vascular engineering. Today, engineers and biologists use commercially available hydrogels to pre-vascularize tissues, to control the delivery of angiogenic growth factors, and to establish vascular diseases models. Critical Issue: For clinical translation, pre-vascularized tissue constructs must be sufficiently large and stable to substitute function-relevant tissue defects and integrate with host vascular perfusion. Moreover, the continuous integration of knowhow from basic vascular biology with innovative, tailorable materials and advanced manufacturing technologies is key to achieving near-physiological tissue models and new treatments to control vascularization. Future Directions: For transplantation, engineered tissues must comprise hierarchically organized vascular trees of different caliber and function. The development of novel vascularization-promoting or -inhibiting therapeutics will benefit from physiologically relevant vessel models. In addition, tissue models representing treatment-relevant vascular tissue functions will increase the capacity to screen for therapeutic compounds and will significantly reduce the need for animals for their validation.
Collapse
Affiliation(s)
- Ulrich Blache
- Department of Obstetrics, University and University Hospital Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Martin Ehrbar
- Department of Obstetrics, University and University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Recapitulating spatiotemporal tumor heterogeneity in vitro through engineered breast cancer microtissues. Acta Biomater 2018; 73:236-249. [PMID: 29679778 DOI: 10.1016/j.actbio.2018.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/14/2023]
Abstract
Tumor and microenvironmental heterogeneity hinders the study of breast cancer biology and the assessment of therapeutic strategies, being associated with high variability and drug resistance. In this context, it is mandatory to develop three-dimensional breast tumor models able to reproduce this heterogeneity and the dynamic interaction occurring between tumor cells and microenvironment. Here we show a new breast cancer microtissue model (T-µTP) uniquely able to present intra-tumor morphological heterogeneity in a dynamic and responsive endogenous matrix. T-µTP consists of adenocarcinoma cells, endothelial cells and stromal fibroblasts. These three kinds of cells are totally embedded into an endogenous matrix which is rich in collagen and hyaluronic acid and it is directly produced by human fibroblasts. In this highly physiologically relevant environment, tumor cells evolve in different cluster morphologies recapitulating tumor spatiotemporal heterogeneity. Moreover they activate the desmoplastic and vascular reaction with affected collagen content, assembly and organization and the presence of aberrant capillary-like structures (CLS). Thus, T-µTP allows to outline main crucial events involved in breast cancer progression into a single model overcoming the limit of artificial extra cellular matrix surrogates. We strongly believe that T-µTP is a suitable model for the study of breast cancer and for drug screening assays following key parameters of clinical interest. STATEMENT OF SIGNIFICANCE Tumor and microenvironmental heterogeneity makes very hurdle to find a way to study and treat breast cancer. Here we develop an innovative 3D tumor microtissue model recapitulating in vitro tumor heterogeneity. Tumor microtissues are characterized by the activation of the stromal and vascular reaction too. We underline the importance to mimic different microenvironmental tumor features in the same time and in a single tissue in order to obtain a model of spatiotemporal tumor genesis and progression, suitable for the study of tumor treatment and resistance.
Collapse
|
31
|
Chim LK, Mikos AG. Biomechanical forces in tissue engineered tumor models. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 6:42-50. [PMID: 30276358 PMCID: PMC6162057 DOI: 10.1016/j.cobme.2018.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Solid tumors are complex three-dimensional (3D) networks of cancer and stromal cells within a dynamic extracellular matrix. Monolayer cultures fail to recapitulate the native microenvironment and therefore are poor candidates for pre-clinical drug studies and studying pathways in cancer. The tissue engineering toolkit allows us to make models that better recapitulate the 3D architecture present in tumors. Moreover, the role of the mechanical microenvironment, including matrix stiffness and shear stress from fluid flow, is known to contribute to cancer progression and drug resistance. We review recent developments in tissue engineered tumor models with a focus on the role of the biomechanical forces and propose future considerations to implement to improve physiological relevance of such models.
Collapse
Affiliation(s)
- Letitia K Chim
- Department of Bioengineering, Rice University, 6500 Main Street MS-142, Houston, Texas 77030, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, 6500 Main Street MS-142, Houston, Texas 77030, USA
| |
Collapse
|
32
|
Rios de la Rosa JM, Wubetu J, Tirelli N, Tirella A. Colorectal tumor 3D in vitromodels: advantages of biofabrication for the recapitulation of early stages of tumour development. Biomed Phys Eng Express 2018; 4:045010. [PMID: 37596738 DOI: 10.1088/2057-1976/aac1c9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022]
Abstract
The majority of cancer-relatedin vitrostudies are conducted on cell monolayers or spheroids. Although this approach has led to key discoveries, it still has a poor outcome in recapitulating the different stages of tumor development. The advent of novel three-dimensional (3D) systems and technological methods for their fabrication is set to improve the field, offering a more physiologically relevant and high throughputin vitrosystem for the study of tumor development and treatment. Here we describe the fabrication of alginate-based 3D models that recapitulate the early stages of colorectal cancer, tracking two of the main biomarkers for tumor development: CD44 and HIF-1α. We optimized the fabrication process to obtain alginate micro-beads with controlled size and stiffness, mimicking the early stages of colorectal cancer. Human colorectal HCT-116 cancer cells were encapsulated with controlled initial number, and cell viability and protein expression of said 3Din vitromodels was compared to that of current gold standards (cell monolayers and spheroids). Our results evidenced that encapsulated HCT-116 demonstrated a high viability, increase in stem-like cell populations (increased expression of CD44) and reduced hypoxic regions (lower HIF-1a expression) compared to spheroid cultures. In conclusion we show that our biofabricated system is a highly reproducible and easily accessible alternative to study cell behavior, allowing to better mimic the early stages of colorectal cancer in comparison to otherin vitromodels. The use of biofabricatedin vitromodels will improve the translatability of results, in particular when testing strategies for therapeutic intervention.
