1
|
Malinovskaya J, Kovshova T, Melnikov P, Li Z, Dhakal N, Knoll J, Valikhov M, Ermolenko Y, Chernysheva A, Gurina O, Chekhonin V, Wacker MG, Gelperina S. The second phase of tumor invasion driven by immune cells: A study on doxorubicin-loaded PLG nanoparticles. J Control Release 2024; 378:750-762. [PMID: 39724952 DOI: 10.1016/j.jconrel.2024.12.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Poly(lactide-co-glycolide) (PLG) nanoparticles loaded with doxorubicin have reached phase-I clinical trials for treating advanced solid tumors. This study explores cell hitchhiking, where nanoparticles associate with blood cells and investigates the impact on pharmacokinetics and tumor migration. Previous findings highlighted the early post-injection phase dominated by nonspecific nanoparticle-cell interactions and burst release. In contrast, this study examines the subsequent phase of tumor invasion, emphasizing the role of immune cells, mostly neutrophils, in redistributing the carrier to the tumor site via blood cell hitchhiking. We provide a detailed investigation of nanoparticle extravasation kinetics and mechanisms, showing qualitative and quantitative evidence of increased nanoparticle association with immune cells over time. By 30 min post-injection, approximately 15 % of monocytes and 15-19 % of neutrophils tested positive for nanoparticles, with significant differences observed between ex vivo and in vivo experiments, and between healthy and tumor-bearing animals. This study underscores the ambiguous role of immune cell-mediated tumor targeting. While the total accumulation of the carrier rises, this fraction is partially trapped in immune cells without any chance to escape.
Collapse
Affiliation(s)
- Julia Malinovskaya
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia
| | - Tatyana Kovshova
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia
| | - Pavel Melnikov
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Kropotkinskiy per. 23, 119034, Moscow, Russia
| | - Zhuoxuan Li
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 4 Science Drive 2, 117544, Singapore
| | - Namrata Dhakal
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 4 Science Drive 2, 117544, Singapore
| | - Julian Knoll
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 4 Science Drive 2, 117544, Singapore
| | - Marat Valikhov
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Kropotkinskiy per. 23, 119034, Moscow, Russia
| | - Yulia Ermolenko
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia
| | - Anastasia Chernysheva
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Kropotkinskiy per. 23, 119034, Moscow, Russia
| | - Olga Gurina
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Kropotkinskiy per. 23, 119034, Moscow, Russia
| | - Vladimir Chekhonin
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Kropotkinskiy per. 23, 119034, Moscow, Russia
| | - Matthias G Wacker
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, 4 Science Drive 2, 117544, Singapore..
| | - Svetlana Gelperina
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russia.
| |
Collapse
|
2
|
Nagpal S, Palaniappan T, Wang JW, Wacker MG. Revisiting nanomedicine design strategies for follow-on products: A model-informed approach to optimize performance. J Control Release 2024; 376:1251-1270. [PMID: 39510258 DOI: 10.1016/j.jconrel.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
The field of nanomedicine is undergoing a seismic transformations with the rise of nanosimilars, reshaping the pharmaceutical landscape and expanding beyond traditional innovators and generic manufacturers. Nanodrugs are increasingly replacing conventional therapies, offering improved efficacy and safety, while the demand for follow-on products drives market diversification. However, the transition from preclinical to clinical stages presents challenges due to the complex biopharmaceutical behavior of nanodrugs. This review highlights the integration of Quality-by-Design (QbD), in vitro-in vivo correlations (IVIVCs), machine learning, and Model-Informed Drug Development (MIDD) as key strategies to address these complexities. Additionally, it discusses the role of high-throughput processes in the optimization of the nanodrug development pipelines. Covering generations of delivery systems from liposomes to RNA-loaded nanoparticles, this review underscores the evolving market dynamics driven by recent advances in nanomedicine.
Collapse
Affiliation(s)
- Shakti Nagpal
- National University of Singapore, Faculty of Science, Department of Pharmacy and Pharmaceutical Sciences, Singapore
| | | | - Jiong-Wei Wang
- National University of Singapore, Department of Surgery, Yong Loo Lin School of Medicine, Singapore 119228, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Matthias G Wacker
- National University of Singapore, Faculty of Science, Department of Pharmacy and Pharmaceutical Sciences, Singapore.
| |
Collapse
|
3
|
Jachimska B, Goncerz M, Wolski P, Meldrum C, Lustyk Ł, Panczyk T. Theoretical and Experimental Analyses of the Interfacial Mechanism of Dendrimer-Doxorubicin Complexes Formation. Mol Pharm 2024; 21:5892-5904. [PMID: 39436101 PMCID: PMC11539063 DOI: 10.1021/acs.molpharmaceut.4c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
The work presents correlations between the physicochemical properties of the carrier and the active substance and optimization of the conditions for creating an active system based on PAMAM dendrimers and doxorubicin. The study monitored the influence of the ionized form of the doxorubicin molecule on the efficiency of complex formation. The deprotonated form of doxorubicin occurs under basic conditions in the pH range of 9.0-10.0. In the presence of doxorubicin, changes in the zeta potential of the complex concerning the initial system are observed. These changes result from electrostatic interactions between the drug molecules and external functional groups. Based on changes in the absorbance intensity of UV-vis spectra, the binding of the drug in the polymer structure is observed depending on the pH of the environment and the molar ratio. Optimal conditions for forming complexes occur under alkaline conditions. UV-vis, Fourier transform infrared spectroscopy, and circular dichroism spectroscopy confirmed the stability of the formed dendrimer-DOX complex. Molecular dynamics simulations were conducted to gain a deeper insight into the molecular mechanism of DOX adsorption on and within the G4.0 PAMAM dendrimers. It was observed that the protonation state of both the dendrimer and DOX significantly influences the adsorption stability. The system exhibited high stability at high pH values (∼9-10), with DOX molecules strongly adsorbed on the dendrimer surface and partially within its bulk. However, under lower pH conditions, a reduction in adsorption strength was observed, leading to the detachment of DOX clusters from the dendrimer structure.
Collapse
Affiliation(s)
- Barbara Jachimska
- Jerzy
Haber Institute of Catalysis and Surface Chemistry Polish Academy
of Sciences, Krakow 30-239, Poland
| | - Magdalena Goncerz
- Jerzy
Haber Institute of Catalysis and Surface Chemistry Polish Academy
of Sciences, Krakow 30-239, Poland
| | - Paweł Wolski
- Jerzy
Haber Institute of Catalysis and Surface Chemistry Polish Academy
of Sciences, Krakow 30-239, Poland
| | - Callum Meldrum
- Department
of Chemical and Process Engineering, University
of Strathclyde; 75 Montrose Street, Glasgow G1 1XJ, U.K.
| | - Łukasz Lustyk
- Jerzy
Haber Institute of Catalysis and Surface Chemistry Polish Academy
of Sciences, Krakow 30-239, Poland
| | - Tomasz Panczyk
- Jerzy
Haber Institute of Catalysis and Surface Chemistry Polish Academy
of Sciences, Krakow 30-239, Poland
| |
Collapse
|
4
|
Wei C, Zhang M, Cheng J, Tian J, Yang G, Jin Y. Plant-derived exosome-like nanoparticles - from Laboratory to factory, a landscape of application, challenges and prospects. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39127967 DOI: 10.1080/10408398.2024.2388888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Recent decades have witnessed substantial interest in extracellular vesicles (EVs) due to their crucial role in intercellular communication across various biological processes. Among these, plant-derived exosome-like Nanoparticles (ELNs) have rapidly gained recognition as highly promising candidates. ELNs, characterized by diverse sources, cost-effective production, and straightforward isolation, present a viable option for preventing and treating numerous diseases. Furthermore, ELNs hold significant potential as carriers for natural or engineered drugs, enhancing their attractiveness and drawing considerable attention in science and medicine. However, translating ELNs into clinical applications poses several challenges. This study explores these challenges and offers critical insights into potential research directions. Additionally, it provides a forward-looking analysis of the industrial prospects for ELNs. With their broad applications and remarkable potential, ELNs stand at the forefront of biomedical innovation, poised to revolutionize disease management and drug delivery paradigms in the coming years.
Collapse
Affiliation(s)
- Chaozhi Wei
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Mengyu Zhang
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Jintao Cheng
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Jinzhong Tian
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Guiling Yang
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuanxiang Jin
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
5
|
Triantafyllopoulou E, Forys A, Perinelli DR, Balafouti A, Karayianni M, Trzebicka B, Bonacucina G, Valsami G, Pippa N, Pispas S. Deciphering the Lipid-Random Copolymer Interactions and Encoding Their Properties to Design a Hybrid System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11936-11946. [PMID: 38797979 PMCID: PMC11190979 DOI: 10.1021/acs.langmuir.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Lipid/copolymer colloidal systems are deemed hybrid materials with unique properties and functionalities. Their hybrid nature leads to complex interfacial phenomena, which have not been fully encoded yet, navigating their properties. Moving toward in-depth knowledge of such systems, a comprehensive investigation of them is imperative. In the present study, hybrid lipid/copolymer structures were fabricated and examined by a gamut of techniques, including dynamic light scattering, fluorescence spectroscopy, cryogenic transmission electron microscopy, microcalorimetry, and high-resolution ultrasound spectroscopy. The biomaterials that were mixed for this purpose at different ratios were 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine and four different linear, statistical (random) amphiphilic copolymers, consisting of oligo(ethylene glycol) methyl ether methacrylate as the hydrophilic comonomer and lauryl methacrylate as the hydrophobic one. The colloidal dispersions were studied for lipid/copolymer interactions regarding their physicochemical, morphological, and biophysical behavior. Their membrane properties and interactions with serum proteins were also studied. The aforementioned techniques confirmed the hybrid nature of the systems and the location of the copolymer in the structure. More importantly, the random architecture of the copolymers, the hydrophobic-to-hydrophilic balance of the nanoplatforms, and the lipid-to-polymer ratio are highlighted as the main design-influencing factors. Elucidating the lipid/copolymer interactions would contribute to the translation of hybrid nanoparticle performance and, thus, their rational design for multiple applications, including drug delivery.
Collapse
Affiliation(s)
- Efstathia Triantafyllopoulou
- Section
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, National and Kapodistrian University
of Athens, Panepistimioupolis
Zografou, Athens 15771, Greece
| | - Aleksander Forys
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, Zabrze 41-819, Poland
| | - Diego Romano Perinelli
- School
of Pharmacy, University of Camerino, Via Gentile III da Varano, Camerino 62032, Italy
| | - Anastasia Balafouti
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Maria Karayianni
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Barbara Trzebicka
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, Zabrze 41-819, Poland
| | - Giulia Bonacucina
- School
of Pharmacy, University of Camerino, Via Gentile III da Varano, Camerino 62032, Italy
| | - Georgia Valsami
- Section
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, National and Kapodistrian University
of Athens, Panepistimioupolis
Zografou, Athens 15771, Greece
| | - Natassa Pippa
- Department
of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou 15771, Athens 157 72, Greece
| | - Stergios Pispas
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| |
Collapse
|
6
|
Li Z, Kovshova T, Malinovskaya J, Valikhov M, Melnikov P, Osipova N, Maksimenko O, Dhakal N, Chernysheva A, Chekhonin V, Gelperina S, Wacker MG. Modeling the Drug delivery Lifecycle of PLG Nanoparticles Using Intravital Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306726. [PMID: 38152951 DOI: 10.1002/smll.202306726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/29/2023] [Indexed: 12/29/2023]
Abstract
Polylactide-co-glycolide (PLG) nanoparticles hold immense promise for cancer therapy due to their enhanced efficacy and biodegradable matrix structure. Understanding their interactions with blood cells and subsequent biodistribution kinetics is crucial for optimizing their therapeutic potential. In this study, three doxorubicin-loaded PLG nanoparticle systems are synthesized and characterized, analyzing their size, zeta potential, morphology, and in vitro release behavior. Employing intravital microscopy in 4T1-tumor-bearing mice, real-time blood and tumor distribution kinetics are investigated. A mechanistic pharmacokinetic model is used to analyze biodistribution kinetics. Additionally, flow cytometry is utilized to identify cells involved in nanoparticle hitchhiking. Following intravenous injection, PLG nanoparticles exhibit an initial burst release (<1 min) and rapidly adsorb to blood cells (<5 min), hindering extravasation. Agglomeration leads to the clearance of one carrier species within 3 min. In stable dispersions, drug release rather than extravasation remains the dominant pathway for drug elimination from circulation. This comprehensive investigation provides valuable insights into the interplay between competing kinetics that influence the lifecycle of PLG nanoparticles post-injection. The findings advance the understanding of nanoparticle behavior and lay the foundation for improved cancer therapy strategies using nanoparticle-based drug delivery systems.
