1
|
Lou L, Zhou L, Wang Y. Gut Microbiota: A Modulator and Therapeutic Target for Chronic Pain. Mol Neurobiol 2025; 62:5875-5890. [PMID: 39652283 DOI: 10.1007/s12035-024-04663-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/04/2024] [Indexed: 03/29/2025]
Abstract
Chronic pain is a prevalent condition, impacting nearly one-fifth of the global population. Despite the availability of various clinical treatments, each comes with inherent limitations, and few offer a complete cure, resulting in a significant social and economic burden. Therefore, it is important to determine the pathogenesis and causes of chronic pain. Numerous studies have shown a close link between the intestinal microflora and chronic pain. The gut microbiota can exert their effects on chronic pain through both central and peripheral mechanisms and is able to communicate with the brain through its own components or metabolites. They also can regulate chronic pain by affecting pro- and anti-inflammatory cells. This review is aimed at reviewing the connection between gut flora and different types of chronic pain, including visceral pain, neuropathic pain, inflammatory pain, musculoskeletal pain, migraine, and chronic cancer pain; exploring the central and peripheral mechanisms of the influence of gut flora on chronic pain; and attempting to provide novel treatment options for chronic pain, that is, the gut microbiota can be regulated by probiotics, fecal microbial transplantation, and natural products to treat chronic pain. By examining the intricate relationship between gut flora and chronic pain, the review sought to pave the way for new treatment strategies that target the gut microbiota, offering hope for more effective pain management.
Collapse
Affiliation(s)
- Linsen Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Liujing Zhou
- Hangzhou Medical College, Hangzhou, 310053, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
2
|
Gao C, Yang Z, Song R, Sheng H, Zhu L. Nanotechnology-based drug delivery system for targeted therapy of ulcerative colitis from traditional Chinese medicine: A review. Int J Pharm 2025; 673:125375. [PMID: 39965734 DOI: 10.1016/j.ijpharm.2025.125375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/27/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Ulcerative colitis (UC) is a chronic autoimmune disease and seriously affects the normal life of patients. Conventional therapeutic drugs are difficult to meet clinical needs. Traditional Chinese medicine (TCM) ingredients could effectively alleviate the symptoms of UC by anti-inflammatory, anti-oxidative, regulating the gut microbiota, and repairing the colonic epithelial barrier, but their low solubility and bioavailability severely limit their clinical application. Nano-drug delivery systems (NDDS) combined with TCM ingredients is a promising option for treating UC, and they could significantly enhance the stability, solubility, and bioavailability of TCM ingredients. The review describes the anti-UC mechanisms of TCM ingredients, systematically summarizes various kinds of NDDS for TCM ingredients according to different routes of administration, and highlights the advantages of NDDS for TCM ingredients in the treatmentof UC. In addition, we discuss the limitations of existing NDDS for TCM ingredients and the development direction in the future. This review will provide a basis for the future development of anti-UC NDDS for TCM ingredients.
Collapse
Affiliation(s)
- Chengcheng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zerun Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ruirui Song
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
3
|
Rui R, Li Y, Liu Y, Li X, Zhou G, Zhao C, Han Y. Nanoassemblies of the redox paclitaxel prodrug with the natural active ingredient dihydroartemisinin for therapy of breast cancer. NANOSCALE 2025; 17:8069-8083. [PMID: 40035630 DOI: 10.1039/d4nr05418k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Natural products have attracted attention owing to their multiple antitumor effects, improved chemotherapy sensitivity, and few side effects. The combination of natural active ingredients and chemotherapy drugs could be an effective strategy for synergistic antitumor therapy by preserving their activity to inhibit the growth of tumors, while reducing the side effects of chemotherapy drugs at relatively low doses. Although the feasibility of the delivery of natural products and chemotherapy drugs has been proven, most current carriers cannot be efficiently loaded, thus leading to a discrepancy in the drug release ratio compared to the predefined loading ratio. In this study, simple nanoassemblies with controllable drug release profiles were constructed to co-deliver paclitaxel (PTX) and dihydroartemisinin (DHA) for synergistic treatment of breast cancer. The nanoassemblies demonstrated a notable capacity for loading efficiency, micro-environmental triggering of drug release, and activation of the homodimeric prodrug at the tumor site, thereby facilitating successful combination therapy. The in vitro and in vivo antitumor effects were synergistically improved by combining DHA and PTX through prodrug modifications and nanoassemblies. Our findings provide a simple and efficient strategy for the development of nanoassemblies combining natural active ingredients with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Rucheng Rui
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yi Li
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Yiming Liu
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiaocui Li
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Gaochao Zhou
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Chunai Zhao
- Department of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yang Han
- School of Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
4
|
Mostafa MAH, Khojah HMJ. Nanoparticle-based delivery systems for phytochemicals in cancer therapy: molecular mechanisms, clinical evidence, and emerging trends. Drug Dev Ind Pharm 2025:1-17. [PMID: 40116905 DOI: 10.1080/03639045.2025.2483425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/16/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
OBJECTIVE This review examines recent advancements in nanoparticle-based delivery systems for phytochemicals, focusing on their role in overcoming multidrug resistance, improving therapeutic efficacy, and facilitating clinical translation. SIGNIFICANCE This review highlights recent advances in nanoparticle-enabled phytochemical delivery to enhance bioavailability, improve therapeutic outcomes, and enable targeted applications. By comparing various nanoparticle systems, formulation methods, and efficacy data, it identifies gaps in current research and guides the development of more effective, next-generation phytochemical-loaded nanocarriers. METHODS A systematic review of literature published between 2000 and 2024 was conducted using PubMed, Scopus, and Web of Science. Articles focusing on nanoparticle-based phytochemical delivery in cancer therapy were included. KEY FINDINGS Compounds such as curcumin, resveratrol, quercetin, and epigallocatechin gallate demonstrate enhanced anti-cancer efficacy when encapsulated in nanoparticles, leading to improved bioavailability, increased tumor cell targeting, and reduced toxicity. Clinical trials indicate tumor regression and fewer adverse effects. Emerging approaches-such as nanogels, hybrid nanoparticles, and combination therapies with immune checkpoint inhibitors-further refine treatment efficacy. CONCLUSIONS Nanoparticle-based delivery systems significantly improve the therapeutic potential of phytochemicals, making them promising candidates for safer, more effective cancer treatments. However, challenges related to regulatory guidelines, scalability, and long-term safety must be addressed to fully realize their clinical potential.
