1
|
Pemmari T, Prince S, Wiss N, Kõiv K, May U, Mölder T, Sudakov A, Munoz Caro F, Lehtonen S, Uusitalo-Järvinen H, Teesalu T, Järvinen TA. Screening of homing and tissue-penetrating peptides by microdialysis and in vivo phage display. Life Sci Alliance 2025; 8:e202201490. [PMID: 39933917 DOI: 10.26508/lsa.202201490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
In vivo phage display is a method used for identification of organ- or disease-specific vascular homing peptides for targeted delivery of pharmaceutics. It is agnostic as to the nature and identity of the target molecules. The current in vivo biopanning lacks inbuilt mechanisms to select for peptides capable of vascular homing that would also be capable of tissue penetration to reach therapeutically relevant cells in the tissue parenchyma. Here, we combined in vivo phage display with microdialysis-based parenchymal recovery and high-throughput sequencing to select for peptides that, besides vascular homing, facilitate extravasation and tissue penetration. We first demonstrated in skin wounds that the method can selectively separate known homing peptides from those with additional tissue-penetrating ability. Screening of a naïve peptide library identifies peptides that home and extravasate to extravascular granulation tissue in vascularized and diabetic wounds and cross blood-retina barrier in retinopathy. Our work suggests that in vivo phage display combined with microdialysis can be used for the discovery of vascular homing peptides capable of extravasation and tissue penetration.
Collapse
Affiliation(s)
- Toini Pemmari
- https://ror.org/033003e23 Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- https://ror.org/033003e23 Department of Orthopedics and Traumatology and Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Stuart Prince
- https://ror.org/033003e23 Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- https://ror.org/033003e23 Department of Orthopedics and Traumatology and Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Niklas Wiss
- https://ror.org/033003e23 Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- https://ror.org/033003e23 Department of Orthopedics and Traumatology and Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Kuldar Kõiv
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ulrike May
- https://ror.org/033003e23 Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- https://ror.org/033003e23 Department of Orthopedics and Traumatology and Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Tarmo Mölder
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Aleksander Sudakov
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Fernanda Munoz Caro
- https://ror.org/033003e23 Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- https://ror.org/033003e23 Department of Orthopedics and Traumatology and Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Soili Lehtonen
- https://ror.org/033003e23 Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- https://ror.org/033003e23 Department of Orthopedics and Traumatology and Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Hannele Uusitalo-Järvinen
- https://ror.org/033003e23 Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- https://ror.org/033003e23 Department of Orthopedics and Traumatology and Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Tambet Teesalu
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tero Ah Järvinen
- https://ror.org/033003e23 Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- https://ror.org/033003e23 Department of Orthopedics and Traumatology and Eye Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
2
|
Hosseini-Kharat M, Bremmell KE, Grubor-Bauk B, Prestidge CA. Enhancing non-viral DNA delivery systems: Recent advances in improving efficiency and target specificity. J Control Release 2025; 378:170-194. [PMID: 39647508 DOI: 10.1016/j.jconrel.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
DNA-based therapies are often limited by challenges such as stability, long-term integration, low transfection efficiency, and insufficient targeted DNA delivery. This review focuses on recent progress in the design of non-viral delivery systems for enhancing targeted DNA delivery and modulation of therapeutic efficiency. Cellular uptake and intracellular trafficking mechanisms play a crucial role in optimizing gene delivery efficiency. There are two main strategies employed to improve the efficiency of gene delivery vectors: (i) explore different administration routes (e.g., mucosal, intravenous, intramuscular, subcutaneous, intradermal, intratumoural, and intraocular) that best facilitates optimal uptake into the targeted cells and organs and (ii) modify the delivery vectors with cell-specific ligands (e.g., natural ligands, antibodies, peptides, carbohydrates, or aptamers) that enable targeted uptake to specific cells with higher specificity and improved biodistribution. We describe how recent progress in employing these DNA delivery strategies is advancing the field and increasing the clinical translation and ultimate clinical application of DNA therapies.
Collapse
Affiliation(s)
- Mahboubeh Hosseini-Kharat
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Kristen E Bremmell
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Clive A Prestidge
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
3
|
Yang D, Liu B, Sha H. Advances and prospects of cell-penetrating peptides in tumor immunotherapy. Sci Rep 2025; 15:3392. [PMID: 39870681 PMCID: PMC11772771 DOI: 10.1038/s41598-025-86130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Cell-penetrating peptides (CPPs) have been shown to have superior material transport ability because poor infiltration of activated lymphocytes into tumors is one of the crucial factors limiting the therapeutic effect of tumor immunotherapy. Numerous studies have investigated the potential application of CPPs in tumor immunotherapy. This review delves into the crucial role that CPPs play in enhancing tumor immunotherapy, emphasizing their impact on various immunotherapy strategies, such as cytokine therapy, adoptive cell therapy, cancer vaccines, and immune checkpoint inhibitors. We also discuss the practical application challenges associated with enhancing the efficiency of CPPs in terms of their stability and targeting ability. In conclusion, the combination of CPPs with tumor immunotherapy is a promising strategy that has potential for precision administration and requires further research for optimal implementation.
Collapse
Affiliation(s)
- Di Yang
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210023, China
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210023, China.
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| | - Huizi Sha
- The Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
4
|
Zhu J, Lee H, Huang R, Zhou J, Zhang J, Yang X, Zhou W, Jiang W, Chen S. Harnessing nanotechnology for cancer treatment. Front Bioeng Biotechnol 2025; 12:1514890. [PMID: 39902172 PMCID: PMC11788409 DOI: 10.3389/fbioe.2024.1514890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025] Open
Abstract
Nanotechnology has become a groundbreaking innovation force in cancer therapy, offering innovative solutions to the limitations of conventional treatments such as chemotherapy and radiation. By manipulating materials at the nanoscale, researchers have developed nanocarriers capable of targeted drug delivery, improving therapeutic efficacy while reducing systemic toxicity. Nanoparticles like liposomes, dendrimers, and polymeric nanomaterials have shown significant promise in delivering chemotherapeutic agents directly to tumor sites, enhancing drug bioavailability and minimizing damage to healthy tissues. In addition to drug delivery, with the utilization of tools such as quantum dots and nanosensors that enables more precise identification of cancer biomarkers, nanotechnology is also playing a pivotal role in early cancer detection and diagnosis. Furthermore, nanotechnology-based therapeutic strategies, including photothermal therapy, gene therapy and immunotherapy are offering novel ways to combat cancer by selectively targeting tumor cells and enhancing the immune response. Nevertheless, despite these progressions, obstacles still persist, particularly in the clinical translation of these technologies. Issues such as nanoparticle toxicity, biocompatibility, and the complexity of regulatory approval hinder the widespread adoption of nanomedicine in oncology. This review discusses different applications of nanotechnology in cancer therapy, highlighting its potential and the hurdles to its clinical implementation. Future research needs to concentrate on addressing these obstacles to unlock the full potential of nanotechnology in providing personalized, effective, and minimally invasive cancer treatments.
Collapse
Affiliation(s)
- Jiajun Zhu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - HaeJu Lee
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruotong Huang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianming Zhou
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingjun Zhang
- Department of Rehabilitation Medicine, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyi Yang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhan Zhou
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Wangqing Jiang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuying Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Wang X, Deng X, Xin L, Dong C, Hu G, Zhou HB. Pegylated NIR Fluorophore-Conjugated OBHSA Prodrug for ERα-Targeted Theranostics with Enhanced Imaging and Long-Term Retention. Molecules 2025; 30:305. [PMID: 39860175 PMCID: PMC11767339 DOI: 10.3390/molecules30020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
In recent years, the near-infrared (NIR) fluorescence theranostic system has garnered increasing attention for its advantages in the simultaneous diagnosis- and imaging-guided delivery of therapeutic drugs. However, challenges such as strong background fluorescence signals and rapid metabolism have hindered the achievement of sufficient contrast between tumors and surrounding tissues, limiting the system's applicability. This study aims to integrate the pegylation strategy with a tumor microenvironment-responsive approach. A novel esterase-activated EPR strategy prodrug, OBHSA-PEG-DCM, was designed. This prodrug links OBHSA, a protein degrader capable of efficient ERα protein degradation, to the PEG-modified fluorescent group (dicyanomethylene-4H-pyran, DCM) via an ester bond. This integration facilitates targeted drug delivery and enhances the retention of the fluorescent group within the tumor, allowing distinct in vivo tumor imaging periods. Experimental results show that, benefiting from overexpressed esterase in cancer cells, OBHSA-PEG-DCM can be efficiently hydrolyzed, releasing OBHSA and pegylated DCM. OBHSA demonstrated potent inhibition against MCF-7 cells (IC50 = 1.09 μM). Simultaneously, pegylated DCM exhibited remarkable in vivo imaging capabilities, lasting up to 12 days in mice, due to the enhanced permeability and retention (EPR) effect. OBHSA-PEG-DCM holds promise as a theranostic agent for ERα-positive breast cancer, offering both therapeutic and diagnostic capabilities. Importantly, this study highlights the utility of pegylated NIR fluorophores for long-circulating drug delivery systems, addressing current challenges in achieving high-contrast tumor imaging and effective targeted drug release.
Collapse
Affiliation(s)
- Xiaohua Wang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
- College of Life Sciences, Wuchang University of Technology, Wuhan 430223, China
| | - Xiaofei Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; (X.D.); (L.X.); (C.D.)
| | - Lilan Xin
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; (X.D.); (L.X.); (C.D.)
| | - Chune Dong
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; (X.D.); (L.X.); (C.D.)
- State Key Laboratory of Virology and Biosafety, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Guoyuan Hu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
| | - Hai-Bing Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; (X.D.); (L.X.); (C.D.)
- State Key Laboratory of Virology and Biosafety, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| |
Collapse
|
6
|
Yang J, Wang W, Huang S, Guo D, Yu L, Qiao W, Zhang X, Han Z, Song B, Xu X, Wu Z, Dordick JS, Zhang F, Xu H, Qiao M. Production, Characterization, and Application of Hydrophobin-Based IR780 Nanoparticles for Targeted Photothermal Cancer Therapy and Advanced Near-Infrared Imaging. Adv Healthc Mater 2025; 14:e2402311. [PMID: 39543440 DOI: 10.1002/adhm.202402311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/29/2024] [Indexed: 11/17/2024]
Abstract
As a promising approach for breast cancer treatment, photothermal therapy (PTT) features high spatial selectivity, noninvasiveness, and minimal drug resistance. IR780 (a near-infrared fluorescent dye) serves as an effective photosensitizer in PTT cancer therapy. However, the clinical application of IR780 in PTT has been hindered by its poor water solubility and unstable photostability. In this study, a genetically engineered dual-functional fusion protein tLyP-1-MGF6 is successfully constructed and expressed, which presents a novel use of hydrophobin MGF6 for its amphiphilicity combined with the tumor-penetrating peptide tLyP-1 to create an innovative carrier for IR780. These results show this fusion protein serving as a biodegradable and biocompatible carrier, significantly improves the water solubility of IR780 when formulated into nanoparticles. These studies demonstrate that the IR780@tLyP-1-MGF6 nanoparticles significantly enhance tumor targeting and photothermal therapeutic efficacy in comparison with control in vitro and in vivo. These advancements highlight the potential of the unique combination hydrophobin-based IR780 delivery system as a multifunctional nanoplatform for integrated imaging and targeted photothermal treatment of breast cancer.