Collapse
Affiliation(s)
- Zhuoxuan Li
- Department of Pharmacy, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Tatyana Kovshova
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow, 125047, Russia
| | - Julia Malinovskaya
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow, 125047, Russia
| | - Marat Valikhov
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Kropotkinskiy per. 23, Moscow, 119034, Russia
| | - Pavel Melnikov
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Kropotkinskiy per. 23, Moscow, 119034, Russia
| | - Nadezhda Osipova
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow, 125047, Russia
| | - Olga Maksimenko
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow, 125047, Russia
| | - Namrata Dhakal
- Department of Pharmacy, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Anastasia Chernysheva
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Kropotkinskiy per. 23, Moscow, 119034, Russia
| | - Vladimir Chekhonin
- Department of Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Kropotkinskiy per. 23, Moscow, 119034, Russia
| | - Svetlana Gelperina
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow, 125047, Russia
| | - Matthias G Wacker
- Department of Pharmacy, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| |
Collapse
|
7
|
Chan WJ, Li H. Recent advances in nano/micro systems for improved circulation stability, enhanced tumor targeting, penetration, and intracellular drug delivery: a review. Biomed Phys Eng Express 2024; 10:022001. [PMID: 38086099 DOI: 10.1088/2057-1976/ad14f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
In recent years, nanoparticles (NPs) have been extensively developed as drug carriers to overcome the limitations of cancer therapeutics. However, there are several biological barriers to nanomedicines, which include the lack of stability in circulation, limited target specificity, low penetration into tumors and insufficient cellular uptake, restricting the active targeting toward tumors of nanomedicines. To address these challenges, a variety of promising strategies were developed recently, as they can be designed to improve NP accumulation and penetration in tumor tissues, circulation stability, tumor targeting, and intracellular uptake. In this Review, we summarized nanomaterials developed in recent three years that could be utilized to improve drug delivery for cancer treatments.
Collapse
Affiliation(s)
- Wei-Jen Chan
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Huatian Li
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| |
Collapse
|
8
|
Liao ZH, Chuang CY, Chen YY, Chu YT, Hu YF, Lee PT, Lin JJ, Nan FH. Application of nZnO supported with nanoclay for improving shrimp immunity. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109270. [PMID: 38070587 DOI: 10.1016/j.fsi.2023.109270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/31/2023]
Abstract
This study discloses the nanoscale silicate platelet-supported nZnO (ZnONSP) applied as novel feed additives in aquaculture. The preparation of the nanohybrid (ZnO/NSP = 15/85, w/w) was characterized by UV-visible spectroscopy, powder X-ray diffraction and transmission electron microscope. The effects of ZnONSP on growth, zinc accumulation, stress response, immunity and resistance to Vibrio alginolyticus in white shrimp (Penaeus vannamei) were \demonstrated. To evaluate the safety of ZnONSP, shrimps (2.0 ± 0.3 g) were fed with ZnONSP containing diets (200, 400 and 800 mg/kg) for 56 days. Dietary ZnONSP did not affect the weight gain, specific growth rate, feed conversion ratio, survival rate, zinc accumulation, and the expression of heat shock protein 70 in tested shrimps. To examine the immunomodulatory effect of ZnONSP, shrimps (16.6 ± 2.4 g) were fed with the same experimental diets for 28 days. Dietary ZnONSP improved the immune responses of haemocyte in tested shrimps, including phagocytic rate, phagocytic index, respiratory burst, and phenoloxidase activity, and upregulated the expression of several genes, including lipopolysaccharide, β-1,3-glucan binding protein, peroxinectin, penaeidin 2/3/4, lysozyme, crustin, anti-lipopolysaccharide factor, superoxide dismutase, glutathione peroxidase, clotting protein and α-2-macroglobulin. In the challenge experiment, shrimps (17.2 ± 1.8 g) were fed with ZnONSP containing diets (400 and 800 mg/kg) for 7 days and then infected with Vibrio alginolyticus. Notably, white shrimps that received ZnONSP (800 mg/kg) showed significantly improved Vibrio resistance, with a survival rate of 71.4 % at the end of 7-day observation. In conclusion, this study discovers that ZnONSP is a new type of immunomodulatory supplement that are effective on enhancing innate cellular and humoral immunities, and disease resistance in white shrimp.
Collapse
Affiliation(s)
- Zhen-Hao Liao
- Department of Aquaculture, National Taiwan Ocean University, No.2, Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Chieh-Yuan Chuang
- Mariculture Research Center, Fisheries Research Institute, Council of Agriculture, No. 4, Haipu, Qigu District, Tainan City, 72453, Taiwan
| | - Yin-Yu Chen
- Department of Aquaculture, National Taiwan Ocean University, No.2, Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Yu-Ting Chu
- Department of Aquaculture, National Taiwan Ocean University, No.2, Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Yeh-Fang Hu
- Department of Aquaculture, National Taiwan Ocean University, No.2, Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, No.2, Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Jiang-Jen Lin
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Da'an District, Taipei City, 10617, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, No.2, Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan.
| |
Collapse
|
9
|
Musazzi UM, Franzè S, Condorelli F, Minghetti P, Caliceti P. Feeding Next-Generation Nanomedicines to Europe: Regulatory and Quality Challenges. Adv Healthc Mater 2023; 12:e2301956. [PMID: 37718353 PMCID: PMC11468706 DOI: 10.1002/adhm.202301956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/16/2023] [Indexed: 09/19/2023]
Abstract
New and innovative nanomedicines have been developed and marketed over the past half-century, revolutionizing the prognosis of many human diseases. Although a univocal regulatory definition is not yet available worldwide, the term "nanomedicines" generally identifies medicinal products that use nanotechnology in their design or production. Due to the intrinsic high structural complexity of these products, the scientific and regulatory communities are reflecting on how to revise the regulatory framework to provide a more appropriate benefit/risk balance to authorize them on the market, considering the impact of their peculiar physicochemical features in the evaluation of efficacy and safety patterns. Herein, a critical perspective is provided on the current open issues regarding regulatory qualification and physicochemical characterization of nanosystems considering the current European regulatory framework on nanomedicine products. Practicable paths for improving their quality assurance and predicting their fate in vivo are also argued. Strengthening the multilevel alliance among academic institutions, industrial stakeholders, and regulatory authorities seems strategic to support innovation by standard approaches (e.g., qualification, characterization, risk assessment), and to expand current knowledge, also benefiting from the new opportunities offered by artificial intelligence and digitization in predictive modelling of the impact of nanomedicine characteristics on their fate in vivo.
Collapse
Affiliation(s)
- Umberto M. Musazzi
- Department of Pharmaceutical SciencesUniversità degli Studi di Milanovia G. ColomboMilan71‐20133Italy
| | - Silvia Franzè
- Department of Pharmaceutical SciencesUniversità degli Studi di Milanovia G. ColomboMilan71‐20133Italy
| | - Fabrizio Condorelli
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo DoneganiNovara2‐28100Italy
| | - Paola Minghetti
- Department of Pharmaceutical SciencesUniversità degli Studi di Milanovia G. ColomboMilan71‐20133Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological SciencesUniversity of Padovavia F. MarzoloPadova5‐35131Italy
| |
Collapse
|
10
|
Chan HW, Chow S, Zhang X, Kwok PCL, Chow SF. Role of Particle Size in Translational Research of Nanomedicines for Successful Drug Delivery: Discrepancies and Inadequacies. J Pharm Sci 2023; 112:2371-2384. [PMID: 37453526 DOI: 10.1016/j.xphs.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
Despite significant research progress in substantiating the therapeutic merits of nanomedicines and the emergence of sophisticated nanotechnologies, the translation of this knowledge into new therapeutic modalities has been sluggish, indicating the need for a more comprehensive understanding of how the unique physicochemical properties of nanoparticles affect their clinical applications. Particle size is a critical quality attribute that impacts the bio-fate of nanoparticles, yet precise knowledge of its effect remains elusive with discrepancies among literature reports. This review aims to address this scientific knowledge gap from a drug development perspective by highlighting potential inadequacies during the evaluation of particle size effects. We begin with a discussion on the major issues in particle size characterization along with the corresponding remedies. The influence of confounding factors on biological effects of particle size, including colloidal stability, polydispersity, and in vitro drug release, are addressed for establishing stronger in vitro-in vivo correlation. Particle size design and tailoring approaches for successful nanoparticulate drug delivery beyond parenteral administration are also illustrated. We believe a holistic understanding of the effect of particle size on bio-fate, combined with consistent nanoparticle manufacturing platforms and tailored characterization techniques, would expedite the translation of nanomedicines into clinical practice.
Collapse
Affiliation(s)
- Ho Wan Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| | - Stephanie Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| | - Xinyue Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong S.A.R, China
| | - Philip Chi Lip Kwok
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong S.A.R, China.
| |
Collapse
|
11
|
Tehrani SF, Bharadwaj P, Leblond Chain J, Roullin VG. Purification processes of polymeric nanoparticles: How to improve their clinical translation? J Control Release 2023; 360:591-612. [PMID: 37422123 DOI: 10.1016/j.jconrel.2023.06.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/05/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Polymeric nanoparticles, as revolutionary nanomedicines, have offered a new class of diagnostic and therapeutic solutions for a multitude of diseases. With its immense potential, the world witnesses the new age of nanotechnology after the COVID-19 vaccines were developed based on nanotechnology. Even though there are countless benchtop research studies in the nanotechnology world, their integration into commercially available technologies is still restricted. The post-pandemic world demands a surge of research in the domain, which leaves us with the fundamental question: why is the clinical translation of therapeutic nanoparticles so restricted? Complications in nanomedicine purification, among other things, are to blame for the lack of transference. Polymeric nanoparticles, owing to their ease of manufacture, biocompatibility, and enhanced efficiency, are one of the more explored domains in organic-based nanomedicines. Purification of nanoparticles can be challenging and necessitates tailoring the available methods in accordance with the polymeric nanoparticle and impurities involved. Though a number of techniques have been described, there are no available guidelines that help in selecting the method to better suit our requirements. We encountered this difficulty while compiling articles for this review and looking for methods to purify polymeric nanoparticles. The currently accessible bibliography for purification techniques only provides approaches for a specific type of nanomaterial or sometimes even procedures for bulk materials, that are not fully relevant to nanoparticles. In our research, we tried to summarize the available purification techniques using the approach of A.F. Armington. We divided the purification systems into two major classes, namely: phase separation-based techniques (based on the physical differences between the phases) and matter exchange-based techniques (centered on physicochemical induced transfer of materials and compounds). The phase separation methods are based on either using nanoparticle size differences to retain them on a physical barrier (filtration techniques) or using their densities to segregate them (centrifugation techniques). The matter exchange separation methods rely on either transferring the molecules or impurities across a barrier using simple physicochemical phenomena, like the concentration gradients (dialysis method) or partition coefficients (extraction technique). After describing the methods in detail, we highlight their advantages and limitations, mainly focusing on preformed polymer-based nanoparticles. Tailoring a purification strategy takes into account the nanoparticle structure and its integrity, the method selected should be suited for preserving the integrity of the particles, in addition to conforming to the economical, material and productivity considerations. In the meantime, we advocate the use of a harmonized international regulatory framework to define the adequate physicochemical and biological characterization of nanomedicines. An appropriate purification strategy serves as the backbone to achieving desired characteristics, in addition to reducing variability. As a result, the present review aspires to serve as a comprehensive guide for researchers, who are new to the domain, as well as a synopsis of purification strategies and analytical characterization methods used in preclinical studies.