Collapse
Affiliation(s)
- J M Rios de la Rosa
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PL, United Kingdom
- NorthWest Centre for Advanced Drug Delivery (NoWCADD), Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - J Wubetu
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - N Tirelli
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PL, United Kingdom
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - A Tirella
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PL, United Kingdom
- NorthWest Centre for Advanced Drug Delivery (NoWCADD), Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
33
|
An R, Schmid R, Klausing A, Robering JW, Weber M, Bäuerle T, Detsch R, Boccaccini AR, Horch RE, Boos AM, Weigand A. Proangiogenic effects of tumor cells on endothelial progenitor cells vary with tumor type in an in vitro and in vivo rat model. FASEB J 2018; 32:5587-5601. [PMID: 29746168 DOI: 10.1096/fj.201800135rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endothelial progenitor cells (EPCs) contribute to neovascularization in tumors. However, the relationship of EPCs and tumor-induced angiogenesis still remains to be clarified. The present study aimed at investigating the influence of 4 different tumor types on angiogenic properties of EPCs in an in vitro and in vivo rat model. It could be demonstrated that in vitro proliferation, migration, and angiogenic abilities and genetic modifications of EPCs are controlled in a tumor-type-dependent manner. The proangiogenic effect of mammary carcinoma, osteosarcoma, and rhabdomyosarcoma cells was more pronounced compared to colon carcinoma cells. Coinjection of encapsulated tumor cells, especially mammary carcinoma cells, and EPCs in a rat model confirmed a contributing effect of EPCs in tumor vascularization. Cytokines secreted by tumors such as monocyte chemoattractant protein 1, macrophage inflammatory protein 2, and TNF-related apoptosis-inducing ligand play a pivotal role in the tumor cell-EPC interaction, leading to enhanced migration and angiogenesis. With the present study, we were able to decipher possible underlying mechanisms by which EPCs are stimulated by tumor cells and contribute to tumor vascularization. The present study will contribute to a better understanding of tumor-induced vascularization, thus facilitating the development of therapeutic strategies targeting tumor-EPC interactions.-An, R., Schmid, R., Klausing, A., Robering, J. W., Weber, M., Bäuerle, T., Detsch, R., Boccaccini, A. R., Horch, R. E., Boos, A. M., Weigand, A. Proangiogenic effects of tumor cells on endothelial progenitor cells vary with tumor type in an in vitro and in vivo rat model.
Collapse
Affiliation(s)
- Ran An
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.,Union Plastic and Aesthetic Hospital, Huazhong University of Science and Technology, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Rafael Schmid
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anne Klausing
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jan W Robering
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Weber
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Bäuerle
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany; and
| | - Rainer Detsch
- Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anja M Boos
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Annika Weigand
- Department of Plastic and Hand Surgery, Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
34
|
Abstract
In situ forming hydrogels prepared from multi-armed poly(ethylene glycol) (PEG), glycosaminoglycans (GAG) and various peptides enable the development of advanced three dimensional (3D) culture models. Herein, we report methods for the PEG-GAG gel-based 3D co-cultivation of human umbilical vein endothelial cells, mesenchymal stromal cells, and different cancer cell lines. The resulting constructs allow for the exploration of interactions between solid tumors with 3D vascular networks in vitro to study the mechanistic aspects of cancer development and to perform drug testing.
Collapse
Affiliation(s)
- Laura J Bray
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Dresden, Saxony, Germany.
