1
|
Patil A, Rajput A, Subbappa P, Pawar A. Formulation, development and in vivo characterization of selegiline hydrochloride nanostructured lipid nanocarrier loaded microneedle array patch for depression. Int J Pharm 2025; 671:125257. [PMID: 39855281 DOI: 10.1016/j.ijpharm.2025.125257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/15/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Depression is a common mental condition causing depressed mood and loss of pleasure. The primary treatment approach for the management of depression consists of the use of selegiline (MAO-B) inhibitor compound. The present work aimed to develop and optimize selegiline-loaded nanostructured lipid carriers for transdermal application, utilizing a 23 full factorial design approach. The optimized nanostructured lipid carriers formulation (Batch B7) demonstrated a particle size of 158.71 ± 0.56 nm, a narrow size distribution (0.266 ± 0.006), high entrapment efficiency (59.60 ± 0.34 %), and a zeta potential of -23.2 ± 2.21 mV. Furthermore, x-ray diffraction and differential scanning calorimetry studies revealed the amorphous transformation of selegiline within the nanostructured lipid carrier. Transmission Electron Microscopy study has shown that nanostructured lipid carrier particles had a spherical shape with a smooth surface. These optimized nanostructured lipid carriers were then incorporated into a microneedle array patch for transdermal delivery. The selegiline-loaded nanostructured lipid carrier microneedle array patch exhibited no skin irritation in a rabbit model. It enhanced drug diffusion ex vivo (1.13-fold compared to pure selegiline-loaded microneedle array patch) with 90 % drug release in 12 h. The pharmacokinetic study demonstrated a steady and controlled release profile with a half-life of 29.9 ± 0.14 h and AUC0-t (26.57 ± 0.51 μg/ml*h) of selegiline loaded nanostructured lipid carrier microneedle array patch. On the contrary, a pure selegiline-loaded microneedle array patch showed a short half-life of 6.5 ± 0.26 h and AUC0-t (20.90 ± 0.31 μg/ml*h). The sustained release profile and prolonged half-life in plasma and the brain suggest improved therapeutic efficacy. Histopathology analysis revealed no significant toxicity to vital organs. Thus, a selegiline nanostructured lipid carrier-loaded microneedle array patch can increase brain bioavailability compared to a pure selegiline-loaded microneedle array patch for managing depression.
Collapse
Affiliation(s)
- Anuradha Patil
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Praveen Subbappa
- Alliance Management and Supply Chain, Azurity Pharmaceuticals, Inc., 8 Cabot Road, Suite 2000, Woburn, MA 01801, USA
| | - Atmaram Pawar
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India.
| |
Collapse
|
2
|
Wang Y, Yu H, Wang L, Zhang L, Liu J, Chen D, Yang J, Ouyang C, Hu J, Feng J, Li C. Intelligent microneedle patch based on functionalized alginate and chitosan for long-term self-regulated insulin delivery. Carbohydr Polym 2025; 348:122885. [PMID: 39567163 DOI: 10.1016/j.carbpol.2024.122885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
Severely diabetic patients need insulin input to maintain the body's glycemic balance. However, traditional injection methods are often associated with poor adherence and an increased risk of hypoglycemia. Microneedle technology offers a promising solution by minimizing pain and trauma during insulin administration. Nonetheless, achieving prolonged glycemic control by microneedle with high insulin loading remains a significant challenge. Herein, we introduce an innovative microneedle patch that draws inspiration from the elegant light-induced blooming of water lily petals. The patch features a glucose-responsive hydrogel network crafted from two modified polysaccharide polymers, which enables the delivery of long-acting insulin without depending on glucose oxidase. By incorporating phenylboronic acid-modified sodium alginate, quaternary ammonium chitosan, and polyvinyl alcohol into a hydrogel matrix, we have created a microneedle system that harbors dynamic borate ester linkages and electrostatic attractions, resulting in heightened sensitivity to blood glucose levels. The electrostatic interaction acts as a relatively stable crosslinking point, balancing the dynamic reproducibility response based on the borate ester bond. This self-adaptive hydrogel can regulate insulin-controlled release by responding to changes in glucose concentration. Herein, we achieved massive insulin loading (20 IU) with long lasting glycaemic control (48 h) in a single treatment of diabetic SD rats.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Lei Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310058, PR China
| | - Jinyi Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Dingning Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Jian Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Jian Hu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Jingyi Feng
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Chengjiang Li
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| |
Collapse
|
3
|
Makvandi P, Jamaledin R, Mofidfar M, Wang X, Moon TS. Advances in the development of microarray patches in biomedicine. N Biotechnol 2025; 86:25-30. [PMID: 39814261 DOI: 10.1016/j.nbt.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Microarray patches (MAPs) have been employed to deliver therapeutic payloads and for detection purposes. Research has been conducted to develop novel designs in material chemistry and the architecture of microarray, which have opened up the possibility for broader applications of MAPs. However, MAPs have yet to be clinically implemented fully. Addressing the current challenges and maximizing opportunities will pave the way to translate the relevant technologies from bench to bedside.
Collapse
Affiliation(s)
- Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Rezvan Jamaledin
- University of Bath, Department of Life Sciences, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Tae Seok Moon
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA 92037, United States.
| |
Collapse
|
4
|
Zhang X, Gu Q, Sui X, Zhang J, Liu J, Zhou R. Design and optimization of hollow microneedle spacing for three materials using finite element methods. Sci Rep 2025; 15:652. [PMID: 39753609 PMCID: PMC11698960 DOI: 10.1038/s41598-024-82564-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
The main advantages of microneedles are precise drug delivery through human skin, minimal tissue damage and painlessness. We conducted structural analysis and skin puncture studies of hollow microneedles using ANSYS for three materials: Hafnium Dioxide (HfO2), Polyglycolic acid (PGA) and Polylactic acid (PLA). Firstly, we selected three lengths, three tip diameters and three base diameters to conduct a L9(34) orthogonal experiment. Thus, we obtained nine different single-needle structures for each material, totaling 27 models for three materials. Subsequently, we investigated the stability and puncture properties of single needles. The optimal structures of the single-needle for three materials were same. Then, we used the optimal structure of the single-needle to establish the double-needle, triple-needle and five-needle models with ten different spacings. The simulations were carried out to examine the maximum stress during puncture. Finally, we investigated the hydrodynamic properties of water and lidocaine ibuprofen [Lid][Ibp] in the lumen of the microneedle. The results indicated that the optimal spacing of multi-needles varies depending on the material. The flow velocity of the fluid in the lumen is positively correlated with the pressure. Increasing the pressure can effectively reduce the flow velocity loss of low-viscosity fluid.
Collapse
Affiliation(s)
- Xiaodan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qifei Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xue Sui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jie Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jingwei Liu
- Capital University of Economics and Business, Beijing, 100070, China
| | - Rui Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
5
|
Wang Z, Tong S, Niu J, Cao C, Gao A, Jiao Y, Fu Y, Li D, Pan X, Cui D, Sheng N, Yan L, Cui S, Lin S, Liu Y. Microneedles: multifunctional devices for drug delivery, body fluid extraction, and bio-sensing. NANOSCALE 2025; 17:740-773. [PMID: 39606819 DOI: 10.1039/d4nr03538k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Microneedles represent a miniaturized mechanical structure with versatile applications, including transdermal drug delivery, vaccination, body-fluid extraction, and bio-sensing. Over the past two decades, microneedle-based devices have garnered considerable attention in the biomedicine field, exhibiting the potential for mitigating patient discomfort, enhancing treatment adherence, avoiding first-pass effects, and facilitating precise therapeutic interventions. As an application-oriented technology, the innovation of microneedles is generally carried out in response to a specific demand. Currently, three most common applications of microneedles are drug delivery, fluid extraction, and bio-sensing. This review focuses on the progress in the materials, fabrication techniques, and design of microneedles in recent years. On this basis, the progress and innovation of microneedles in the current research stage are introduced in terms of their three main applications.
Collapse
Affiliation(s)
- Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Siyu Tong
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Cheng Cao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ang Gao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yingao Jiao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yanfei Fu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Dongxia Li
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xinni Pan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200240, P. R. China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Nengquan Sheng
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Li Yan
- Department of Geriatric Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
6
|
Yang S, Xu Y, Zhu M, Yu Y, Hu W, Zhang T, Gao J. Engineering the Functional Expansion of Microneedles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411112. [PMID: 39498731 DOI: 10.1002/adma.202411112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Indexed: 11/07/2024]
Abstract
Microneedles (MNs), composed of an array of micro-sized needles and a supporting base, have transcended their initial use to replace hypodermic needles in drug delivery and fluid collection, advancing toward multifunctional platforms. In this review, four major areas are summarized in interdisciplinary engineering approaches combined with MNs technology. First, electronics engineering, the most extensively researched field, enables applications in biomonitoring, electrical stimulation, and closed-loop theranostics through the generation, transmission, and transformation of electrical signals. Second, in electromagnetic engineering, the responsiveness of electromagnetic induction offers prospects for remote and programmable therapeutic applications. Third, photonic engineering endows MNs with novel functionalities, such as waveguiding and photonic manipulation to enhance optical therapeutic capabilities and facilitate the visualization of disease progression and treatment processes. Lastly, it reviewed the role of mechanical engineering in conferring shape adaptability and programmable motion features necessary for various MNs applications. This review focuses on the functionalities that emerge from the intersection of MNs with complementary engineering technologies, aiming to inspire further research and innovation in microneedle technology for biomedical applications.
Collapse
Affiliation(s)
- Shengfei Yang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yihua Xu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Mingjian Zhu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yawei Yu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Weitong Hu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou, 213149, China
| |
Collapse
|
7
|
Lin H, Liu J, Hou Y, Yu Z, Hong J, Yu J, Chen Y, Hu J, Xia D. Microneedle patch with pure drug tips for delivery of liraglutide: pharmacokinetics in rats and minipigs. Drug Deliv Transl Res 2025; 15:216-230. [PMID: 38619705 DOI: 10.1007/s13346-024-01582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2024] [Indexed: 04/16/2024]
Abstract
Transdermal delivery of peptide drugs is almost impossible with conventional penetration enhancers because of epidermal barrier function. Microneedle (MN) patches can bypass the epidermal barrier and have been developed for trans- and intradermal delivery of peptide drugs and vaccines. However, dissolving MN patches are limited by low drug loading capacities due to their small size and admixture of drug and water-soluble excipients. Furthermore, few in vivo pharmacokinetic studies, especially in large animals such as pigs, have been performed to assess post-application systemic drug exposure. Here, we developed a dissolving MN patch with pure liraglutide at the needle tips. The MN patch could load up to 2.21 ± 0.14 mg of liraglutide in a patch size of 0.9 cm2, which was nearly two orders of magnitude higher than that obtained with conventional MN patches of the same size. Raman imaging confirmed that liraglutide was localized at the MN tips. The MN had sufficient mechanical strength to penetrate the epidermis and could deliver up to 0.93 ± 0.04 mg of liraglutide into skin with a dosing variability of less than 6.8%. The MN patch delivery enabled faster absorption of liraglutide than that provided by subcutaneous (S.C.) injection, and achieved relative bioavailability of 69.8% and 46.3% compared to S.C. injection in rats and minipigs, respectively. The MN patch also exhibited similar patterns of anti-hyperglycemic effect in diabetic rats and individual variability in pharmacokinetic parameters as S.C. injection. The liraglutide MN application was well tolerated; no skin irritation was observed in minipigs except for mild erythema occurring within 4 h after once daily administration for 7 days at the same site. Our preclinical study suggests that MN patch with pure drug needle tips might offer a safe and effective alternative to S.C. injection for administration of liraglutide.