Collapse
Affiliation(s)
- Soudeh F Tehrani
- Laboratoire de Nanotechnologies Pharmaceutiques, Faculté de pharmacie, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Priyanshu Bharadwaj
- Laboratoire de Nanotechnologies Pharmaceutiques, Faculté de pharmacie, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| | | | - V Gaëlle Roullin
- Laboratoire de Nanotechnologies Pharmaceutiques, Faculté de pharmacie, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
12
|
Kiss B, Borbély J. Business Risk Mitigation in the Development Process of New Monoclonal Antibody Drug Conjugates for Cancer Treatment. Pharmaceutics 2023; 15:1761. [PMID: 37376209 DOI: 10.3390/pharmaceutics15061761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Recent developments aim to extend the cytotoxic effect and therapeutic window of mAbs by constructing antibody-drug conjugates (ADCs), in which the targeting moiety is the mAb that is linked to a highly toxic drug. According to a report from mid of last year, the global ADCs market accounted for USD 1387 million in 2016 and was worth USD 7.82 billion in 2022. It is estimated to increase in value to USD 13.15 billion by 2030. One of the critical points is the linkage of any substituent to the functional group of the mAb. Increasing the efficacy against cancer cells' highly cytotoxic molecules (warheads) are connected biologically. The connections are completed by different types of linkers, or there are efforts to add biopolymer-based nanoparticles, including chemotherapeutic agents. Recently, a combination of ADC technology and nanomedicine opened a new pathway. To fulfill the scientific knowledge for this complex development, our aim is to write an overview article that provides a basic introduction to ADC which describes the current and future opportunities in therapeutic areas and markets. Through this approach, we show which development directions are relevant both in terms of therapeutic area and market potential. Opportunities to reduce business risks are presented as new development principles.
Collapse
Affiliation(s)
- Balázs Kiss
- Faculty of Economics, University of Debrecen, 4032 Debrecen, Hungary
- BBS Dominus LLC, 4225 Debrecen, Hungary
| | - János Borbély
- Doctoral School of Clinical Medicine, University of Debrecen, 4032 Debrecen, Hungary
- BBS Biochemicals LLC, 4225 Debrecen, Hungary
| |
Collapse
|
13
|
Osipova N, Budko A, Maksimenko O, Shipulo E, Vanchugova L, Chen W, Gelperina S, Wacker MG. Comparison of Compartmental and Non-Compartmental Analysis to Detect Biopharmaceutical Similarity of Intravenous Nanomaterial-Based Rifabutin Formulations. Pharmaceutics 2023; 15:pharmaceutics15041258. [PMID: 37111743 PMCID: PMC10145013 DOI: 10.3390/pharmaceutics15041258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Pharmacometric analysis is often used to quantify the differences and similarities between formulation prototypes. In the regulatory framework, it plays a significant role in the evaluation of bioequivalence. While non-compartmental analysis provides an unbiased data evaluation, mechanistic compartmental models such as the physiologically-based nanocarrier biopharmaceutics model promise improved sensitivity and resolution for the underlying causes of inequivalence. In the present investigation, both techniques were applied to two nanomaterial-based formulations for intravenous injection, namely, albumin-stabilized rifabutin nanoparticles and rifabutin-loaded PLGA nanoparticles. The antibiotic rifabutin holds great potential for the treatment of severe and acute infections of patients co-infected with human immunodeficiency virus and tuberculosis. The formulations differ significantly in their formulation and material attributes, resulting in an altered biodistribution pattern as confirmed in a biodistribution study in rats. The albumin-stabilized delivery system further undergoes a dose-dependent change in particle size which leads to a small yet significant change in the in vivo performance. A second analysis was conducted comparing the dose fraction-scaled pharmacokinetic profiles of three dose levels of albumin-stabilized rifabutin nanoparticles. The dose strength affects both the nanomaterial-related absorption and biodistribution of the carrier as well as the drug-related distribution and elimination parameters, increasing the background noise and difficulty of detecting inequivalence. Depending on the pharmacokinetic parameter (e.g., AUC, Cmax, Clobs), the relative (percentage) difference from the average observed using non-compartmental modeling ranged from 85% to 5.2%. A change in the formulation type (PLGA nanoparticles vs. albumin-stabilized rifabutin nanoparticles) resulted in a similar level of inequivalence as compared to a change in the dose strength. A mechanistic compartmental analysis using the physiologically-based nanocarrier biopharmaceutics model led to an average difference of 152.46% between the two formulation prototypes. Albumin-stabilized rifabutin nanoparticles tested at different dose levels led to a 128.30% difference, potentially due to changes in particle size. A comparison of different dose strengths of PLGA nanoparticles, on average, led to a 3.87% difference. This study impressively illustrates the superior sensitivity of mechanistic compartmental analysis when dealing with nanomedicines.
Collapse
Affiliation(s)
| | - Andrey Budko
- N.N. Blokhin Russian Cancer Research Center, Russian Academy of Medical Science, Kashirskoye Shosse 24, 115478 Moscow, Russia
| | - Olga Maksimenko
- Nanosystem Ltd., Kolomenskiy Proezd 13A, 115446 Moscow, Russia
| | - Elena Shipulo
- Nanosystem Ltd., Kolomenskiy Proezd 13A, 115446 Moscow, Russia
| | | | - Wenqian Chen
- Department of Pharmacy, Faculty of Science, 4 Science Drive 2, Singapore 117544, Singapore
| | | | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, 4 Science Drive 2, Singapore 117544, Singapore
| |
Collapse
|
14
|
Macrophage-evading and tumor-specific apoptosis inducing nanoparticles for targeted cancer therapy. Acta Pharm Sin B 2023; 13:327-343. [PMID: 36815044 PMCID: PMC9939305 DOI: 10.1016/j.apsb.2022.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
Extended circulation of anticancer nanodrugs in blood stream is essential for their clinical applications. However, administered nanoparticles are rapidly sequestered and cleared by cells of the mononuclear phagocyte system (MPS). In this study, we developed a biomimetic nanosystem that is able to efficiently escape MPS and target tumor tissues. The fabricated nanoparticles (TM-CQ/NPs) were coated with fibroblast cell membrane expressing tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL). Coating with this functionalized membrane reduced the endocytosis of nanoparticles by macrophages, but increased the nanoparticle uptake in tumor cells. Importantly, this membrane coating specifically induced tumor cell apoptosis via the interaction of TRAIL and its cognate death receptors. Meanwhile, the encapsulated chloroquine (CQ) further suppressed the uptake of nanoparticles by macrophages, and synergized with TRAIL to induce tumor cell apoptosis. The vigorous antitumor efficacy in two mice tumor models confirmed our nanosystem was an effective approach to address the MPS challenge for cancer therapy. Together, our TM-CQ/NPs nanosystem provides a feasible approach to precisely target tumor tissues and improve anticancer efficacy.
Collapse
|
15
|
Gao K, Lian H, Xue C, Zhou J, Yan X. High-Throughput Counting and Sizing of Therapeutic Protein Aggregates in the Nanometer Size Range by Nano-Flow Cytometry. Anal Chem 2022; 94:17634-17644. [PMID: 36474427 DOI: 10.1021/acs.analchem.2c04382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein aggregation is one of the greatest challenges in biopharmaceuticals as it could decrease therapeutic efficacy, induce immunogenicity, and reduce shelf life of protein drugs. However, there lacks high-throughput methods than can count and size protein aggregates in the nanometer size range, especially for those smaller than 100 nm. Employing a laboratory-built nano-flow cytometer (nFCM) that enables light scattering detection of single silica nanoparticles as small as 24 nm with sizing resolution and accuracy comparable to those of electron microscopy, here, we report a new benchmark to analyze single protein aggregates as small as 40 nm. With an analysis rate of up to 10,000 particles/min, the size distribution and particle concentration of nanometer protein aggregates can be acquired in 2-3 min. Employing heat-induced aggregation of bovine serum albumin (BSA) at high concentrations as the model system, effects of different categories of excipients, including sugars, polyols, salts, and amino acids on the inhibition of protein aggregation were investigated. Strikingly enough, as high as 1010 to 1012 particles/mL of protein aggregates were observed in the size range of 40 to 200 nm for therapeutic proteins of human serum albumin injection, reconstituted recombinant human interieukin-2 solution, and human immunoglobulin injection. nFCM opens a new avenue to count and size nanometer protein aggregates, suggesting its future usability in the quality assessment and formulation promotion of therapeutic proteins.
Collapse
Affiliation(s)
- Kaimin Gao
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Hong Lian
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Chengfeng Xue
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Jing Zhou
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Xiaomei Yan
- Department of Chemical Biology, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| |
Collapse
|
16
|
Wallenwein CM, Weigel V, Hofhaus G, Dhakal N, Schatton W, Gelperina S, Groeber-Becker FK, Dressman J, Wacker MG. Pharmaceutical Development of Nanostructured Vesicular Hydrogel Formulations of Rifampicin for Wound Healing. Int J Mol Sci 2022; 23:16207. [PMID: 36555855 PMCID: PMC9788359 DOI: 10.3390/ijms232416207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic wounds exhibit elevated levels of inflammatory cytokines, resulting in the release of proteolytic enzymes which delay wound-healing processes. In recent years, rifampicin has gained significant attention in the treatment of chronic wounds due to an interesting combination of antibacterial and anti-inflammatory effects. Unfortunately, rifampicin is sensitive to hydrolysis and oxidation. As a result, no topical drug product for wound-healing applications has been approved. To address this medical need two nanostructured hydrogel formulations of rifampicin were developed. The liposomal vesicles were embedded into hydroxypropyl methylcellulose (HPMC) gel or a combination of hyaluronic acid and marine collagen. To protect rifampicin from degradation in aqueous environments, a freeze-drying method was developed. Before freeze-drying, two well-defined hydrogel preparations were obtained. After freeze-drying, the visual appearance, chemical stability, residual moisture content, and redispersion time of both preparations were within acceptable limits. However, the morphological characterization revealed an increase in the vesicle size for collagen-hyaluronic acid hydrogel. This was confirmed by subsequent release studies. Interactions of marine collagen with phosphatidylcholine were held responsible for this effect. The HPMC hydrogel formulation remained stable over 6 months of storage. Moving forward, this product fulfills all criteria to be evaluated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Chantal M. Wallenwein
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Verena Weigel
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Götz Hofhaus
- Cryo Electron Microscopy, CellNetworks, BioQuant, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Namrata Dhakal
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| | | | - Svetlana Gelperina
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Drugs, D. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia
| | - Florian K. Groeber-Becker
- Translational Center for Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Jennifer Dressman
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Matthias G. Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| |
Collapse
|
17
|
Liu Y, Sebastian S, Huang J, Corbascio T, Engellau J, Lidgren L, Tägil M, Raina DB. Longitudinal in vivo biodistribution of nano and micro sized hydroxyapatite particles implanted in a bone defect. Front Bioeng Biotechnol 2022; 10:1076320. [PMID: 36601389 PMCID: PMC9806272 DOI: 10.3389/fbioe.2022.1076320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Hydroxyapatite (HA) has been widely used as a bone substitute and more recently as a carrier for local delivery of bone targeted drugs. Majority of the approved HA based biomaterials and drug carriers comprise of micrometer sized particulate HA (mHA) or granules and can therefore only be used for extracellular drug release. This shortcoming could be overcome with the use of cell penetrating HA nanoparticles (nHA) but a major concern with the clinical use of nHA is the lack of data on its in vivo biodistribution after implantation. In this study, we aimed to study the in vivo biodistribution of locally implanted nHA in a clinically relevant tibial void in rats and compare it with mHA or a combination of mHA and nHA. To enable in vivo tracking, HA particles were first labelled with 14C-zoledronic acid (14C-ZA), known to have a high binding affinity to HA. The labelled particles were then implanted in the animals and the radioactivity in the proximal tibia and vital organs was detected at various time points (Day 1, 7 and 28) post-implantation using scintillation counting. The local distribution of the particles in the bone was studied with micro-CT. We found that majority (>99.9%) of the implanted HA particles, irrespective of the size, stayed locally at the implantation site even after 28 days and the findings were confirmed using micro-CT. Less than 0.1% radioactivity was observed in the kidney and the spleen at later time points of day 7 and 28. No pathological changes in any of the vital organs could be observed histologically. This is the first longitudinal in vivo HA biodistribution study showing that the local implantation of nHA particles in bone is safe and that nHA could potentially be used for localized drug delivery.