Collapse
Affiliation(s)
- Jiyuan Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
- School of Life Science, Shanxi University, Shanxi, 030000, P. R. China
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Wenjun Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Siyuan Huang
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Dingyi Guo
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Long Yu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Wanjin Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, 10029, USA
| | - Xu Zhang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Zhiqiang Han
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Bo Song
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Xiaoting Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Zhenzhou Wu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jonathan S Dordick
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
- School of Life Science, Shanxi University, Shanxi, 030000, P. R. China
| |
Collapse
|
7
|
Aalhate M, Mahajan S, Dhuri A, Singh PK. Biohybrid nano-platforms manifesting effective cancer therapy: Fabrication, characterization, challenges and clinical perspective. Adv Colloid Interface Sci 2025; 335:103331. [PMID: 39522420 DOI: 10.1016/j.cis.2024.103331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Nanotechnology-based delivery systems have brought a paradigm shift in the management of cancer. However, the main obstacles to nanocarrier-based delivery are their limited circulation duration, excessive immune clearance, inefficiency in interacting effectively in a biological context and overcoming biological barriers. This demands effective engineering of nanocarriers to achieve maximum efficacy. Nanocarriers can be maneuvered with biological components to acquire biological identity for further regulating their biodistribution and cell-to-cell cross-talk. Thus, the integration of synthetic and biological components to deliver therapeutic cargo is called a biohybrid delivery system. These delivery systems possess the advantage of synthetic nanocarriers, such as high drug loading, engineerable surface, reproducibility, adequate communication and immune evasion ability of biological constituents. The biohybrid delivery vectors offer an excellent opportunity to harness the synergistic properties of the best entities of the two worlds for improved therapeutic outputs. The major spotlights of this review are different biological components, synthetic counterparts of biohybrid nanocarriers, recent advances in hybridization techniques, and the design of biohybrid delivery systems for cancer therapy. Moreover, this review provides an overview of biohybrid systems with therapeutic and diagnostic applications. In a nutshell, this article summarizes the advantages and limitations of various biohybrid nano-platforms, their clinical potential and future directions for successful translation in cancer management.
Collapse
Affiliation(s)
- Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Anish Dhuri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad 500037, India.
| |
Collapse
|
8
|
Kappen J, Abdel-Rahman O. Advances in pharmacotherapy for the treatment of peritoneal metastases from colorectal cancer. Expert Opin Pharmacother 2025; 26:17-30. [PMID: 39604139 DOI: 10.1080/14656566.2024.2435946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/26/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Patients with peritoneal metastasis (PM) from colorectal cancer (CRC) typically have a poor prognosis with historically few treatment options. Cytoreductive surgery (CRS) is the mainstay of treatment to remove macrometastases into the peritoneum, but residual micrometastases are often left behind. Systemic chemotherapy remains a cornerstone of treatment for micrometastases, but intraperitoneal therapy offers advantages including higher local dose concentration with fewer systemic side effects from treatment. AREAS COVERED This review covers advancements in the routes and types of pharmacotherapies for PM in CRC. EXPERT OPINION More evidence is needed to justify HIPEC with CRS as the standard of care treatment modality for patients with resectable PM in CRC. New therapies such as oncolytic viruses, biologics, and small-molecule inhibitors may become additional treatment modalities for PM.
Collapse
Affiliation(s)
- Janson Kappen
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Omar Abdel-Rahman
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Cheng T, Li F, Zhang Z, Yuan Y, Zhou Y, Zhu X, Xi L, Dong Q, Luo D, Ma X, Fan L. Identification of a Vascular Endothelial Growth Factor Receptor-3 Binding Peptide TMVP1 for Enhancing Drug Delivery Efficiency and Therapeutic Efficacy Against Tumor Lymphangiogenesis. Cancer Biother Radiopharm 2024. [PMID: 39718836 DOI: 10.1089/cbr.2024.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Background: Vascular endothelial growth factor receptor-3 (VEGFR-3) plays an indispensable role in lymphangiogenesis. Previous findings suggest that blocking the VEGFR-3 signaling pathway can inhibit lymph node metastasis effectively, thus reducing the incidence of distant metastasis. The development of new VEGFR-3-targeting drugs for early detection and effective treatments is, therefore, urgently required. Methods: In vitro biopanning of a phage-displayed peptide library was used to identify specific peptides binding to the extracellular domain of VEGFR-3. We obtained a novel VEGFR-3-targeting peptide, TMVP1 (LARGR). Our combined immunofluorescence and radiolabeling studies revealed that FITC-TMVP1 and 99mTc-labeled TMVP1 specifically accumulated in VEGFR-3-positive lymphatic vessels of tumors after intravenous administration in tumor xenograft models in vivo. To enhance the therapeutic efficacy of anticancer drugs, TMVP1 was fused to a proapoptotic peptide, D(KLAKLAK)2. Results: The fusion peptide strongly inhibited tumor lymphangiogenesis in vitro and in vivo and specifically suppressed lung metastasis in a 4T1 breast cancer xenograft model. The accumulation of the TMVP1 in lymphatic vessels was specific. Conclusions: Our results suggest that TMVP1 is a potential therapeutic strategy for developing new diagnostic tracers or alternative anticancer agents for tumor lymphangiogenesis and lymphatic metastasis.
Collapse
Affiliation(s)
- Teng Cheng
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fei Li
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhenzhong Zhang
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Gynecological Oncology, Henan Provincial Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuan Yuan
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ying Zhou
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaohua Zhu
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ling Xi
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qingjian Dong
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Danfeng Luo
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiangyi Ma
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Liangsheng Fan
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
10
|
Nanjaiah H, Moudgil KD. Targeted Therapy of Antibody-Induced Autoimmune Arthritis Using Peptide-Guided Nanoparticles. Int J Mol Sci 2024; 25:12019. [PMID: 39596089 PMCID: PMC11593680 DOI: 10.3390/ijms252212019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints and it affects over 18 million people worldwide. Despite the availability of a variety of potent drugs for RA, over 30-40 percent of patients fail to achieve adequate remission, and many patients suffer from systemic adverse effects. Thus, there is an urgent need for a joint-targeted drug delivery system. Nanotechnology-based drug delivery methods offer a promising resource that is largely untapped for RA. Using the T cell-driven rat adjuvant-induced arthritis (AA) model of human RA, we developed a peptide-targeted liposomal drug delivery system for arthritis therapy. It was based on a novel joint-homing peptide ART-2 to guide liposomes entrapping dexamethasone (Dex) to arthritic joints of rats, and this approach was more effective in suppressing arthritis than the unpackaged (free) drug. To de-risk the translation of our innovative drug delivery technology to RA patients, we undertook the validation of ART-2-liposomal delivery in a genetically and mechanistically distinct arthritis model in mice, the collagen antibody-induced arthritis (CAIA) model. Using live imaging for tissue distribution of liposomes in vivo, immunohistochemistry of paws for cellular binding of ART-2, and liposomal Dex delivery, our results fully validated the key findings of the rat model, namely, preferential homing of peptide-functionalized liposomes to arthritic joints compared to healthy joints, and higher efficacy of liposomal Dex than free Dex. These results offer a proof-of-concept for the benefits of targeted drug delivery to the joints and its potential translation to RA patients.
Collapse
Affiliation(s)
- Hemalatha Nanjaiah
- Research and Development, VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kamal D. Moudgil
- Research and Development, VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Rot AE, Hrovatin M, Bokalj B, Lavrih E, Turk B. Cysteine cathepsins: From diagnosis to targeted therapy of cancer. Biochimie 2024; 226:10-28. [PMID: 39245316 DOI: 10.1016/j.biochi.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Cysteine cathepsins are a fascinating group of proteolytic enzymes that play diverse and crucial roles in numerous biological processes, both in health and disease. Understanding these proteases is essential for uncovering novel insights into the underlying mechanisms of a wide range of disorders, such as cancer. Cysteine cathepsins influence cancer biology by participating in processes such as extracellular matrix degradation, angiogenesis, immune evasion, and apoptosis. In this comprehensive review, we explore foundational research that illuminates the diverse and intricate roles of cysteine cathepsins as diagnostic markers and therapeutic targets for cancer. This review aims to provide valuable insights into the clinical relevance of cysteine cathepsins and explore their capacity to advance personalised and targeted medical interventions in oncology.
Collapse
Affiliation(s)
- Ana Ercegovič Rot
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Matija Hrovatin
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Bor Bokalj
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Ernestina Lavrih
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
12
|
Hu C, Jiang Y, Chen Y, Wang Y, Wu Z, Zhang Q, Wu M. Low-Intensity Focused Ultrasound-Responsive Phase-Transitional Liposomes Loaded with STING Agonist Enhances Immune Activation for Breast Cancer Immunotherapy. Cancers (Basel) 2024; 16:3657. [PMID: 39518096 PMCID: PMC11545222 DOI: 10.3390/cancers16213657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Pharmacologically targeting the STING pathway offers a novel approach to cancer immunotherapy. However, small-molecule STING agonists face challenges such as poor tumor accumulation, rapid clearance, and short-lived effects within the tumor microenvironment, thus limiting their therapeutic potential. To address the challenges of poor specificity and inadequate targeting of STING in breast cancer treatment, herein, we report the design and development of a targeted liposomal delivery system modified with the tumor-targeting peptide iRGD (iRGD-STING-PFP@liposomes). With LIFU irradiation, the liposomal system exploits acoustic cavitation, where gas nuclei form and collapse within the hydrophobic region of the liposome lipid bilayer (transient pore formation), which leads to significantly enhanced drug release. Methods: Transmission electron microscopy (TEM) was used to investigate the physicochemical properties of the targeted liposomes. Encapsulation efficiency and in vitro release were assessed using the dialysis bag method, while the effects of iRGD on liposome targeting were evaluated through laser confocal microscopy. The CCK-8 assay was used to investigate the toxicity and cell growth effects of this system on 4T1 breast cancer cells and HUVEC vascular endothelial cells. A subcutaneous breast cancer tumor model was established to evaluate the tumor-killing effects and therapeutic mechanism of the newly developed liposomes. Results: The liposome carrier exhibited a regular morphology, with a particle size of 232.16 ± 19.82 nm, as indicated by dynamic light scattering (DLS), and demonstrated low toxicity to both HUVEC and 4T1 cells. With an encapsulation efficiency of 41.82 ± 5.67%, the carrier exhibited a slow release pattern in vitro after STING loading. Targeting results indicated that iRGD modification enhanced the system's ability to target 4T1 cells. The iRGD-STING-PFP@liposomes group demonstrated significant tumor growth inhibition in the subcutaneous breast cancer mouse model with effective activation of the immune system, resulting in the highest populations of matured dendritic cells (71.2 ± 5.4%), increased presentation of tumor-related antigens, promoted CD8+ T cell infiltration at the tumor site, and enhanced NK cell activity. Conclusions: The iRGD-STING-PFP@liposomes targeted drug delivery system effectively targets breast cancer cells, providing a new strategy for breast cancer immunotherapy. These findings indicate that iRGD-STING-PFP@liposomes could successfully deliver STING agonists to tumor tissue, trigger the innate immune response, and may serve as a potential platform for targeted immunotherapy.
Collapse
Affiliation(s)
- Cong Hu
- Department of Radiation Oncology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China;
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.J.); (Y.C.); (Z.W.); (Q.Z.)
| | - Yuancheng Jiang
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.J.); (Y.C.); (Z.W.); (Q.Z.)
| | - Yixin Chen
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.J.); (Y.C.); (Z.W.); (Q.Z.)
| | - Ying Wang
- Teaching Office, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| | - Ziling Wu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.J.); (Y.C.); (Z.W.); (Q.Z.)
| | - Qi Zhang
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.J.); (Y.C.); (Z.W.); (Q.Z.)
| | - Meng Wu
- Department of Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.J.); (Y.C.); (Z.W.); (Q.Z.)
| |
Collapse
|
13
|
Korhonen S, Bosch S, Erkinheimo A, Lajunen T, Rilla K, Teesalu T, Subrizi A, Ruponen M, Urtti A, Reinisalo M. PL3 CendR peptide shows specific uptake in cultured Y79 retinoblastoma cells with nucleolar accumulation. Eur J Pharm Sci 2024; 201:106866. [PMID: 39067533 DOI: 10.1016/j.ejps.2024.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/27/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Retinoblastoma is the most common pediatric intraocular malignant tumor affecting 1:15 000-1:20 000 live births. Even though the survival rate in developed countries is over 90 %, more efficient treatment options are needed for better vision salvage and reduction of the adverse effects. Therefore, we investigated fluorescein-labeled PL3 peptide targeting properties towards the Y79 retinoblastoma cell line in vitro. Through the application of cellular imaging and flow cytometry techniques, the PL3 peptide exhibited a rapid and specific internalization within Y79 cells, with subsequent translocation to the cell nuclei, showcasing notable accumulation in the nucleoli. This phenomenon was not present in other investigated cell lines and was not observable with similarly charged and length control peptide. However, the exact mechanism behind this Y79 cell line-specific nuclear and nucleolar targeting pattern remains elusive. In the future, this targeting process could facilitate specific treatment modalities of retinoblastoma with PL3 peptide-coupled drug delivery technologies.