Collapse
Affiliation(s)
- Hongbing Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jinbin Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yulin Hou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhiyan Yu
- Dongguan HEC Biopharmaceutical R&D Co., Ltd., Dongguan, China
| | - Juan Hong
- Dongguan HEC Biopharmaceutical R&D Co., Ltd., Dongguan, China
| | - Jianghong Yu
- Dongguan HEC Biopharmaceutical R&D Co., Ltd., Dongguan, China
| | - Yu Chen
- Dongguan HEC Biopharmaceutical R&D Co., Ltd., Dongguan, China
| | - Jingwen Hu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Dengning Xia
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
8
|
Peng M, Heng Z, Ma D, Hou B, Yang K, Liu Q, Gu Z, Liu W, Chen S. Iontophoresis-Integrated Smart Microneedle Delivery Platform for Efficient Transdermal Delivery and On-Demand Insulin Release. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70378-70391. [PMID: 39668130 DOI: 10.1021/acsami.4c18381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Transdermal insulin delivery in a painless, convenient, and on-demand way remains a long-standing challenge. A variety of smart microneedles (MNs) fabricated by glucose-responsive phenylboronic acid hydrogels have been previously developed to provide painless and autonomous insulin release in response to a glucose level change. However, like the majority of MNs, their transdermal delivery efficiency was still relatively low compared to that with subcutaneous injection. Herein, we report an iontophoresis (ITP)-integrated smart MNs delivery platform with enhanced transdermal delivery efficiency and delivery depth. Carbon nanotubes (CNTs) were induced in the boronate-containing hydrogel to develop a semi-interpenetrating network hydrogel with enhanced stiffness and conductivity. Remarkably, ITP not only facilitated efficient and deeper transdermal delivery of insulin via electroosmosis and electrophoresis but also well-maintained glucose responsiveness. This ITP-combined smart MNs delivery platform, which could provide on-demand insulin delivery in a painless, convenient, and safe way, is promising to achieve persistent glycemic control. Furthermore, transdermal delivery of payloads with a wide size range was achieved by this delivery platform and thus shed light on the development of an efficient transdermal delivery platform with deep skin penetration in a minimally invasive way.
Collapse
Affiliation(s)
- Mingwei Peng
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Ziwen Heng
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Dewei Ma
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Bo Hou
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Keke Yang
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Qinglong Liu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| | - Wei Liu
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siyuan Chen
- Research Institute for Biomaterials, Tech Institute for Advanced Materials Bioinspired Biomedical Materials & Devices Center, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
9
|
Cammarano A, Dello Iacono S, Battisti M, De Stefano L, Meglio C, Nicolais L. A systematic review of microneedles technology in drug delivery through a bibliometric and patent overview. Heliyon 2024; 10:e40658. [PMID: 39669166 PMCID: PMC11635707 DOI: 10.1016/j.heliyon.2024.e40658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
The transdermal drug delivery (TDD) route has gathered considerable attention for its potential to improve therapeutic efficacy while minimizing systemic side effects. Among transdermal technologies, microneedle (MN) devices have proven to be a promising approach that combines the advantages of traditional needle injections and non-invasive topical applications. This review provides a comprehensive analysis of progress in transdermal drug delivery systems (TDDS) via MN from 2000 to 2023, integrating bibliometric analysis and patent landscape to present a multi-faceted perspective on the evolution of this technology. The study identifies key trends, challenges, and opportunities in the research, implementation, and commercialization of MN tools through a systematic examination of scientific literature and an extensive investigation of global patent databases. The study of bibliometric trends reveals the leading experts, organizations, companies, and countries contributing to this field, collaboration networks, and the thematic evolution of research topics. The patent analysis offers insights into innovative trajectories, key players, and geographical distribution of intellectual property. This review resumes the latest advancements in MN devices and provides a strategic outlook that can guide future research directions, promote partnerships, and inform stakeholders involved in the development of TDDS.
Collapse
Affiliation(s)
| | - Stefania Dello Iacono
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, P.le Enrico Fermi 1, 80055, Portici, Italy
| | - Mario Battisti
- Materias Srl, Corso N. Protopisani 50, 80146, Naples, Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples, 80131, Italy
| | | | - Luigi Nicolais
- Materias Srl, Corso N. Protopisani 50, 80146, Naples, Italy
| |
Collapse
|
10
|
Ma J, Li X, Wang C. The Application of Nanomaterials in the Treatment of Pancreatic-Related Diseases. Int J Mol Sci 2024; 25:13158. [PMID: 39684868 DOI: 10.3390/ijms252313158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/16/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Pancreatic diseases, typically including pancreatic cancer, pancreatitis, and diabetes, pose enormous threats to people's lives and health. To date, therapeutics with high therapeutic efficacy and low side effects are still challenging. With the development of nanotechnology, nanomaterials have successfully been applied in pancretic disease treatment. Here, we first introduce the diversity of nanomaterials and the effects of their different physicochemical properties on pancreatic function. Following this, we analyze the potential of nanomaterials to enhance pancreatic targeting by overcoming the challenges of traditional delivery methods through surface modifications, structural adjustments, and optimized drug loading. Then, we introduce the application of structurally optimized nanomaterials to pancreatic-related diseases. For instance, on pancreatic cancer (as drug delivery platforms, for the promotion of radiation therapy, and as multifunctional tools), pancreatitis (as drug delivery systems, anti-inflammatory and anti-fibrotic agents), and diabetes (as insulin delivery carriers, for protecting pancreatic β cells, and for improving insulin resistance). Through analysis of the progress of current research, we summarize how nanomaterials can enhance treatment efficacy while minimizing side effects. Finally, we look forward to the prospects of nanomaterials in pancreatic disease treatment.
Collapse
Affiliation(s)
- Jing Ma
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Li
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunru Wang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Starlin Chellathurai M, Mahmood S, Mohamed Sofian Z, Wan Hee C, Sundarapandian R, Ahamed HN, Kandasamy CS, Hilles AR, Hashim NM, Janakiraman AK. Biodegradable polymeric insulin microneedles - a design and materials perspective review. Drug Deliv 2024; 31:2296350. [PMID: 38147499 PMCID: PMC10763835 DOI: 10.1080/10717544.2023.2296350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023] Open
Abstract
Microneedle (MN) delivery devices are more accepted by people than regular traditional needle injections (e.g. vaccination) due to their simplicity and adaptability. Thus, patients of chronic diseases like diabetes look for alternative pain-free treatment regimens circumventing regular subcutaneous injections. Insulin microneedles (INS-MNs) are a thoughtfully researched topic (1) to overcome needle phobia in patients, (2) for controlled delivery of the peptide, (3) decreasing the frequency of drug administration, (4) to ease the drug administration procedure, and (5) thus increasing patient adherence to the treatment dosage regimes. MNs physically disrupt the hard outer skin layer to create minuscule pores for insulin (INS) to pass through the dermal capillaries into the systemic circulation. Biodegradable polymeric MNs are of greater significance for INS and vaccine delivery than silicon, metal, glass, or non-biodegradable polymeric MNs due to their ease of fabrication, mass production, cost-effectiveness, and bioerodability. In recent years, INS-MNs have been researched to deliver INS through the transdermal implants, buccal mucosa, stomach wall, intestinal mucosal layers, and colonic mucosa apart from the usual transdermal delivery. This review focuses on the design characteristics and the applications of biodegradable/dissolvable polymeric INS-MNs in transdermal, intra-oral, gastrointestinal (GI), and implantable delivery. The prospective approaches to formulate safe, controlled-release INS-MNs were highlighted. Biodegradable/dissolvable polymers, their significance, their impact on MN morphology, and INS release characteristics were outlined. The developments in biodegradable polymeric INS-MN technology were briefly discussed. Bio-erodible polymer selection, MN fabrication and evaluation factors, and other design aspects were elaborated.
Collapse
Affiliation(s)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Cheng Wan Hee
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | | | - Haja Nazeer Ahamed
- Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, India
| | - C. S. Kandasamy
- Department of Pharmacognosy, Karpagam College of Pharmacy, Coimbatore, India
| | - Ayah R. Hilles
- INHART, International Islamic University, Kuala Lumpur, Malaysia
| | - Najihah Mohd Hashim
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ashok Kumar Janakiraman
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Huang J, Wang X, Li Z. Dissolving microneedles: standing out in melanoma treatment. J Mater Chem B 2024; 12:11573-11595. [PMID: 39431729 DOI: 10.1039/d4tb01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Melanoma is one of the most significant and dangerous superficial skin tumors with a high fatality rate, thanks to its high invasion rate, drug resistance and frequent metastasis properties. Unfortunately, researchers for decades have demonstrated that the outcome of using conventional therapies like chemotherapy and immunotherapy with normal drug delivery routes, such as an oral route to treat melanoma was not satisfactory. The severe adverse effects, slow drug delivery efficiency and low drug accumulation at targeted malignancy sites all lead to poor anti-cancer efficacy and terrible treatment experience. As a novel transdermal drug delivery system, microneedles (MNs) have emerged as an effective solution to help improve the low cure rate of melanoma. The excellent characteristics of MNs make it easy to penetrate the stratum corneum (SC) and then locally deliver the drug towards the lesion without drug leakage to mitigate the occurrence of side effects and increase the drug accumulation. Therefore, loading chemotherapeutic drugs or immunotherapy drugs in MNs can address the problems mentioned above, and MNs play a crucial role in improving the curative effect of conventional treatment methods. Notably, novel tumor therapies like photothermal therapy (PTT), photodynamic therapy (PDT) and chemodynamic therapy (CDT) have shown good application prospects in the treatment of melanoma, and MNs provide a valid platform for the combination of conventional therapies and novel therapies by encompassing different therapeutic materials in the matrix of MNs. The synergistic effect of multiple therapies can enhance the therapeutic efficacy compared to single therapies, showing great potential in melanoma treatment. Dissolving MNs have been the most commonly used microneedles in the treatment of melanoma in recent years, mainly because of their simple fabrication procedure and enough drug loading. So, considering the increasing use of dissolving MNs, this review collects research studies published in the last four years (2020-2024) that have rarely been included in other reviews to update the progress of applications of dissolving MNs in anti-melanoma treatment, especially in synergistic therapies. This review also presents current design and fabrication methods of dissolving MNs; the limitations of microneedle technology in the treatment of melanoma are comprehensively discussed. This review can provide valuable guidance for their future development.