Collapse
Affiliation(s)
- Mahmoud A H Mostafa
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University (Assiut Branch), Assiut, Egypt
| | - Hani M J Khojah
- Department of Pharmacy Practice, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
5
|
Sharma G, Panwar R, Saini S, Tuli HS, Wadhwa K, Pahwa R. Emerging phytochemical-based nanocarriers: redefining the perspectives of breast cancer therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04003-3. [PMID: 40137964 DOI: 10.1007/s00210-025-04003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
Breast cancer is recognized as the most prevalent condition impacting women globally, despite several advancements in diagnosis and treatment. Existing therapeutic interventions including surgical procedures, radiation therapy, and chemotherapy often produce harmful effects on healthy tissues, trigger chemo-resistance, and augment the risk of relapse. In response to several unmet challenges, substantial research has been conducted to explore the therapeutic potential of natural compounds for breast cancer therapy. Progress in phytochemistry and pharmacology has facilitated the identification of diverse herbal bioactives with favorable safety profiles and multi-target mechanisms of action against breast cancer cells. Several phytochemicals like flavonoids and tannins have shown significant anticancer potential against breast cancer in diverse preclinical models. However, challenges like limited cellular absorption, low water solubility, and high molecular weight hinder their effective translation into clinical applications. Therefore, the development of novel therapies is imperative for overcoming these hurdles in breast cancer treatment effectively. Nanotechnology has reflected considerable perspective in tackling diverse challenges by encapsulating phytoconstituents within various nanocarriers including polymeric nanoparticles, lipidic nanoparticles, nanoemulsions, nanogels, gold nanoparticles, and silver nanoparticles. This manuscript emphasizes the recent advancements in phytochemical-loaded nanocarriers efficiently tailored for breast cancer therapy along with patents, current challenges, and future perspectives in this avenue.
Collapse
Affiliation(s)
- Gulshan Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Rohil Panwar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Sanskriti Saini
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Hardeep Singh Tuli
- Department of Bio-Science and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Rakesh Pahwa
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
6
|
Gao Q, Wu H, Li Z, Yang Z, Li L, Sun X, Wu Q, Sui X. Synergistic Strategies for Lung Cancer Immunotherapy: Combining Phytochemicals and Immune-Checkpoint Inhibitors. Phytother Res 2025. [PMID: 40122686 DOI: 10.1002/ptr.8482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 03/25/2025]
Abstract
Lung cancer remains one of the most widespread and deadliest malignant tumors globally, with a particularly high mortality rate among all cancers. Recently, immunotherapy, particularly immune checkpoint inhibitors (ICIs), has emerged as a crucial treatment strategy for lung cancer patients, following surgical intervention, radiotherapy, chemotherapy, and targeted drug therapies. However, the therapeutic limitations are caused owing to their low response rate and undesirable side effects such as immune-related pneumonitis. Therefore, developing new strategies to improve the efficacy of ICIs while minimizing immune-related adverse events will be crucial for cancer immunotherapy. The tumor immune microenvironment plays a significant role in the success of lung cancer immunotherapy, and the immunosuppressive characteristics of the immune microenvironment are one of the major obstacles to the poor immunotherapeutic effect. Phytochemicals, naturally occurring compounds in plants, have shown promise in enhancing cancer immunotherapy by remodeling the immunosuppressive microenvironment, offering the potential to increase the efficacy of ICIs. Therefore, this review summarizes the associated mechanisms of phytochemicals remodeling the immunosuppressive microenvironment in lung cancer. Additionally, the review will focus on the synergistic effects of combining phytochemicals with ICIs, aiming to improve anticancer efficacy and reduce side effects, which may hopefully offer novel strategies to overcome current limitations in immunotherapy.
Collapse
Affiliation(s)
- Quan Gao
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Hao Wu
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Zhengjun Li
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Engineering Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zijing Yang
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Lin Li
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Xueni Sun
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Qibiao Wu
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| | - Xinbing Sui
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| |
Collapse
|
7
|
Zhang X, Wang B, Qi X, Qian Z, Gao X, Cheng Y, Wang X. A Glutathione-Responsive System with Prodrug and Sensitization Strategies for Targeted Therapy of Glioma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501620. [PMID: 40119786 DOI: 10.1002/smll.202501620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/08/2025] [Indexed: 03/24/2025]
Abstract
Glioblastoma represents a highly aggressive form of malignant tumor within the central nervous system. Although chemotherapy remains the primary therapeutic strategy, its efficacy is often limited. To overcome the limitations associated with chemotherapeutic agents, such as high toxicity and non-specific adverse effects, a novel nanoparticle system comprising cRGD-modified and glutathione (GSH)-responsive polymers, and PEG-ss-Dox and apatinib (AP) (PDOX-AP/cRGD-NPs) is developed. PDOX-AP/cRGD-NPs show effective penetration of the blood-brain barrier (BBB), facilitate targeted delivery to brain tumors, and exhibit controlled drug release. PDOX-AP/cRGD-NPs show more effect in reducing the viability of GL-261, U87-MG, and LN-229 cells, inhibiting clonogenicity, and suppressing anti-apoptotic protein expression than PDOX/cRGD-NPs or AP/cRGD-NPs. Additionally, PDOX-AP/cRGD-NPs substantially increase drug uptake, BBB penetration, apoptosis rates, and the proportion of cells in the G2 phase. In vivo experiments further reveal that cRGD-directed nanoparticles exhibit superior accumulation in glioma regions compared to their non-cRGD-modified counterparts. In the interim, PDOX-AP/cRGD-NPs demonstrate significant efficacy in suppressing both ectopic and orthotopic growth of GL-261 gliomas, as well as orthotopic LN-229 gliomas, thereby markedly extending the median survival duration. This study introduces a promising targeted co-delivery system for combination chemotherapy.