- Science and Engineering Faculty and Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia.
| | - Marcus Binner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Dresden, Saxony, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Dresden, Saxony, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Dresden, Saxony, Germany
- Technische Universität Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany
| |
Collapse
|
35
|
Mazzarella L, Curigliano G. A new approach to assess drug sensitivity in cells for novel drug discovery. Expert Opin Drug Discov 2018; 13:339-346. [PMID: 29415581 DOI: 10.1080/17460441.2018.1437136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION There is a pressing need to improve strategies to select candidate drugs early on in the drug development pipeline, especially in oncology, as the efficiency of new drug approval has steadily declined these past years. Traditional methods of drug screening have relied on low-cost assays on cancer cell lines growing on plastic dishes. Recent massive-scale screens have generated big data amenable for sophisticated computational modeling and integration with clinical data. However, 2D culturing has several intrinsic limitations and novel methodologies have been devised for culturing in three dimensions, to include cells from the tumor immune microenvironment. These major improvements are bringing in vitro systems even closer to a physiological, more clinically relevant state. Areas covered: In this article, the authors review the literature on methodologies for early-phase drug screening, focusing on in vitro systems and analyzing both novel experimental and statistical approaches. The article does not cover the expanding literature on in vivo systems. Expert opinion: The popularity of three-dimensional systems is exploding, driven by the development of 'organoid' derivation technology in 2009. These assays are growing in sophistication to accommodate the increasing need by modern oncology to develop drugs that target the microenvironment.
Collapse
Affiliation(s)
- Luca Mazzarella
- a Division of Early Drug Development , European Institute of Oncology , Milano , Italy
| | - Giuseppe Curigliano
- a Division of Early Drug Development , European Institute of Oncology , Milano , Italy.,b Department of Oncology and Hemato-Oncology , University of Milano , Milano , Italy
| |
Collapse
|
36
|
Ngo MT, Harley BA. The Influence of Hyaluronic Acid and Glioblastoma Cell Coculture on the Formation of Endothelial Cell Networks in Gelatin Hydrogels. Adv Healthc Mater 2017; 6:10.1002/adhm.201700687. [PMID: 28941173 PMCID: PMC5719875 DOI: 10.1002/adhm.201700687] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/01/2017] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is the most common and deadly form of brain cancer. Interactions between GBM cells and vasculature in vivo contribute to poor clinical outcomes, with GBM-induced vessel co-option, regression, and subsequent angiogenesis strongly influencing GBM invasion. Here, elements of the GBM perivascular niche are incorporated into a methacrylamide-functionalized gelatin hydrogel as a means to examine GBM-vessel interactions. The complexity of 3D endothelial cell networks formed from human umbilical vein endothelial cells and normal human lung fibroblasts as a function of hydrogel properties and vascular endothelial growth factor (VEGF) presentation is presented. While overall length and branching of the endothelial cell networks decrease with increasing hydrogel stiffness and incorporation of brain-mimetic hyaluronic acid, it can be separately altered by changing the vascular cell seeding density. It is shown that covalent incorporation of VEGF supports network formation as robustly as continuously available soluble VEGF. The impact of U87-MG GBM cells on the endothelial cell networks is subsequently investigated. GBM cells localize in proximity to the endothelial cell networks and hasten network regression in vitro. Together, this in vitro platform recapitulates the close association between GBM cells and vessel structures as well as elements of vessel co-option and regression preceding angiogenesis in vivo.
Collapse
Affiliation(s)
- Mai T Ngo
- 193 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Brendan A Harley
- 110 Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| |
Collapse
|
37
|
Abstract
Cancer is a leading cause of mortality and morbidity worldwide. Around 90% of deaths are caused by metastasis and just 10% by primary tumor. The advancement of treatment approaches is not at the same rhythm of the disease; making cancer a focal target of biomedical research. To enhance the understanding and prompts the therapeutic delivery; concepts of tissue engineering are applied in the development of in vitro models that can bridge between 2D cell culture and animal models, mimicking tissue microenvironment. Tumor spheroid represents highly suitable 3D organoid-like framework elucidating the intra and inter cellular signaling of cancer, like that formed in physiological niche. However, spheroids are of limited value in studying critical biological phenomenon such as tumor-stroma interactions involving extra cellular matrix or immune system. Therefore, a compelling need of tailoring spheroid technologies with physiologically relevant biomaterials or in silico models, is ever emerging. The diagnostic and prognostic role of spheroids rearrangements within biomaterials or microfluidic channel is indicative of patient management; particularly for the decision of targeted therapy. Fragmented information on available in vitro spheroid models and lack of critical analysis on transformation aspects of these strategies; pushes the urge to comprehensively overview the recent technological advancements (e.g. bioprinting, micro-fluidic technologies or use of biomaterials to attain the third dimension) in the shed of translationable cancer research. In present article, relationships between current models and their possible exploitation in clinical success is explored with the highlight of existing challenges in defining therapeutic targets and screening of drug efficacy.