Collapse
Affiliation(s)
- Jingting Huang
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| | - Xihao Wang
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| |
Collapse
|
13
|
Jin YX, Ngoc Chien P, Thi Nga P, Zhang XR, Ngan Giang N, Thi Thuy Le L, Trinh TTT, Zhou SY, Nam SY, Heo CY. Enhancing wound healing through innovative technologies: microneedle patches and iontophoresis. Front Bioeng Biotechnol 2024; 12:1468423. [PMID: 39530061 PMCID: PMC11550992 DOI: 10.3389/fbioe.2024.1468423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Wound healing is a complex process involving multiple stages, including inflammation, proliferation, and remodeling. Effective wound management strategies are essential for accelerating healing and improving outcomes. The CELLADEEP patch, incorporating iontophoresis therapy and microneedle technology, was evaluated for its potential to enhance the wound healing process. Methods This study utilized a full-thickness skin defect model in Sprague-Dawley rats, researchers compared wound healing outcomes between rats treated with the CELLADEEP Patch and those left untreated. Various histological staining techniques were employed to examine and assess the wound healing process, such as H&E, MT and immunofluorescence staining. Furthermore, the anti-inflammatory and proliferative capabilities were further investigated using biochemical assays. Results Macroscopic and microscopic analyses revealed that the CELLADEEP patch significantly accelerated wound closure, reduced wound width, and increased epidermal thickness and collagen deposition compared to an untreated group. The CELLADEEP patch decreased nitric oxide and reactive oxygen species levels, as well as pro-inflammatory cytokines IL-6 and TNF-α, indicating effective modulation of the inflammatory response. Immunofluorescence staining showed reduced markers of macrophage activity (CD68, F4/80, MCP-1) in the patch group, suggesting a controlled inflammation process. Increased levels of vimentin, α-SMA, VEGF, collagen I, and TGF-β1 were observed, indicating enhanced fibroblast activity, angiogenesis, and extracellular matrix production. Discussion The CELLADEEP patch demonstrated potential in promoting effective wound healing by accelerating wound closure, modulating the inflammatory response, and enhancing tissue proliferation and remodeling. The CELLADEEP patch offers a promising non-invasive treatment option for improving wound healing outcomes.
Collapse
Affiliation(s)
- Yong Xun Jin
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
| | - Pham Thi Nga
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
| | - Xin Rui Zhang
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Nguyen Ngan Giang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Linh Thi Thuy Le
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Thuy-Tien Thi Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
| | - Shu Yi Zhou
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sun Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, Seongnam, Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Abdelhay RM, Ali MS, Gad LZ, Mahran NM. Microneedling With Topical Insulin Versus Microneedling With Placebo in the Treatment of Postacne Atrophic Scars: A Randomized Control Trial. Dermatol Surg 2024:00042728-990000000-01007. [PMID: 39442178 DOI: 10.1097/dss.0000000000004462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
BACKGROUND Among the treatment modalities for post-acne scars, microneedling is considered a safe and effective method. OBJECTIVE To compare the efficacy and safety of combined microneedling with topical insulin versus microneedling with placebo (topical saline) in treating atrophic acne scars. METHODS AND MATERIALS Twenty-one patients with atrophic post-acne scars were randomized and treated in a split face manner with 4 sessions at 3-week intervals of microneedling using dermapen, followed by application of insulin on one side of the face and saline (placebo) on the other side. Evaluation of response was done before the sessions and after 1 month of the last session using the Global Scarring Grading System of Goodman & Baron and Lipper & Perez scores, Patient reported acne scar improvement using a 4-point scale, patient satisfaction, and the facial acne scar quality of life tools. RESULTS Both therapeutic modalities yielded a statistically significant improvement of atrophic acne scars. By comparing both modalities, there was no statistical significance regarding clinical improvement and side effects. CONCLUSION Using topical insulin combined with microneedling may have a value in improving atrophic acne scars, suggesting further evaluation using different delivery systems, insulin formulations, and assessment modalities.
Collapse
Affiliation(s)
- Rania Mounir Abdelhay
- All authors are affiliated with the Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | |
Collapse
|
15
|
Wang S, Yang C, Zhang W, Zhao S, You J, Cai R, Wang H, Bao Y, Zhang Y, Zhang J, Ji K, Zhang Y, Ye X, Gu Z, Yu J. Glucose-Responsive Microneedle Patch with High Insulin Loading Capacity for Prolonged Glycemic Control in Mice and Minipigs. ACS NANO 2024. [PMID: 39259604 DOI: 10.1021/acsnano.4c05562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Transdermal microneedle-mediated glucose-responsive insulin delivery systems can modulate insulin release based on fluctuations in blood glucose levels, thus maintaining normoglycemia effectively in a continuous, convenient, and minimally invasive manner. However, conventional microneedles are limited by the low drug loading capacity, making it challenging to be applied on human skin at a reasonable size for a lasting glucose-controlling effect, thus hindering their clinical translation. Here, we design a microneedle patch with a solid insulin powder core to achieve a high loading capacity of insulin (>70 wt %) as well as a glucose-sensitive polymeric shell to realize glucose-responsive insulin release. Once exposed to hyperglycemia, the formation of negatively charged glucose-boronate complexes increases the charge density of the shell matrix, leading to swelling of the shell and accelerating insulin release from the core. We have demonstrated that this glucose-responsive microneedle patch could achieve long-term regulation of blood glucose levels in both type 1 diabetic mice and minipigs (up to 48 h with patches of ∼3.5 cm2 for minipigs >25 kg).
Collapse
Affiliation(s)
- Shiqi Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Changwei Yang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wentao Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng Zhao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahuan You
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruisi Cai
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuhang Bao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Juan Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kangfan Ji
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiao Ye
- Center for General Practice Medicine, Department of Endocrinology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou 310014, China
- Key Laboratory for Diagnosis and Treatment of Endocrine Gland Diseases of Zhejiang Province, Hangzhou 310014, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
16
|
Ai X, Yang J, Liu Z, Guo T, Feng N. Recent progress of microneedles in transdermal immunotherapy: A review. Int J Pharm 2024; 662:124481. [PMID: 39025342 DOI: 10.1016/j.ijpharm.2024.124481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Since human skin is an immune organ, a large number of immune cells are distributed in the epidermis and the dermis of the skin. Transdermal immunotherapy shows great therapeutic advantages in innate immunotherapy and adaptive immunotherapy. To solve the problem that macromolecules are difficult to penetrate into the skin, the microneedle technology can directly break through the skin barrier using micron-sized needles in a non-invasive and painless way for transdermal drug delivery. Therefore, it is considered to be an effective technology to increase drug transdermal absorption. In this review, the types of preparation, the combinations with different techniques and the mechanisms of microneedles in transdermal immunotherapy were summarized. Compared with traditional immunotherapy like intramuscular injection and subcutaneous injection, the microneedle has many advantages in transdermal immunotherapy, such as reducing patient pain, enhancing vaccine stability, and inducing stronger immune responses. Although there are still some limitations to be solved, the application of microneedle technology in transdermal immunotherapy is undoubtedly a promising means of drug delivery.
Collapse
Affiliation(s)
- Xinyi Ai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhenda Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Teng Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
17
|
Odent J, Baleine N, Torcasio SM, Gautier S, Coulembier O, Raquez JM. 3D-Printed Phenylboronic Acid-Bearing Hydrogels for Glucose-Triggered Drug Release. Polymers (Basel) 2024; 16:2502. [PMID: 39274135 PMCID: PMC11398034 DOI: 10.3390/polym16172502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Diabetes is a major health concern that the next-generation of on-demand insulin releasing implants may overcome via personalized therapy. Therein, 3D-printed phenylboronic acid-containing implants with on-demand glucose-triggered drug release abilities are produced using high resolution stereolithography technology. To that end, the methacrylation of phenylboronic acid is targeted following a two-step reaction. The resulting photocurable phenylboronic acid derivative is accordingly incorporated within bioinert polyhydroxyethyl methacrylate-based hydrogels at varying loadings. The end result is a sub-centimeter scaled 3D-printed bioinert implant that can be remotely activated with 1,2-diols and 1,3-diols such as glucose for on-demand drug administration such as insulin. As a proof of concept, varying glucose concentration from hypoglycemic to hyperglycemic levels readily allow the release of pinacol, i.e., a 1,2-diol-containing model molecule, at respectively low and high rates. In addition, the results demonstrated that adjusting the geometry and size of the 3D-printed part is a simple and suitable method for tailoring the release behavior and dosage.
Collapse
Affiliation(s)
- Jérémy Odent
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Nicolas Baleine
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Serena Maria Torcasio
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Sarah Gautier
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Olivier Coulembier
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons (UMONS), Place du Parc 20, 7000 Mons, Belgium
| |
Collapse
|
18
|
Phoka T, Wanichwecharungruang N, Dueanphen N, Thanuthanakhun N, Kietdumrongwong P, Leelahavanichkul A, Wanichwecharungruang S. Converting Short-Acting Insulin into Thermo-Stable Longer-Acting Insulin Using Multi-Layer Detachable Microneedles. J Pharm Sci 2024; 113:2734-2743. [PMID: 38857645 DOI: 10.1016/j.xphs.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
The detachable dissolving microneedles (DDMNs) feature an array of needles capable of being separated from the base sheet during administration. Here they were fabricated to address delivery efficiency and storage stability of insulin. The constructed insulin-DDMN is multi-layered, with 1) a hard tip cover layer; 2) a layer of regular short-acting insulin (RI) mixed with hyaluronic acid (HA) and sorbitol (Sor) which occupies the taper tip region of the needles; 3) a barrier layer situated above the RI layer; and 4) a fast-dissolving layer connecting the barrier layer to the base sheet. RI entrapped in DDMNs exhibited enhanced thermal stability; it could be stored at 40 °C for 35 days without losing significant biological activity. Differential scanning calorimetric analysis revealed that the HA-Sor matrix could improve the denaturation temperature of the RI from lower than room temperature to 186 °C. Tests in ex vivo porcine skin demonstrated RI delivery efficiency of 91±1.59 %. Experiments with diabetic rats revealed sustained release of RI, i.e., when compared to subcutaneous injection with the same RI dose, RI-DDMNs produced slower absorption of insulin into blood circulation, delayed onset of hypoglycemic effect, longer serum insulin half-life, and longer hypoglycemic duration.