Collapse
Affiliation(s)
- Xifeng Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Bilan Wang
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, 610041, P. R. China
| | - Xin Qi
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Zhiyong Qian
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Xiang Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| |
Collapse
|
8
|
Fu Z, Wang S, Zhou X, Ouyang L, Chen Z, Deng G. Harnessing the Power of Traditional Chinese Medicine in Cancer Treatment: The Role of Nanocarriers. Int J Nanomedicine 2025; 20:3147-3174. [PMID: 40103746 PMCID: PMC11913986 DOI: 10.2147/ijn.s502104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
For centuries, traditional Chinese medicine (TCM) has had certain advantages in the treatment of tumors. However, due to their poor water solubility, low bioavailability and potential toxicity, their effective delivery to target sites can be a major challenge. Nanocarriers based on the active ingredients of TCM, such as liposomes, polymer nanoparticles, inorganic nanoparticles, and organic/inorganic nanohybrids, are a promising strategy to improve the delivery of TCM, resulting in higher therapeutic outcomes and fewer side effects. Therefore, this article intends to review the application of Chinese medicine nano preparation in tumor. Firstly, we introduce the classification and synthesis of nanometer preparations of Chinese medicine. The second part mainly introduces the different responses of TCM nano-preparations in the course of treatment to introduce how TCM nano-preparations play a role in anti-tumor therapy. The third part focuses on Different response modes of Chinese medicine nano preparations in tumor therapy. The fourth part elucidates the application of Chinese medicine nano preparations in the treatment of cancer. Finally, the research direction to be explored in related fields is put forward.
Collapse
Affiliation(s)
- Ziyu Fu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People's Republic of China
| | - Shengmei Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People's Republic of China
| | - Xin Zhou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People's Republic of China
| | - Linqi Ouyang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People's Republic of China
| | - Zhen Chen
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People's Republic of China
| | - Guiming Deng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410007, People's Republic of China
- The second Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410005, People's Republic of China
| |
Collapse
|
9
|
Duan H, Li Y, Zheng X, Hou J, Tao H, Liu X, Dai M, He S. Paeonol enhances a recombinant EGFR-targeted fusion protein-drug conjugate induced antitumor efficacy in esophageal cancer. Biochem Pharmacol 2025; 236:116856. [PMID: 40054783 DOI: 10.1016/j.bcp.2025.116856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
Esophageal cancer (EC) is a gastrointestinal cancer with high morbidity and mortality, along with a low 5-year survival rate, which urgently requires the discovery of new drugs for prevention and treatment. Our previous studies have found a novel EGFR-targeted fusion protein-drug conjugate, Fv-LDP-D3-AE, which exhibits significant inhibitory activity against esophageal cancer. However, the effectiveness of monotherapy still faces major challenges in clinical translation for esophageal cancer treatment. Therefore, there is an urgent need to identify a candidate anti-tumor drug that can be combined with Fv-LDP-D3-AE to enhance therapeutic efficacy. In this study, we report a novel combination treatment regimen of paeonol with Fv-LDP-D3-AE, using human esophageal cancer cells KYSE70 and EC109 for in vitro studies and establishing a BALB/c nude mouse xenograft model for in vivo experiments to investigate the anti-tumor efficacy and potential mechanisms of the combination therapy in esophageal cancer. The results indicated that the combined treatment emerged a synergistic effect, which could effectively inhibit the proliferation, migration, and invasion of esophageal cancer cells, induce more obvious cell apoptosis and DNA damage, and suppress tumor growth in the xenograft mouse model with a tumor inhibition rate of 76%. This may be attributed to the combination therapy simultaneously inhibiting the EGFR/AKT/mTOR signaling pathway and downregulating the expression of nucleolin. Overall, these findings suggest that paeonol could synergize with Fv-LDP-D3-AE to enhance anti-esophageal cancer efficacy, which may be a promising therapeutic strategy for esophageal cancer.