Collapse
Affiliation(s)
- Sonja Korhonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, Kuopio 70210, Finland.
| | - Stef Bosch
- Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 8, Kuopio 70211, Finland
| | - Antero Erkinheimo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, Kuopio 70210, Finland
| | - Tatu Lajunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, Kuopio 70210, Finland; Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, Helsinki FI-00790, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, Yliopistonranta 8, Kuopio 70211, Finland
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, Tartu 50411, Estonia; Materials Research Laboratory, University of California Santa Barbara, Santa Barbara 93106, USA
| | - Astrid Subrizi
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, Kuopio 70210, Finland
| | - Marika Ruponen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, Kuopio 70210, Finland
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, Kuopio 70210, Finland; Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, Helsinki FI-00790, Finland
| | - Mika Reinisalo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1 C, Kuopio 70210, Finland
| |
Collapse
|
14
|
Torres Quintas S, Canha-Borges A, Oliveira MJ, Sarmento B, Castro F. Special Issue: Nanotherapeutics in Women's Health Emerging Nanotechnologies for Triple-Negative Breast Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300666. [PMID: 36978237 DOI: 10.1002/smll.202300666] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Breast cancer appears as the major cause of cancer-related deaths in women, with more than 2 260 000 cases reported worldwide in 2020, resulting in 684 996 deaths. Triple-negative breast cancer (TNBC), characterized by the absence of estrogen, progesterone, and human epidermal growth factor type 2 receptors, represents ≈20% of all breast cancers. TNBC has a highly aggressive clinical course and is more prevalent in younger women. The standard therapy for advanced TNBC is chemotherapy, but responses are often short-lived, with high rate of relapse. The lack of therapeutic targets and the limited therapeutic options confer to individuals suffering from TNBC the poorest prognosis among breast cancer patients, remaining a major clinical challenge. In recent years, advances in cancer nanomedicine provided innovative therapeutic options, as nanoformulations play an important role in overcoming the shortcomings left by conventional therapies: payload degradation and its low solubility, stability, and circulating half-life, and difficulties regarding biodistribution due to physiological and biological barriers. In this integrative review, the recent advances in the nanomedicine field for TNBC treatment, including the novel nanoparticle-, exosome-, and hybrid-based therapeutic formulations are summarized and their drawbacks and challenges are discussed for future clinical applications.
Collapse
Affiliation(s)
- Sofia Torres Quintas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ana Canha-Borges
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Maria José Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- IUCS-CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Flávia Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
| |
Collapse
|
15
|
Lima AF, Justo GZ, Sousa AA. Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1208-1226. [PMID: 39376728 PMCID: PMC11457047 DOI: 10.3762/bjnano.15.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024]
Abstract
Ultrasmall nanoparticles (usNPs) have emerged as promising theranostic tools in cancer nanomedicine. With sizes comparable to globular proteins, usNPs exhibit unique physicochemical properties and physiological behavior distinct from larger particles, including lack of protein corona formation, efficient renal clearance, and reduced recognition and sequestration by the reticuloendothelial system. In cancer treatment, usNPs demonstrate favorable tumor penetration and intratumoral diffusion. Active targeting strategies, incorporating ligands for specific tumor receptor binding, serve to further enhance usNP tumor selectivity and therapeutic performance. Numerous preclinical studies have already demonstrated the potential of actively targeted usNPs, revealing increased tumor accumulation and retention compared to non-targeted counterparts. In this review, we explore actively targeted inorganic usNPs, highlighting their biological properties and behavior, along with applications in both preclinical and clinical settings.
Collapse
Affiliation(s)
- André F Lima
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| | - Giselle Z Justo
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| | - Alioscka A Sousa
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| |
Collapse
|
16
|
Li X, Hu Y, Zhang X, Shi X, Parak WJ, Pich A. Transvascular transport of nanocarriers for tumor delivery. Nat Commun 2024; 15:8172. [PMID: 39289401 PMCID: PMC11408679 DOI: 10.1038/s41467-024-52416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Nanocarriers (NCs) play a crucial role in delivering theranostic agents to tumors, making them a pivotal focus of research. However, the persistently low delivery efficiency of engineered NCs has been a significant challenge in the advancement of nanomedicine, stirring considerable debate. Transvascular transport is a critical pathway for NC delivery from vessels to tumors, yet a comprehensive understanding of the interactions between NCs and vascular systems remains elusive. In recent years, considerable efforts have been invested in elucidating the transvascular transport mechanisms of NCs, leading to promising advancements in tumor delivery and theranostics. In this context, we highlight various delivery mechanisms, including the enhanced permeability and retention effect, cooperative immune-driven effect, active transcytosis, and cell/bacteria-mediated delivery. Furthermore, we explore corresponding strategies aimed at enhancing transvascular transport of NCs for efficient tumor delivery. These approaches offer intriguing solutions spanning physicochemical, biological, and pharmacological domains to improve delivery and therapeutic outcomes. Additionally, we propose a forward-looking delivery framework that relies on advanced tumor/vessel models, high-throughput NC libraries, nano-bio interaction datasets, and artificial intelligence, which aims to guide the design of next-generation carriers and implementation strategies for optimized delivery.
Collapse
Affiliation(s)
- Xin Li
- DWI-Leibniz-Institute for Interactive Materials, Aachen, 52056, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, 52074, Germany
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Xingcai Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
| | - Xiangyang Shi
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), University of Hamburg, Hamburg, 20607, Germany.
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials, Aachen, 52056, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, 52074, Germany.
- Aachen Maastricht Institute for Biobased Materials, Maastricht University, RD Geleen, 6167, The Netherlands.
| |
Collapse
|
17
|
Xie W, Xu Z. (Nano)biotechnological approaches in the treatment of cervical cancer: integration of engineering and biology. Front Immunol 2024; 15:1461894. [PMID: 39346915 PMCID: PMC11427397 DOI: 10.3389/fimmu.2024.1461894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024] Open
Abstract
Cervical cancer is one of the most malignant gynaecological tumors characterised with the aggressive behaviour of the tumor cells. In spite of the development of different strategies for the treatment of cervical cancer, the tumor cells have developed resistance to conventional therapeutics. On the other hand, nanoparticles have been recently applied for the treatment of human cancers through delivery of drugs and facilitate tumor suppression. The stimuli-sensitive nanostructures can improve the release of therapeutics at the tumor site. In the present review, the nanostructures for the treatment of cervical cancer are discussed. Nanostructures can deliver both chemotherapy drugs and natural compounds to increase anti-cancer activity and prevent drug resistance in cervical tumor. Moreover, the genetic tools such as siRNA can be delivered by nanoparticles to enhance their accumulation at tumor site. In order to enhance selectivity, the stimuli-responsive nanoparticles such as pH- and redox-responsive nanocarriers have been developed to suppress cervical tumor. Moreover, nanoparticles can induce photo-thermal and photodynamic therapy to accelerate cell death in cervical tumor. In addition, nanobiotechnology demonstrates tremendous potential in the treatment of cervical cancer, especially in the context of tumor immunotherapy. Overall, metal-, carbon-, lipid- and polymer-based nanostructures have been utilized in cervical cancer therapy. Finally, hydrogels have been developed as novel kinds of carriers to encapsulate therapeutics and improve anti-cancer activity.
Collapse
Affiliation(s)
| | - Zhengmei Xu
- Department of Gynecology, Affiliated Hengyang Hospital of Hunan Normal University &
Hengyang Central Hospital, Hengyang, China
| |
Collapse
|
18
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi‐Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 PMCID: PMC11670051 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Claudia Conte
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Francesca Ungaro
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Fabiana Quaglia
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
19
|
Li Y, Li C, Li J, Han D, Xu G, Zhu D, Cai H, Wang Y, Wang D. Enhanced tumor targeting and penetration of fluorophores via iRGD peptide conjugation: a strategy for the precision targeting of lung cancer. Transl Lung Cancer Res 2024; 13:2000-2014. [PMID: 39263017 PMCID: PMC11384490 DOI: 10.21037/tlcr-24-589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
Background Accurate real-time tumor delineation is essential for achieving curative resection (R0 resection) during non-small cell lung cancer (NSCLC) surgery. The unique characteristics of lung tissue structure significantly challenge the use of video-assisted thoracoscopic surgery in the identification of lung nodules. This difficulty often results in an inability to discern the margins of lung nodules, necessitating either an expansion of the resection scope, or a transition to open surgery. Due to its high spatial resolution, ease of operation, and capacity for real-time observation, near-infrared fluorescence (NIRF) navigation in oncological surgery has emerged as a focal point of clinical research. Targeted NIRF probes, which accumulate preferentially in tumor tissues and are rapidly cleared from normal tissues, enhance diagnostic sensitivity and surgical outcomes. The imaging effect of the clinically approved NIRF probe indocyanine green (ICG) varies significantly from person to person. Therefore, we hope to develop a new generation of targeted NIRF probes targeting lung tumor-specific targets. Methods First, the peptide iRGD (sequence: CRGDKGPDC) fluorescent tracer was synthesized, and characterized through mass spectrometry (MS), proton nuclear magnetic resonance (1H NMR), and high-performance liquid chromatography (HPLC). Fluorescence properties were tested subsequently. Safety was performed in vitro using both human normal liver cells and human normal breast cells. Second, Metabolism and optimal imaging time were determined by tail vein injection of iRGD fluorescent tracer. Finally, Orthotopic and metastatic lung tumor models were used to evaluate the targeting properties of the iRGD fluorescent tracer. Results We successfully synthesized an iRGD fluorescent tracer specifically designed to target NSCLC. The molecular docking analyses indicated that this tracer has receptor affinity comparable to that of iRGD for αvβ3 integrin, with a purity ≥98%. Additionally, the tracer is highly soluble in water, and its excitation and emission wavelengths are 767 and 799 nm, respectively, positioning it within the near-infrared spectrum. The cellular assays confirmed the tracer's minimal cytotoxicity, underscoring its excellent biosafety profile. In vivo studies further validated the tracer's capacity for specific NSCLC detection at the cellular level, alongside a prolonged imaging window of 6 days or more. Notably, the tracer demonstrated superior specificity in localizing very small lung nodules, which are otherwise clinically indiscernible, outperforming non-targeted ICG. Fluorescence intensity analyses across various organs revealed that the tracer is predominantly metabolized by the liver and kidneys, with excretion via bile and urine, and exhibits minimal toxicity to these organs as well as the lungs. Conclusions The iRGD fluorescent tracer selectively accumulates in NSCLC tissues by specifically targeting αvβ3 receptors, which are overexpressed on the surface of tumor cells. This targeted approach facilitates the real-time intraoperative localization of NSCLC, presenting an improved strategy for intraoperative tumor identification with significant potential for clinical application.