Collapse
Affiliation(s)
- Theerapat Phoka
- Center of Excellence in Materials and Bio-Interfaces, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Narintorn Dueanphen
- Center of Excellence in Materials and Bio-Interfaces, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supason Wanichwecharungruang
- Center of Excellence in Materials and Bio-Interfaces, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
19
|
Chu H, Xue J, Yang Y, Zheng H, Luo D, Li Z. Advances of Smart Stimulus-Responsive Microneedles in Cancer Treatment. SMALL METHODS 2024; 8:e2301455. [PMID: 38148309 DOI: 10.1002/smtd.202301455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Microneedles (MNs) have emerged as a highly promising technology for delivering drugs via the skin. They provide several benefits, including high drug bioavailability, non-invasiveness, painlessness, and high safety. Traditional strategies for intravenous delivery of anti-tumor drugs have risks of systemic toxicity and easy development of drug resistance, while MN technology facilitates precise delivery and on-demand release of drugs in local tissues. In addition, by further combining with stimulus-responsive materials, the construction of smart stimulus-responsive MNs can be achieved, which can respond to specific physical/chemical stimuli from the internal or external environment, thereby further improving the accuracy of tumor treatment and reducing toxicity to surrounding tissues/cells. This review systematically summarizes the classification, materials, and reaction mechanisms of stimulus-responsive MNs, outlines the benefits and challenges of various types of MNs, and details their application and latest progress in cancer treatment. Finally, the development prospects of smart MNs in tumor treatment are also discussed, bringing inspiration for future precision treatment of tumors.
Collapse
Affiliation(s)
- Huaqing Chu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Jiangtao Xue
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Yang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
20
|
Tan S, Wang Y, Wei X, Xiao X, Gao L. Microneedle-mediated drug delivery for neurological diseases. Int J Pharm 2024; 661:124400. [PMID: 38950662 DOI: 10.1016/j.ijpharm.2024.124400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Neurological disorders, including brain injury, brain tumors, and neurodegenerative diseases, rank as the second leading cause of death worldwide. Exploring effective new treatments for neurological disorders has long been a hot research issue in clinical practice. Recently, microneedles (MNs) have attracted much attention due to their designation as a "painless and non-invasive" novel transdermal delivery method, characterized by their biocompatibility and sustainability. The advantages of MNs open an avenue for potential therapeutic interventions targeting neurological disorders. This review presents a concise overview of progress in the field of MNs, with highlights on the application in the treatment of neurological disorders. Notably, trends in the development of MNs and future challenges are also discussed.
Collapse
Affiliation(s)
- Shuna Tan
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Yitian Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Xuan Wei
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Xiao Xiao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Linbo Gao
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
21
|
Ertas YN, Ertas D, Erdem A, Segujja F, Dulchavsky S, Ashammakhi N. Diagnostic, Therapeutic, and Theranostic Multifunctional Microneedles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308479. [PMID: 38385813 DOI: 10.1002/smll.202308479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/04/2024] [Indexed: 02/23/2024]
Abstract
Microneedles (MNs) have maintained their popularity in therapeutic and diagnostic medical applications throughout the past decade. MNs are originally designed to gently puncture the stratum corneum layer of the skin and have lately evolved into intelligent devices with functions including bodily fluid extraction, biosensing, and drug administration. MNs offer limited invasiveness, ease of application, and minimal discomfort. Initially manufactured solely from metals, MNs are now available in polymer-based varieties. MNs can be used to create systems that deliver drugs and chemicals uniformly, collect bodily fluids, and are stimulus-sensitive. Although these advancements are favorable in terms of biocompatibility and production costs, they are insufficient for the therapeutic use of MNs. This is the first comprehensive review that discusses individual MN functions toward the evolution and development of smart and multifunctional MNs for a variety of novel and impactful future applications. The study examines fabrication techniques, application purposes, and experimental details of MN constructs that perform multiple functions concurrently, including sensing, drug-molecule release, sampling, and remote communication capabilities. It is highly likely that in the near future, MN-based smart devices will be a useful and important component of standard medical practice for different applications.
Collapse
Affiliation(s)
- Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Türkiye
| | - Derya Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye
| | - Ahmet Erdem
- Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
- Department of Chemistry, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
| | - Farouk Segujja
- Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41380, Türkiye
| | - Scott Dulchavsky
- Department of Surgery, Henry Ford Health, Detroit, MI, 48201, USA
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering (IQ) and Department of Biomedical Engineering (BME), Colleges of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
22
|
Liu H, Zhou X, Nail A, Yu H, Yu Z, Sun Y, Wang K, Bao N, Meng D, Zhu L, Li H. Multi-material 3D printed eutectogel microneedle patches integrated with fast customization and tunable drug delivery. J Control Release 2024; 368:115-130. [PMID: 38367865 DOI: 10.1016/j.jconrel.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/21/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Microneedle patches are emerging multifunctional platforms for transdermal diagnostics and drug delivery. However, it still remains challenging to develop smart microneedles integrated with customization, sensing, detection and drug delivery by 3D printing strategy. Here, we present an innovative but facile strategy to rationally design and fabricate multifunctional eutectogel microneedle (EMN) patches via multi-material 3D printing. Polymerizable deep eutectic solvents (PDES) were selected as printing inks for rapid one-step fabrication of 3D printing functional EMN patches due to fast photopolymerization rate and ultrahigh drug solubility. Moreover, stretchable EMN patches incorporating rigid needles and flexible backing layers were easily realized by changing PDES compositions of multi-material 3D printing. Meanwhile, we developed multifunctional smart multi-material EMN patches capable of performing wireless monitoring of body movements, painless colorimetric glucose detection, and controlled transdermal drug delivery. Thus, such multi-material EMN system could provide an effective platform for the painless diagnosis, detection, and therapy of a variety of diseases.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinmeng Zhou
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Aminov Nail
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hao Yu
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zilian Yu
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yue Sun
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Kun Wang
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Nanbin Bao
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Decheng Meng
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Liran Zhu
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Huanjun Li
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
23
|
Martínez-Navarrete M, Pérez-López A, Guillot AJ, Cordeiro AS, Melero A, Aparicio-Blanco J. Latest advances in glucose-responsive microneedle-based systems for transdermal insulin delivery. Int J Biol Macromol 2024; 263:130301. [PMID: 38382776 DOI: 10.1016/j.ijbiomac.2024.130301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/11/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
The development of a self-regulated minimally invasive system for insulin delivery can be considered as the holy grail in the field of diabetes mellitus. A delivery system capable of releasing insulin in response to blood glucose levels would significantly improve the quality of life of diabetic patients, eliminating the need for frequent finger-prick tests and providing better glycaemic control with lower risk of hypoglycaemia. In this context, the latest advances in glucose-responsive microneedle-based transdermal insulin delivery are here compiled with a thorough analysis of the delivery mechanisms and challenges lying ahead in their clinical translation. Two main groups of microneedle-based systems have been developed so far: glucose oxidase-containing and phenylboronic acid-containing systems. Both strategies in combination have also been tested and two other novel strategies are under development, namely electronic closed-loop and glucose transporter-based systems. Results from preclinical studies conducted using these different types of glucose-triggered release systems are comprehensively discussed. Altogether, this analysis from both a mechanistic and translational perspective will provide rationale and/or guidance for future trends in the research hotspot of glucose-responsive microneedle-based insulin delivery systems.
Collapse
Affiliation(s)
- Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - Alexandre Pérez-López
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Institute of Industrial Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
24
|
Shen D, Yu H, Wang L, Wang Y, Feng J, Li C. Electrostatic-Interaction-Aided Microneedle Patch for Enhanced Glucose-Responsive Insulin Delivery and Three-Meal-Per-Day Blood-Glucose Regulation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4449-4461. [PMID: 38252958 DOI: 10.1021/acsami.3c16540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The phenylborate-ester-cross-linked hydrogel microneedle patch (MNP) was promising in the diabetic field for the glucose-responsive insulin-delivering property and simple fabrication process. However, the unfit design of the charging microneedle network limited the improvement of blood-glucose regulating performances. In this work, insulin-loaded phenylborate-ester-cross-linked MNPs, with the polyzwitterion property, were constructed based on the modified ε-polylysine and poly(vinyl alcohol). The relationship between the charging nature of the MNP network and insulin release was verified by regulating the content of postprotonated positively charged amino groups. The elaborately designed MNP possessed improved glucose-responsive insulin-delivering performance. The in vivo study revealed the satisfactory results on blood-glucose regulation by the optimized MNP under the mimic three-meal-per-day mode. Moreover, the insulin bioactivity in the MNP could be maintained for 2 weeks under 25 °C. In summary, this work developed an effective strategy to improve the glucose-responsive phenylborate-ester-cross-linked MNP and enhance its potential for clinical transformation.
Collapse
Affiliation(s)
- Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Russia Joint Laboratory of Photo-Electro-Magnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Russia Joint Laboratory of Photo-Electro-Magnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jingyi Feng
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| | - Chengjiang Li
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, P. R. China
| |
Collapse
|
25
|
Chen BZ, Li WX, Feng YH, Zhang XP, Jiao J, Li ZL, Nosrati-Siahmazgi V, Shahbazi MA, Guo XD. Functional insulin aspart/insulin degludec-based microneedles for promoting postprandial glycemic control. Acta Biomater 2023; 171:350-362. [PMID: 37708925 DOI: 10.1016/j.actbio.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Insulin aspart (IAsp) and insulin degludec (IDeg), as the third generation of insulin, have a faster onset time or a more durable action period, which may simulate the secretion of insulin under physiological conditions. Microneedles (MNs) are transdermal delivery devices that may allow diabetic patients to easily deploy transdermal insulin therapy while considerably reducing injection pain. In this study, we investigated the combination of dissolving MNs with IAsp or IDeg therapy as an alternative to daily multiple insulin injections, aiming to improve glycemic control and patient compliance. Mechanical properties of the MNs, structural stability of insulin encapsulated in the MNs, and transdermal application characteristics were studied to assess the practicality of insulin-loaded MNs for diabetes therapy. In vivo experiments conducted on diabetic rats demonstrated that the IAsp- and IDeg-loaded MNs have comparable blood glucose control abilities to that of subcutaneous injections. In addition, the therapeutic properties of insulin-loaded MNs under diverse dietary conditions and application strategies were further investigated to provide new information to support future clinical trials. Taken together, the proposed MNs have the potential to improve balances between glycemic control, hypoglycemia risk, and convenience, providing patients with simpler regimens. STATEMENT OF SIGNIFICANCE: 1. The fabricated functional insulin-loaded dissolving microneedles closely matched the glucose rise that occurs in response to meals, demonstrating promising alternatives for multiple daily insulin injections. 2. The hypoglycemic properties of insulin microneedles were investigated under diverse dietary conditions and application strategies, yielding new information to support future clinical trials. 3. Molecular dynamics simulations were utilized to study the interactions between the insulin and microneedle matrix materials, providing a strategy for theoretically understanding drug stability as well as the release mechanism of drug-loaded microneedles.
Collapse
Affiliation(s)
- Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wen Xuan Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yun Hao Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiao Peng Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jie Jiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuo Lin Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Vahideh Nosrati-Siahmazgi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran.