Collapse
|
38
|
Chaddad H, Kuchler-Bopp S, Fuhrmann G, Gegout H, Ubeaud-Sequier G, Schwinté P, Bornert F, Benkirane-Jessel N, Idoux-Gillet Y. Combining 2D angiogenesis and 3D osteosarcoma microtissues to improve vascularization. Exp Cell Res 2017; 360:138-145. [PMID: 28867479 DOI: 10.1016/j.yexcr.2017.08.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022]
Abstract
Angiogenesis is now well known for being involved in tumor progression, aggressiveness, emergence of metastases, and also resistance to cancer therapies. In this study, to better mimic tumor angiogenesis encountered in vivo, we used 3D culture of osteosarcoma cells (MG-63) that we deposited on 2D endothelial cells (HUVEC) grown in monolayer. We report that endothelial cells combined with tumor cells were able to form a well-organized network, and that tubule-like structures corresponding to new vessels infiltrate tumor spheroids. These vessels presented a lumen and expressed specific markers as CD31 and collagen IV. The combination of 2D endothelial cells and 3D microtissues of tumor cells also increased expression of angiogenic factors as VEGF, CXCR4 and ICAM1. The cell environment is the key point to develop tumor vascularization in vitro and to be closer to tumor encountered in vivo.
Collapse
Affiliation(s)
- Hassan Chaddad
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, FMTS, 11 rue Humann, Strasbourg, France; Université de Strasbourg, UMR CNRS 7213, EA7293, Faculté de Pharmacie, route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Sabine Kuchler-Bopp
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, FMTS, 11 rue Humann, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg F-67000, France
| | - Guy Fuhrmann
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, FMTS, 11 rue Humann, Strasbourg, France; Université de Strasbourg, UMR CNRS 7213, EA7293, Faculté de Pharmacie, route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Hervé Gegout
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, FMTS, 11 rue Humann, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg F-67000, France
| | - Geneviève Ubeaud-Sequier
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, FMTS, 11 rue Humann, Strasbourg, France; Université de Strasbourg, UMR CNRS 7213, EA7293, Faculté de Pharmacie, route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Pascale Schwinté
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, FMTS, 11 rue Humann, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg F-67000, France
| | - Fabien Bornert
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, FMTS, 11 rue Humann, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg F-67000, France
| | - Nadia Benkirane-Jessel
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, FMTS, 11 rue Humann, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg F-67000, France.
| | - Ysia Idoux-Gillet
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative NanoMedicine Laboratory, FMTS, 11 rue Humann, Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie Dentaire, Hôpitaux Universitaires de Strasbourg (HUS), Strasbourg F-67000, France.
| |
Collapse
|
39
|
Guo J, Rahme K, He Y, Li LL, Holmes JD, O’Driscoll CM. Gold nanoparticles enlighten the future of cancer theranostics. Int J Nanomedicine 2017; 12:6131-6152. [PMID: 28883725 PMCID: PMC5574664 DOI: 10.2147/ijn.s140772] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Development of multifunctional nanomaterials, one of the most interesting and advanced research areas in the field of nanotechnology, is anticipated to revolutionize cancer diagnosis and treatment. Gold nanoparticles (AuNPs) are now being widely utilized in bio-imaging and phototherapy due to their tunable and highly sensitive optical and electronic properties (the surface plasmon resonance). As a new concept, termed "theranostics," multifunctional AuNPs may contain diagnostic and therapeutic functions that can be integrated into one system, thereby simultaneously facilitating diagnosis and therapy and monitoring therapeutic responses. In this review, the important properties of AuNPs relevant to diagnostic and phototherapeutic applications such as structure, shape, optics, and surface chemistry are described. Barriers for translational development of theranostic AuNPs and recent advances in the application of AuNPs for cancer diagnosis, photothermal, and photodynamic therapy are discussed.
Collapse
Affiliation(s)
- Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Kamil Rahme
- Department of Sciences, Faculty of Natural and Applied Science, Notre Dame University (Louaize), Zouk Mosbeh, Lebanon
- Department of Chemistry, Tyndall National Institute, University College Cork, Cork
- AMBER@CRANN, Trinity College Dublin, Dublin, Ireland
| | - Yan He
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Lin-Lin Li
- The First Hospital of Jilin University, Changchun, China
| | - Justin D Holmes
- Department of Chemistry, Tyndall National Institute, University College Cork, Cork
- AMBER@CRANN, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
40
|
Non-invasive imaging of engineered human tumors in the living chicken embryo. Sci Rep 2017; 7:4991. [PMID: 28694510 PMCID: PMC5504052 DOI: 10.1038/s41598-017-04572-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 05/18/2017] [Indexed: 12/16/2022] Open
Abstract
The growing interest in engineered tumor models prompted us to devise a method for the non-invasive assessment of such models. Here, we report on bioluminescence imaging (BLI) for the assessment of engineered tumor models in the fertilized chicken egg, i.e, chick chorioallantoic membrane (CAM) assay. One prostate cancer (PC-3) and two osteosarcoma (MG63 and HOS) cell lines were modified with luciferase reporter genes. To create engineered tumors, these cell lines were seeded either onto basement membrane extract (BME) or gelfoam scaffolds, and subsequently grafted in vivo onto the CAM. BLI enabled non-invasive, specific detection of the engineered tumors on the CAM in the living chicken embryo. Further, BLI permitted daily, quantitative monitoring of the engineered tumors over the course of up to 7 days. Data showed that an extracellular matrix (ECM) composed of BME supported growth of reporter gene marked PC-3 tumors but did not support MG63 or HOS tumor growth. However, MG63 tumors engineered on the collagen-based gelfoam ECM showed a temporal proliferation burst in MG63 tumors. Together, the data demonstrated imaging of engineered human cancer models in living chicken embryos. The combination of CAM assay and BLI holds significant potential for the examination of a broad range of engineered tumor models.