Collapse
Affiliation(s)
- Huaiyu Duan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xue Zheng
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Junqi Hou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hongyu Tao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, China
| | - Xiujun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Min Dai
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
10
|
Verma M, Yadav K, Parihar R, Dutta D, Chaudhuri S, Sivakumar S. Active tumor targeting by core-shell PDMS-HA nanoparticles with sequential delivery of doxorubicin and quercetin to overcome P-glycoprotein efflux pump. NANOSCALE 2025; 17:5033-5055. [PMID: 40013710 DOI: 10.1039/d4nr03040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The therapeutic efficacy of chemotherapy in various malignancies and solid tumors is significantly limited when used as monotherapy. This study explored a combined treatment approach for breast cancer cells involving sequential delivery of doxorubicin followed by quercetin, both delivered via polydimethylsiloxane nanoparticles decorated with hyaluronic acid. Quercetin inhibits P-glycoprotein efflux action to enhance doxorubicin activity by increasing its intracellular accumulation; hence, both synergistically suppress cancer cell growth by promoting cytotoxicity and apoptosis. Quercetin reverses multidrug resistance, induces arrest in the cell cycle, and alters the mitochondrial membrane potential. The successful delivery and internalization of these drugs into breast cancer cells were confirmed through CD44 ligand recognition, inhibiting cell viability via apoptosis (caspase-induced) and cell arrest in the G2/M phase of the cell cycle. Furthermore, in an MCF-7 (breast cancer) cell-derived xenograft tumor model using NOD/SCID mice, the core-shell PDMS-HA nanoparticle system carrying quercetin and doxorubicin resulted in approximately 65% tumor volume reduction, outperforming the loaded single drug and free drug combination. These results were supported by the TUNEL assay and proliferation index by Ki-67 immunohistochemistry staining, which show substantial cell death and tissue necrosis in the tumor sections. Histological studies of tumor tissues confirm enhanced anticancer efficacy with negligible systemic toxicity to normal organs. Overall, the PDMS-HA delivery system efficiently transports quercetin and doxorubicin to tumor cells, enhancing the antitumor effects against the MCF-7 tumor xenograft model in mice without adverse effects. This study suggests that the targeted co-delivery of phytochemicals and anti-cancer agents can synergistically overcome many barriers associated with tumor treatment.
Collapse
Affiliation(s)
- Madhu Verma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India.
| | - Krishna Yadav
- Central Experimental Animal Facility, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Rashmi Parihar
- Central Experimental Animal Facility, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Debjani Dutta
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India.
| | - Surabhi Chaudhuri
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India.
| | - Sri Sivakumar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.
- Material Science Programme, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
- Centre for Environmental Science and Engineering, Center for Nanosciences, Mehta Family Centre for Engineering in Medicine, Gangwal School of Medical Sciences and Technology Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
11
|
Fang C, Wang Y, Pan Z. Formation of self-assembly aggregates in traditional Chinese medicine decoctions and their application in cancer treatments. RSC Adv 2025; 15:5476-5506. [PMID: 39967882 PMCID: PMC11833604 DOI: 10.1039/d4ra07212j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Traditional Chinese Medicine (TCM) formulas, based on the principles of Chinese medicine, have a long history and are widely applied in the treatment of diseases. Compared to single-component drugs, TCM formulas demonstrate superior therapeutic efficacy and fewer side effects owing to their synergistic effects and mechanisms of detoxification and efficacy enhancement. However, various drawbacks, such as the uncertainty of functional targets and molecular mechanisms, poor solubility of components, and low bioavailability, have limited the global promotion and application of TCM formulas. To overcome these limitations, self-assembled aggregate (SA) nanotechnology has emerged as a promising solution. SA nanotechnology significantly enhances the bioavailability and anti-tumor efficacy of TCM by improving its absorption, distribution, and precise targeting capabilities, thereby providing an innovative solution for the modernization and internationalization of TCM. This review delves into the nature and common interactions of SAs based on the latest research developments. The structural characteristics of SAs in TCM formulas, paired-herb decoctions, and single-herb decoctions are analyzed and their self-assembly mechanisms are systematically elucidated. In addition, this article elaborates on the advantages of SAs in cancer treatment, particularly in enhancing the bioavailability and targeting capabilities. Furthermore, this review aims to provide new perspectives for the study of TCM compatibility and its clinical applications, thereby driving the innovative development of nanomaterials in this field. On addressing the technological challenges, SAs are expected to further promote the global application and recognition of TCM in the healthcare sector.
Collapse
Affiliation(s)
- Chunqiu Fang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P.R. China +8613596030117
| | - Yinghang Wang
- The Affiliated Hospital to Changchun University of Chinese Medicine Changchun 130117 P.R. China +8613844993950
| | - Zhi Pan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P.R. China +8613596030117
| |
Collapse
|
12
|
Ke G, Zhang M, Hu P, Zhang J, Naeem A, Wang L, Xu H, Liu Y, Cao M, Zheng Q. Exploratory Study on Nanoparticle Co-Delivery of Temozolomide and Ligustilide for Enhanced Brain Tumor Therapy. Pharmaceutics 2025; 17:191. [PMID: 40006558 PMCID: PMC11858958 DOI: 10.3390/pharmaceutics17020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Temozolomide (TMZ) is the first-line therapy for glioblastoma (GBM), but its clinical efficacy is limited by its short half-life, poor brain targeting, adverse side effects, and the development of drug resistance. Ligustilide (LIG) has been shown to enhance blood-brain barrier permeability and reduce P-glycoprotein activity, thereby potentiating the synergistic effect of TMZ against GBM. Methods: The dual-drug-loaded nanoparticles encapsulating both TMZ and LIG (TMZ/LIG-NPs) were prepared using Poly (d,l-lactic-co-glycolide)-monomethoxy poly (ethylene glycol) (PLGA-mPEG). The physicochemical properties of the NPs, including particle size and zeta potential, were characterized. Cellular uptake of NPs was evaluated using flow cytometry and fluorescence staining. The pharmacokinetic profile and cytotoxicity of TMZ/LIG-NPs were compared to those of free TMZ and a mixture of TMZ and LIG in rat and glioma cells, respectively. Results: The mean particle size of TMZ/LIG-NPs was 117.6 ± 0.7 nm, with a zeta potential of -26.5 ± 0.4 mV. Cellular uptake of NPs was significantly higher than that of free drug in U251 cells. Encapsulation of TMZ in NPs significantly increased its half-life by 1.62-fold compared to free TMZ and significantly improved its pharmacokinetic profile. Moreover, the storage stability of the TMZ/LIG-NPs solution was extended to one month. The toxicity of TMZ/LIG-NPs to glioma cells C6 and U251 was markedly enhanced compared to the mixture of TMZ and LIG. Conclusions: The development of TMZ/LIG-NPs using PLGA-mPEG effectively enhanced the stability and efficacy of both TMZ and LIG. This dual drug-loaded nanoparticle system represents a promising strategy for glioblastoma therapy.