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
26
|
Zhi Chen B, Ting He Y, Qiang Zhao Z, Hao Feng Y, Liang L, Peng J, Yu Yang C, Uyama H, Shahbazi MA, Dong Guo X. Strategies to develop polymeric microneedles for controlled drug release. Adv Drug Deliv Rev 2023; 203:115109. [PMID: 39492421 DOI: 10.1016/j.addr.2023.115109] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2024]
Abstract
The remarkable appeal of microneedle controlled-release systems has captivated both the academic community and pharmaceutical industry due to their great potential for achieving spatiotemporally controlled release, coupled with their the minimally invasive nature and ease of application. Over the years, scientists have dedicated their efforts to advancing microneedle systems by manipulating the physicochemical properties of matrix materials, refining microneedle designs, and interfacing with external devices to provide tailored drug release profiles in a spatiotemporally controllable manner. Expanding upon our understanding of drug release mechanisms from polymeric microneedles, which include diffusion, swelling, degradation, triggering, and targeting, there is a growing focus on manipulating the location and rate of drug release through innovative microneedle designs. This burgeoning field of microneedle-based drug delivery systems offers further prospects for precise control over drug release. The design strategies of polymeric microneedle systems for temporally controlled and locally targeted release, as well as the delivery mechanisms by which drugs can be released from a microneedle system are critically reviewed in this work. Furthermore, this review also puts forward some perspectives on the potential and challenges involved in translating these microneedle-based delivery systems into the next generation therapies.
Collapse
Affiliation(s)
- Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Yu Ting He
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ze Qiang Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yun Hao Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ling Liang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Juan Peng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Yu Yang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran.
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
27
|
Mbituyimana B, Adhikari M, Qi F, Shi Z, Fu L, Yang G. Microneedle-based cell delivery and cell sampling for biomedical applications. J Control Release 2023; 362:692-714. [PMID: 37689252 DOI: 10.1016/j.jconrel.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Cell-based therapeutics are novel therapeutic strategies that can potentially treat many presently incurable diseases through novel mechanisms of action. Cell therapies may benefit from the ease, safety, and efficacy of administering therapeutic cells. Despite considerable recent technological and biological advances, several barriers remain to the clinical translation and commercialization of cell-based therapies, including low patient compliance, personal handling inconvenience, poor biosafety, and limited biocompatibility. Microneedles (MNs) are emerging as a promising biomedical device option for improved cell delivery with little invasion, pain-free administration, and simplicity of disposal. MNs have shown considerable promise in treating a wide range of diseases and present the potential to improve cell-based therapies. In this review, we first summarized the latest advances in the various types of MNs developed for cell delivery and cell sampling. Emphasis was given to the design and fabrication of various types of MNs based on their structures and materials. Then we focus on the recent biomedical applications status of MNs-mediated cell delivery and sampling, including tissue repair (wound healing, heart repair, and endothelial repair), cancer treatment, diabetes therapy, cell sampling, and other applications. Finally, the current status of clinical application, potential perspectives, and the challenges for clinical translation are also highlighted.
Collapse
Affiliation(s)
- Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Manjila Adhikari
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fuyu Qi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Lina Fu
- College of Medicine, Huanghuai University, Zhumadian, Henan 463000, China; Zhumadian Central Hospital, Zhumadian, Henan 463000, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
28
|
Li P, Liu CH, Zhao YY, Cao DD, Chen BZ, Guo XD, Zhang W. Multifunctional Covalent Organic Framework-Based Microneedle Patch for Melanoma Treatment. Biomacromolecules 2023; 24:3846-3857. [PMID: 37475132 DOI: 10.1021/acs.biomac.3c00488] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Melanoma is resistant to conventional chemotherapy and radiotherapy. Therefore, it is essential to develop a targeted, low-toxic, and minimally invasive treatment. Here, DTIC/ICG-Fe3O4@TpBD BSP/HA microneedles (MNs) were designed and fabricated, which can enhance targeting to melanoma and perform photothermal therapy (PTT) and chemotherapy simultaneously to synergistically exert anticancer effects. The system consisted of magnetic nanoparticles (DTIC/ICG-Fe3O4@TpBD), dissoluble matrix (Bletilla polysaccharide (BSP)/hyaluronic acid (HA)), and a polyvinyl alcohol backing layer. Due to the good magnetic responsiveness of Fe3O4@TpBD, dacarbazine (DTIC) and indocyanine green (ICG) can be better targeted to the tumor tissue and improve the therapeutic effect. BSP and HA have good biocompatibility and transdermal ability, so that the MNs can completely penetrate the tumor tissue, be dissolved by the interstitial fluid, and release DTIC and ICG. Under near-infrared (NIR) light irradiation, ICG converts light energy into thermal energy and induces ablation of B16-OVA melanoma cells. In vivo results showed that DTIC/ICG-Fe3O4@TpBD BSP/HA MNs combined with chemotherapy and PTT could effectively inhibit the growth of melanoma without tumor recurrence or significant weight loss in mice. Therefore, DTIC/ICG-Fe3O4@TpBD BSP/HA MNs are expected to provide new ideas and therapeutic approaches for the clinical treatment of melanoma.
Collapse
Affiliation(s)
- Pan Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Chun Hui Liu
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Yan Yan Zhao
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Da Dong Cao
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Weifen Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P.R. China
- Institute for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, Shandong, P.R. China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| |
Collapse
|
29
|
Elian V, Popovici V, Ozon EA, Musuc AM, Fița AC, Rusu E, Radulian G, Lupuliasa D. Current Technologies for Managing Type 1 Diabetes Mellitus and Their Impact on Quality of Life-A Narrative Review. Life (Basel) 2023; 13:1663. [PMID: 37629520 PMCID: PMC10456000 DOI: 10.3390/life13081663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Type 1 diabetes mellitus is a chronic autoimmune disease that affects millions of people and generates high healthcare costs due to frequent complications when inappropriately managed. Our paper aimed to review the latest technologies used in T1DM management for better glycemic control and their impact on daily life for people with diabetes. Continuous glucose monitoring systems provide a better understanding of daily glycemic variations for children and adults and can be easily used. These systems diminish diabetes distress and improve diabetes control by decreasing hypoglycemia. Continuous subcutaneous insulin infusions have proven their benefits in selected patients. There is a tendency to use more complex systems, such as hybrid closed-loop systems that can modulate insulin infusion based on glycemic readings and artificial intelligence-based algorithms. It can help people manage the burdens associated with T1DM management, such as fear of hypoglycemia, exercising, and long-term complications. The future is promising and aims to develop more complex ways of automated control of glycemic levels to diminish the distress of individuals living with diabetes.
Collapse
Affiliation(s)
- Viviana Elian
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050471 Bucharest, Romania; (V.E.); (E.R.); (G.R.)
- Department of Diabetes, Nutrition and Metabolic Diseases, “Prof. Dr. N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
| | - Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Emma-Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (A.C.F.); (D.L.)
| | - Adina Magdalena Musuc
- Romanian Academy, “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Ancuța Cătălina Fița
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (A.C.F.); (D.L.)
| | - Emilia Rusu
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050471 Bucharest, Romania; (V.E.); (E.R.); (G.R.)
- Department of Diabetes, N. Malaxa Clinical Hospital, 12 Vergului Street, 022441 Bucharest, Romania
| | - Gabriela Radulian
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050471 Bucharest, Romania; (V.E.); (E.R.); (G.R.)
- Department of Diabetes, Nutrition and Metabolic Diseases, “Prof. Dr. N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (A.C.F.); (D.L.)
| |
Collapse
|
30
|
Xing M, Ma Y, Wei X, Chen C, Peng X, Ma Y, Liang B, Gao Y, Wu J. Preparation and Evaluation of Auxiliary Permeable Microneedle Patch Composed of Polyvinyl Alcohol and Eudragit NM30D Aqueous Dispersion. Pharmaceutics 2023; 15:2007. [PMID: 37514192 PMCID: PMC10385563 DOI: 10.3390/pharmaceutics15072007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Poor transdermal permeability limits the possibility of most drug delivery through the skin. Auxiliary permeable microneedles (AP-MNs) with a three-dimensional network structure can effectively break the skin stratum corneum barrier and assist in the transdermal delivery of active ingredients. Herein, we propose a simple method for preparing AP-MNs using polyvinyl alcohol and Eudragit NM30D for the first time. To optimize the formulation of microneedles, the characteristics of swelling properties, skin insertion, solution viscosity, and needle integrity were systematically examined. Additionally, the morphology, mechanical strength, formation mechanism, skin permeability, swelling performance, biocompatibility, and in vitro transdermal drug delivery of AP-MNs were evaluated. The results indicated that the microneedles exhibited excellent mechanical-strength and hydrogel-forming properties after swelling. Further, it proved that a continuous and unblockable network channel was created based on physical entanglement and encapsulation of two materials. The 24 h cumulative permeation of acidic and alkaline model drugs, azelaic acid and matrine, were 51.73 ± 2.61% and 54.02 ± 2.85%, respectively, significantly enhancing the transdermal permeability of the two drugs. In summary, the novel auxiliary permeable microneedles prepared through a simple blending route of two materials was a promising and valuable way to improve drug permeation efficiency.
Collapse
Affiliation(s)
- Mengzhen Xing
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaocen Wei
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chen Chen
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xueli Peng
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
| | - Yuxia Ma
- Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Bingwen Liang
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yunhua Gao
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry of Chinese Academy of Sciences, Beijing 100190, China
- Beijing CAS Microneedle Technology Ltd., Beijing 102609, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
31
|
Ren Y, Li J, Chen Y, Wang J, Chen Y, Wang Z, Zhang Z, Chen Y, Shi X, Cao L, Zhang J, Dong H, Yan C, Li Z. Customized flexible hollow microneedles for psoriasis treatment with reduced-dose drug. Bioeng Transl Med 2023; 8:e10530. [PMID: 37476063 PMCID: PMC10354769 DOI: 10.1002/btm2.10530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 07/22/2023] Open
Abstract
Microneedles, especially hollow microneedles (HMNs), play an important role in drug delivery, but most of the current HMNs are manufactured based on silicon microfabrication (lithography, etching, etc.), which are slightly conservative due to the lack of low-cost, batch-scale and customized preparation approach, especially for the HMNs with flexible substrate. For the first time, we propose the use of a high-precision 3D printed master mold followed by a dual-molding process for the preparation of HMNs with different shapes, heights, and inner and outer diameters to satisfy different drug delivery needs. The 3D printed master mold and negative mold can be reused, thereby significantly reducing the cost. HMNs are based on biocompatible materials, such as heat-curing polymers or light-curing resins. The thickness and rigidity/flexibility characteristics of the substrate can be customized for different applications. The drug delivery efficiency of the fabricated HMNs was verified by the in situ treatment of psoriasis on the backs of mice, which required only a 0.1-fold oral dose to achieve similar efficacy, and the associated side effects and drug toxicity were reduced. Thus, this dual-molding process can reinvigorate HMNs development.