Collapse
|
41
|
Lohmann N, Schirmer L, Atallah P, Wandel E, Ferrer RA, Werner C, Simon JC, Franz S, Freudenberg U. Glycosaminoglycan-based hydrogels capture inflammatory chemokines and rescue defective wound healing in mice. Sci Transl Med 2017; 9:9/386/eaai9044. [PMID: 28424334 DOI: 10.1126/scitranslmed.aai9044] [Citation(s) in RCA: 215] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
Abstract
Excessive production of inflammatory chemokines can cause chronic inflammation and thus impair cutaneous wound healing. Capturing chemokine signals using wound dressing materials may offer powerful new treatment modalities for chronic wounds. Here, a modular hydrogel based on end-functionalized star-shaped polyethylene glycol (starPEG) and derivatives of the glycosaminoglycan (GAG) heparin was customized for maximal chemokine sequestration. The material is shown to effectively scavenge the inflammatory chemokines MCP-1 (monocyte chemoattractant protein-1), IL-8 (interleukin-8), and MIP-1α (macrophage inflammatory protein-1α) and MIP-1β (macrophage inflammatory protein-1β) in wound fluids from patients suffering from chronic venous leg ulcers and to reduce the migratory activity of human monocytes and polymorphonuclear neutrophils. In an in vivo model of delayed wound healing (db/db mice), starPEG-GAG hydrogels outperformed the standard-of-care product Promogran with respect to reduction of inflammation, as well as increased granulation tissue formation, vascularization, and wound closure.
Collapse
Affiliation(s)
- Nadine Lohmann
- Department of Dermatology, Venerology, and Allergology, Leipzig University, 04103 Leipzig, Germany.,Collaborative Research Center (SFB-TR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin-From Material Science to Clinical Application," Leipzig and Dresden, Germany
| | - Lucas Schirmer
- Collaborative Research Center (SFB-TR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin-From Material Science to Clinical Application," Leipzig and Dresden, Germany.,Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Passant Atallah
- Collaborative Research Center (SFB-TR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin-From Material Science to Clinical Application," Leipzig and Dresden, Germany.,Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Elke Wandel
- Department of Dermatology, Venerology, and Allergology, Leipzig University, 04103 Leipzig, Germany.,Collaborative Research Center (SFB-TR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin-From Material Science to Clinical Application," Leipzig and Dresden, Germany
| | - Ruben A Ferrer
- Department of Dermatology, Venerology, and Allergology, Leipzig University, 04103 Leipzig, Germany.,Collaborative Research Center (SFB-TR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin-From Material Science to Clinical Application," Leipzig and Dresden, Germany
| | - Carsten Werner
- Collaborative Research Center (SFB-TR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin-From Material Science to Clinical Application," Leipzig and Dresden, Germany.,Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.,Technische Universität Dresden, Center for Regenerative Therapies Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Jan C Simon
- Department of Dermatology, Venerology, and Allergology, Leipzig University, 04103 Leipzig, Germany.,Collaborative Research Center (SFB-TR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin-From Material Science to Clinical Application," Leipzig and Dresden, Germany
| | - Sandra Franz
- Department of Dermatology, Venerology, and Allergology, Leipzig University, 04103 Leipzig, Germany. .,Collaborative Research Center (SFB-TR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin-From Material Science to Clinical Application," Leipzig and Dresden, Germany
| | - Uwe Freudenberg
- Collaborative Research Center (SFB-TR67) "Functional Biomaterials for Controlling Healing Processes in Bone and Skin-From Material Science to Clinical Application," Leipzig and Dresden, Germany. .,Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany
| |
Collapse
|
42
|
Bray LJ, Werner C. Evaluation of Three-Dimensional in Vitro Models to Study Tumor Angiogenesis. ACS Biomater Sci Eng 2017; 4:337-346. [DOI: 10.1021/acsbiomaterials.7b00139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Laura J. Bray
- Institute
of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove 4059 Queensland Australia
- Mater
Research Institute - University of Queensland (MRI-UQ), Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD Australia
| | - Carsten Werner
- Leibniz
Institute of Polymer Research Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Saxony, Germany
- Center
for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Saxony, Germany
| |
Collapse
|
43
|
Ravi M, Ramesh A, Pattabhi A. Contributions of 3D Cell Cultures for Cancer Research. J Cell Physiol 2017; 232:2679-2697. [PMID: 27791270 DOI: 10.1002/jcp.25664] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 12/24/2022]
Abstract