Collapse
Affiliation(s)
- Gang Ke
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (G.K.); (M.Z.); (P.H.); (J.Z.); (L.W.); (H.X.); (Y.L.); (M.C.)
- Luzhou People’s Hospital, Luzhou 646000, China
| | - Mingxia Zhang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (G.K.); (M.Z.); (P.H.); (J.Z.); (L.W.); (H.X.); (Y.L.); (M.C.)
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (G.K.); (M.Z.); (P.H.); (J.Z.); (L.W.); (H.X.); (Y.L.); (M.C.)
| | - Jing Zhang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (G.K.); (M.Z.); (P.H.); (J.Z.); (L.W.); (H.X.); (Y.L.); (M.C.)
| | - Abid Naeem
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Lianfang Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (G.K.); (M.Z.); (P.H.); (J.Z.); (L.W.); (H.X.); (Y.L.); (M.C.)
| | - Huixin Xu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (G.K.); (M.Z.); (P.H.); (J.Z.); (L.W.); (H.X.); (Y.L.); (M.C.)
| | - Yu Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (G.K.); (M.Z.); (P.H.); (J.Z.); (L.W.); (H.X.); (Y.L.); (M.C.)
| | - Ming Cao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (G.K.); (M.Z.); (P.H.); (J.Z.); (L.W.); (H.X.); (Y.L.); (M.C.)
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (G.K.); (M.Z.); (P.H.); (J.Z.); (L.W.); (H.X.); (Y.L.); (M.C.)
| |
Collapse
|
13
|
Zhang M, Guo R, Yuan Z, Wang H. Lipid Nanoparticle (LNP) -A Vector Suitable for Evolving Therapies for Advanced Hepatocellular Carcinoma (HCC). GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2400217. [PMID: 39802046 PMCID: PMC11717671 DOI: 10.1002/gch2.202400217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Indexed: 01/16/2025]
Abstract
Hepatocellular carcinoma (HCC) stands as the predominant form of primary liver cancer, characterized by a dismal prognosis. Therapeutic options for advanced HCC remain sparse, with efficacy significantly hampered by the emergence of drug resistance. In parallel with research into novel pharmacological agents, advances in drug delivery systems represent a promising avenue for overcoming resistance. Lipid nanoparticles (LNPs) have demonstrated considerable efficacy in the delivery of nucleic acid-based therapeutics and hold potential for broader applications in drug delivery. This review describes the development of LNPs tailored for HCC treatment and consolidates recent investigations using LNPs to target HCC.
Collapse
Affiliation(s)
- Mingxuan Zhang
- Department of Radiation OncologyCancer Center of Peking University Third HospitalPeking University Third HospitalHaidian, 49 Huayuan North RoadBeijing100191China
| | - Ruiping Guo
- Department of Radiation OncologyCancer Center of Peking University Third HospitalPeking University Third HospitalHaidian, 49 Huayuan North RoadBeijing100191China
| | - Zhuhui Yuan
- Department of Radiation OncologyCancer Center of Peking University Third HospitalPeking University Third HospitalHaidian, 49 Huayuan North RoadBeijing100191China
| | - Hao Wang
- Department of Radiation OncologyCancer Center of Peking University Third HospitalPeking University Third HospitalHaidian, 49 Huayuan North RoadBeijing100191China
| |
Collapse
|
14
|
Deng X, Yang Z, Han M, Ismail N, Esa NM, Razis AFA, Bakar MZA, Chan KW. Comprehensive Insights Into the Combinatorial Uses of Selected Phytochemicals in Colorectal Cancer Prevention and Treatment: Isothiocyanates, Quinones, Carotenoids, and Alkaloids. Phytother Res 2025; 39:413-452. [PMID: 39557422 DOI: 10.1002/ptr.8378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/01/2024] [Accepted: 10/24/2024] [Indexed: 11/20/2024]
Abstract
Despite the advancement in cancer diagnosis and treatment, colorectal cancer remains the leading cause of cancer-related death worldwide. Given the high recurrence rate of colorectal cancer even after surgical resection, chemotherapy has been clinically used to improve the treatment outcomes of colorectal cancer. However, chemotherapy is well-known for its toxic side effects. Thus, phytochemicals have been widely studied in recent years as preventive and therapeutic agents for colorectal cancer owing to their relatively low toxicity. Moreover, combinatorial uses of phytochemicals with other natural compounds or with drugs may amplify the positive outcomes of colorectal cancer prevention and treatment by intervening in multiple signaling pathways and targets. This review summarized the combinatorial use of several well-studied groups of phytochemicals, that is, isothiocyanates, quinones, carotenoids, and alkaloids, in the prevention and treatment of colorectal cancer, and suggested it as a potential approach to improve the anticancer efficacy of single compounds and minimize the toxic side effects associated with conventional drugs. Notably, we generalized the in vitro, in vivo, and clinical experiments-based molecular mechanisms whereby the selected phytochemicals in combination with other compounds exerted anti-colorectal cancer effects by inhibiting cancer cell proliferation, cell apoptosis, cell invasion, and tumor growth. Overall, this review provides a reference and new perspective to propel further advancements in research and development of preventative and therapeutic strategies for colorectal cancer.