Collapse
Affiliation(s)
- Yingjie Ren
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| | - Junshi Li
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| | - Yiwen Chen
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Jing Wang
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Yuxuan Chen
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| | - Zhongyan Wang
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| | - Zhitong Zhang
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| | - Yufeng Chen
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| | - Xiaoyi Shi
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| | - Lu Cao
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- College of EngineeringPeking UniversityBeijingChina
| | - Jiayan Zhang
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| | - Huang Dong
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| | - Cong Yan
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Zhihong Li
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| |
Collapse
|
32
|
Gopan G, Jose J, Khot KB, Bandiwadekar A. The use of cellulose, chitosan and hyaluronic acid in transdermal therapeutic management of obesity: A review. Int J Biol Macromol 2023:125374. [PMID: 37330096 DOI: 10.1016/j.ijbiomac.2023.125374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/29/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Obesity is a clinical condition with rising popularity and detrimental impacts on human health. According to the World Health Organization, obesity is the sixth most common cause of death worldwide. It is challenging to combat obesity because medications that are successful in the clinical investigation have harmful side effects when administered orally. The conventional approaches for treating obesity primarily entail synthetic compounds and surgical techniques but possess severe adverse effects and recurrences. As a result, a safe and effective strategy to combat obesity must be initiated. Recent studies have shown that biological macromolecules of the carbohydrate class, such as cellulose, hyaluronic acid, and chitosan, can enhance the release and efficacy of medications for obesity but due to their short biological half-lives and poor oral bioavailability, their distribution rate is affected. This helps to comprehend the need for an effective therapeutic approach via a transdermal drug delivery system. This review focuses on the transdermal administration, utilizing cellulose, chitosan, and hyaluronic acid via microneedles, as it offers a promising solution to overcome existing therapy limitations in managing obesity and it also highlights how microneedles can effectively deliver therapeutic substances through the skin's outer layer, bypassing pain receptors and specifically targeting adipose tissue.
Collapse
Affiliation(s)
- Gopika Gopan
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| | - Kartik Bhairu Khot
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Akshay Bandiwadekar
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| |
Collapse
|
33
|
Al-Nimry SS, Daghmash RM. Three Dimensional Printing and Its Applications Focusing on Microneedles for Drug Delivery. Pharmaceutics 2023; 15:1597. [PMID: 37376046 DOI: 10.3390/pharmaceutics15061597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Microneedles (MNs) are considered to be a novel smart injection system that causes significantly low skin invasion upon puncturing, due to the micron-sized dimensions that pierce into the skin painlessly. This allows transdermal delivery of numerous therapeutic molecules, such as insulin and vaccines. The fabrication of MNs is carried out through conventional old methods such as molding, as well as through newer and more sophisticated technologies, such as three-dimensional (3D) printing, which is considered to be a superior, more accurate, and more time- and production-efficient method than conventional methods. Three-dimensional printing is becoming an innovative method that is used in education through building intricate models, as well as being employed in the synthesis of fabrics, medical devices, medical implants, and orthoses/prostheses. Moreover, it has revolutionary applications in the pharmaceutical, cosmeceutical, and medical fields. Having the capacity to design patient-tailored devices according to their dimensions, along with specified dosage forms, has allowed 3D printing to stand out in the medical field. The different techniques of 3D printing allow for the production of many types of needles with different materials, such as hollow MNs and solid MNs. This review covers the benefits and drawbacks of 3D printing, methods used in 3D printing, types of 3D-printed MNs, characterization of 3D-printed MNs, general applications of 3D printing, and transdermal delivery using 3D-printed MNs.
Collapse
Affiliation(s)
- Suhair S Al-Nimry
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Rawand M Daghmash
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
34
|
Cheng W, Wang X, Zou S, Ni M, Lu Z, Dai L, Su J, Yang K, Su X. Fabrication of Black Silicon Microneedle Arrays for High Drug Loading. J Funct Biomater 2023; 14:jfb14050245. [PMID: 37233355 DOI: 10.3390/jfb14050245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Silicon microneedle (Si-MN) systems are a promising strategy for transdermal drug delivery due to their minimal invasiveness and ease of processing and application. Traditional Si-MN arrays are usually fabricated by using micro-electro-mechanical system (MEMS) processes, which are expensive and not suitable for large-scale manufacturing and applications. In addition, Si-MNs have a smooth surface, making it difficult for them to achieve high-dose drug delivery. Herein, we demonstrate a solid strategy to prepare a novel black silicon microneedle (BSi-MN) patch with ultra-hydrophilic surfaces for high drug loading. The proposed strategy consists of a simple fabrication of plain Si-MNs and a subsequent fabrication of black silicon nanowires. First, plain Si-MNs were prepared via a simple method consisting of laser patterning and alkaline etching. The nanowire structures were then prepared on the surfaces of the plain Si-MNs to form the BSi-MNs through Ag-catalyzed chemical etching. The effects of preparation parameters, including Ag+ and HF concentrations during Ag nanoparticle deposition and [HF/(HF + H2O2)] ratio during Ag-catalyzed chemical etching, on the morphology and properties of the BSi-MNs were investigated in detail. The results show that the final prepared BSi-MN patches exhibit an excellent drug loading capability, more than twice that of plain Si-MN patches with the same area, while maintaining comparable mechanical properties for practical skin piercing applications. Moreover, the BSi-MNs exhibit a certain antimicrobial activity that is expected to prevent bacterial growth and disinfect the affected area when applied to the skin.
Collapse
Affiliation(s)
- Wei Cheng
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Xue Wang
- Department of Burn and Plastic Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou 215000, China
| | - Shuai Zou
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- Suzhou Xiangbang Biotechnology Co., Ltd., Suzhou 215006, China
| | - Mengfei Ni
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Zheng Lu
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Longfei Dai
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Jiandong Su
- Department of Burn and Plastic Surgery, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou 215000, China
| | - Kai Yang
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Xiaodong Su
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
35
|
Sabbagh F, Kim BS. Ex Vivo Transdermal Delivery of Nicotinamide Mononucleotide Using Polyvinyl Alcohol Microneedles. Polymers (Basel) 2023; 15:polym15092031. [PMID: 37177177 PMCID: PMC10181269 DOI: 10.3390/polym15092031] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Nicotinamide mononucleotide (NMN), which has recently been spotlighted as an anti-aging agent, is a precursor of the coenzyme nicotinamide adenine dinucleotide that plays an important role in intracellular redox reactions. NMN capsules for oral administration currently on the market have a problem in that they are almost fully metabolized in the stomach and liver and excreted as nicotinamide. Therefore, there is a need to develop a patient-friendly delivery method that can improve the bioavailability of NMN. For this purpose, various polyvinyl alcohol (PVA)-based microneedle patches were fabricated to develop a transdermal delivery system for NMN. First, the molecular weight effect of PVA on the shape and microstructure of microneedles was studied. After selecting the optimal molecular weight PVA, the swelling of the microneedles and the ex vivo release of NMN were studied. The effect of carboxymethyl cellulose (CMC) and dimethyl sulfoxide on NMN release was also investigated. The highest NMN release of 91.94% in 18 h was obtained using a 9.5 kDa molecular weight PVA microneedle containing NMN and CMC.
Collapse
Affiliation(s)
- Farzaneh Sabbagh
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Beom-Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
36
|
Zhang R, Miao Q, Deng D, Wu J, Miao Y, Li Y. Research progress of advanced microneedle drug delivery system and its application in biomedicine. Colloids Surf B Biointerfaces 2023; 226:113302. [PMID: 37086686 DOI: 10.1016/j.colsurfb.2023.113302] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Transdermal drug delivery is an effective way of drug delivery in addition to oral and intravenous administration. Among them, microneedle administration is a new type of subcutaneous drug delivery, which forms micron-level pores on the surface of the skin, making the drug enter the dermis through the cuticular layer of the skin in the least invasive way. This mode of drug delivery not only increases the permeation efficiency of transdermal drug delivery but also improves the bioavailability of drug delivery. At present, there are many kinds of research on microneedles, such as solid microneedles, hollow microneedles, soluble polymer microneedles, etc. However, some new microneedle drug delivery systems have been gradually developed and applied with the development of microneedle drug delivery technology, for meeting the more complex pathological environment. In this review, we focus on the principle, structure, and function of some new types of microneedles, such as stimulus-response microneedles, iontophoresis microneedles, and bionic microneedles. We summarize the effects of materials, geometry, and size on the properties of microneedles as well as their applications and potential developments in the field of biomedicine. We hope that this review can provide new ideas and help with the development of new microneedle drug delivery systems.
Collapse
Affiliation(s)
- Rui Zhang
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qing Miao
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Dan Deng
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
37
|
Wang Y, Yu H, Wang L, Hu J, Feng J, Shen D, Hong Y, Liu J, Chen D. Microneedles with Two-Stage Glucose-Sensitive Controlled Release for Long-Term Insulin Delivery. ACS Biomater Sci Eng 2023; 9:2534-2544. [PMID: 37027835 DOI: 10.1021/acsbiomaterials.3c00137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Diabetes patients cannot complete effective blood glucose regulation due to their impaired pancreatic function. At present, subcutaneous insulin injection is the only treatment for patients with type 1 and severe type 2 diabetes. However, long-term subcutaneous injection will cause patients with intense physical pain and lasting psychological burden. In addition, subcutaneous injection will lead to hypoglycemia risk to a large extent because of the uncontrollable release of insulin. In this work, we developed a glucose-sensitive microneedle patch based on phenylboronic acid (PBA)-modified chitosan (CS) particles and poly(vinyl alcohol) (PVA)/poly(vinylpyrrolidone) (PVP) hydrogel for the efficient delivery of insulin. Meanwhile, through the double glucose-sensitive response process of CS-PBA particle and external hydrogel, the sudden release of insulin was well restrained, and a more persistent blood glucose control was achieved. Finally, the painless, minimally invasive, and efficient treatment effect of the glucose-sensitive microneedle patch indicated its great advantages as a new generation of injection therapy.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Russia Joint Laboratory of Photo-Electro-Magnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
- Zhejiang-Russia Joint Laboratory of Photo-Electro-Magnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jian Hu
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| | - Jingyi Feng
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| | - Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yichuan Hong
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jinyi Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Dingning Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
38
|
Dali P, Shende P. Use of 3D applicator for intranasal microneedle arrays for combinational therapy in migraine. Int J Pharm 2023; 635:122714. [PMID: 36773727 DOI: 10.1016/j.ijpharm.2023.122714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
The objective of current research work was to fabricate dissolving microneedles combining ergotamine and caffeine for synergistic action using controlled release kinetics with better permeability. The method of preparation for microneedles utilized multiple emulsion (w/o/w) approach by solvent-diffusion-evaporation process wherein the nano-emulsion of ergotamine and caffeine prepared using PLGA polymer and PVA as a stabilizer. The PLGA nanospheres were further loaded in polymer matrix of PVA and PVP K-90 and the final mixture poured in sterile silicon molds of microneedles. The PLGA nanospheres exhibited particle size in narrow range of 280.34 ± 6.61 to 416.0 ± 9.67 nm and good colloidal stability with negative zeta potential ranging between -19.08 ± 8.77 to -22.49 ± 8.09 mV. Higher entrapment efficiency (86.21 ± 4.52 %) for ergotamine and controlled release pattern (49.79 ± 4.16 % at 48 h) displayed by PLGA nanospheres. Similarly, the dissolving microneedles loaded with PLGA nanospheres showed controlled release pattern for in-vitro and ex-vivo drug release studies with 52.01 ± 5.71 % for ERM and 87.04 ± 2.44 % for CFE at 48 h whereas ex-vivo release studies illustrated similar results of 51.08 ± 3.56 % for ERM and 69.2 ± 2.16 % for CFE. The anti-hyperalgesic capability of microneedles was verified by the acetic acid writhing test, and the non-toxicity of synthetic microneedles was confirmed by histopathology and serotonin toxicity studies. The novel 3D applicator effectively delivered the microneedle array into the nasal cavity for systemic action. Therefore, the fabricated rapid dissolving microneedles combining two drugs ergotamine and caffeine with use of 3D applicator proved to be a coherent technique for intranasal delivery of ergotamine in the treatment of migraine.