Cancer cell lines have contributed immensely in understanding the complex physiology of cancers. They are excellent material for studies as they offer homogenous samples without individual variations and can be utilised with ease and flexibility. Also, the number of assays and end-points one can study is almost limitless; with the advantage of improvising, modifying or altering several variables and methods. Literally, a new dimension to cancer research has been achieved by the advent of 3Dimensional (3D) cell culture techniques. This approach increased many folds the ways in which cancer cell lines can be utilised for understanding complex cancer biology. 3D cell culture techniques are now the preferred way of using cancer cell lines to bridge the gap between the 'absolute in vitro' and 'true in vivo'. The aspects of cancer biology that 3D cell culture systems have contributed include morphology, microenvironment, gene and protein expression, invasion/migration/metastasis, angiogenesis, tumour metabolism and drug discovery, testing chemotherapeutic agents, adaptive responses and cancer stem cells. We present here, a comprehensive review on the applications of 3D cell culture systems for these aspects of cancers. J. Cell. Physiol. 232: 2679-2697, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maddaly Ravi
- Faculty of Biomedical Sciences, Technology and Research, Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, India
| | - Aarthi Ramesh
- Faculty of Biomedical Sciences, Technology and Research, Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, India
| | - Aishwarya Pattabhi
- Faculty of Biomedical Sciences, Technology and Research, Department of Human Genetics, Sri Ramachandra University, Porur, Chennai, India
| |
Collapse
|
44
|
Fong ELS, Toh TB, Yu H, Chow EKH. 3D Culture as a Clinically Relevant Model for Personalized Medicine. SLAS Technol 2017; 22:245-253. [PMID: 28277923 DOI: 10.1177/2472630317697251] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in understanding many of the fundamental mechanisms of cancer progression have led to the development of molecular targeted therapies. While molecular targeted therapeutics continue to improve the outcome for cancer patients, tumor heterogeneity among patients, as well as intratumoral heterogeneity, limits the efficacy of these drugs to specific patient subtypes, as well as contributes to relapse. Thus, there is a need for a more personalized approach toward drug development and diagnosis that takes into account the diversity of cancer patients, as well as the complex milieu of tumor cells within a single patient. Three-dimensional (3D) culture systems paired with patient-derived xenografts or patient-derived organoids may provide a more clinically relevant system to address issues presented by personalized or precision medical approaches. In this review, we cover the current methods available for applying 3D culture systems toward personalized cancer research and drug development, as well as key challenges that must be addressed in order to fully realize the potential of 3D patient-derived culture systems for cancer drug development. Greater implementation of 3D patient-derived culture systems in the cancer research field should accelerate the development of truly personalized medical therapies for cancer patients.
Collapse
Affiliation(s)
- Eliza Li Shan Fong
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tan Boon Toh
- 2 Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Hanry Yu
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,3 Institute of Bioengineering and Nanotechnology, A*STAR, Singapore.,6 Mechanobiology Institute, National University of Singapore, Singapore
| | - Edward Kai-Hua Chow
- 2 Cancer Science Institute of Singapore, National University of Singapore, Singapore.,8 Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
45
|
Zhang N, Milleret V, Thompson-Steckel G, Huang NP, Vörös J, Simona BR, Ehrbar M. Soft Hydrogels Featuring In-Depth Surface Density Gradients for the Simple Establishment of 3D Tissue Models for Screening Applications. SLAS DISCOVERY 2017; 22:635-644. [PMID: 28277889 DOI: 10.1177/2472555217693191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Three-dimensional (3D) cell culture models are gaining increasing interest for use in drug development pipelines due to their closer resemblance to human tissues. Hydrogels are the first-choice class of materials to recreate in vitro the 3D extra-cellular matrix (ECM) environment, important in studying cell-ECM interactions and 3D cellular organization and leading to physiologically relevant in vitro tissue models. Here we propose a novel hydrogel platform consisting of a 96-well plate containing pre-cast synthetic PEG-based hydrogels for the simple establishment of 3D (co-)culture systems without the need for the standard encapsulation method. The in-depth density gradient at the surface of the hydrogel promotes the infiltration of cells deposited on top of it. The ability to decouple hydrogel production and cell seeding is intended to simplify the use of hydrogel-based platforms and thus increase their accessibility. Using this platform, we established 3D cultures relevant for studying stem cell differentiation, angiogenesis, and neural and cancer models.