Collapse
Affiliation(s)
- Yang Liu
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden,*Correspondence: Yang Liu, ; Deepak Bushan Raina,
| | - Sujeesh Sebastian
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Jintian Huang
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Tova Corbascio
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Jacob Engellau
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Lars Lidgren
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Magnus Tägil
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden
| | - Deepak Bushan Raina
- Department of Clinical Sciences Lund, Orthopedics, The Faculty of Medicine, Lund University, Lund, Sweden,*Correspondence: Yang Liu, ; Deepak Bushan Raina,
| |
Collapse
|
18
|
Lian MQ, Chng WH, Liang J, Yeo HQ, Lee CK, Belaid M, Tollemeto M, Wacker MG, Czarny B, Pastorin G. Plant-derived extracellular vesicles: Recent advancements and current challenges on their use for biomedical applications. J Extracell Vesicles 2022; 11:e12283. [PMID: 36519808 PMCID: PMC9753580 DOI: 10.1002/jev2.12283] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs) represent a diverse class of lipid bilayer membrane vesicles released by both animal and plant cells. These ubiquitous vesicles are involved in intercellular communication and transport of various biological cargos, including proteins, lipids, and nucleic acids. In recent years, interest in plant-derived EVs has increased tremendously, as they serve as a scalable and sustainable alternative to EVs derived from mammalian sources. In vitro and in vivo findings have demonstrated that these plant-derived vesicles (PDVs) possess intrinsic therapeutic activities that can potentially treat diseases and improve human health. In addition, PDVs can also act as efficient and biocompatible drug carriers. While preclinical studies have shown promising results, there are still several challenges and knowledge gaps that have to be addressed for the successful translation of PDVs into clinical applications, especially in view of the lack of standardised protocols for material handling and PDV isolation from various plant sources. This review provides the readers with a quick overview of the current understanding and research on PDVs, critically analysing the current challenges and highlighting the immense potential of PDVs as a novel class of therapeutics to treat human diseases. It is expected that this work will guide scientists to address the knowledge gaps currently associated with PDVs and promote new advances in plant-based therapeutic solutions.
Collapse
Affiliation(s)
| | - Wei Heng Chng
- Department of PharmacyNational University of SingaporeSingaporeSingapore
- Integrative Sciences and Engineering Programme, NUS Graduate SchoolNational University of SingaporeSingaporeSingapore
| | - Jeremy Liang
- Department of ChemistryNational University of SingaporeSingaporeSingapore
| | - Hui Qing Yeo
- Department of PharmacyNational University of SingaporeSingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Choon Keong Lee
- Department of PharmacyNational University of SingaporeSingaporeSingapore
| | - Mona Belaid
- Institute of Pharmaceutical ScienceKing's College LondonLondonUnited Kingdom
| | - Matteo Tollemeto
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
| | | | - Bertrand Czarny
- School of Materials Science & EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Giorgia Pastorin
- Department of PharmacyNational University of SingaporeSingaporeSingapore
| |
Collapse
|
19
|
Zarinwall A, Maurer V, Pierick J, Oldhues VM, Porsiel JC, Finke JH, Garnweitner G. Amorphization and modified release of ibuprofen by post-synthetic and solvent-free loading into tailored silica aerogels. Drug Deliv 2022; 29:2086-2099. [PMID: 35838584 PMCID: PMC9291651 DOI: 10.1080/10717544.2022.2092237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Promising active pharmaceutical ingredients (APIs) often exhibit poor aqueous solubility and thus a low bioavailability that substantially limits their pharmaceutical application. Hence, efficient formulations are required for an effective translation into highly efficient drug products. One strategy is the preservation of an amorphous state of the API within a carrier matrix, which leads to enhanced dissolution. In this work, mesoporous silica aerogels (SA) were utilized as a carrier matrix for the amorphization of the poorly water-soluble model drug ibuprofen. Loading of tailored SA was performed post-synthetically and solvent-free, either by co-milling or via the melting method. Thorough analyses of these processes demonstrated the influence of macrostructural changes during the drying and grinding process on the microstructural properties of the SA. Furthermore, interfacial SA-drug interaction properties were selectively tuned by attaching terminal hydrophilic amino- or hydrophobic methyl groups to the surface of the gel. We demonstrate that not only the chemical surface properties of the SA, but also formulation-related parameters, such as the carrier-to-drug ratio, as well as process-related parameters, such as the drug loading method, decisively influence the ibuprofen adsorption efficiency. In addition, the drug-loaded SA formulations exhibited a remarkable physical stability over a period of 6 months. Furthermore, the release behavior is shown to change considerably with different surface properties of the SA matrix. Hence, the reported results demonstrate that utilizing specifically processed and modified SA offers a compelling technique for enhancement of the bioavailability of poorly-water soluble APIs and a versatile adjustment of their release profile.
Collapse
Affiliation(s)
- Ajmal Zarinwall
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Viktor Maurer
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Jennifer Pierick
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Victor Marcus Oldhues
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Julian Cedric Porsiel
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany
| | - Jan Henrik Finke
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| | - Georg Garnweitner
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
20
|
Current regulatory landscape of nanomaterials and nanomedicines: A global perspective. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Manocha S, Dhiman S, Grewal AS, Guarve K. Nanotechnology: An approach to overcome bioavailability challenges of nutraceuticals. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Bokhary KA, Maqsood F, Amina M, Aldarwesh A, Mofty HK, Al-yousef HM. Grapefruit Extract-Mediated Fabrication of Photosensitive Aluminum Oxide Nanoparticle and Their Antioxidant and Anti-Inflammatory Potential. NANOMATERIALS 2022; 12:nano12111885. [PMID: 35683744 PMCID: PMC9182307 DOI: 10.3390/nano12111885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023]
Abstract
Aluminum oxide nanoparticles (Al2O3 NPs) were synthesized using a simple, eco-friendly green synthesis approach in an alkaline medium from the extract of grapefruit peel waste. The pre-synthesized, nano-crystalline Al2O3 NPs were characterized by using spectroscopic (UV-vis, FTIR, XRD, and EDX) and microscopic (SEM and TEM) techniques. The formed Al2O3 NPs exhibited a pronounced absorption peak at 278 nm in the UV-vis spectrum. The average particle size of the as-prepared Al2O3 NPs was evaluated to be 57.34 nm, and the atomic percentages of O and Al were found to be 54.58 and 45.54, respectively. The fabricated Al2O3 NPs were evaluated for antioxidant, anti-inflammatory, and immunomodulatory properties. The Al2O3 NPs showed strong antioxidant potential towards all the four tested assays. The anti-inflammatory and immunomodulatory potential of Al2O3 NPs was investigated by measuring the production of nitric oxide and superoxide anion (O2•-), as well as proinflammatory cytokines tumour necrosis factor (TNF-α, IL-6) and inhibition of nuclear factor kappa B (NF- κB). The results revealed that Al2O3 NPs inhibited the production of O2•- (99.4%) at 100 μg mL-1 concentrations and intracellular NO•- (55%), proinflammatory cytokines IL-6 (83.3%), and TNF-α (87.9%) at 50 μg mL-1 concentrations, respectively. Additionally, the Al2O3 NPs inhibited 41.8% of nuclear factor kappa B at 20 μg mL-1 concentrations. Overall, the outcomes of current research studies indicated that Al2O3 NPs possess anti-inflammatory and immunomodulatory properties and could be used to treat chronic and acute anti-inflammatory conditions.
Collapse
Affiliation(s)
- Kholoud A. Bokhary
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.B.); (F.M.); (A.A.); (H.K.M.)
| | - Farah Maqsood
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.B.); (F.M.); (A.A.); (H.K.M.)
| | - Musarat Amina
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Correspondence:
| | - Amal Aldarwesh
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.B.); (F.M.); (A.A.); (H.K.M.)
| | - Hanan K. Mofty
- Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.B.); (F.M.); (A.A.); (H.K.M.)
| | - Hanan M. Al-yousef
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
23
|
Villa Nova M, Gan K, Wacker MG. Biopredictive tools for the development of injectable drug products. Expert Opin Drug Deliv 2022; 19:671-684. [PMID: 35603724 DOI: 10.1080/17425247.2022.2081682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Biopredictive release tests are commonly used in the evaluation of oral medicines. They support decision-making in formulation development and allow predictions of the expected in-vivo performances. So far, there is limited experience in the application of these methodologies to injectable drug products. AREAS COVERED Parenteral drug products cover a variety of dosage forms and administration sites including subcutaneous, intramuscular, and intravenous injections. In this area, developing biopredictive and biorelevant methodologies often confronts us with unique challenges and knowledge gaps. Here, we provide a formulation-centric approach and explain the key considerations and workflow when designing biopredictive assays. Also, we outline the key role of computational methods in achieving clinical relevance and put all considerations into context using liposomal nanomedicines as an example. EXPERT OPINION Biopredictive tools are the need of the hour to exploit the tremendous opportunities of injectable drug products. A growing number of biopharmaceuticals such as peptides, proteins, and nucleic acids require different strategies and a better understanding of the influences on drug absorption. Here, our design strategy must maintain the balance of robustness and complexity required for effective formulation development.
Collapse
Affiliation(s)
- Mônica Villa Nova
- State University of Maringá, Department of Pharmacy, Maringá, Paraná, Brazil
| | - Kennard Gan
- National University of Singapore, Department of Pharmacy, Singapore
| | | |
Collapse
|
24
|
Tuguntaev RG, Hussain A, Fu C, Chen H, Tao Y, Huang Y, Liu L, Liang XJ, Guo W. Bioimaging guided pharmaceutical evaluations of nanomedicines for clinical translations. J Nanobiotechnology 2022; 20:236. [PMID: 35590412 PMCID: PMC9118863 DOI: 10.1186/s12951-022-01451-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Nanomedicines (NMs) have emerged as an efficient approach for developing novel treatment strategies against a variety of diseases. Over the past few decades, NM formulations have received great attention, and a large number of studies have been performed in this field. Despite this, only about 60 nano-formulations have received industrial acceptance and are currently available for clinical use. Their in vivo pharmaceutical behavior is considered one of the main challenges and hurdles for the effective clinical translation of NMs, because it is difficult to monitor the pharmaceutic fate of NMs in the biological environment using conventional pharmaceutical evaluations. In this context, non-invasive imaging modalities offer attractive solutions, providing the direct monitoring and quantification of the pharmacokinetic and pharmacodynamic behavior of labeled NMs in a real-time manner. Imaging evaluations have great potential for revealing the relationship between the physicochemical properties of NMs and their pharmaceutical profiles in living subjects. In this review, we introduced imaging techniques that can be used for in vivo NM evaluations. We also provided an overview of various studies on the influence of key parameters on the in vivo pharmaceutical behavior of NMs that had been visualized in a non-invasive and real-time manner.