Collapse
Affiliation(s)
- Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mingzhao Han
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Norhaizan Mohd Esa
- Department of Nutrition, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
15
|
Kumar G, Virmani T, Chhabra V, Virmani R, Pathak K, Akhtar MS, Hussain Asim M, Arshad S, Siddique F, Fonte P. Transforming cancer treatment: The potential of nanonutraceuticals. Int J Pharm 2024; 667:124919. [PMID: 39515676 DOI: 10.1016/j.ijpharm.2024.124919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Chemotherapy in the management of cancer is constrained by limitations like off-target effects, poor bioavailability, and dose-dependent toxicity. Nutraceuticals have been explored as an innovative strategy to overcome chemotherapy drawbacks.However, the clinical utility of nutraceuticals is restricted due to their complex structures, less water solubility, reduced stability, decreased bioavailability and more obstacles in the gastrointestinal tract. Nanonutraceuticals are nanosized nutraceutical particles having enhanced solubility, improved bioavailability, stability, and targeted delivery to specific cells. Nutraceuticals can be co-delivered with other chemotherapeutic drugs in nanocarriers to elicit synergistic effects. The targeting of nutraceuticals against cancer cells can be enabled by coupling ligands with the nanocarriers, which direct to the overexpressed receptors found at the surface of the cancer cells. Transitioning a nanonutraceutical from pre-clinical research to clinical trials is a pivotal step. This focus on advancing their application holds great potential for impacting clinical research and improving the treatment landscape for cancer patients. This review focuses on the role of nutraceuticals for cancer treatment, various nanocarriers for the efficient delivery of nutraceuticals along with co-administration of nutraceuticals with chemotherapeutic drugs using nanocarriers. Also, emphasize the targeting of ligands coupled nanocarriers to the cancer cells along with patents and clinical trials for nanonutraceuticals.
Collapse
Affiliation(s)
- Girish Kumar
- Amity Institute of Pharmacy, Amity University Greater Noida, Uttar Pradesh 201308, India
| | - Tarun Virmani
- Amity Institute of Pharmacy, Amity University Greater Noida, Uttar Pradesh 201308, India.
| | - Vaishnavi Chhabra
- National Institute of Pharmaceutical Education & Research, Mohali, Punjab 160062, India
| | - Reshu Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal, Haryana 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai, Etawah, Uttar Pradesh 206001, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha 62223, Saudi Arabia
| | | | - Shumaila Arshad
- Doctor's Institute of Health Sciences, 3-Km Sargodha Bypass Road, Sargodha 40100, Pakistan
| | - Farzana Siddique
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Pedro Fonte
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, Faro 8005-139, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, Faro 8005-139, Portugal; iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
| |
Collapse
|
16
|
Li H, Pan M, Li Y, Liang H, Cui M, Zhang M, Zhang M. Nanomedicine: The new trend and future of precision medicine for inflammatory bowel disease. Chin Med J (Engl) 2024; 137:3073-3082. [PMID: 39679456 PMCID: PMC11706594 DOI: 10.1097/cm9.0000000000003413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Nanomedicine is an interdisciplinary area that utilizes nanoscience and technology in the realm of medicine. Rapid advances in science and technology have propelled the medical sector into a new era. The most commonly used nanotechnology in the field of medicine is nanoparticles. Due to their unique physicochemical properties, nanoparticles offer significant benefits of precision medicine for diseases such as inflammatory bowel disease that cannot be effectively treated by existing approaches. Nanomedicine has emerged as a highly active research field, with extensive scientific and technological studies being carried out, as well as growing international competition in the commercialization of this field. The accumulation of expertise in the key technologies relating to nanomedicine would provide strategic advantages in the development of cutting-edge medical techniques. This review presented a comprehensive analysis of the primary uses of nanoparticles in medicine, including recent advances in their application for the diagnosis and treatment of inflammatory bowel disease. Furthermore, we discussed the challenges and possibilities associated with the application of nanoparticles in clinical settings.
Collapse
Affiliation(s)
- Huanyu Li
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Meng Pan
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Yifan Li
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Hao Liang
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi 710077, China
| | - Manli Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi 710077, China
- Engineering Research Center of Shaanxi Universities for Innovative Services of Chronic Disease Prevention and Control and Transformation of Nutritional Functional Food, Xi’an, Shaanxi 710077, China
| |
Collapse
|
17
|
Zhang D, Song J, Jing Z, Qin H, Wu Y, Zhou J, Zang X. Stimulus Responsive Nanocarrier for Enhanced Antitumor Responses Against Hepatocellular Carcinoma. Int J Nanomedicine 2024; 19:13339-13355. [PMID: 39679249 PMCID: PMC11646471 DOI: 10.2147/ijn.s486465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a serious global health concern, accounting for about 90% of all liver cancer instances. Surgical treatment is a fundamental aspect of HCC management; however, the challenge of postoperative recurrence significantly impacts mortality rates. Methods We have developed a pH and reactive oxygen species (ROS) dual stimulus-responsive drug delivery system (PN@GPB-PEG NPs) loaded with chemotherapeutic paclitaxel (PTX) and indoleamine 2.3-dioxygenase (IDO) inhibitor NLG919, for HCC chemoimmunotherapy. The physiochemical properties, such as particle size, zeta potential, morphology, and encapsulation efficiency, were characterized. Furthermore, we investigated in vitro cytotoxicity, cellular uptake and immunogenic cell death in tumor cells treated with our nanoparticles. In vivo biodistribution, antitumor effects and immune responses were assessed in an HCC mice model. Results PN@GPB-PEG NPs display pH-responsive properties with improved targeting abilities toward tumors and improved uptake by HCC cells. Upon exposure to oxygen peroxide (H2O2), the sophisticated design allows for rapid release of therapeutic agents. In this process, PTX induces immunogenic cell death (ICD), which activates the immune system to generate an antitumor response. Simultaneously, NLG919 works to inhibit IDO, mitigating the immunosuppressive environment. This combination strategy leverages the advantages of both chemotherapy and immunotherapy, resulting in a powerful synergistic antitumor effect. In a mouse model of HCC, our nanoparticles effectively inhibited the growth of primary and recurrent tumors. Conclusion These encouraging results highlight the potential of our nanocarrier system as an innovative therapeutic approach to address HCC primary tumor and postsurgical recurrence, providing hope for enhanced patient outcomes.