Collapse
Affiliation(s)
- Preeti Dali
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Vile Parle (W), Mumbai, India.
| |
Collapse
|
39
|
Song K, Hao Y, Tan X, Huang H, Wang L, Zheng W. Microneedle-mediated delivery of Ziconotide-loaded liposomes fused with exosomes for analgesia. J Control Release 2023; 356:448-462. [PMID: 36898532 DOI: 10.1016/j.jconrel.2023.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
Ziconotide (ZIC) is an N-type calcium channel antagonist for treating severe chronic pain that is intolerable, or responds poorly to the administration of other drugs, such as intrathecal morphine and systemic analgesics. As it can only work in the brain and cerebrospinal fluid, intrathecal injection is the only administration route for ZIC. In this study, borneol (BOR)-modified liposomes (LIPs) were fused with exosomes from mesenchymal stem cells (MSCs) and loaded with ZIC to prepare microneedles (MNs) to improve the efficiency of ZIC across the blood-brain barrier. To evaluate local analgesic effects of MNs, the sensitivity of behavioral pain to thermal and mechanical stimuli was tested in animal models of peripheral nerve injury, diabetes-induced neuropathy pain, chemotherapy-induced pain, and ultraviolet-B (UV-B) radiation-induced neurogenic inflammatory pain. BOR-modified LIPs loaded with ZIC were spherical or nearly spherical, with a particle size of about 95 nm and a Zeta potential of -7.8 mV. After fusion with MSC exosomes, the particle sizes of LIPs increased to 175 nm, and their Zeta potential increased to -3.8 mV. The nano-MNs constructed based on BOR-modified LIPs had good mechanical properties and could effectively penetrate the skin to release drugs. The results of analgesic experiments showed that ZIC had a significant analgesic effect in different pain models. In conclusion, the BOR-modified LIP membrane-fused exosome MNs constructed in this study for delivering ZIC provide a safe and effective administration for chronic pain treatment, as well as great potential for clinical application of ZIC.
Collapse
Affiliation(s)
- Kaichao Song
- Beijing Key Laboratory of Drug Delivery and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yumei Hao
- Beijing Key Laboratory of Drug Delivery and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaochuan Tan
- Beijing Key Laboratory of Drug Delivery and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongdong Huang
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, Beijing 100050, China.
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Wensheng Zheng
- Beijing Key Laboratory of Drug Delivery and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
40
|
Wang R, Wang H, Jiang G, Sun Y, Liu T, Nie L, Shavandi A, Yunusov KE, Aharodnikau UE, Solomevich SO. Transdermal delivery of allopurinol to acute hyperuricemic mice via polymer microneedles for the regulation of serum uric acid levels. Biomater Sci 2023; 11:1704-1713. [PMID: 36628631 DOI: 10.1039/d2bm01836e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Allopurinol (AP) is widely used to treat hyperuricemia which may cause severe side effects upon oral administration. Alternative means for the treatment of hyperuricemia are demanded to simultaneously facilitate drug absorption, patient compliance, and fewer side effects. In this study, a new polymer microneedle (MN) system was developed for the transdermal delivery of AP to acute hyperuricemic mice. This study aims to achieve the controllable regulation of serum uric acid (SUA) levels with fewer side effects compared with oral administration. The matrix of polymer MNs consisted of polyvinylpyrrolidone (PVP) and polycaprolactone (PCL), in which the rapid dissolution of PVP offers a rapid dissolution of AP into the blood and the biodegradability of PCL resulting in a sustainable drug release behavior. An in vivo study demonstrated that the AP-loaded MN system can effectively reduce the SUA levels as oral administration with lower side effects, which will be conducive to reducing the adverse reactions and improving the bioavailability of AP. This MN-mediated strategy can facilitate transcutaneous hyperuricemia treatment and provide a new alternative for the exploration of clinical treatment of hyperuricemia and improvement of patient compliance.
Collapse
Affiliation(s)
- Rui Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Han Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China. .,International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou, 310018, China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| | - Tianqi Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Lei Nie
- College of Life Science, Xinyang Normal University, Xinyang, China.,3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Amin Shavandi
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | | | - Sergey O Solomevich
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus
| |
Collapse
|
41
|
Zhang Y, Xu Y, Kong H, Zhang J, Chan HF, Wang J, Shao D, Tao Y, Li M. Microneedle system for tissue engineering and regenerative medicine. EXPLORATION (BEIJING, CHINA) 2023; 3:20210170. [PMID: 37323624 PMCID: PMC10190997 DOI: 10.1002/exp.20210170] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/18/2022] [Indexed: 06/17/2023]
Abstract
Global increasing demand for high life quality and length facilitates the development of tissue engineering and regenerative medicine, which apply multidisciplinary theories and techniques to achieve the structural reconstruction and functional recovery of disordered or damaged tissues and organs. However, the clinical performances of adopted drugs, materials, and powerful cells in the laboratory are inescapably limited by the currently available technologies. To tackle the problems, versatile microneedles are developed as the new platform for local delivery of diverse cargos with minimal invasion. The efficient delivery, as well as painless and convenient procedure endow microneedles with good patient compliance in clinic. In this review, we first categorize different microneedle systems and delivery models, and then summarize their applications in tissue engineering and regenerative medicine mainly involving maintenance and rehabilitation of damaged tissues and organs. In the end, we discuss the advantages, challenges, and prospects of microneedles in depth for future clinical translations.
Collapse
Affiliation(s)
- Yixin Zhang
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Huimin Kong
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jiabin Zhang
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative MedicineSchool of Biomedical ScienceThe Chinese University of Hong KongHong KongChina
| | - Jiasi Wang
- School of Biomedical EngineeringSun Yat‐sen UniversityShenzhenChina
| | - Dan Shao
- Institutes of Life SciencesSchool of MedicineSouth China University of TechnologyGuangzhouChina
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Liver Disease ResearchGuangzhouChina
| |
Collapse
|
42
|
Tundisi LL, Ataide JA, Costa JSR, Coêlho DDF, Liszbinski RB, Lopes AM, Oliveira-Nascimento L, de Jesus MB, Jozala AF, Ehrhardt C, Mazzola PG. Nanotechnology as a tool to overcome macromolecules delivery issues. Colloids Surf B Biointerfaces 2023; 222:113043. [PMID: 36455361 DOI: 10.1016/j.colsurfb.2022.113043] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Nanocarriers can deliver drugs to specific organs or cells, potentially bridging the gap between a drug's function and its interaction with biological systems such as human physiology. The untapped potential of nanotechnology stems from its ability to manipulate materials, allowing control over physical and chemical properties and overcoming drug-related problems, e.g., poor solubility or poor bioavailability. For example, most protein drugs are administered parenterally, each with challenges and peculiarities. Some problems faced by bioengineered macromolecule drugs leading to poor bioavailability are short biological half-life, large size and high molecular weight, low permeability through biological membranes, and structural instability. Nanotechnology emerges as a promising strategy to overcome these problems. Nevertheless, the delivery system should be carefully chosen considering loading efficiency, physicochemical properties, production conditions, toxicity, and regulations. Moving from the bench to the bedside is still one of the major bottlenecks in nanomedicine, and toxicological issues are the greatest challenges to overcome. This review provides an overview of biotech drug delivery approaches, associated nanotechnology novelty, toxicological issues, and regulations.
Collapse
Affiliation(s)
| | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil.
| | - Juliana Souza Ribeiro Costa
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil; Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | | | - Raquel Bester Liszbinski
- Nano-Cell Interactions Lab., Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | - André Moreni Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Laura Oliveira-Nascimento
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil; Laboratory of Pharmaceutical Technology (Latef), Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Marcelo Bispo de Jesus
- Nano-Cell Interactions Lab., Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | - Angela Faustino Jozala
- LAMINFE - Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba, Brazil
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute Trinity College Dublin, Dublin, Ireland
| | - Priscila Gava Mazzola
- Faculty of Pharmaceutical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
43
|
Glucose-Responsive Silk Fibroin Microneedles for Transdermal Delivery of Insulin. Biomimetics (Basel) 2023; 8:biomimetics8010050. [PMID: 36810381 PMCID: PMC9944804 DOI: 10.3390/biomimetics8010050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Microneedles (MNs) have attracted great interest as a drug delivery alternative to subcutaneous injections for treating diabetes mellitus. We report MNs prepared from polylysine-modified cationized silk fibroin (SF) for responsive transdermal insulin delivery. Scanning electron microscopy analysis of MNs' appearance and morphology revealed that the MNs were well arranged and formed an array with 0.5 mm pitch, and the length of single MNs is approximately 430 μm. The average breaking force of an MN is above 1.25 N, which guarantees that it can pierce the skin quickly and reach the dermis. Cationized SF MNs are pH-responsive. MNs dissolution rate increases as pH decreases and the rate of insulin release are accelerated. The swelling rate reached 223% at pH = 4, while only 172% at pH = 9. After adding glucose oxidase, cationized SF MNs are glucose-responsive. As the glucose concentration increases, the pH inside the MNs decreases, the MNs' pore size increases, and the insulin release rate accelerates. In vivo experiments demonstrated that in normal Sprague Dawley (SD) rats, the amount of insulin released within the SF MNs was significantly smaller than that in diabetic rats. Before feeding, the blood glucose (BG) of diabetic rats in the injection group decreased rapidly to 6.9 mmol/L, and the diabetic rats in the patch group gradually reduced to 11.7 mmol/L. After feeding, the BG of diabetic rats in the injection group increased rapidly to 33.1 mmol/L and decreased slowly, while the diabetic rats in the patch group increased first to 21.7 mmol/L and then decreased to 15.3 mmol/L at 6 h. This demonstrated that the insulin inside the microneedle was released as the blood glucose concentration increased. Cationized SF MNs are expected to replace subcutaneous injections of insulin as a new modality for diabetes treatment.