Collapse
Affiliation(s)
- Yunlong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Chenmei Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Jiamin Li
- College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Dong Han
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Gang Xu
- Department of Thoracic Surgery, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Daolong Zhu
- Department of Thoracic Surgery, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huiming Cai
- Nanjing Nuoyuan Medical Devices Co., Ltd., Nanjing, China
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Dong Wang
- Department of Thoracic Surgery, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
20
|
Buddhiraju HS, Yadav DN, Dey S, Eswar K, Padmakumar A, Rengan AK. Advances in Peptide-Decorated Targeted Drug Delivery: Exploring Therapeutic Potential and Nanocarrier Strategies. ACS APPLIED BIO MATERIALS 2024; 7:4879-4893. [PMID: 37996391 DOI: 10.1021/acsabm.3c00711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Peptides are ideal biologicals for targeted drug delivery and have also been increasingly employed as theranostic tools in treating various diseases, including cancer, with minimal or no side effects. Owing to their receptor-specificity, peptide-mediated drug delivery aids in targeted drug delivery with better pharmacological biodistribution. Nanostructured self-assembled peptides and peptide-drug conjugates demonstrate enhanced stability and performance and captivating biological effects in comparison with conventional peptides. Moreover, they serve as valuable tools for establishing interfaces between drug carriers and biological systems, enabling the traversal of multiple biological barriers encountered by peptide-drug conjugates on their journeys to their intended targets. Peptide-based drugs play a pivotal role in the field of medicine and hold great promise for addressing a wide range of complex diseases such as cancer and autoimmune disorders. Nanotechnology has revolutionized the fields of medicine, biomedical engineering, biotechnology, and engineering sciences over the past two decades. With the help of nanotechnology, better delivery of peptides to the target site could be achieved by exploiting the small size, increased surface area, and passive targeting ability of the nanocarrier. Furthermore, nanocarriers also ensure safe delivery of the peptide moieties to the target site, protecting them from degradation. Nanobased peptide delivery systems would be of significant importance in the near future for the successful targeted and efficient delivery of peptides. This review focuses on peptide-drug conjugates and nanoparticle-mediated self-assembled peptide delivery systems in cancer therapeutics.
Collapse
Affiliation(s)
- Hima Sree Buddhiraju
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Dokkari Nagalaxmi Yadav
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Sreenath Dey
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Kalyani Eswar
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Ananya Padmakumar
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| |
Collapse
|
21
|
Hou X, Chen Q, Fang Y, Zhang L, Huang S, Xu M, Ren Y, Shi Z, Wei Y, Li L. iRGD-Guided Silica/Gold Nanoparticles for Efficient Tumor-Targeting and Enhancing Antitumor Efficacy Against Breast Cancer. Int J Nanomedicine 2024; 19:8237-8251. [PMID: 39157735 PMCID: PMC11329605 DOI: 10.2147/ijn.s474135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
Background Breast cancer presents significant challenges due to the limited effectiveness of available treatments and the high likelihood of recurrence. iRGD possesses both RGD sequence and C-terminal sequence and has dual functions of targeting and membrane penetration. iRGD-modified nanocarriers can enhance drug targeting of tumor vascular endothelial cells and penetration of new microvessels, increasing drug concentration in tumor tissues. Methods The amidation reaction was carried out between SiO2/AuNCs and iRGD/PTX, yielding a conjugated drug delivery system (SiO2/AuNCs-iRGD/PTX, SAIP@NPs). The assessment encompassed the characterization of the morphology, particle size distribution, physicochemical properties, in vitro release profile, cytotoxicity, and cellular uptake of SAIP@NPs. The tumor targeting and anti-tumor efficacy of SAIP@NPs were assessed using a small animal in vivo imaging system and a tumor-bearing nude mice model, respectively. The tumor targeting and anti-tumor efficacy of SAIP@NPs were assessed utilizing a small animal in vivo imaging system and an in situ nude mice breast cancer xenograft model, respectively. Results The prepared SAIP@NPs exhibited decent stability and a certain slow-release effect in phosphate buffer (PBS, pH 7.4). In vitro studies had shown that, due to the dual functions of transmembrane and targeting of iRGD peptide, SAIP@NPs exhibited strong binding to integrin αvβ3, which was highly expressed on the membrane of MDA-MB-231 cells, improving the uptake capacity of tumor cells, inhibiting the rapid growth of tumor cells, and promoting tumor cell apoptosis. The results of animal experiments further proved that SAIP@NPs had longer residence time in tumor sites, stronger anti-tumor effect, and no obvious toxicity to major organs of experimental animals. Conclusion The engineered SAIP@NPs exhibited superior functionalities including efficient membrane permeability, precise tumor targeting, and imaging, thereby significantly augmenting the therapeutic efficacy against breast cancer with a favorable safety profile.
Collapse
Affiliation(s)
- Xuefeng Hou
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
- Drug Research and Development Center, Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
| | - Qi Chen
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
| | - Ying Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Li Zhang
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
| | - Shuoheng Huang
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
| | - Minjie Xu
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
| | - Yaning Ren
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
| | - Zhansen Shi
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
| | - Yan Wei
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
| | - Lihua Li
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
- Drug Research and Development Center, Wannan Medical College, Wuhu, Anhui Province, People’s Republic of China
| |
Collapse
|
22
|
Qiao L, Fu Z, Li B, Liu Z, Cai L, Pan Y, Ran X, He Y, Wu W, Chi Z, Liu R, Guo L. Heteroatom Doping Promoted Ultrabright and Ultrastable Photoluminescence of Water-Soluble Au/Ag Nanoclusters for Visual and Efficient Drug Delivery to Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34510-34523. [PMID: 38946393 DOI: 10.1021/acsami.4c04303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Photoluminescence (PL) metal nanoclusters (NCs) have attracted extensive attention due to their excellent physicochemical properties, good biocompatibility, and broad application prospects. However, developing water-soluble PL metal NCs with a high quantum yield (QY) and high stability for visual drug delivery remains a great challenge. Herein, we have synthesized ultrabright l-Arg-ATT-Au/Ag NCs (Au/Ag NCs) with a PL QY as high as 73% and excellent photostability by heteroatom doping and surface rigidization in aqueous solution. The as-prepared Au/Ag NCs can maintain a high QY of over 61% in a wide pH range and various ionic environments as well as a respectable resistance to photobleaching. The results from structure characterization and steady-state and time-resolved spectroscopic analysis reveal that Ag doping into Au NCs not only effectively modifies the electronic structure and photostability but also significantly regulates the interfacial dynamics of the excited states and enhances the PL QY of Au/Ag NCs. Studies in vitro indicate Au/Ag NCs have a high loading capacity and pH-triggered release ability of doxorubicin (DOX) that can be visualized from the quenching and recovery of PL intensity and lifetime. Imaging-guided experiments in cancer cells show that DOX of Au/Ag NCs-DOX agents can be efficiently delivered and released in the nucleus with preferential accumulation in the nucleolus, facilitating deep insight into the drug action sites and pharmacological mechanisms. Moreover, the evaluation of anticancer activity in vivo reveals an outstanding suppression rate of 90.2% for mice tumors. These findings demonstrate Au/Ag NCs to be a superior platform for bioimaging and visual drug delivery in biomedical applications.
Collapse
Affiliation(s)
- Lulu Qiao
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Zhijie Fu
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Bingbing Li
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Zhanpeng Liu
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Lin Cai
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Yatao Pan
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Xia Ran
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Yulu He
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Wenqiang Wu
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Zhen Chi
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Renming Liu
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Lijun Guo
- Academy for Advanced Interdisciplinary Studies, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Physics and Electronics, Henan University, Kaifeng 475004, China
- School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| |
Collapse
|
23
|
Schmithals C, Kakoschky B, Denk D, von Harten M, Klug JH, Hintermann E, Dropmann A, Hamza E, Jacomin AC, Marquardt JU, Zeuzem S, Schirmacher P, Herrmann E, Christen U, Vogl TJ, Waidmann O, Dooley S, Finkelmeier F, Piiper A. Tumour-specific activation of a tumour-blood transport improves the diagnostic accuracy of blood tumour markers in mice. EBioMedicine 2024; 105:105178. [PMID: 38889481 PMCID: PMC11237870 DOI: 10.1016/j.ebiom.2024.105178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The accuracy of blood-based early tumour recognition is compromised by signal production at non-tumoral sites, low amount of signal produced by small tumours, and variable tumour production. Here we examined whether tumour-specific enhancement of vascular permeability by the particular tumour homing peptide, iRGD, which carries dual function of binding to integrin receptors overexpressed in the tumour vasculature and is known to promote extravasation via neuropilin-1 receptor upon site-specific cleavage, might be useful to improve blood-based tumour detection by inducing a yet unrecognised vice versa tumour-to-blood transport. METHODS To detect an iRGD-induced tumour-to-blood transport, we examined the effect of intravenously injected iRGD on blood levels of α-fetoprotein (AFP) and autotaxin in several mouse models of hepatocellular carcinoma (HCC) or in mice with chronic liver injury without HCC, and on prostate-specific antigen (PSA) levels in mice with prostate cancer. FINDINGS Intravenously injected iRGD rapidly and robustly elevated the blood levels of AFP in several mouse models of HCC, but not in mice with chronic liver injury. The effect was primarily seen in mice with small tumours and normal basal blood AFP levels, was attenuated by an anti-neuropilin-1 antibody, and depended on the concentration gradient between tumour and blood. iRGD treatment was also able to increase blood levels of autotaxin in HCC mice, and of PSA in mice with prostate cancer. INTERPRETATION We conclude that iRGD induces a tumour-to-blood transport in a tumour-specific fashion that has potential of improving diagnosis of early stage cancer. FUNDING Deutsche Krebshilfe, DKTK, LOEWE-Frankfurt Cancer Institute.
Collapse
Affiliation(s)
- Christian Schmithals
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| | - Bianca Kakoschky
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| | - Dominic Denk
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Maike von Harten
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| | - Jan Henrik Klug
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany
| | - Edith Hintermann
- Pharmazentrum Frankfurt / ZAFES, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Anne Dropmann
- Molecular Hepatology-Alcohol Associated Diseases, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Eman Hamza
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Suez University, Faculty of Science, Zoology Department, Suez, Egypt
| | - Anne Claire Jacomin
- Frankfurt Cancer Institute, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany; Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Jens U Marquardt
- Department of Medicine I, University Medical Centre Schleswig-Holstein - Campus Lübeck, Lübeck, Germany
| | - Stefan Zeuzem
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/M., a Partnership Between DKFZ and University Hospital Frankfurt/M., Germany
| | | | - Eva Herrmann
- Goethe University Frankfurt, University Hospital, Institute of Biostatistics and Mathematical Modelling, Germany
| | - Urs Christen
- Pharmazentrum Frankfurt / ZAFES, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Thomas J Vogl
- Goethe University Frankfurt, University Hospital, Institute for Diagnostic and Interventional Radiology, Germany
| | - Oliver Waidmann
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Centrum für Hämatologie und Onkologie Bethanien, Frankfurt/Main, Germany
| | - Steven Dooley
- Molecular Hepatology-Alcohol Associated Diseases, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Fabian Finkelmeier
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Albrecht Piiper
- Goethe University Frankfurt, University Hospital, Medical Clinic 1, Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/M., a Partnership Between DKFZ and University Hospital Frankfurt/M., Germany.
| |
Collapse
|
24
|
Milewska S, Sadowska A, Stefaniuk N, Misztalewska-Turkowicz I, Wilczewska AZ, Car H, Niemirowicz-Laskowska K. Tumor-Homing Peptides as Crucial Component of Magnetic-Based Delivery Systems: Recent Developments and Pharmacoeconomical Perspective. Int J Mol Sci 2024; 25:6219. [PMID: 38892406 PMCID: PMC11172452 DOI: 10.3390/ijms25116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
According to data from the World Health Organization (WHO), cancer is considered to be one of the leading causes of death worldwide, and new therapeutic approaches, especially improved novel cancer treatment regimens, are in high demand. Considering that many chemotherapeutic drugs tend to have poor pharmacokinetic profiles, including rapid clearance and limited on-site accumulation, a combined approach with tumor-homing peptide (THP)-functionalized magnetic nanoparticles could lead to remarkable improvements. This is confirmed by an increasing number of papers in this field, showing that the on-target peptide functionalization of magnetic nanoparticles improves their penetration properties and ensures tumor-specific binding, which results in an increased clinical response. This review aims to highlight the potential applications of THPs in combination with magnetic carriers across various fields, including a pharmacoeconomic perspective.
Collapse
Affiliation(s)
- Sylwia Milewska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Natalia Stefaniuk
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | | | - Agnieszka Z. Wilczewska
- Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok, Poland; (I.M.-T.); (A.Z.W.)