Collapse
Affiliation(s)
- Deteng Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, People’s Republic of China
- Qingdao Cancer Institute, Qingdao University, Qingdao, People’s Republic of China
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, People’s Republic of China
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, People’s Republic of China
| | - Jinxiao Song
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, People’s Republic of China
| | - Zhenghui Jing
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, People’s Republic of China
| | - Huan Qin
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, People’s Republic of China
| | - You Wu
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, People’s Republic of China
| | - Jingyi Zhou
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, People’s Republic of China
| | - Xinlong Zang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, People’s Republic of China
- Qingdao Cancer Institute, Qingdao University, Qingdao, People’s Republic of China
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, People’s Republic of China
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
18
|
Singh MT, Thaggikuppe Krishnamurthy P, Magham SV. Harnessing the synergistic potential of NK1R antagonists and selective COX-2 inhibitors for simultaneous targeting of TNBC cells and cancer stem cells. J Drug Target 2024; 32:258-269. [PMID: 38252517 DOI: 10.1080/1061186x.2024.2309568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Triple-negative breast cancer (TNBC) lacks the expression of oestrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), rendering it unresponsive to endocrine therapy and HER2 targeted treatments. Though certain chemotherapeutics targeting the cell cycle have shown efficacy to a certain extent, the presence of chemotherapy-resistant cancer stem cells (CSCs) presents a significant challenge in tackling TNBC. Multiple lines of evidence suggest the upregulation of neuropeptide Substance P (SP), its NK-1 receptor (NK1R) and the Cyclooxygenase-2 (COX-2) enzyme in TNBC patients. Upregulation of the SP/NK1R system and COX-2 influences major signalling pathways involved in cell proliferation, growth, survival, angiogenesis, inflammation, metastasis and stem cell activity. The simultaneous activation and crosstalk between the pathways activated by SP/NK1R and COX-2 consequently increase the levels of key regulators of self-renewal pathways in CSCs, promoting stemness. The combination therapy with NK1R antagonists and COX-2 inhibitors can simultaneously target TNBC cells and CSCs, thereby enhancing treatment efficacy and reducing the risk of recurrence and relapse. This review discusses the rationale for combining NK1R antagonists and COX-2 inhibitors for the better management of TNBC and a novel strategy to deliver drug cargo precisely to the tumour site to address the challenges associated with off-target binding.
Collapse
Affiliation(s)
- Madhu Tanya Singh
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Sai Varshini Magham
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
19
|
Liang S, Liu Y, Zhu H, Liao G, Zhu W, Zhang L. Emerging nitric oxide gas-assisted cancer photothermal treatment. EXPLORATION (BEIJING, CHINA) 2024; 4:20230163. [PMID: 39713202 PMCID: PMC11655315 DOI: 10.1002/exp.20230163] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/08/2024] [Indexed: 12/24/2024]
Abstract
Photothermal therapy (PTT) has garnered significant attention in recent years, but the standalone application of PTT still faces limitations that hinder its ability to achieve optimal therapeutic outcomes. Nitric oxide (NO), being one of the most extensively studied gaseous molecules, presents itself as a promising complementary candidate for PTT. In response, various nanosystems have been developed to enable the simultaneous utilization of PTT and NO-mediated gas therapy (GT), with the integration of photothermal agents (PTAs) and thermally-sensitive NO donors being the prevailing approach. This combination seeks to leverage the synergistic effects of PTT and GT while mitigating the potential risks associated with gas toxicity through the use of a single laser irradiation. Furthermore, additional internal or external stimuli have been employed to trigger NO release when combined with different types of PTAs, thereby further enhancing therapeutic efficacy. This comprehensive review aims to summarize recent advancements in NO gas-assisted cancer photothermal treatment. It commences by providing an overview of various types of NO donors and precursors, including those sensitive to photothermal, light, ultrasound, reactive oxygen species, and glutathione. These NO donors and precursors are discussed in the context of dual-modal PTT/GT. Subsequently, the incorporation of other treatment modalities such as chemotherapy (CHT), photodynamic therapy (PDT), alkyl radical therapy, radiation therapy, and immunotherapy (IT) in the creation of triple-modal therapeutic nanoplatforms is presented. The review further explores tetra-modal therapies, such as PTT/GT/CHT/PDT, PTT/GT/CHT/chemodynamic therapy (CDT), PTT/GT/PDT/IT, PTT/GT/starvation therapy (ST)/IT, PTT/GT/Ca2+ overload/IT, PTT/GT/ferroptosis (FT)/IT, and PTT/GT/CDT/IT. Finally, potential challenges and future perspectives concerning these novel paradigms are discussed. This comprehensive review is anticipated to serve as a valuable resource for future studies focused on the development of innovative photothermal/NO-based cancer nanotheranostics.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yufei Liu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Guangfu Liao
- College of Material EngineeringFujian Agriculture and Forestry UniversityFuzhouChina
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Li Zhang
- Department of Critical Care MedicineShenzhen HospitalSouthern Medical UniversityShenzhenGuangdongChina
- Department of ChemistryCity University of Hong KongKowloonHong Kong SARChina
| |
Collapse
|
20
|