Collapse
Affiliation(s)
- Ning Zhang
- 1 Laboratory of Biosensors and Bioelectronics, University and ETH Zurich, Zurich, Switzerland.,2 State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Vincent Milleret
- 3 Laboratory for Cell and Tissue Engineering, Department of Obstetrics, University Hospital Zurich, Zurich, Switzerland.,4 Ectica Technologies AG, Zurich, Switzerland
| | - Greta Thompson-Steckel
- 1 Laboratory of Biosensors and Bioelectronics, University and ETH Zurich, Zurich, Switzerland
| | - Ning-Ping Huang
- 2 State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - János Vörös
- 1 Laboratory of Biosensors and Bioelectronics, University and ETH Zurich, Zurich, Switzerland
| | | | - Martin Ehrbar
- 3 Laboratory for Cell and Tissue Engineering, Department of Obstetrics, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
|
47
|
Clark AM, Wheeler SE, Young CL, Stockdale L, Shepard Neiman J, Zhao W, Stolz DB, Venkataramanan R, Lauffenburger D, Griffith L, Wells A. A liver microphysiological system of tumor cell dormancy and inflammatory responsiveness is affected by scaffold properties. LAB ON A CHIP 2016; 17:156-168. [PMID: 27910972 PMCID: PMC5242229 DOI: 10.1039/c6lc01171c] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Distant metastasis is the major cause of breast cancer-related mortality, commonly emerging clinically after 5 or more years of seeming 'cure' of the primary tumor, indicating a quiescent dormancy. The lack of relevant accessible model systems for metastasis that recreate this latent stage has hindered our understanding of the molecular basis and the development of therapies against these lethal outgrowths. We previously reported on the development of an all-human 3D ex vivo hepatic microphysiological system that reproduces several features of liver physiology and enables spontaneous dormancy in a subpopulation of breast cancer cells. However, we observed that the dormant cells were localized primarily within the 3D tissue, while the proliferative cells were in contact with the polystyrene scaffold. As matrix stiffness is known to drive inflammatory and malignant behaviors, we explored the occurrence of spontaneous tumor dormancy and inflammatory phenotype. The microphysiological system was retrofitted with PEGDa-SynKRGD hydrogel scaffolding, which is softer and differs in the interface with the tissue. The microphysiological system incorporated donor-matched primary human hepatocytes and non-parenchymal cells (NPCs), with MDA-MB-231 breast cancer cells. Hepatic tissue in hydrogel scaffolds secreted lower levels of pro-inflammatory analytes, and was more responsive to inflammatory stimuli. The proportion of tumor cells entering dormancy was markedly increased in the hydrogel-supported tissue compared to polystyrene. Interestingly, an unexpected differential response of dormant cells to varying chemotherapeutic doses was identified, which if reflective of patient pathophysiology, has important implications for patient dosing regimens. These findings highlight the metastatic microphysiological system fitted with hydrogel scaffolds as a critical tool in the assessment and development of therapeutic strategies to target dormant metastatic breast cancer.
Collapse
Affiliation(s)
- A M Clark
- Department of Pathology, University of Pittsburgh, S711 Scaife Hall, 3550 Terrace St, Pittsburgh, PA 15261, USA.
| | - S E Wheeler
- Department of Pathology, University of Pittsburgh, S711 Scaife Hall, 3550 Terrace St, Pittsburgh, PA 15261, USA.
| | - C L Young
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - L Stockdale
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Shepard Neiman
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - W Zhao
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - D B Stolz
- Department of Pathology, University of Pittsburgh, S711 Scaife Hall, 3550 Terrace St, Pittsburgh, PA 15261, USA. and Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA and University of Pittsburgh Cancer Center, Pittsburgh, PA, USA
| | - R Venkataramanan
- Department of Pathology, University of Pittsburgh, S711 Scaife Hall, 3550 Terrace St, Pittsburgh, PA 15261, USA. and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - L Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - A Wells
- Department of Pathology, University of Pittsburgh, S711 Scaife Hall, 3550 Terrace St, Pittsburgh, PA 15261, USA. and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA and Pittsburgh VA Medical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
48
|
Song YH, Warncke C, Choi SJ, Choi S, Chiou AE, Ling L, Liu HY, Daniel S, Antonyak MA, Cerione RA, Fischbach C. Breast cancer-derived extracellular vesicles stimulate myofibroblast differentiation and pro-angiogenic behavior of adipose stem cells. Matrix Biol 2016; 60-61:190-205. [PMID: 27913195 DOI: 10.1016/j.matbio.2016.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/12/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Adipose-derived stem cells (ASCs) are abundantly present in the mammary microenvironment and can promote breast cancer malignancy by differentiating into myofibroblasts. However, it remains largely unclear which role tumor-derived extracellular vesicles (TEVs) play in this process. Here, we used microfabricated, type I collagen-based 3-D tissue culture platforms to investigate the effect of breast cancer cell-derived TEVs on ASCs myofibroblast differentiation and consequential changes in extracellular matrix remodeling and vascular sprouting. TEVs collected from MDA MB-231 human metastatic breast cancer cells (MDAs) promoted ASC myofibroblast differentiation in both 2-D and 3-D cultures as indicated by increased alpha smooth muscle actin (α-SMA) and fibronectin (Fn) levels. Correspondingly, TEV-treated ASCs were more contractile, secreted more vascular endothelial growth factor (VEGF), and promoted angiogenic sprouting of human umbilical vein endothelial cells (HUVECs). These changes were dependent on transforming growth factor beta (TGF-β)-related signaling and tumor cell glutaminase activity as their inhibition decreased TEV-related myofibroblastic differentiation of ASCs and related functional consequences. In summary, our data suggest that TEVs are important signaling factors that contribute to ASC desmoplastic reprogramming in the tumor microenvironment, and suggest that tumor cell glutamine metabolism may be used as a therapeutic target to interfere with this process.