Collapse
Affiliation(s)
- Ruslan G Tuguntaev
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Abid Hussain
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecular Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chenxing Fu
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Haoting Chen
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Ying Tao
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Lu Liu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China.
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
25
|
Popov AB, Melle F, Linnane E, González-López C, Ahmed I, Parshad B, Franck CO, Rahmoune H, Richards FM, Muñoz-Espín D, Jodrell DI, Fairen-Jimenez D, Fruk L. Size-tuneable and immunocompatible polymer nanocarriers for drug delivery in pancreatic cancer. NANOSCALE 2022; 14:6656-6669. [PMID: 35438701 PMCID: PMC9070568 DOI: 10.1039/d2nr00864e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Nanocarriers have emerged as one of the most promising approaches for drug delivery. Although several nanomaterials have been approved for clinical use, the translation from lab to clinic remains challenging. However, by implementing rational design strategies and using relevant models for their validation, these challenges are being addressed. This work describes the design of novel immunocompatible polymer nanocarriers made of melanin-mimetic polydopamine and Pluronic F127 units. The nanocarrier preparation was conducted under mild conditions, using a highly reproducible method that was tuned to provide a range of particle sizes (<100 nm) without changing the composition of the carrier. A set of in vitro studies were conducted to provide a comprehensive assessment of the effect of carrier size (40, 60 and 100 nm) on immunocompatibility, viability and uptake into different pancreatic cancer cells varying in morphological and phenotypic characteristics. Pancreatic cancer is characterised by poor treatment efficacy and no improvement in patient survival in the last 40 years due to the complex biology of the solid tumour. High intra- and inter-tumoral heterogeneity and a dense tumour microenvironment limit diffusion and therapeutic response. The Pluronic-polydopamine nanocarriers were employed for the delivery of irinotecan active metabolite SN38, which is used in the treatment of pancreatic cancer. Increased antiproliferative effect was observed in all tested cell lines after administration of the drug encapsulated within the carrier, indicating the system's potential as a therapeutic agent for this hard-to-treat cancer.
Collapse
Affiliation(s)
- Andrea Bistrović Popov
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Francesca Melle
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Emily Linnane
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Cristina González-López
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
- CRUK Cambridge Centre Early Detection Program, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Ishtiaq Ahmed
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Badri Parshad
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Christoph O Franck
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| | - Hassan Rahmoune
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Frances M Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
- Translational Medicine, Oncology R&D, Astra Zeneca, Cambridge CB4 0WG, UK
| | - Daniel Muñoz-Espín
- CRUK Cambridge Centre Early Detection Program, Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Ljiljana Fruk
- BioNano Engineering Lab, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK.
| |
Collapse
|
26
|
Three-dimensional (3D) liver cell models - a tool for bridging the gap between animal studies and clinical trials when screening liver accumulation and toxicity of nanobiomaterials. Drug Deliv Transl Res 2022; 12:2048-2074. [PMID: 35507131 PMCID: PMC9066991 DOI: 10.1007/s13346-022-01147-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/13/2022]
Abstract
Despite the exciting properties and wide-reaching applications of nanobiomaterials (NBMs) in human health and medicine, their translation from bench to bedside is slow, with a predominant issue being liver accumulation and toxicity following systemic administration. In vitro 2D cell-based assays and in vivo testing are the most popular and widely used methods for assessing liver toxicity at pre-clinical stages; however, these fall short in predicting toxicity for NBMs. Focusing on in vitro and in vivo assessment, the accurate prediction of human-specific hepatotoxicity is still a significant challenge to researchers. This review describes the relationship between NBMs and the liver, and the methods for assessing toxicity, focusing on the limitations they bring in the assessment of NBM hepatotoxicity as one of the reasons defining the poor translation for NBMs. We will then present some of the most recent advances towards the development of more biologically relevant in vitro liver methods based on tissue-mimetic 3D cell models and how these could facilitate the translation of NBMs going forward. Finally, we also discuss the low public acceptance and limited uptake of tissue-mimetic 3D models in pre-clinical assessment, despite the demonstrated technical and ethical advantages associated with them.
Collapse
|
27
|
Bekmukhametova A, Uddin MMN, Houang J, Malladi C, George L, Wuhrer R, Barman SK, Wu MJ, Mawad D, Lauto A. Fabrication and characterization of chitosan nanoparticles using the coffee-ring effect for photodynamic therapy. Lasers Surg Med 2022; 54:758-766. [PMID: 35195285 DOI: 10.1002/lsm.23530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Biocompatible nanoparticles have been increasingly used in a variety of medical applications, including photodynamic therapy. Although the impact of synthesis parameters and purification methods is reported in previous studies, it is still challenging to produce a reliable protocol for the fabrication, purification, and characterization of nanoparticles in the 200-300 nm range that are highly monodisperse for biomedical applications. STUDY DESIGN/MATERIALS AND METHODS We investigated the synthesis of chitosan nanoparticles in the 200-300 nm range by evaluating the chitosan to sodium tripolyphosphate (TPP) mass ratio and acetic acid concentration of the chitosan solution. Chitosan nanoparticles were also crosslinked to rose bengal and incubated with human breast cancer cells (MCF-7) to test photodynamic activity using a green laser (λ = 532 nm, power = 90 mW). RESULTS We established a simple protocol to fabricate and purify biocompatible nanoparticles with the most frequent size occurring between 200 and 300 nm. This was achieved using a chitosan to TPP mass ratio of 5:1 in 1% v/v acetic acid at a pH of 5.5. The protocol involved the formation of nanoparticle coffee rings that showed the particle shape to be spherical in the first approximation. Photodynamic treatment with rose bengal-nanoparticles killed ~98% of cancer cells. CONCLUSION A simple protocol was established to prepare and purify spherical and biocompatible chitosan nanoparticles with a peak size of ~200 nm. These have remarkable antitumor activity when coupled with photodynamic treatment.
Collapse
Affiliation(s)
- Alina Bekmukhametova
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Mir Muhammad Nasir Uddin
- School of Science, Western Sydney University, Penrith, New South Wales, Australia.,Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Jessica Houang
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Chandra Malladi
- Molecular Biology and Genetics, Proteomics and Lipidomics Lab, School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Laurel George
- Advanced Materials Characterisation Facility, Western Sydney University, Penrith, New South Wales, Australia
| | - Richard Wuhrer
- Advanced Materials Characterisation Facility, Western Sydney University, Penrith, New South Wales, Australia
| | - Shital K Barman
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Ming J Wu
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Damia Mawad
- School of Materials Science and Engineering and Australian Centre for NanoMedicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Antonio Lauto
- School of Science, Western Sydney University, Penrith, New South Wales, Australia.,Biomedical Engineering & Neuroscience Research Group, The MARCS Institute, University of New South Wales, Penrith, New South Wales, Australia
| |
Collapse
|
28
|
Villa Nova M, Lin TP, Shanehsazzadeh S, Jain K, Ng SCY, Wacker R, Chichakly K, Wacker MG. Nanomedicine Ex Machina: Between Model-Informed Development and Artificial Intelligence. Front Digit Health 2022; 4:799341. [PMID: 35252958 PMCID: PMC8894322 DOI: 10.3389/fdgth.2022.799341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Today, a growing number of computational aids and simulations are shaping model-informed drug development. Artificial intelligence, a family of self-learning algorithms, is only the latest emerging trend applied by academic researchers and the pharmaceutical industry. Nanomedicine successfully conquered several niche markets and offers a wide variety of innovative drug delivery strategies. Still, only a small number of patients benefit from these advanced treatments, and the number of data sources is very limited. As a consequence, “big data” approaches are not always feasible and smart combinations of human and artificial intelligence define the research landscape. These methodologies will potentially transform the future of nanomedicine and define new challenges and limitations of machine learning in their development. In our review, we present an overview of modeling and artificial intelligence applications in the development and manufacture of nanomedicines. Also, we elucidate the role of each method as a facilitator of breakthroughs and highlight important limitations.
Collapse
Affiliation(s)
- Mônica Villa Nova
- Department of Pharmacy, State University of Maringá, Maringá, Brazil
| | - Tzu Ping Lin
- Wacker Research Lab, Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Saeed Shanehsazzadeh
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Kinjal Jain
- Wacker Research Lab, Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Samuel Cheng Yong Ng
- Wacker Research Lab, Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | | | | | - Matthias G. Wacker
- Wacker Research Lab, Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
- *Correspondence: Matthias G. Wacker
| |
Collapse
|
29
|
Barton AE, Borchard G, Wacker MG, Pastorin G, Saleem IY, Chaudary S, Elbayoumi T, Zhao Z, Flühmann B. Need for Expansion of Pharmacy Education Globally for the Growing Field of Nanomedicine. PHARMACY 2022; 10:pharmacy10010017. [PMID: 35202067 PMCID: PMC8878512 DOI: 10.3390/pharmacy10010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 11/26/2022] Open
Abstract
The emerging landscape of nanomedicine includes a wide variety of active pharmaceutical ingredients and drug formulations. Their design provides nanomedicines with unique features leading to improved pharmacokinetics and pharmacodynamics. They are manufactured using conventional or biotechnological manufacturing processes. Their physical characteristics are vastly different from traditional small-molecule drugs. Pharmacists are important members of the multi-disciplinary team of scientists involved in their development and clinical application. Consequently, their training should lead to an understanding of the complexities associated with the production and evaluation of nanomedicines. Therefore, student pharmacists, post-doctoral researchers, and trainees should be given more exposure to this rapidly evolving class of therapeutics. This commentary will provide an overview of nanomedicine education within the selection of pharmacy programs globally, discuss the current regulatory challenges, and describe different approaches to incorporate nanomedicine science in pharmacy programs around the world.
Collapse
Affiliation(s)
- Amy E. Barton
- Vifor Pharma Group, Vifor Pharma Management Ltd., Flughofstrasse 61, 8152 Glattbrugg, Switzerland;
- Correspondence: ; Tel.: +41-58-851-80-00
| | - Gerrit Borchard
- Section of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva,1, Rue Michel Servet, 1211 Geneva, Switzerland;
| | - Matthias G. Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (M.G.W.); (G.P.)
| | - Giorgia Pastorin
- Department of Pharmacy, Faculty of Science, National University of Singapore, 5 Science Drive 2, Singapore 117545, Singapore; (M.G.W.); (G.P.)
| | - Imran Y. Saleem
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (I.Y.S.); (S.C.)
| | - Shaqil Chaudary
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (I.Y.S.); (S.C.)
| | - Tamer Elbayoumi
- Department of Pharmaceutical Sciences & Nanomedicine Center of Excellence, College of Pharmacy Glendale Campus, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308, USA;
| | - Zhigang Zhao
- Department of Clinical Pharmacy, School of Pharmacy, Capital Medical University, No.10, Xitoutiao, You’anmen Wai, Fengtai District, Beijing 100069, China;
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, 119 Nansihuan Xi Lu, Fengtai District, Beijing 100070, China
| | - Beat Flühmann
- Vifor Pharma Group, Vifor Pharma Management Ltd., Flughofstrasse 61, 8152 Glattbrugg, Switzerland;
| |
Collapse
|
30
|
Ramos TI, Villacis-Aguirre CA, López-Aguilar KV, Santiago Padilla L, Altamirano C, Toledo JR, Santiago Vispo N. The Hitchhiker's Guide to Human Therapeutic Nanoparticle Development. Pharmaceutics 2022; 14:247. [PMID: 35213980 PMCID: PMC8879439 DOI: 10.3390/pharmaceutics14020247] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Nanomedicine plays an essential role in developing new therapies through novel drug delivery systems, diagnostic and imaging systems, vaccine development, antibacterial tools, and high-throughput screening. One of the most promising drug delivery systems are nanoparticles, which can be designed with various compositions, sizes, shapes, and surface modifications. These nanosystems have improved therapeutic profiles, increased bioavailability, and reduced the toxicity of the product they carry. However, the clinical translation of nanomedicines requires a thorough understanding of their properties to avoid problems with the most questioned aspect of nanosystems: safety. The particular physicochemical properties of nano-drugs lead to the need for additional safety, quality, and efficacy testing. Consequently, challenges arise during the physicochemical characterization, the production process, in vitro characterization, in vivo characterization, and the clinical stages of development of these biopharmaceuticals. The lack of a specific regulatory framework for nanoformulations has caused significant gaps in the requirements needed to be successful during their approval, especially with tests that demonstrate their safety and efficacy. Researchers face many difficulties in establishing evidence to extrapolate results from one level of development to another, for example, from an in vitro demonstration phase to an in vivo demonstration phase. Additional guidance is required to cover the particularities of this type of product, as some challenges in the regulatory framework do not allow for an accurate assessment of NPs with sufficient evidence of clinical success. This work aims to identify current regulatory issues during the implementation of nanoparticle assays and describe the major challenges that researchers have faced when exposing a new formulation. We further reflect on the current regulatory standards required for the approval of these biopharmaceuticals and the requirements demanded by the regulatory agencies. Our work will provide helpful information to improve the success of nanomedicines by compiling the challenges described in the literature that support the development of this novel encapsulation system. We propose a step-by-step approach through the different stages of the development of nanoformulations, from their design to the clinical stage, exemplifying the different challenges and the measures taken by the regulatory agencies to respond to these challenges.