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| | - Katarzyna Niemirowicz-Laskowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (S.M.); (A.S.); (N.S.); (H.C.)
| |
Collapse
|
25
|
Guo X, Zhang Y, Li Q, Shi F, HuangFu Y, Li J, Lao X. The influence of a modified p53 C-terminal peptide by using a tumor-targeting sequence on cellular apoptosis and tumor treatment. Apoptosis 2024; 29:865-881. [PMID: 38145442 DOI: 10.1007/s10495-023-01926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 12/26/2023]
Abstract
The restoration of the function of p53 in tumors is a therapeutic strategy for the highly frequent mutation of the TP53 tumor suppressor gene. P460 is a wild-type peptide derived from the p53 C-terminus and has been proven to be capable of restoring the tumor suppressor function of p53. The poor accumulation of drugs in tumors is a serious hindrance to tumor treatment. For enhancing the activity of P460, the tumor-targeting sequence Arg-Gly-Asp-Arg (RGDR, C-end rule peptide) was introduced into the C-terminus of P460 to generate the new peptide P462. P462 presented better activity than P460 in inhibiting the proliferation of cancer cells and increasing the number of tumor cells undergoing apoptosis. Cell adhesion analysis and tumor imaging results revealed that P462 showed more specific and extensive binding with tumor cells and greater accumulation in tumors than the wild-type peptide. Importantly, treatment with P462 was more efficacious than that with P460 in vivo and was associated with considerably improved tumor-homing activity. This study highlights the importance of the roles of the tumor-homing sequence RGDR in the enhancement in cell attachment and tumor accumulation. The results of this work indicate that P462 could be a novel drug candidate for tumor treatment.
Collapse
Affiliation(s)
- Xiaoye Guo
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Yiming Zhang
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Qian Li
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Fangxin Shi
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Yifan HuangFu
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China
| | - Jing Li
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China.
| | - Xingzhen Lao
- School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, 210009, Nanjing, P.R. China.
| |
Collapse
|
26
|
de Oliveira VA, Negreiros HA, de Sousa IGB, Farias Mendes LK, Alves Damaceno Do Lago JP, Alves de Sousa A, Alves Nobre T, Pereira IC, Carneiro da Silva FC, Lopes Magalhães J, de Castro E Sousa JM. Application of nanoformulations as a strategy to optimize chemotherapeutic treatment of glioblastoma: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:131-152. [PMID: 38480528 DOI: 10.1080/10937404.2024.2326679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The aim of this review was to explore the advances of nanoformulations as a strategy to optimize glioblastoma treatment, specifically focusing on targeting and controlling drug delivery systems to the tumor. This review followed the PRISMA recommendations. The studies were selected through a literature search conducted in the electronic databases PubMed Central, Science Direct, Scopus and Web of Science, in April 2023, using the equation descriptors: (nanocapsule OR nanoformulation) AND (glioblastoma). Forty-seven investigations included were published between 2011 and 2023 to assess the application of different nanoformulations to optimize delivery of chemotherapies including temozolomide, carmustine, vincristine or cisplatin previously employed in brain tumor therapy, as well as investigating another 10 drugs. Data demonstrated the possible application of different matrices employed as nanocarriers and utilization of functionalizing agents to improve internalization of chemotherapeutics. Functionalization was developed with the application of peptides, micronutrients/vitamins, antibodies and siRNAs. Finally, this review demonstrated the practical and clinical application of nanocarriers to deliver multiple drugs in glioblastoma models. These nanomodels might ideally be developed using functionalizing ligand agents that preferably act synergistically with the drug these agents carry. The findings showed promising results, making nanoformulations one of the best prospects for innovation and improvement of glioblastoma treatment.
Collapse
Affiliation(s)
- Victor Alves de Oliveira
- Laboratory of Genetic Toxicology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Helber Alves Negreiros
- Laboratory of Genetic Toxicology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Layza Karyne Farias Mendes
- Laboratory of Genetic Toxicology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Athanara Alves de Sousa
- Laboratory of Genetic Toxicology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Taline Alves Nobre
- Laboratory of Genetic Toxicology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Irislene Costa Pereira
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN) Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piaui, Teresina, Piauí, Brazil
| | | | - Janildo Lopes Magalhães
- Supramolecular Self-Assembly Laboratory - LAS, Department of Chemistry, Nature Sciences Center, Federal University of Piaui, Teresina, Brazil
| | | |
Collapse
|
27
|
Li X, Zhong H, Zheng S, Mu J, Yu N, Guo S. Tumor-penetrating iRGD facilitates penetration of poly(floxuridine-ketal)-based nanomedicine for enhanced pancreatic cancer therapy. J Control Release 2024; 369:444-457. [PMID: 38575076 DOI: 10.1016/j.jconrel.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Efficient intratumoral penetration is essential for nanomedicine to eradicate pancreatic tumors. Although nanomedicine can enter the perivascular space of pancreatic tumors, their access to distal tumor cells, aloof from the vessels, remains a formidable challenge. Here, we synthesized an acid-activatable macromolecular prodrug of floxuridine (FUDR)-poly(FUDR-ketal), engineered a micellar nanomedicine of FUDR, and intravenously co-administered the nanomedicine with the tumor-penetrating peptide iRGD for enhanced treatment of pancreatic tumor. A FUDR-derived mono-isopropenyl ether was synthesized and underwent self-addition polymerization to afford the hydrophobic poly(FUDR-ketal), which was subsequently co-assembled with amphiphilic DSPE-mPEG into the micellar nanomedicine with size of 12 nm and drug content of 56.8 wt% using nanoprecipitation technique. The acetone-based ketal-linked poly(FUDR-ketal) was triggered by acid to release FUDR to inhibit cell proliferation. In an orthotopic pancreatic tumor model derived from KPC (KrasLSL-G12D/+; Trp53LSL-R172H/+; Pdx1-Cre) cells that overexpress neuropilin-1 (NRP-1) receptor, iRGD improved penetration of FUDR nanomedicine into tumor parenchyma and potentiated the therapeutic efficacy. Our nanoplatform, along with iRGD, thus appears to be promising for efficient penetration and activation of acid-responsive nanomedicines for enhanced pancreatic cancer therapy.
Collapse
Affiliation(s)
- Xingwei Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haiping Zhong
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shujing Zheng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jingqing Mu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China; Tianjin Aier Eye Hospital, Tianjin 300190, China
| | - Na Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China; Jingjinji National Center of Technology Innovation, Beijing 100094, China.
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
28
|
Cao J, Zhu C, Cao Z, Ke X. CPPs-modified chitosan as permeability-enhancing chemotherapeutic combined with gene therapy nanosystem by thermosensitive hydrogel for the treatment of osteosarcoma. Int J Biol Macromol 2024; 267:130915. [PMID: 38561118 DOI: 10.1016/j.ijbiomac.2024.130915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Chemotherapy resistance of osteosarcoma (OS) is still the crux of poor clinical curative effect.E3 ubiquitin-protein ligase Rad18 (Rad18) contributed to doxorubicin resistance in OS, which ultimately mediated DNA damage tolerance and led to a poor prognosis and chemotherapy response in patients. METHODS In this study, doxorubicin was loaded in the process of Fe2+ and siRad18 forming nanoparticles(FSD) through coordination, chitosan modified with cell penetrating peptide (H6R6) was synthesized and coated on the surface of the NPs(FSD-CHR). FSD-CHR was then dispersed in thermosensitive hydrogel(PPP) for peritumoral injection of osteosarcoma in situ. Subsequently, the physicochemical properties and molecular biological characteristics of the drug delivery system were characterized. Finally, an osteosarcoma model was established to study the anti-tumor effects of multifunctional nanoparticles and the immunotherapy effect combined with αPD-L1. RESULTS FSD-CHR has enhanced tumor tissue permeability, siRad18 can significantly reduce Dox-mediated DNA damage tolerance and enhance anti-tumor effects, and iron-based NPs show enhanced ROS upregulation. FSD-CHR@PPP showed significant inhibition of osteosarcoma growth in vivo and a reduced incidence of lung metastasis. In addition, siRad18 was unexpectedly found to enhance Dox-mediated immunogenic cell death (ICD).FSD-CHR@PPP combined with PD-L1 blocking significantly enhanced anti-tumor effects due to decreased PD-L1 enrichment. CONCLUSION Hydrogel encapsulation of permeable nanoparticles provides an effective strategy for doxorubicin-resistant OS, showing that gene therapy blocking DNA damage tolerance can enhance treatment response to chemotherapy and appears to enhance the effect of ICD inducers to activate the immune system.
Collapse
Affiliation(s)
- Jie Cao
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu province, China
| | - Chenghong Zhu
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu province, China
| | - Ziqi Cao
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu province, China
| | - Xue Ke
- Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, Jiangsu province, China.
| |
Collapse
|
29
|
Tian Y, Cheng T, Sun F, Zhou Y, Yuan C, Guo Z, Wang Z. Effect of biophysical properties of tumor extracellular matrix on intratumoral fate of nanoparticles: Implications on the design of nanomedicine. Adv Colloid Interface Sci 2024; 326:103124. [PMID: 38461766 DOI: 10.1016/j.cis.2024.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/11/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Nanomedicine has a profound impact on various research domains including drug delivery, diagnostics, theranostics, and regenerative medicine. Nevertheless, the clinical translation of nanomedicines for solid cancer remains limited due to the abundant physiological and pathological barriers in tumor that hinder the intratumoral penetration and distribution of these nanomedicines. In this article, we review the dynamic remodeling of tumor extracellular matrix during the tumor progression, discuss the impact of biophysical obstacles within tumors on the penetration and distribution of nanomedicines within the solid tumor and collect innovative approaches to surmount these obstacles for improving the penetration and accumulation of nanomedicines in tumor. Furthermore, we dissect the challenges and opportunities of the respective approaches, and propose potential avenues for future investigations. The purpose of this review is to provide a perspective guideline on how to effectively enhance the penetration of nanomedicines within tumors using promising methods.
Collapse
Affiliation(s)
- Yachao Tian
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Guoru Biotechnology Co., Ltd., Xiangfang District, Harbin City 150030, China; School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yaxin Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chao Yuan
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
30
|
Liu Y, Zhang D, Zhang Z, Liang X, Yang X, Ding N, Nie Y, Li C. Multifunctional nanoparticles inhibit tumor and tumor-associated macrophages for triple-negative breast cancer therapy. J Colloid Interface Sci 2024; 657:598-610. [PMID: 38071809 DOI: 10.1016/j.jcis.2023.11.156] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 01/02/2024]
Abstract
HYPOTHESIS Tumor-associated macrophages (TAM) are the mainstay of immunosuppressive cells in the tumor microenvironment, and elimination of M2-type macrophages (M2-TAM) is considered as a potential immunotherapy. However, the interaction of breast cancer cells with macrophages hinders the effectiveness of immunotherapy. In order to improve the efficacy of triple-negative breast cancer (TNBC) therapy, strategies that simultaneously target the elimination of M2-TAM and breast cancer cells may be able to achieve a better therapy. EXPERIMENTS LyP-SA/AgNP@Dox multifunctional nanoparticles were synthesized by electrostatic adsorption. They were characterized by particle size, potential and spectroscopy. And the efficacy of multifunctional nanoparticles was evaluated in 4 T1 cell lines and M2 macrophages, including their cell uptake intracellular reactive oxygen species (ROS) production and the therapeutic effect. Furthermore, based on the orthotopic xenotransplantation model of triple negative breast cancer, the biological distribution, fluorescence imaging, biosafety evaluation and combined efficacy evaluation of the nanoplatform were performed. FINDINGS We have successfully prepared LyP-SA/AgNP@Dox and characterized. Administering the nanosystem to 4 T1 tumor cells or M2 macrophages in culture induced accumulation of reactive oxygen species, destruction of mitochondria and apoptosis, and inhibited replication and transcription. Animal experiments demonstrated the nanoparticle had favorable targeting and antitumor activity. Our nanosystem may be useful for simultaneously inhibiting tumor and tumor-associated macrophages in breast cancer and, potentially, other malignancies.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Dan Zhang
- Department of Pharmacy of Traditional Chinese Medicine, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Nianhui Ding
- Department of Pharmacology Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
31
|
Li Q, Ming R, Huang L, Zhang R. Versatile Peptide-Based Nanosystems for Photodynamic Therapy. Pharmaceutics 2024; 16:218. [PMID: 38399272 PMCID: PMC10892956 DOI: 10.3390/pharmaceutics16020218] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Photodynamic therapy (PDT) has become an important therapeutic strategy because it is highly controllable, effective, and does not cause drug resistance. Moreover, precise delivery of photosensitizers to tumor lesions can greatly reduce the amount of drug administered and optimize therapeutic outcomes. As alternatives to protein antibodies, peptides have been applied as useful targeting ligands for targeted biomedical imaging, drug delivery and PDT. In addition, other functionalities of peptides such as stimuli responsiveness, self-assembly, and therapeutic activity can be integrated with photosensitizers to yield versatile peptide-based nanosystems for PDT. In this article, we start with a brief introduction to PDT and peptide-based nanosystems, followed by more detailed descriptions about the structure, property, and architecture of peptides as background information. Finally, the most recent advances in peptide-based nanosystems for PDT are emphasized and summarized according to the functionalities of peptide in the system to reveal the design and development principle in different therapeutic circumstances. We hope this review could provide useful insights and valuable reference for the development of peptide-based nanosystems for PDT.