Collapse
|
44
|
Qi Z, Yan Z, Tan G, Jia T, Geng Y, Shao H, Kundu SC, Lu S. Silk Fibroin Microneedles for Transdermal Drug Delivery: Where Do We Stand and How Far Can We Proceed? Pharmaceutics 2023; 15:pharmaceutics15020355. [PMID: 36839676 PMCID: PMC9964088 DOI: 10.3390/pharmaceutics15020355] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Microneedles are a patient-friendly technique for delivering drugs to the site of action in place of traditional oral and injectable administration. Silk fibroin represents an interesting polymeric biomaterial because of its mechanical properties, thermal stability, biocompatibility and possibility of control via genetic engineering. This review focuses on the critical research progress of silk fibroin microneedles since their inception, analyzes in detail the structure and properties of silk fibroin, the types of silk fibroin microneedles, drug delivery applications and clinical trials, and summarizes the future development trend in this field. It also proposes the future research direction of silk fibroin microneedles, including increasing drug loading doses and enriching drug loading types as well as exploring silk fibroin microneedles with stimulation-responsive drug release functions. The safety and effectiveness of silk fibroin microneedles should be further verified in clinical trials at different stages.
Collapse
Affiliation(s)
- Zhenzhen Qi
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zheng Yan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Guohongfang Tan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Tianshuo Jia
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yiyu Geng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Huiyan Shao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Subhas C. Kundu
- 3Bs Research Group, I3Bs Research Institute on Biomaterials, Biodegrabilities, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Guimaraes, 4805-017 Barco, Portugal
| | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Correspondence: ; Tel.: +86-512-67061152
| |
Collapse
|
45
|
Hyaluronidase-powered microneedles for significantly enhanced transdermal delivery efficiency. J Control Release 2023; 353:380-390. [PMID: 36464062 DOI: 10.1016/j.jconrel.2022.11.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/03/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Microneedles (MNs) with enhanced delivery efficiency have revolutionized the transdermal drug delivery system for treating systemic illness. However, the bioavailability of MNs was still far from the clinical requirements by only overcoming the stratum corneum barrier. Herein, hyaluronidase (HAase)-powered MNs were developed as a top-down permeation-enhancement strategy to hijack the sequential transdermal barriers for improved bioavailability. HAase MNs with robust mechanical strength showed excellent skin penetration ability and significantly enhanced the transdermal delivery efficacy of macromolecular drugs as compared to that of HAase-absent MNs, resulting in considerable effect to subcutaneous injection in terms of biodistribution, bioavailability, and therapeutical efficacy. As evidenced from the distribution of trypan blue and fluorescence underlying skin, the positive effects exerted by HAase MNs could be ascribed to the depolymerization of HA that would loosen the subcutaneous space and destruct the extracellular matrix barrier to promote drug diffusion and permeation in larger area and greater depth. Notably, the transient interconversion of keratin from α-helix to β-sheet that might assist the drug residues on the skin surface permeate across the stratum corneum during administration might be another reason not to be ignored. As a labor-saving strategy, HAase-powered MNs offers a promising and painless administration route for macromolecules.
Collapse
|
46
|
Singh P, Youden B, Carrier A, Oakes K, Servos M, Jiang R, Lin S, Nguyen TD, Zhang X. Photoresponsive polymeric microneedles: An innovative way to monitor and treat diseases. J Control Release 2023; 353:1050-1067. [PMID: 36549390 DOI: 10.1016/j.jconrel.2022.12.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Microneedles (MN) technology is an emerging technology for the transdermal delivery of therapeutics. When combined with photoresponsive (PR) materials, MNs can deliver therapeutics precisely and effectively with enhanced efficacy or synergistic effects. This review systematically summarizes the therapeutic applications of PRMNs in cancer therapy, wound healing, diabetes treatment, and diagnostics. Different PR approaches to activate and control the release of therapeutic agents from MNs are also discussed. Overall, PRMNs are a powerful tool for stimuli-responsive controlled-release therapeutic delivery to treat various diseases.
Collapse
Affiliation(s)
- Parbeen Singh
- Department of Mechanical Engineering, University of Connecticut, United States; School of Food and Drug, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Brian Youden
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada; Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Andrew Carrier
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Ken Oakes
- Department of Biology, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Runqing Jiang
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, Ontario N2G 1G3, Canada
| | - Sujing Lin
- School of Food and Drug, Shenzhen Key Laboratory of Fermentation Purification and Analysis, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Thanh D Nguyen
- Department of Mechanical Engineering, University of Connecticut, United States.
| | - Xu Zhang
- Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada.
| |
Collapse
|
47
|
Wang T, Cornel EJ, Li C, Du J. Drug delivery approaches for enhanced antibiofilm therapy. J Control Release 2023; 353:350-365. [PMID: 36473605 DOI: 10.1016/j.jconrel.2022.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/06/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Biofilms have attracted increasing attention in recent years. Many bacterial infections are associated with biofilm formation. A bacterial biofilm is an aggregated membrane-like substance that is composed of a large number of bacteria and their secreted extracellular polymeric substances. The traditional antibiofilm approaches, such as chemotherapy based on antibiotics, are often ineffective in eradicating biofilms owing to the limited diffusion ability of antibiotics within biofilms and inactivation of antibiotics by biofilms. Moreover, a larger dosage of antibiotics could be effective, but leads to an increased tolerance. Smart drug delivery systems that deliver antibiotics into the biofilm interior is a promising strategy to meet this challenge. In this review, we focus on the methods to improve drug delivery efficiency for enhanced chemotherapy of biofilms. Furthermore, we have summarized chemical approaches for enhanced drug delivery, such as chemical shields, charge reversal, and dual corona enhanced delivery strategies; these methods focus on physicochemical biofilm properties and specific biofilm features. Afterwards, physical approaches are discussed, such as magnetism-mediated drug delivery, electricity-mediated drug delivery, ultrasound-mediated drug delivery, and shock wave-mediated drug delivery. Finally, a perspective on the development of next-generation antibiofilm drug delivery systems is given.
Collapse
Affiliation(s)
- Tao Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Erik Jan Cornel
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Chang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China; Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
48
|
Zhang H, Gu Z, Li W, Guo L, Wang L, Guo L, Ma S, Han B, Chang J. pH-sensitive O-carboxymethyl chitosan/sodium alginate nanohydrogel for enhanced oral delivery of insulin. Int J Biol Macromol 2022; 223:433-445. [PMID: 36347366 DOI: 10.1016/j.ijbiomac.2022.10.274] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
Abstract
Oral drug delivery is considered the most preferred mode of treatment because of its high patient compliance and minimal invasiveness. However, the oral delivery of protein drug has been a difficult problem which restricts its application due to the unstable and inefficient penetration of protein in the gastrointestinal tract. In this study, a novel OCMC/SA nanohydrogel was prepared by using of O-carboxymethyl chitosan (OCMC) and sodium alginate (SA) to solve the problem. The OCMC/SA had a typical nanostructure, which was helpful to increase the specific surface area and enhanced the bioavailability of the drugs. OCMC/SA had a high drug loading capacity and realized passive drug targeting function by responding to the different pH value of the microenvironment. It could have a certain protective effect on drugs in strong acid circumstances, while its structure got loosed and effectively released drugs in intestinal circumstances. OCMC/SA could release the drug for >12 h, and the released insulin could maintain high activity. OCMC/SA nanohydrogel showed promising results in type 1 diabetic rats, and its pharmacological bioavailability was 6.57 %. In conclusion, this study constructed a novel OCMC/SA nanohydrogel, which had a lot of exciting characteristics and provided a new strategy for oral drug delivery.
Collapse
Affiliation(s)
- Haibin Zhang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Zhiyang Gu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Wenya Li
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Lili Guo
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Litong Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Lan Guo
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Saibo Ma
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China
| | - Baoqin Han
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266235, PR China
| | - Jing Chang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266235, PR China.
| |
Collapse
|
49
|
Liu Y, Zhu X, Ji S, Huang Z, Zang Y, Ding Y, Zhang J, Ding Z. Transdermal delivery of colchicine using dissolvable microneedle arrays for the treatment of acute gout in a rat model. Drug Deliv 2022; 29:2984-2994. [PMID: 36101018 PMCID: PMC9487926 DOI: 10.1080/10717544.2022.2122632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Colchicine (Col) is used to prevent and treat acute gout flare; however, its therapeutic use is strictly limited owing to severe gastrointestinal side effects after oral administration. Therefore, we developed a dissolvable Col-loaded microneedle (MN) with hyaluronic acid to deliver Col via the transdermal route. We studied the preparation, mechanical properties, skin insertion, skin irritation, drug content, and transdermal release of the Col-loaded MN. The pharmacokinetics of Col after Col-loaded MN application were compared with those of Col solution gavage over 24 h. Knee joint edema evaluation and the hindfoot mechanical threshold test were conducted to determine the pharmacodynamic profile. The dissolvable Col-loaded MN possessed sufficient mechanical strength to penetrate the skin and release the loaded drug. No skin irritation was observed for 3 days after application. We found that 3.36-fold more Col contained in MNs was delivered through the skin compared with that in gel in vitro, and moderate relative bioavailability in vivo. The Col-loaded MN significantly relieved swollen knee joints and mechanical hypernociception in an acute gout model in rats. The dissolvable Col-loaded MN array reduced inflammation and pain via topical administration when acute gout occurred. Reducing the gastrointestinal side effects of Col-loaded MNs is expected to optimize the therapeutic effects of Col and improve patient compliance.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoruo Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shiliang Ji
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Department of Pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ying Ding
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, China
- Changzhou High-Tech Research Institute of Nanjing University, Changzhou, China
| |
Collapse
|
50
|
Zhao ZQ, Liang L, Hu LF, He YT, Jing LY, Liu Y, Chen BZ, Guo XD. Subcutaneous Implantable Microneedle System for the Treatment of Alzheimer's Disease by Delivering Donepezil. Biomacromolecules 2022; 23:5330-5339. [PMID: 36454623 DOI: 10.1021/acs.biomac.2c01155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
To alleviate the dilemma of drug administration in Alzheimer's disease (AD) patients, it is of great significance to develop a new drug delivery system. In this study, a subcutaneously implanted microneedle (MN) device with a swellable gelatin methacryloyl (GelMA) needle body and a dissolvable polyvinyl alcohol (PVA) backing layer was designed. The backing layer quickly dissolved once the MN was introduced into the subcutaneous, and the hydrogel needles were implanted in the subcutaneous to enable prolonged drug release. Compared with oral administration, the MN system offers the benefits of a high administration rate, a fast onset of effect, and a longer duration of action. By detecting the concentration of acetylcholine (ACH) and Aβ 1-42, it was found that MN administration exhibited a stronger therapeutic effect. The biological safety of the MN system was also assessed, and no obvious signs of hemolysis, cytotoxicity, and inflammatory reaction were observed. Together, these findings suggested that the MN system is a convenient, efficient, and safe method of delivering donepezil hydrochloride (DPH) and may provide AD patients with a novel medicine administration option.
Collapse
Affiliation(s)
- Ze Qiang Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ling Liang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Liu Fu Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yu Ting He
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Li Yue Jing
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yue Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China.,High-Tech Research Institute, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|