Collapse
Affiliation(s)
- Thelvia I. Ramos
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador
| | - Carlos A. Villacis-Aguirre
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Katherine V. López-Aguilar
- Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador;
| | | | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile;
- Centro Regional de Estudios en Alimentos Saludables, Av. Universidad 330, Placilla, Sector Curauma, Valparaíso 2340000, Chile
| | - Jorge R. Toledo
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, Concepción 4070386, Chile; (T.I.R.); (C.A.V.-A.)
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador
| |
Collapse
|
31
|
Pang S, Kapur A, Zhou K, Anastasiadis P, Ballirano N, Kim AJ, Winkles JA, Woodworth GF, Huang H. Nanoparticle-assisted, image-guided laser interstitial thermal therapy for cancer treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1826. [PMID: 35735205 PMCID: PMC9540339 DOI: 10.1002/wnan.1826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022]
Abstract
Laser interstitial thermal therapy (LITT) guided by magnetic resonance imaging (MRI) is a new treatment option for patients with brain and non-central nervous system (non-CNS) tumors. MRI guidance allows for precise placement of optical fiber in the tumor, while MR thermometry provides real-time monitoring and assessment of thermal doses during the procedure. Despite promising clinical results, LITT complications relating to brain tumor procedures, such as hemorrhage, edema, seizures, and thermal injury to nearby healthy tissues, remain a significant concern. To address these complications, nanoparticles offer unique prospects for precise interstitial hyperthermia applications that increase heat transport within the tumor while reducing thermal impacts on neighboring healthy tissues. Furthermore, nanoparticles permit the co-delivery of therapeutic compounds that not only synergize with LITT, but can also improve overall effectiveness and safety. In addition, efficient heat-generating nanoparticles with unique optical properties can enhance LITT treatments through improved real-time imaging and thermal sensing. This review will focus on (1) types of inorganic and organic nanoparticles for LITT; (2) in vitro, in silico, and ex vivo studies that investigate nanoparticles' effect on light-tissue interactions; and (3) the role of nanoparticle formulations in advancing clinically relevant image-guided technologies for LITT. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Sumiao Pang
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Anshika Kapur
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Keri Zhou
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Pavlos Anastasiadis
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Nicholas Ballirano
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA
| | - Anthony J. Kim
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Jeffrey A. Winkles
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Graeme F. Woodworth
- Department of NeurosurgeryUniversity of Maryland School of MedicineBaltimoreMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| | - Huang‐Chiao Huang
- Fischell Department of Bioengineering, University of Maryland at College ParkCollege ParkMarylandUSA,University of Maryland Marlene and Stewart Greenebaum Cancer CenterBaltimoreMarylandUSA
| |
Collapse
|
32
|
Halamoda‐Kenzaoui B, Rolland E, Piovesan J, Puertas Gallardo A, Bremer‐Hoffmann S. Toxic effects of nanomaterials for health applications: How automation can support a systematic review of the literature? J Appl Toxicol 2022; 42:41-51. [PMID: 34050552 PMCID: PMC9292569 DOI: 10.1002/jat.4204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 11/24/2022]
Abstract
Systematic reviews of the scientific literature can be an important source of information supporting the daily work of the regulators in their decision making, particularly in areas of innovative technologies where the regulatory experience is still limited. Significant research activities in the field of nanotechnology resulted in a huge number of publications in the last decades. However, even if the published data can provide relevant information, scientific articles are often of diverse quality, and it is nearly impossible to manually process and evaluate such amount of data in a systematic manner. In this feasibility study, we investigated to what extent open-access automation tools can support a systematic review of toxic effects of nanomaterials for health applications reported in the scientific literature. In this study, we used a battery of available tools to perform the initial steps of a systematic review such as targeted searches, data curation and abstract screening. This work was complemented with an in-house developed tool that allowed us to extract specific sections of the articles such as the materials and methods part or the results section where we could perform subsequent text analysis. We ranked the articles according to quality criteria based on the reported nanomaterial characterisation and extracted most frequently described toxic effects induced by different types of nanomaterials. Even if further demonstration of the reliability and applicability of automation tools is necessary, this study demonstrated the potential to leverage information from the scientific literature by using automation systems in a tiered strategy.
Collapse
|
33
|
Mast MP, Modh H, Champanhac C, Wang JW, Storm G, Krämer J, Mailänder V, Pastorin G, Wacker MG. Nanomedicine at the crossroads - A quick guide for IVIVC. Adv Drug Deliv Rev 2021; 179:113829. [PMID: 34174332 DOI: 10.1016/j.addr.2021.113829] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
For many years, nanomedicine is pushing the boundaries of drug delivery. When applying these novel therapeutics, safety considerations are not only a key concern when entering clinical trials but also an important decision point in product development. Standing at the crossroads, nanomedicine may be able to escape the niche markets and achieve wider acceptance by the pharmaceutical industry. While there is a new generation of drug delivery systems, the extracellular vesicles, standing on the starting line, unresolved issues and new challenges emerge from their translation from bench to bedside. Some key features of injectable nanomedicines contribute to the predictability of the pharmacological and toxicological effects. So far, only a few of the physicochemical attributes of nanomedicines can be justified by a direct mathematical relationship between the in vitro and the in vivo responses. To further develop extracellular vesicles as drug carriers, we have to learn from more than 40 years of clinical experience in liposomal delivery and pass on this knowledge to the next generation. Our quick guide discusses relationships between physicochemical characteristics and the in vivo response, commonly referred to as in vitro-in vivo correlation. Further, we highlight the key role of computational methods, lay open current knowledge gaps, and question the established design strategies. Has the recent progress improved the predictability of targeted delivery or do we need another change in perspective?
Collapse
|
34
|
An Update to Dialysis-Based Drug Release Testing-Data Analysis and Validation Using the Pharma Test Dispersion Releaser. Pharmaceutics 2021; 13:pharmaceutics13122007. [PMID: 34959289 PMCID: PMC8708653 DOI: 10.3390/pharmaceutics13122007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Currently, a wide variety of complex non-oral dosage forms are entering the global healthcare market. Although many assays have been described in recent research, harmonized procedures and standards for testing their in vitro performance remain widely unexplored. Among others, dialysis-based techniques such as the Pharma Test Dispersion Releaser are developed for testing the release of drugs from nanoparticles, liposomes, or extracellular vesicle preparations. Here, we provide advanced strategies and practical advice for the development and validation of dialysis-based techniques, including documentation, analysis, and interpretation of the raw data. For this purpose, key parameters of the release assay, including the hydrodynamics in the device at different stirring rates, the selectivity for particles and molecules, as well as the effect of excipients on drug permeation were investigated. At the highest stirring rate, a more than twofold increase in the membrane permeation rate (from 0.99 × 10−3 to 2.17 × 10−3 cm2/h) was observed. Additionally, we designed a novel computer model to identify important quality parameters of the dialysis experiment and to calculate error-corrected release profiles. Two hydrophilic creams of diclofenac, Voltaren® Emulgel, and Olfen® gel, were tested and provide first-hand evidence of the robustness of the assay in the presence of semisolid dosage forms.
Collapse
|
35
|
Talebian S, Rodrigues T, das Neves J, Sarmento B, Langer R, Conde J. Facts and Figures on Materials Science and Nanotechnology Progress and Investment. ACS NANO 2021; 15:15940-15952. [PMID: 34320802 DOI: 10.1021/acsnano.1c03992] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As the twenty-first century unfolds, nanotechnology is no longer just a buzzword in the field of materials science, but rather a tangible reality. This is evident from the surging number of commercial nanoproducts and their corresponding revenue generated in different industry sectors. However, it is important to recognize that sustainable growth of nanotechnology is heavily dependent on government funding and relevant national incentive programs. Consequently, proper analyses on publicly available nanotechnology data sets comprising information on the past two decades can be illuminating, facilitate development, and amend previous strategies as we move forward. Along these lines, classical statistics and machine learning (ML) allow processing large data sets to scrutinize patterns in materials science and nanotechnology research. Herein, we provide an analysis on nanotechnology progress and investment from an unbiased, computational vantage point and using orthogonal approaches. Our data reveal both well-established and surprising correlations in the nanotechnology field and its actors, including the interplay between the number of research institutes-industry, publications-patents, collaborative research, and top contributors to nanoproducts. Overall, data suggest that, supported by incentive programs set out by stakeholders (researchers, funding agencies, policy makers, and industry), nanotechnology could experience an exponential growth and become a centerpiece for economical welfare. Indeed, the recent success of COVID-19 vaccines is also likely to boost public trust in nanotechnology and its global impact over the coming years.
Collapse
Affiliation(s)
- Sepehr Talebian
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tiago Rodrigues
- Research Institute for Medicines (iMed), Faculdade de Farmácia, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - José das Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- CESPU, IINFACTS-Institute for Research and Advanced Training in Health Sciences and Technologies, Avenida Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- CESPU, IINFACTS-Institute for Research and Advanced Training in Health Sciences and Technologies, Avenida Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02139, United States
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
36
|
Ujjwal RR, Yadav A, Tripathi S, Krishna STVS. Polymer-Based Nanotherapeutics for Burn Wounds. Curr Pharm Biotechnol 2021; 23:1460-1482. [PMID: 34579630 DOI: 10.2174/1389201022666210927103755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/11/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022]
Abstract
Burn wounds are complex and intricate injuries that have become a common cause of trauma leading to significant mortality and morbidity every year. Dressings are applied to burn wounds with the aim of promoting wound healing, preventing burn infection and restoring skin function. The dressing protects the injury and contributes to recovery of dermal and epidermal tissues. Polymer-based nanotherapeutics are increasingly being exploited as burn wound dressings. Natural polymers such as cellulose, chitin, alginate, collagen, gelatin and synthetic polymers like poly (lactic-co-glycolic acid), polycaprolactone, polyethylene glycol, and polyvinyl alcohol are being obtained as nanofibers by nanotechnological approaches like electrospinning and have shown wound healing and re-epithelialization properties. Their biocompatibility, biodegradability, sound mechanical properties and unique structures provide optimal microenvironment for cell proliferation, differentiation, and migration contributing to burn wound healing. The polymeric nanofibers mimic collagen fibers present in extracellular matrix and their high porosity and surface area to volume ratio enable increased interaction and sustained release of therapeutics at the site of thermal injury. This review is an attempt to compile all recent advances in the use of polymer-based nanotherapeutics for burn wounds. The various natural and synthetic polymers used have been discussed comprehensively and approaches being employed have been reported. With immense research effort that is currently being invested in this field and development of proper characterization and regulatory framework, future progress in burn treatment is expected to occur. Moreover, appropriate preclinical and clinical research will provide evidence for the great potential that polymer-based nanotherapeutics hold in the management of burn wounds.