Collapse
Affiliation(s)
- Qiuyan Li
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruiqi Ming
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Lili Huang
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruoyu Zhang
- Institute of Engineering Medicine, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
32
|
Ebrahimnejad P, Mohammadi Z, Babaei A, Ahmadi M, Amirkhanloo S, Asare-Addo K, Nokhodchid A. Novel Strategies Using Sagacious Targeting for Site-Specific Drug Delivery in Breast Cancer Treatment: Clinical Potential and Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:35-84. [PMID: 37824418 DOI: 10.1615/critrevtherdrugcarriersyst.v41.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
For more than a decade, researchers have been working to achieve new strategies and smart targeting drug delivery techniques and technologies to treat breast cancer (BC). Nanotechnology presents a hopeful strategy for targeted drug delivery into the building of new therapeutics using the properties of nanomaterials. Nanoparticles are of high regard in the field of diagnosis and the treatment of cancer. The use of these nanoparticles as an encouraging approach in the treatment of various cancers has drawn the interest of researchers in recent years. In order to achieve the maximum therapeutic effectiveness in the treatment of BC, combination therapy has also been adopted, leading to minimal side effects and thus an enhancement in the quality of life for patients. This review article compares, discusses and criticizes the approaches to treat BC using novel design strategies and smart targeting of site-specific drug delivery systems.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Mohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Melika Ahmadi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shervin Amirkhanloo
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield, UK
| | - Ali Nokhodchid
- Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA; Pharmaceutics Research Lab, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
33
|
Almalki WH. An Up-to-date Review on Protein-based Nanocarriers in the Management of Cancer. Curr Drug Deliv 2024; 21:509-524. [PMID: 37165498 DOI: 10.2174/1567201820666230509101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND A big health issue facing the world's population is cancer. An alarming increase in cancer patients was anticipated by worldwide demographic statistics, which showed that the number of patients with different malignancies was rapidly increasing. By 2025, probably 420 million cases were projected to be achieved. The most common cancers diagnosed are breast, colorectal, prostate, and lung. Conventional treatments, such as surgery, chemotherapy, and radiation therapy, have been practiced. OBJECTIVE In recent years, the area of cancer therapy has changed dramatically with expanded studies on the molecular-level detection and treatment of cancer. Recent advances in cancer research have seen significant advances in therapies such as chemotherapy and immunotherapy, although both have limitations in effectiveness and toxicity. METHODS The development of nanotechnology for anticancer drug delivery has developed several potentials as nanocarriers, which may boost the pharmacokinetic and pharmacodynamic effects of the drug product and substantially reduce the side effects. RESULTS The advancement in non-viral to viral-based protein-based nanocarriers for treating cancer has earned further recognition in this respect. Many scientific breakthroughs have relied on protein-based nanocarriers, and proteins are essential organic macromolecules for life. It allows targeted delivery of passive or active tumors using non-viral-based protein-based nanocarriers to viral-based protein nanocarriers. When targeting cancer cells, both animal and plant proteins may be used in a formulation process to create self-assembled viruses and platforms that can successfully eradicate metastatic cancer cells. CONCLUSION This review, therefore, explores in depth the applications of non-viral to viral proteinbased noncarriers with a specific focus on intracellular drug delivery and anti-cancer drug targeting ability.
Collapse
Affiliation(s)
- Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Aal-qura University, Saudi Arabia
| |
Collapse
|
34
|
Eghtedari S, Behdani M, Kazemi-Lomedasht F. Neuropilin-1 Binding Peptide as Fusion to Diphtheria Toxin Induces Apoptosis in Non-small Cell Lung Cancer Cell Line. Curr Pharm Des 2024; 30:1317-1325. [PMID: 38584554 DOI: 10.2174/0113816128292382240325074032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Targeted cancer therapy can be considered as a new strategy to overcome the side effects of current cancer treatments. Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that is expressed in endothelial cells and tumor vessels to stimulate angiogenesis progression. Targeted diphtheria toxin (DT)- based therapeutics are promising tools for cancer treatment. This study aimed to construct a novel NRP-1 binding peptide (as three repeats) (CRGDK) as a fusion to truncated DT (DTA) (DTA-triCRGDK) for targeted delivery of DT into NRP-1 expressing cells. METHODS The concept of DTA-triCRGDK was designed, synthesized and cloned into the bacterial host. Expression of DTA-triCRGDK was induced by Isopropyl ß-D-1-thiogalactopyranoside (IPTG) and purification was performed using Ni-NTA chromatography. Biological activity of DTA-triCRGDK was evaluated using MTT, apoptosis, and wound healing assays. In addition, expression levels of apoptotic Bax, Bcl2, and Casp3 genes were determined by Real-time PCR. RESULTS Cytotoxicity analysis showed the IC50 values of DTA-triCRGDK for A549 and MRC5 were 0.43 nM and 4.12 nM after 24 h, respectively. Bcl2 expression levels decreased 0.4 and 0.72 fold in A549 and MRC5, respectively. However, Bax and Casp3 expression level increased by 6.75 and 8.19 in A549 and 2.51 and 3.6 in MRC5 cells. CONCLUSION Taken together, DTA-triCRGDK is a promising tool for targeted therapy of NRP-1 overexpressing cancer cells.
Collapse
Affiliation(s)
- Sara Eghtedari
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
35
|
He S, Fang Y, Wu M, Zhang P, Gao F, Hu H, Sheng C, Dong G. Enhanced Tumor Targeting and Penetration of Proteolysis-Targeting Chimeras through iRGD Peptide Conjugation: A Strategy for Precise Protein Degradation in Breast Cancer. J Med Chem 2023; 66:16828-16842. [PMID: 38055861 DOI: 10.1021/acs.jmedchem.3c01539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) have recently emerged as a promising technology for drug development. However, poor water solubility, limited tissue selectivity, and inadequate tumor penetration pose significant challenges for PROTAC-based therapies in cancer treatment. Herein, we developed an iRGD-PROTAC conjugation strategy utilizing tumor-penetrating cyclic peptide iRGD (CRGDK/RGPD/EC) to deliver PROTACs deep into breast cancer tissues. As a conceptual validation study, iRGD peptides were conjugated with a bromodomain-containing protein 4 (BRD4) PROTAC through a GSH-responsive linker. The resulting iRGD-PROTAC conjugate iPR showed enhanced water solubility, tumor-targeting capability, and penetration within tumor tissues, resulting in increased antibreast cancer efficacy in animal models and patient-derived organoids. This study demonstrates the advantages of combining iRGD and PROTACs in improving drug delivery and highlights the importance of tissue selectivity and penetration ability in PROTAC-based therapeutics.
Collapse
Affiliation(s)
- Shipeng He
- Institute of Translational Medicine,Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yuxin Fang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Minghao Wu
- Institute of Translational Medicine,Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Peifeng Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Fei Gao
- Institute of Translational Medicine,Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Honggang Hu
- Institute of Translational Medicine,Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| | - Guoqiang Dong
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
36
|
Maldonado H, Savage BD, Barker HR, May U, Vähätupa M, Badiani RK, Wolanska KI, Turner CMJ, Pemmari T, Ketomäki T, Prince S, Humphries MJ, Ruoslahti E, Morgan MR, Järvinen TAH. Systemically administered wound-homing peptide accelerates wound healing by modulating syndecan-4 function. Nat Commun 2023; 14:8069. [PMID: 38057316 PMCID: PMC10700342 DOI: 10.1038/s41467-023-43848-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/19/2023] [Indexed: 12/08/2023] Open
Abstract
CAR (CARSKNKDC) is a wound-homing peptide that recognises angiogenic neovessels. Here we discover that systemically administered CAR peptide has inherent ability to promote wound healing: wounds close and re-epithelialise faster in CAR-treated male mice. CAR promotes keratinocyte migration in vitro. The heparan sulfate proteoglycan syndecan-4 regulates cell migration and is crucial for wound healing. We report that syndecan-4 expression is restricted to epidermis and blood vessels in mice skin wounds. Syndecan-4 regulates binding and internalisation of CAR peptide and CAR-mediated cytoskeletal remodelling. CAR induces syndecan-4-dependent activation of the small GTPase ARF6, via the guanine nucleotide exchange factor cytohesin-2, and promotes syndecan-4-, ARF6- and Cytohesin-2-mediated keratinocyte migration. Finally, we show that genetic ablation of syndecan-4 in male mice eliminates CAR-induced wound re-epithelialisation following systemic administration. We propose that CAR peptide activates syndecan-4 functions to selectively promote re-epithelialisation. Thus, CAR peptide provides a therapeutic approach to enhance wound healing in mice; systemic, yet target organ- and cell-specific.
Collapse
Affiliation(s)
- Horacio Maldonado
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Bryan D Savage
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Harlan R Barker
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Ulrike May
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Maria Vähätupa
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Rahul K Badiani
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Katarzyna I Wolanska
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Craig M J Turner
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Toini Pemmari
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Tuomo Ketomäki
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Stuart Prince
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Erkki Ruoslahti
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA and Center for Nanomedicine, University of California (UCSB), Santa Barbara, CA, USA
| | - Mark R Morgan
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Tero A H Järvinen
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland.
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA and Center for Nanomedicine, University of California (UCSB), Santa Barbara, CA, USA.
| |
Collapse
|
37
|
Thirumalai A, Girigoswami K, Pallavi P, Harini K, Gowtham P, Girigoswami A. Cancer therapy with iRGD as a tumor-penetrating peptide. Bull Cancer 2023; 110:1288-1300. [PMID: 37813754 DOI: 10.1016/j.bulcan.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
One of the primary threats in tumor treatment revolves around the limited ability to penetrate tumor sites, leading to reduced therapeutic effectiveness, which remains a critical concern. Recently gaining importance are novel peptides, namely CRGDK/RGPD/EC (iRGD), that possess enhanced tumor-penetrating and inhibitory properties. These peptides specifically target and penetrate tumors by binding to αvβ integrins, namely αvβ3 and αvβ5, as well as NRP-1 receptors. Remarkably abundant on both the vasculature and tumor cell surfaces, these peptides show promising potential for improving tumor treatment outcomes. As a result, iRGD penetrated deep into the tumor tissues with biological products, contrast agents (imaging agents), antitumor drugs, and immune modulators after co-injecting them with peptides or chemically linked to peptides. The synthesis of iRGD peptides is a relatively straightforward process compared to the synthesis of other traditional peptides, and they significantly improved tumor tissue penetration inhibiting tumor metastasis effectively. Recent studies demonstrate the effectiveness of iRGD-driven dual-targeting chemotherapeutics on cancer cells, and the nanocarriers were modified with iRGD, serving as a favorable delivery strategy of payloads for deeper tumor regions. This review aims to provide an overview to emphasize the recent advancements and advantages of iRGD in treating and imaging various cancers.