Collapse
Affiliation(s)
- Young Hye Song
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Christine Warncke
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Sung Jin Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Aaron E Chiou
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Han-Yuan Liu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY, United States
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, United States; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
49
|
Hao Y, Zerdoum AB, Stuffer AJ, Rajasekaran AK, Jia X. Biomimetic Hydrogels Incorporating Polymeric Cell-Adhesive Peptide To Promote the 3D Assembly of Tumoroids. Biomacromolecules 2016; 17:3750-3760. [PMID: 27723964 PMCID: PMC5148723 DOI: 10.1021/acs.biomac.6b01266] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Toward the goal of establishing physiologically relevant in vitro tumor models, we synthesized and characterized a biomimetic hydrogel using thiolated hyaluronic acid (HA-SH) and an acrylated copolymer carrying multiple copies of cell adhesive peptide (PolyRGD-AC). PolyRGD-AC was derived from a random copolymer of tert-butyl methacrylate (tBMA) and oligomeric (ethylene glycol) methacrylate (OEGMA), synthesized via atom transfer radical polymerization (ATRP). Acid hydrolysis of tert-butyl moieties revealed the carboxylates, through which acrylate groups were installed. Partial modification of the acrylate groups with a cysteine-containing RGD peptide generated PolyRGD-AC. When PolyRGD-AC was mixed with HA-SH under physiological conditions, a macroscopic hydrogel with an average elastic modulus of 630 Pa was produced. LNCaP prostate cancer cells encapsulated in HA-PolyRGD gels as dispersed single cells formed multicellular tumoroids by day 4 and reached an average diameter of ∼95 μm by day 28. Cells in these structures were viable, formed cell-cell contacts through E-cadherin (E-CAD), and displayed cortical organization of F-actin. Compared with the control gels prepared using PolyRDG, multivalent presentation of the RGD signal in the HA matrix increased cellular metabolism, promoted the development of larger tumoroids, and enhanced the expression of E-CAD and integrins. Overall, hydrogels with multivalently immobilized RGD are a promising 3D culture platform for dissecting principles of tumorigenesis and for screening anticancer drugs.
Collapse
Affiliation(s)
- Ying Hao
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Aidan B. Zerdoum
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Alexander J. Stuffer
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Ayyappan K. Rajasekaran
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
- Therapy Architects, LLC, Helen F Graham Cancer Center, Newark, DE, 19718, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
50
|
McCoy MG, Seo BR, Choi S, Fischbach C. Collagen I hydrogel microstructure and composition conjointly regulate vascular network formation. Acta Biomater 2016; 44:200-8. [PMID: 27545811 PMCID: PMC5045803 DOI: 10.1016/j.actbio.2016.08.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/22/2016] [Accepted: 08/17/2016] [Indexed: 11/18/2022]
Abstract
UNLABELLED Neovascularization is a hallmark of physiological and pathological tissue remodeling that is regulated in part by the extracellular matrix (ECM). Collagen I hydrogels or Matrigel are frequently used to study vascular network formation; however, in isolation these materials do not typically mimic the integrated effects of ECM structure and composition that may influence endothelial cells in vivo. Here, we have utilized microfabricated 3D culture models to control collagen I microstructure in the presence and absence of Matrigel and tested the effect of these variations on vascular network formation by human cerebral microvascular endothelial cells (hCMECs). Varied collagen microarchitecture was achieved by adjusting the gelation temperature and subsequently confirmed by structural analysis. Casting at colder temperature increased collagen fiber thickness and length, and inclusion of Matrigel further pronounced these differences. Interestingly, the presence of Matrigel affected vascular network formation by modulating hCMEC growth, whereas altered collagen fiber structure impacted the morphology and maturity of the developed vascular network. These differences were related to substrate-dependent changes in interleukin-8 (IL-8) secretion and were functionally relevant as vascular networks preformed in more fibrillar, Matrigel-containing hydrogels promoted angiogenic sprouting. Our studies indicate that collagen hydrogel microstructure and composition conjointly regulate vascular network formation with implications for translational and basic science approaches. STATEMENT OF SIGNIFICANCE Neovascularization is a hallmark of both tissue homeostasis and disease and is in part regulated by cell remodeling that occurs in the extracellular matrix (ECM). The use of bio-mimetic hydrogel cell culture systems has been used to study the effects of the ECM on cell behavior. Here, we employ a hydrogel system that enables control over both the structure and composition of the ECM and subsequently investigated the effects that these have on blood vessel dynamics. Finally, we linked these differences to changes in protein secretion and the implications that this may play in scientific translation.
Collapse
Affiliation(s)
- Michael G McCoy
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Bo Ri Seo
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, United States; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|