Collapse
Affiliation(s)
- Rewati Raman Ujjwal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. India
| | - Awesh Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. India
| | - Shourya Tripathi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. India
| | - S T V Sai Krishna
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. India
| |
Collapse
|
37
|
Hu X, Jazani AM, Oh JK. Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Veloso PM, Machado R, Nobre C. Mesalazine and inflammatory bowel disease - From well-established therapies to progress beyond the state of the art. Eur J Pharm Biopharm 2021; 167:89-103. [PMID: 34329709 DOI: 10.1016/j.ejpb.2021.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 01/14/2023]
Abstract
Inflammatory bowel disease incidence has been constantly rising for the past few decades. Current therapies attempt to mitigate its symptoms since no cure is established. The most commonly prescribed drug for these patients is 5-aminosalicylic acid (5-ASA). Due to the low rate and seriousness of side effects compared to other therapies, 5-ASA is still largely prescribed in many stages of inflammatory bowel disease, including scenarios where evidence suggests low effectiveness. Although commercialized formulations have come a long way in improving pharmacokinetics, it is still necessary to design and develop novel delivery systems capable of increasing effectiveness at different stages of the disease. In particular, micro- and nano-sized particles might be the key to its success in Crohn's disease and in more serious disease stages. This review provides an overview on the clinical significance of 5-ASA formulations, its limitations, challenges, and the most recent micro- and nanoparticle delivery systems being designed for its controlled release. Emergent alternatives for 5-ASA are also discussed, as well as the future prospects for its application in inflammatory bowel disease therapies.
Collapse
Affiliation(s)
- Pedro M Veloso
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Raul Machado
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; IB-S - Institute of Science and Innovation for Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Clarisse Nobre
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
39
|
Tavares Luiz M, Santos Rosa Viegas J, Palma Abriata J, Viegas F, Testa Moura de Carvalho Vicentini F, Lopes Badra Bentley MV, Chorilli M, Maldonado Marchetti J, Tapia-Blácido DR. Design of experiments (DoE) to develop and to optimize nanoparticles as drug delivery systems. Eur J Pharm Biopharm 2021; 165:127-148. [PMID: 33992754 DOI: 10.1016/j.ejpb.2021.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 04/05/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology has been widely applied to develop drug delivery systems to improve therapeutic performance. The effectiveness of these systems is intrinsically related to their physicochemical properties, so their biological responses are highly susceptible to factors such as the type and quantity of each material that is employed in their synthesis and to the method that is used to produce them. In this context, quality-oriented manufacturing of nanoparticles has been an important strategy to understand and to optimize the factors involved in their production. For this purpose, Design of Experiment (DoE) tools have been applied to obtain enough knowledge about the process and hence achieve high-quality products. This review aims to set up the bases to implement DoE as a strategy to improve the manufacture of nanocarriers and to discuss the main factors involved in the production of the most common nanocarriers employed in the pharmaceutical field.
Collapse
Affiliation(s)
- Marcela Tavares Luiz
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Santos Rosa Viegas
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Palma Abriata
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe Viegas
- Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, Sao Paulo State University, Araraquara, SP, Brazil
| | | | - Delia Rita Tapia-Blácido
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
40
|
Dau VT, Bui TT, Tran CD, Nguyen TV, Nguyen TK, Dinh T, Phan HP, Wibowo D, Rehm BHA, Ta HT, Nguyen NT, Dao DV. In-air particle generation by on-chip electrohydrodynamics. LAB ON A CHIP 2021; 21:1779-1787. [PMID: 33730135 DOI: 10.1039/d0lc01247e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrohydrodynamic atomization has been emerging as a powerful approach for respiratory treatment, including the generation and delivery of micro/nanoparticles as carriers for drugs and antigens. In this work, we present a new conceptual design in which two nozzles facilitate dual electrospray coexisting with ionic wind at chamfered tips by a direct current power source. Experimental results by a prototype have demonstrated the capability of simultaneously generating-and-delivering a stream of charged reduced particles. The concept can be beneficial to pulmonary nano-medicine delivery since the mist of nanoparticles is migrated without any restriction of either the collector or the assistance of external flow, but is pretty simple in designing and manufacturing devices.
Collapse
Affiliation(s)
- Van T Dau
- School of Engineering and Built Environment, Griffith University, Australia. and Centre of Catalysis and Clean Energy, Griffith University, Australia
| | - Tung T Bui
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| | - Canh-Dung Tran
- School of Mechanical and Electrical Engineering, University of Southern Queensland, Australia
| | - Thanh Viet Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| | - Toan Dinh
- School of Mechanical and Electrical Engineering, University of Southern Queensland, Australia
| | - Hoang-Phuong Phan
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| | - David Wibowo
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Australia
| | - Hang Thu Ta
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia and School of Environment and Science, Griffith University, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| | - Dzung V Dao
- School of Engineering and Built Environment, Griffith University, Australia. and Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| |
Collapse
|
41
|
Nanoparticles and Nanocrystals by Supercritical CO2-Assisted Techniques for Pharmaceutical Applications: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041476] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Many active ingredients currently prescribed show limited therapeutic efficacy, mainly due to their dissolution rate inadequate to treat the pathology of interest. A large drug particle size creates an additional problem if a specific site of action in the human body has to be reached. For this reason, active ingredient size reduction using micronization/nanonization techniques is a valid approach to improve the efficacy of active compounds. Supercritical carbon-dioxide-assisted technologies enable the production of different morphologies of different sizes, including nanoparticles and nanocrystals, by modulating operating conditions. Supercritical fluid-based processes have numerous advantages over techniques conventionally employed to produce nanosized particles or crystals, such as reduced use of toxic solvents, which are completely removed from the final product, ensuring safety for patients. Active compounds can be processed alone by supercritical techniques, although polymeric carriers are often added as stabilizers, to control the drug release on the basis of the desired therapeutic effect, as well as to improve drug processability with the chosen technology. This updated review on the application of supercritical micronization/nanonization techniques in the pharmaceutical field aims at highlighting the most effective current results, operating conditions, advantages, and limitations, providing future perspectives.
Collapse
|
42
|
Rae JM, Jachimska B. Analysis of dendrimer-protein interactions and their implications on potential applications of dendrimers in nanomedicine. NANOSCALE 2021; 13:2703-2713. [PMID: 33496716 DOI: 10.1039/d0nr07607d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This work addresses how G5.5 PAMAM dendrimers form complexes with bovine serum albumin (BSA). Analytical techniques, such as UV-vis spectrophotometry, dynamic light scattering, electrophoretic mobility, quartz crystal microbalance with dissipation monitoring (QCM-D), circular dichroism (CD), and contact angle were used to analyze the properties of the dendrimers systems. The binding of protein to dendrimers can alter the structure, mobility, conformation and functional activity of the dendrimer. The results show that BSA interactions with G5.5 dendrimer carriers are driven both by electrostatic and hydrophobic forces. Dendrimer surface charge is reduced upon contact with the protein. The protein shell formed on the surface of the carrier is very stable as evidenced by the QCM-D measurements. On the other hand, the CD spectra indicates a change in the secondary structure of the protein. The size of the changes is significantly dependent on the ratio of protein to dendrimer. Understanding the mechanism of interaction of potential carriers with proteins is important for their internalization into the cell.
Collapse
Affiliation(s)
- James Magnus Rae
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow G1 1XJ, UK
| | - Barbara Jachimska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| |
Collapse
|
43
|
Guo S, Liang Y, Liu L, Yin M, Wang A, Sun K, Li Y, Shi Y. Research on the fate of polymeric nanoparticles in the process of the intestinal absorption based on model nanoparticles with various characteristics: size, surface charge and pro-hydrophobics. J Nanobiotechnology 2021; 19:32. [PMID: 33499885 PMCID: PMC7839302 DOI: 10.1186/s12951-021-00770-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/06/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The use of drug nanocarriers to encapsulate drugs for oral administration may become an important strategy in addressing the challenging oral absorption of some drugs. In this study-with the premise of controlling single variables-we prepared model nanoparticles with different particle sizes, surface charges, and surface hydrophobicity/hydrophilicity. The two key stages of intestinal nanoparticles (NPs) absorption-the intestinal mucus layer penetration stage and the trans-intestinal epithelial cell stage-were decoupled and analyzed. The intestinal absorption of each group of model NPs was then investigated. RESULTS Differences in the behavioral trends of NPs in each stage of intestinal absorption were found to result from differences in particle properties. Small size, low-magnitude negative charge, and moderate hydrophilicity helped NPs pass through the small intestinal mucus layer more easily. Once through the mucus layer, an appropriate size, positive surface charge, and hydrophobic properties helped NPs complete the process of transintestinal epithelial cell transport. CONCLUSIONS To achieve high drug bioavailability, the basic properties of the delivery system must be suitable for overcoming the physiological barrier of the gastrointestinal tract.
Collapse
Affiliation(s)
- Shiqi Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Yanzi Liang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Lanze Liu
- College of Life Science, Yantai University, Yantai, 264005, People's Republic of China
| | - Miaomiao Yin
- China Resources Double-crane Pharmaceutical Co., Ltd., Beijing, China
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai, China
| | - Youxin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China.
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai, China.
| | - Yanan Shi
- College of Life Science, Yantai University, Yantai, 264005, People's Republic of China.
| |
Collapse
|
44
|
Wang W, Zhou C. A Journey of Nanomotors for Targeted Cancer Therapy: Principles, Challenges, and a Critical Review of the State-of-the-Art. Adv Healthc Mater 2021; 10:e2001236. [PMID: 33111501 DOI: 10.1002/adhm.202001236] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/04/2020] [Indexed: 12/11/2022]
Abstract
A nanomotor is a miniaturized device that converts energy stored in the environment into mechanical motion. The last two decades have witnessed a surge of research interests in the biomedical applications of nanomotors, but little clinical translation. To accelerate this process, targeted cancer therapy is used as an example to describe a "survive, locate, operate, and terminate" (SLOT) mission of a nanomotor, where it must 1) survive in the unfriendly in vivo environment, 2) locate its target as well as be located by human operators, 3) carry out specific operations, and 4) terminate after the mission is completed. Along this journey, the challenges presented to a nanomotor, including to power, navigate, steer, target, release, control, image, and communicate are discussed, and how state-of-the-art nanomotors meet or fall short of these requirements is critically reviewed. These discussions are then condensed into a table for easy reference. In particular, it is argued that chemically powered nanomotors are intrinsically ill-positioned for targeted cancer therapy, while nanomotors powered by magnetic fields or ultrasound show more promises. Following this argument, a tentative nanomotor design is then presented in the end to conform to the SLOT guideline, and to inspire practical, functional nanorobots that are yet to come.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Chao Zhou
- School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| |
Collapse
|
45
|
Jung F, Thurn M, Krollik K, Gao GF, Hering I, Eilebrecht E, Emara Y, Weiler M, Günday-Türeli N, Türeli E, Parnham MJ, Wacker MG. Predicting the environmental emissions arising from conventional and nanotechnology-related pharmaceutical drug products. ENVIRONMENTAL RESEARCH 2021; 192:110219. [PMID: 32980299 DOI: 10.1016/j.envres.2020.110219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Today, environmental pollution with pharmaceutical drugs and their metabolites poses a major threat to the aquatic ecosystems. Active substances such as fenofibrate, are processed to pharmaceutical drug formulations before they are degraded by the human body and released into the wastewater. Compared to the conventional product Lipidil® 200, the pharmaceutical product Lipidil 145 One® and Ecocaps take advantage of nanotechnology to improve uptake and bioavailability of the drug in humans. In the present approach, a combination of in vitro drug release studies and physiologically-based biopharmaceutics modeling was applied to calculate the emission of three formulations of fenofibrate (Lipidil® 200, Lipidil 145 One®, Ecocaps) into the environment. Special attention was paid to the metabolized and non-metabolized fractions and their individual toxicity, as well as to the emission of nanomaterials. The fish embryo toxicity test revealed a lower aquatic toxicity for the metabolite fenofibric acid and therefore an improved toxicity profile. When using the microparticle formulation Lipidil® 200, an amount of 126 mg of non-metabolized fenofibrate was emitted to the environment. Less than 0.05% of the particles were in the lower nanosize range. For the nanotechnology-related product Lipidil 145 One®, the total drug emission was reduced by 27.5% with a nanomaterial fraction of approximately 0.5%. In comparison, the formulation prototype Ecocaps reduced the emission of fenofibrate by 42.5% without any nanomaterials entering the environment. In a streamlined life cycle assessment, the lowered dose in combination with a lowered drug-to-metabolite ratio observed for Ecocaps led to a reduction of the full life cycle impacts of fenofibrate with a reduction of 18% reduction in the global warming potential, 61% in ecotoxicity, and 15% in human toxicity. The integrated environmental assessment framework highlights the outstanding potential of advanced modeling technologies to determine environmental impacts of pharmaceuticals during early drug development using preclinical in vitro data.