Collapse
Affiliation(s)
- Anbazhagan Thirumalai
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Koyeli Girigoswami
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Pragya Pallavi
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Karthick Harini
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Pemula Gowtham
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Agnishwar Girigoswami
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India.
| |
Collapse
|
38
|
Lee H, Park B, Lee J, Kang Y, Han M, Lee J, Kim C, Kim WJ. Transcytosis-Inducing Multifunctional Albumin Nanomedicines with Deep Penetration Ability for Image-Guided Solid Tumor Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303668. [PMID: 37612796 DOI: 10.1002/smll.202303668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Transcytosis is an active transcellular transportation pathway that has garnered interest for overcoming the limited deep penetration of nanomedicines in solid tumors. In this study, a charge-convertible nanomedicine that facilitates deep penetration into solid tumors via transcytosis is designed. It is an albumin-based calcium phosphate nanomedicine loaded with IR820 (mAlb-820@CaP) for high-resolution photoacoustic imaging and enhanced photothermal therapy. Biomineralization on the surface stabilizes the albumin-IR820 complex during circulation and provides calcium ions (Ca2+ ) for tissue penetration on degradation in an acidic environment. pH-triggered transcytosis of the nanomedicine enabled by caveolae-mediated endocytosis and calcium ion-induced exocytosis in 2D cellular, 3D spheroid, and in vivo tumor models is demonstrated. Notably, the extravasation and penetration ability of the nanomedicine is observed in vivo using a high-resolution photoacoustic system, and nanomedicine shows the most potent photothermal antitumor effect in vivo. Overall, the strategy provides a versatile theragnosis platform for both noninvasive photoacoustic imaging and high therapeutic efficiency resulting from deep penetration of nanomedicine.
Collapse
Affiliation(s)
- Hyori Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and School of, Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jihye Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yeoul Kang
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Moongyu Han
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and School of, Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junseok Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, and School of, Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
39
|
Cabral LGDS, Oliveira CS, Freire KA, Alves MG, Oliveira VX, Poyet JL, Maria DA. Antiproliferative Modulation and Pro-Apoptotic Effect of BR2 Tumor-Penetrating Peptide Formulation 2-Aminoethyl Dihydrogen Phosphate in Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:5342. [PMID: 38001606 PMCID: PMC10670255 DOI: 10.3390/cancers15225342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Breast cancer is the most common cancer in women, the so-called "Triple-Negative Breast Cancer" (TNBC) subtype remaining the most challenging to treat, with low tumor-free survival and poor clinical evolution. Therefore, there is a clear medical need for innovative and more efficient treatment options for TNBC. The aim of the present study was to evaluate the potential therapeutic interest of the association of the tumor-penetrating BR2 peptide with monophosphoester 2-aminoethyl dihydrogen phosphate (2-AEH2P), a monophosphoester involved in cell membrane turnover, in TNBC. For that purpose, viability, migration, proliferative capacity, and gene expression analysis of proteins involved in the control of proliferation and apoptosis were evaluated upon treatment of an array of TNBC cells with the BR2 peptide and 2-AEH2P, either separately or combined. Our data showed that, while possessing limited single-agent activity, the 2-AEH2P+BR2 association promoted significant cytotoxicity in TNBC cells but not in normal cells, with reduced proliferative potential and inhibition of cell migration. Mechanically, the 2-AEH2P+BR2 combination promoted an increase in cells expressing p53 caspase 3 and caspase 8, a reduction in cells expressing tumor progression and metastasis markers such as VEGF and PCNA, as well as a reduction in mitochondrial electrical potential. Our results indicate that the combination of the BR2 peptide with 2-AEH2P+BR2 may represent a promising therapeutic strategy in TNBC with potential use in clinical settings.
Collapse
Affiliation(s)
- Laertty Garcia de Sousa Cabral
- Laboratory of Development and Innovation, Butantan Institute, Sao Paulo 69310-000, Brazil; (L.G.d.S.C.); (M.G.A.)
- Faculty of Medicine, University of Sao Paulo (FMUSP), Sao Paulo 01246-903, Brazil
| | - Cyntia Silva Oliveira
- Federal University of Sao Paulo (UNIFESP), Sao Paulo 09913-030, Brazil; (C.S.O.); (V.X.O.)
| | | | - Monique Gonçalves Alves
- Laboratory of Development and Innovation, Butantan Institute, Sao Paulo 69310-000, Brazil; (L.G.d.S.C.); (M.G.A.)
- Faculty of Medicine, University of Sao Paulo (FMUSP), Sao Paulo 01246-903, Brazil
| | - Vani Xavier Oliveira
- Federal University of Sao Paulo (UNIFESP), Sao Paulo 09913-030, Brazil; (C.S.O.); (V.X.O.)
- Center for Natural and Human Sciences, Federal University of ABC, Santo Andre 09210-580, Brazil;
| | - Jean-Luc Poyet
- INSERM UMRS976, Institut De Recherche Saint-Louis, Hôpital Saint-Louis, 75010 Paris, France
- Université Paris Cité, 75006 Paris, France
| | - Durvanei Augusto Maria
- Laboratory of Development and Innovation, Butantan Institute, Sao Paulo 69310-000, Brazil; (L.G.d.S.C.); (M.G.A.)
- Faculty of Medicine, University of Sao Paulo (FMUSP), Sao Paulo 01246-903, Brazil
| |
Collapse
|
40
|
Pal S, G BR, Mohny FP, Choudhury SG, Karmakar A, Gupta S, Ganguli M. Albumin Nanoparticles Surface Decorated with a Tumor-Homing Peptide Help in Selective Killing of Triple-Negative Breast Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46721-46737. [PMID: 37756635 DOI: 10.1021/acsami.3c11561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
In this article, we describe a method of delivery of doxorubicin using a novel tumor-homing peptide-based albumin nanoparticle system to triple-negative breast cancer cells (TNBC). The absence and reduced expression of the hormone (estrogen, progesterone) and HER2 (human epidermal growth factor 2) receptors, respectively, render TNBC patients nonsusceptible to different available targeted therapies. These peptide-modified nanoparticles could be taken up by TNBC cells more effectively than their bare counterparts. The drug-loaded peptide-modified nanoparticles achieved an optimal but crucial balance between cell killing in cancerous cells and cell survival in the noncancerous ones. This appears to be because of different routes of entry and subsequent fate of the bare and peptide-modified nanoparticles in cancerous and noncancerous cells. In a TNBC mouse model, the peptide-modified system fared better than the free drug in mounting an antitumor response while not being toxic systemically.
Collapse
Affiliation(s)
- Simanti Pal
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Betsy Reshma G
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Franklin Pulikkottil Mohny
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | | | - Sarika Gupta
- National Institute of Immunology, New Delhi 110067, India
| | - Munia Ganguli
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
41
|
Wang DP, Zheng J, Jiang FY, Wu LF, Wang MY, Wang YL, Qin CY, Ning JY, Cao JM, Zhou X. Facile and green fabrication of tumor- and mitochondria-targeted AIEgen-protein nanoparticles for imaging-guided photodynamic cancer therapy. Acta Biomater 2023; 168:551-564. [PMID: 37414113 DOI: 10.1016/j.actbio.2023.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
In recent years, aggregation-induced emission (AIE)-active materials have been emerging as a promising means for bioimaging and phototherapy. However, the majority of AIE luminogens (AIEgens) need to be encapsulated into versatile nanocomposites to improve their biocompatibility and tumor targeting. Herein, we prepared a tumor- and mitochondria-targeted protein nanocage by the fusion of human H-chain ferritin (HFtn) with a tumor homing and penetrating peptide LinTT1 using genetic engineering technology. The LinTT1-HFtn could serve as a nanocarrier to encapsulate AIEgens via a simple pH-driven disassembly/reassembly process, thereby fabricating the dual-targeting AIEgen-protein nanoparticles (NPs). The as designed NPs exhibited an improved hepatoblastoma-homing property and tumor penetrating ability, which is favorable for tumor-targeted fluorescence imaging. The NPs also presented a mitochondria-targeting ability, and efficiently generated reactive oxygen species (ROS) upon visible light irradiation, making them valuable for inducing efficient mitochondrial dysfunction and intrinsic apoptosis in cancer cells. In vivo experiments demonstrated that the NPs could provide the accurate tumor imaging and dramatic tumor growth inhibition with minimal side effects. Taken together, this study presents a facile and green approach for fabrication of tumor- and mitochondria-targeted AIEgen-protein NPs, which can serve as a promising strategy for imaging-guided photodynamic cancer therapy. STATEMENT OF SIGNIFICANCE: AIE luminogens (AIEgens) show strong fluorescence and enhanced ROS generation in the aggregate state, which would facilitate the image-guided photodynamic therapy [12-14]. However, the major obstacles that hinder biological applications are their lack of hydrophilicity and selective targeting [15]. To address this issue, this study presents a facile and green approach for the fabrication of tumor‑ and mitochondria‑targeted AIEgen-protein nanoparticles via a simple disassembly/reassembly of the LinTT1 peptide-functionalized ferritin nanocage without any harmful chemicals or chemical modification. The targeting peptide-functionalized nanocage not only restricts the intramolecular motion of AIEgens leading to enhanced fluorescence and ROS production, but also confers good targeting to AIEgens.
Collapse
Affiliation(s)
- De-Ping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jian Zheng
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan 030001, China
| | - Fang-Ying Jiang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Li-Fei Wu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Mei-Yue Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Yu-Lan Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Chuan-Yue Qin
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jun-Ya Ning
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China.
| | - Xin Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
42
|
Zeng Y, Shen M, Singhal A, Sevink GJA, Crone N, Boyle AL, Kros A. Enhanced Liposomal Drug Delivery Via Membrane Fusion Triggered by Dimeric Coiled-Coil Peptides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301133. [PMID: 37199140 DOI: 10.1002/smll.202301133] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Indexed: 05/19/2023]
Abstract
An ideal nanomedicine system improves the therapeutic efficacy of drugs. However, most nanomedicines enter cells via endosomal/lysosomal pathways and only a small fraction of the cargo enters the cytosol inducing therapeutic effects. To circumvent this inefficiency, alternative approaches are desired. Inspired by fusion machinery found in nature, synthetic lipidated peptide pair E4/K4 is used to induce membrane fusion previously. Peptide K4 interacts specifically with E4, and it has a lipid membrane affinity and resulting in membrane remodeling. To design efficient fusogens with multiple interactions, dimeric K4 variants are synthesized to improve fusion with E4-modified liposomes and cells. The secondary structure and self-assembly of dimers are studied; the parallel PK4 dimer forms temperature-dependent higher-order assemblies, while linear K4 dimers form tetramer-like homodimers. The structures and membrane interactions of PK4 are supported by molecular dynamics simulations. Upon addition of E4, PK4 induced the strongest coiled-coil interaction resulting in a higher liposomal delivery compared to linear dimers and monomer. Using a wide spectrum of endocytosis inhibitors, membrane fusion is found to be the main cellular uptake pathway. Doxorubicin delivery results in efficient cellular uptake and concomitant antitumor efficacy. These findings aid the development of efficient delivery systems of drugs into cells using liposome-cell fusion strategies.
Collapse
Affiliation(s)
- Ye Zeng
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Mengjie Shen
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Ankush Singhal
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Geert Jan Agur Sevink
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Niek Crone
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Aimee L Boyle
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| | - Alexander Kros
- Dept. Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands
| |
Collapse
|
43
|
Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T. Nanomedicine in cancer therapy. Signal Transduct Target Ther 2023; 8:293. [PMID: 37544972 PMCID: PMC10404590 DOI: 10.1038/s41392-023-01536-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 08/08/2023] Open
Abstract
Cancer remains a highly lethal disease in the world. Currently, either conventional cancer therapies or modern immunotherapies are non-tumor-targeted therapeutic approaches that cannot accurately distinguish malignant cells from healthy ones, giving rise to multiple undesired side effects. Recent advances in nanotechnology, accompanied by our growing understanding of cancer biology and nano-bio interactions, have led to the development of a series of nanocarriers, which aim to improve the therapeutic efficacy while reducing off-target toxicity of the encapsulated anticancer agents through tumor tissue-, cell-, or organelle-specific targeting. However, the vast majority of nanocarriers do not possess hierarchical targeting capability, and their therapeutic indices are often compromised by either poor tumor accumulation, inefficient cellular internalization, or inaccurate subcellular localization. This Review outlines current and prospective strategies in the design of tumor tissue-, cell-, and organelle-targeted cancer nanomedicines, and highlights the latest progress in hierarchical targeting technologies that can dynamically integrate these three different stages of static tumor targeting to maximize therapeutic outcomes. Finally, we briefly discuss the current challenges and future opportunities for the clinical translation of cancer nanomedicines.
Collapse
Affiliation(s)
- Dahua Fan
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China.
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Yongkai Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Meiqun Cao
- Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yajun Wang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, China
| | | | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
44
|
Zhang Z, Ding C, Sun T, Wang L, Chen C. Tumor Therapy Strategies Based on Microenvironment-Specific Responsive Nanomaterials. Adv Healthc Mater 2023; 12:e2300153. [PMID: 36933000 DOI: 10.1002/adhm.202300153] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Indexed: 03/19/2023]
Abstract
The tumor microenvironment (TME) is a complex and variable region characterized by hypoxia, low pH, high redox status, overexpression of enzymes, and high-adenosine triphosphate concentrations. In recent years, with the continuous in-depth study of nanomaterials, more and more TME-specific response nanomaterials are used for tumor treatment. However, the complexity of the TME causes different types of responses with various strategies and mechanisms of action. Aiming to systematically demonstrate the recent advances in research on TME-responsive nanomaterials, this work summarizes the characteristics of TME and outlines the strategies of different TME responses. Representative reaction types are illustrated and their merits and demerits are analyzed. Finally, forward-looking views on TME-response strategies for nanomaterials are presented. It is envisaged that such emerging strategies for the treatment of cancer are expected to exhibit dramatic trans-clinical capabilities, demonstrating the extensive potential for the diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Zhaocong Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Chengwen Ding
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Tiedong Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chunxia Chen
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
45
|
Wang X, Zhang H, Chen X, Wu C, Ding K, Sun G, Luo Y, Xiang D. Overcoming tumor microenvironment obstacles: Current approaches for boosting nanodrug delivery. Acta Biomater 2023; 166:42-68. [PMID: 37257574 DOI: 10.1016/j.actbio.2023.05.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
In order to achieve targeted delivery of anticancer drugs, efficacy improvement, and side effect reduction, various types of nanoparticles are employed. However, their therapeutic effects are not ideal. This phenomenon is caused by tumor microenvironment abnormalities such as abnormal blood vessels, elevated interstitial fluid pressure, and dense extracellular matrix that affect nanoparticle penetration into the tumor's interstitium. Furthermore, nanoparticle properties including size, charge, and shape affect nanoparticle transport into tumors. This review comprehensively goes over the factors hindering nanoparticle penetration into tumors and describes methods for improving nanoparticle distribution by remodeling the tumor microenvironment and optimizing nanoparticle physicochemical properties. Finally, a critical analysis of future development of nanodrug delivery in oncology is further discussed. STATEMENT OF SIGNIFICANCE: This article reviews the factors that hinder the distribution of nanoparticles in tumors, and describes existing methods and approaches for improving the tumor accumulation from the aspects of remodeling the tumor microenvironment and optimizing the properties of nanoparticles. The description of the existing methods and approaches is followed by highlighting their advantages and disadvantages and put forward possible directions for the future researches. At last, the challenges of improving tumor accumulation in nanomedicines design were also discussed. This review will be of great interest to the broad readers who are committed to delivering nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Xiaohui Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China
| | - Hong Zhang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China; Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Xiaohui Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Chunrong Wu
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China
| | - Ke Ding
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China
| | - Guiyin Sun
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China.
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Debing Xiang
- Department of Oncology, Chongqing University Jiangjin Hospital, Chongqing 402260, China; Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing 402260, China.
| |
Collapse
|
46
|
Barkovich KJ, Zhao Z, Steinmetz NF. iRGD-targeted Physalis Mottle Virus-like Nanoparticles for Targeted Cancer Delivery. SMALL SCIENCE 2023; 3:2300067. [PMID: 38465197 PMCID: PMC10923535 DOI: 10.1002/smsc.202300067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Nanomedicine provides a promising platform for the molecular treatment of disease. An ongoing challenge in nanomedicine is the targeted delivery of intravenously administered nanoparticles to particular tissues, which is of special interest in cancer. In this study, we show that the conjugation of iRGD peptides, which specifically target tumor neovasculature, to the surface of Physalis mottle virus (PhMV)-like nanoparticles leads to rapid cellular uptake in vitro and tumor homing in vivo. We then show that iRGD-targeted PhMV loaded with the chemotherapeutic doxorubicin shows increased potency in a murine flank xenograft model of cancer. Our results validate that PhMV-like nanoparticles can be targeted to tumors through iRGD-peptide conjugation and suggest that iRGD-PhMV provides a promising platform for the targeted delivery of molecular cargo to tumors.
Collapse
Affiliation(s)
| | - Zhongchao Zhao
- Department of NanoEngineering, University of California, San Diego, San Diego, CA
- Center for Nano-ImmunoEngineering, University of California, San Diego, San Diego, CA
| | - Nicole F. Steinmetz
- Department of Radiology, University of California, San Diego, San Diego, CA
- Department of NanoEngineering, University of California, San Diego, San Diego, CA
- Center for Nano-ImmunoEngineering, University of California, San Diego, San Diego, CA
- Department of Bioengineering, University of California, San Diego, San Diego, CA
- Institute for Materials Discovery and Design, University of California, San Diego, CA
- Moores Cancer Center, University of California, San Diego, San Diego, CA
- Center for Engineering in Cancer, Institute for Engineering in Medicine, University of California, San Diego, San Diego, CA
| |
Collapse
|
47
|
Yun WS, Kim J, Lim DK, Kim DH, Jeon SI, Kim K. Recent Studies and Progress in the Intratumoral Administration of Nano-Sized Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2225. [PMID: 37570543 PMCID: PMC10421122 DOI: 10.3390/nano13152225] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Over the last 30 years, diverse types of nano-sized drug delivery systems (nanoDDSs) have been intensively explored for cancer therapy, exploiting their passive tumor targetability with an enhanced permeability and retention effect. However, their systemic administration has aroused some unavoidable complications, including insufficient tumor-targeting efficiency, side effects due to their undesirable biodistribution, and carrier-associated toxicity. In this review, the recent studies and advancements in intratumoral nanoDDS administration are generally summarized. After identifying the factors to be considered to enhance the therapeutic efficacy of intratumoral nanoDDS administration, the experimental results on the application of intratumoral nanoDDS administration to various types of cancer therapies are discussed. Subsequently, the reports on clinical studies of intratumoral nanoDDS administration are addressed in short. Intratumoral nanoDDS administration is proven with its versatility to enhance the tumor-specific accumulation and retention of therapeutic agents for various therapeutic modalities. Specifically, it can improve the efficacy of therapeutic agents with poor bioavailability by increasing their intratumoral concentration, while minimizing the side effect of highly toxic agents by restricting their delivery to normal tissues. Intratumoral administration of nanoDDS is considered to expand its application area due to its potent ability to improve therapeutic effects and relieve the systemic toxicities of nanoDDSs.
Collapse
Affiliation(s)
- Wan Su Yun
- Korea Institute of Science and Technology (KU-KIST), Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Jeongrae Kim
- Korea Institute of Science and Technology (KU-KIST), Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Dong-Kwon Lim
- Korea Institute of Science and Technology (KU-KIST), Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Dong-Hwee Kim
- Korea Institute of Science and Technology (KU-KIST), Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Seong Ik Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kwangmeyung Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
48
|
Yadav S, Singh P. Advancement and application of novel cell-penetrating peptide in cancer management. 3 Biotech 2023; 13:234. [PMID: 37323859 PMCID: PMC10264343 DOI: 10.1007/s13205-023-03649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
Cell-penetrating peptides (CPPs) are small amino acid sequences with the potential to enter cell membranes. Along with nucleic acids, large proteins, and other chemical compounds, they can deliver several bioactive cargos inside cells. Numerous CPPs have been extracted from natural or synthetic materials since the discovery of the first CPP. In the past few decades, a significant variety of studies have shown the potential of CPPs to cure different diseases. The low toxicity in peptide compared to other drug delivery carriers is a significant benefit of CPP-based therapy, in addition to the high efficacy brought about by swift and effective delivery. A significant tendency for intracellular DNA delivery may also be observed when nanoparticles and the cell penetration peptide are combined. CPPs are frequently used to increase intracellular absorption of nucleic acid, and other therapeutic agents inside the cell. Due to long-term side effects and possible toxicity, its implementation is restricted. The use of cell-permeating peptides is a commonly used technique to increase their intracellular absorption. Additionally, CPPs have lately been sought for application in vivo, following their success in cellular studies. This review will go through the numerous CPPs, the chemical modifications that improve their cellular uptake, the various means for getting them across cell membranes, and the biological activity they acquire after being conjugate with specific chemicals.
Collapse
Affiliation(s)
- Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Plot No. 2, Sector 17-A, Yamuna Expressway, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201310 India
| | - Pratichi Singh
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh India
| |
Collapse
|
49
|
Gao F, Ahmed A, Cong H, Yu B, Shen Y. Effective Strategies for Developing Potent, Broad-Spectrum Antibacterial and Wound Healing Promotion from Short-Chain Antimicrobial Peptides. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37379222 DOI: 10.1021/acsami.3c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Traumatic multidrug resistant bacterial infections are the most lethal threat to wound healing. Antimicrobial peptides have been widely used in the antimicrobial field for their good biocompatibility and resistance to multidrug-resistant bacteria. In this work, bacterial membranes of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were extracted and immobilized on homemade silica microspheres to make a bacterial membrane chromatography stationary phase in order to quickly screen for peptides with antibacterial effects. The antimicrobial peptide was then successfully screened using bacterial membrane chromatography from a library of peptides synthesized by the one-bead-one-compound method. The antimicrobial peptide was effective in better shielding both Gram-positive and Gram-negative bacteria. Based on this antimicrobial peptide (RWPIL), we have developed an antimicrobial hydrogel with a backbone of this antimicrobial peptide and oxidized dextran (ODEX). Owing to the interlinkage between the aldehyde group in oxidized dextran and the amine group from the trauma tissue, the hydrogel extends over the irregular obverse of the skin defect and promotes epithelial cell adhesion. Based on the histomorphological analysis, we confirmed that the RWPIL-ODEX hydrogel exerts a powerful therapeutic effect in a wound infection model. In conclusion, we have developed a new antimicrobial peptide, RWPIL, and a hydrogel based on the peptide that kills multidrug-resistant bacteria parasitic on wounds and promotes wound healing.
Collapse
Affiliation(s)
- Fengyuan Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Adeel Ahmed
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
50
|
Zhang Z, Feng J, Zhang T, Gao A, Sun C. Application of tumor pH/hypoxia-responsive nanoparticles for combined photodynamic therapy and hypoxia-activated chemotherapy. Front Bioeng Biotechnol 2023; 11:1197404. [PMID: 37362218 PMCID: PMC10289258 DOI: 10.3389/fbioe.2023.1197404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: Cancer selectivity, including targeted internalization and accelerated drug release in tumor cells, remains a major challenge for designing novel stimuli-responsive nanocarriers to promote therapeutic efficacy. The hypoxic microenvironment created by photodynamic therapy (PDT) is believed to play a critical role in chemoresistance. Methods: We construct dual-responsive carriers (DANPCT) that encapsulate the photosensitizer chlorin e6 (Ce6) and hypoxia-activated prodrug tirapazamine (TPZ) to enable efficient PDT and PDT-boosted hypoxia-activated chemotherapy. Results and discussion: Due to TAT masking, DANPCT prolonged payload circulation in the bloodstream, and selective tumor cell uptake occurred via acidity-triggered TAT presentation. PDT was performed with a spatially controlled 660-nm laser to enable precise cell killing and exacerbate hypoxia. Hypoxia-responsive conversion of the hydrophobic NI moiety led to the disassembly of DANPCT, facilitating TPZ release. TPZ was reduced to cytotoxic radicals under hypoxic conditions, contributing to the chemotherapeutic cascade. This work offers a sophisticated strategy for programmed chemo-PDT.
Collapse
Affiliation(s)
- Zhang Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jintang Feng
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianzhu Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - An Gao
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chunyang Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Multimodality Preclinical Molecular Imaging Center, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|