Collapse
Affiliation(s)
- Fabian Jung
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany; Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt, Main, Germany
| | - Manuela Thurn
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Katharina Krollik
- Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt, Main, Germany
| | - Ge Fiona Gao
- Institute of Pharmaceutical Technology, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt, Main, Germany
| | - Indra Hering
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Applied Ecology, Auf dem Aberg 1, 57392, Schmallenberg, Germany; Goethe University, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438, Frankfurt, Main, Germany
| | - Elke Eilebrecht
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Applied Ecology, Auf dem Aberg 1, 57392, Schmallenberg, Germany
| | - Yasmine Emara
- Department of Environmental Technology, Technical University Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Marc Weiler
- MyBiotech GmbH, Industriestraße 1b, 66802, Überherrn, Germany
| | | | - Emre Türeli
- MyBiotech GmbH, Industriestraße 1b, 66802, Überherrn, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Translational Medicine and Pharmacology, Theodor-Stern-Kai 7, 60596, Frankfurt am Main, Germany
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore.
| |
Collapse
|
46
|
Yeung AWK, Souto EB, Durazzo A, Lucarini M, Novellino E, Tewari D, Wang D, Atanasov AG, Santini A. Big impact of nanoparticles: analysis of the most cited nanopharmaceuticals and nanonutraceuticals research. CURRENT RESEARCH IN BIOTECHNOLOGY 2020. [DOI: 10.1016/j.crbiot.2020.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
47
|
Joshi AS, Singh P, Mijakovic I. Interactions of Gold and Silver Nanoparticles with Bacterial Biofilms: Molecular Interactions behind Inhibition and Resistance. Int J Mol Sci 2020; 21:E7658. [PMID: 33081366 PMCID: PMC7589962 DOI: 10.3390/ijms21207658] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Many bacteria have the capability to form a three-dimensional, strongly adherent network called 'biofilm'. Biofilms provide adherence, resourcing nutrients and offer protection to bacterial cells. They are involved in pathogenesis, disease progression and resistance to almost all classical antibiotics. The need for new antimicrobial therapies has led to exploring applications of gold and silver nanoparticles against bacterial biofilms. These nanoparticles and their respective ions exert antimicrobial action by damaging the biofilm structure, biofilm components and hampering bacterial metabolism via various mechanisms. While exerting the antimicrobial activity, these nanoparticles approach the biofilm, penetrate it, migrate internally and interact with key components of biofilm such as polysaccharides, proteins, nucleic acids and lipids via electrostatic, hydrophobic, hydrogen-bonding, Van der Waals and ionic interactions. Few bacterial biofilms also show resistance to these nanoparticles through similar interactions. The nature of these interactions and overall antimicrobial effect depend on the physicochemical properties of biofilm and nanoparticles. Hence, study of these interactions and participating molecular players is of prime importance, with which one can modulate properties of nanoparticles to get maximal antibacterial effects against a wide spectrum of bacterial pathogens. This article provides a comprehensive review of research specifically directed to understand the molecular interactions of gold and silver nanoparticles with various bacterial biofilms.
Collapse
Affiliation(s)
- Abhayraj S. Joshi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (A.S.J.); (P.S.)
| | - Priyanka Singh
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (A.S.J.); (P.S.)
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (A.S.J.); (P.S.)
- Department of Biology and Biological Engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
48
|
Germain M, Caputo F, Metcalfe S, Tosi G, Spring K, Åslund AKO, Pottier A, Schiffelers R, Ceccaldi A, Schmid R. Delivering the power of nanomedicine to patients today. J Control Release 2020; 326:164-171. [PMID: 32681950 PMCID: PMC7362824 DOI: 10.1016/j.jconrel.2020.07.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
The situation of the COVID-19 pandemic reminds us that we permanently need high-value flexible solutions to urgent clinical needs including simplified diagnostic technologies suitable for use in the field and for delivering targeted therapeutics. From our perspective nanotechnology is revealed as a vital resource for this, as a generic platform of technical solutions to tackle complex medical challenges. It is towards this perspective and focusing on nanomedicine that we take issue with Prof Park's recent editorial published in the Journal of Controlled Release. Prof. Park argued that in the last 15 years nanomedicine failed to deliver the promised innovative clinical solutions to the patients (Park, K. The beginning of the end of the nanomedicine hype. Journal of Controlled Release, 2019; 305, 221-222 [1]. We, the ETPN (European Technology Platform on Nanomedicine) [2], respectfully disagree. In fact, the more than 50 formulations currently in the market, and the recent approval of 3 key nanomedicine products (e. g. Onpattro, Hensify and Vyxeos), have demonstrated that the nanomedicine field is concretely able to design products that overcome critical barriers in conventional medicine in a unique manner, but also to deliver within the cells new drug-free therapeutic effects by using pure physical modes of action, and therefore make a difference in patients lives. Furthermore, the >400 nanomedicine formulations currently in clinical trials are expecting to bring novel clinical solutions (e.g. platforms for nucleic acid delivery), alone or in combination with other key enabling technologies to the market, including biotechnologies, microfluidics, advanced materials, biomaterials, smart systems, photonics, robotics, textiles, Big Data and ICT (information & communication technologies) more generally. However, we agree with Prof. Park that " it is time to examine the sources of difficulty in clinical translation of nanomedicine and move forward ". But for reaching this goal, the investments to support clinical translation of promising nanomedicine formulations should increase, not decrease. As recently encouraged by EMA in its roadmap to 2025, we should create more unity through a common knowledge hub linking academia, industry, healthcare providers and hopefully policy makers to reduce the current fragmentation of the standardization and regulatory body landscape. We should also promote a strategy of cross-technology innovation, support nanomedicine development as a high value and low-cost solution to answer unmet medical needs and help the most promising innovative projects of the field to get better and faster to the clinic. This global vision is the one that the ETPN chose to encourage for the last fifteen years. All actions should be taken with a clear clinical view in mind, " without any fanfare", to focus "on what matters in real life", which is the patient and his/her quality of life. This ETPN overview of achievements in nanomedicine serves to reinforce our drive towards further expanding and growing the maturity of nanomedicine for global healthcare, accelerating the pace of transformation of its great potential into tangible medical breakthroughs.
Collapse
Affiliation(s)
| | - Fanny Caputo
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465 Trondheim, Norway
| | - Su Metcalfe
- LIFNano Therapeutics, 10 Fendon Road, University of Cambridge Clinical School, Cambridge CB1 7RT, UK
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41124 Modena, Italy
| | - Kathleen Spring
- Gesellschaft fuer Bioanalytik Muenster e.V., Mendelstrasse 17, 48151 Muenster, Germany
| | - Andreas K O Åslund
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465 Trondheim, Norway
| | - Agnes Pottier
- ETPN association, 64-66 rue des archives, 75003 Paris, France
| | - Raymond Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, 3584, CX, Utrecht, the Netherlands
| | | | - Ruth Schmid
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465 Trondheim, Norway
| |
Collapse
|
49
|
Huang C, Neupane YR, Lim XC, Shekhani R, Czarny B, Wacker MG, Pastorin G, Wang JW. Extracellular vesicles in cardiovascular disease. Adv Clin Chem 2020; 103:47-95. [PMID: 34229852 DOI: 10.1016/bs.acc.2020.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality globally. Extracellular vesicles (EVs), a group of heterogeneous nanosized cell-derived vesicles, have attracted great interest as liquid biopsy material for biomarker discovery in a variety of diseases including cardiovascular disease. Because EVs inherit bioactive components from parent cells and are able to transfer their contents to recipient cells, EVs hold great promise as potential cell-free therapeutics and drug delivery systems. However, the development of EV-based diagnostics, therapeutics or drug delivery systems has been challenging due to the heterogenicity of EVs in biogenesis, size and cellular origin, the lack of standardized isolation and purification methods as well as the low production yield. In this review, we will provide an overview of the recent advances in EV-based biomarker discovery, highlight the potential usefulness of EVs and EV mimetics for therapeutic treatment and drug delivery in cardiovascular disease. In view of the fast development in this field, we will also discuss the challenges of current methodologies for isolation, purification and fabrication of EVs and potential alternatives.
Collapse
Affiliation(s)
- Chenyuan Huang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore
| | - Yub Raj Neupane
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Xiong Chang Lim
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rawan Shekhani
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore
| | - Bertrand Czarny
- School of Materials, Science and Engineering, and Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Giorgia Pastorin
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
50
|
Kad A, Pundir A, Arya SK, Bhardwaj N, Khatri M. An Elucidative Review to Analytically Sieve the Viability of Nanomedicine Market. J Pharm Innov 2020; 17:249-265. [PMID: 32983280 PMCID: PMC7502307 DOI: 10.1007/s12247-020-09495-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
The advent of the twenty-first century marked a paradigm shift in the healthcare sector with coming of automated, sensitive, targeted medicines and technologies having diagnostic, prophylactic and therapeutic effects. Nanomedicines also attained wide acclamation in their initial years, but the transformation from being the proof of concept to successfully marketed products seems very daunting. Although the reason for this may be attributed to slow but incremental character of many present-day technologies, the review asserts that there are other significant facets that may purvey a thorough explanation of this scenario. The article elaborately discusses the hurdles hindering clinical translation of nanomedicines including scale-up challenges, in vitro in vivo cascade of toxicology assays, along with unrefined manufacturing guidelines, inadequate regulatory approvals, competitive conventional market, etc., leading to hesitant investments by pharmaceutical giants. The paper also explores the economic viability of nanobiotechnology sector through an empirical investigation of the revenue data of various pharmaceutical industries manufacturing nano-based drugs, which indicates minor commercial importance of these medicines. We also laid down a comprehensive set of recommendations to smoothen the translational pathway of nanomedicines from an idea to reality, efface the consumer distrust and push boundaries for development and launching of safe, efficient and commercially successful products. Graphical abstract.
Collapse
Affiliation(s)
- Anaida Kad
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Archit Pundir
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh, 160014 India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Sector-25, Chandigarh, 160014 India
- Wellcome Trust/DBT IA Early Career Fellow, Panjab University, Chandigarh, 160014 India
| |
Collapse
|