Nair A, Singh R, Gautam N, Saxena S, Mittal S, Shah S, Talegaonkar S. Multifaceted role of phytoconstituents based nano drug delivery systems in combating TNBC: A paradigm shift from chemical to natural. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9207-9226. [PMID: 38953968 DOI: 10.1007/s00210-024-03234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Triple negative breast cancer is considered to be a malignancy of grave concern with limited routes of treatment due to the absence of specific breast cancer markers and ambiguity of other potential drug targets. Poor prognosis and inadequate survival rates have prompted further research into the understanding of the molecular pathophysiology and targeting of the disease. To overcome the recurrence and resistance mechanisms of the TNBC cells, various approaches have been devised, and are being continuously evaluated to enhance their efficacy and safety. Chemo-Adjuvant therapy is one such treatment modality being employed to improve the efficiency of standard chemotherapy. Combining chemo-adjuvant therapy with other upcoming approaches of cancer therapeutics such as phytoconstituents and nanotechnology has yielded promising results in the direction of improving the prognosis of TNBC. Numerous nanoformulations have been proven to substantially enhance the specificity and cellular uptake of drugs by cancer cells, thus reducing the possibility of unintended systemic side effects within cancer patients. While phytoconstituents offer a wide variety of beneficial active constituents useful in cancer therapeutics, most favorable outcomes have been observed within the scope of polyphenols, isoquinoline alkaloids and isothiocyanates. With an enhanced understanding of the molecular mechanisms of TNBC and the advent of newer targeting technologies and novel phytochemicals of medicinal importance, a new era of cancer theranostic treatments can be explored. This review hopes to instantiate the current body of research regarding the role of certain phytoconstituents and their potential nanoformulations in targeting specific TNBC pathways for treatment and diagnostic purposes.
Collapse
Affiliation(s)
- Anandita Nair
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India
| | - Roshni Singh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India
| | - Namrata Gautam
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India
| | - Shilpi Saxena
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India
| | - Saurabh Mittal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, U.P, Noida, 201303, India.
| | - Sadia Shah
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, 226003, India.
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India.
| |
Collapse
|
21
|
Xiao M, Guo Z, Yang Y, Hu C, Cheng Q, Zhang C, Wu Y, Cheng Y, Benson WLM, Shamay SMN, Leung GPH, Li J, Gao H, Zhang J. Glycyrrhizic acid-based multifunctional nanoplatform for tumor microenvironment regulation. Chin J Nat Med 2024; 22:1089-1099. [PMID: 39725510 DOI: 10.1016/s1875-5364(24)60685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Indexed: 12/28/2024]
Abstract
Natural compounds demonstrate unique therapeutic advantages for cancer treatment, primarily through direct tumor suppression or interference with the tumor microenvironment (TME). Glycyrrhizic acid (GL), a bioactive ingredient derived from the medicinal herb Glycyrrhiza uralensis Fisch., and its sapogenin glycyrrhetinic acid (GA), have been recognized for their ability to inhibit angiogenesis and remodel the TME. Consequently, the combination of GL with other therapeutic agents offers superior therapeutic benefits. Given GL's amphiphilic structure, self-assembly capability, and liver cancer targeting capacity, various GL-based nanoscale drug delivery systems have been developed. These GL-based nanosystems exhibit angiogenesis suppression and TME regulation properties, synergistically enhancing anti-cancer effects. This review summarizes recent advances in GL-based nanosystems, including polymer-drug micelles, drug-drug assembly nanoparticles (NPs), liposomes, and nanogels, for cancer treatment and tumor postoperative care, providing new insights into the anti-cancer potential of natural compounds. Additionally, the review discusses existing challenges and future perspectives for translating GL-based nanosystems from bench to bedside.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiqing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yating Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfen Cheng
- School of Medicine, Chengdu University, Chengdu 610106, China
| | - Wui Lau Man Benson
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Sheung Mei Ng Shamay
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hong Kong 999077, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
22
|
Goleij P, Tabari MAK, Khandan M, Poudineh M, Rezaee A, Sadreddini S, Sanaye PM, Khan H, Larsen DS, Daglia M. Genistein in focus: pharmacological effects and immune pathway modulation in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03647-x. [PMID: 39601821 DOI: 10.1007/s00210-024-03647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Cancer is a significant global health concern, responsible for mortality and morbidity of individuals. It is characterized by uncontrolled cellular growth, tumor formation, and potential metastasis. The immune system is pivotal in recognizing and eliminating cancerous cells, with immune cells such as T cells, B cells, natural killer cells (NK), and dendritic cells playing critical roles. Dysregulation of immune responses can contribute to cancer progression. Phytochemicals, bioactive compounds derived from plants, have gained attention for their potential roles in cancer prevention and therapy due to their antioxidant, anti-inflammatory, and immunomodulatory properties. Genistein, an isoflavone found in soy products, is of particular interest. In this study, genistein's mechanisms of action at the molecular and cellular levels in cancer were demonstrated, highlighting its impact on T and B lymphocytes, NK cells and dendritic cells. Genistein's ability to influence cytokine production, reducing levels of inflammatory cytokines such as TNF-α, IL-6, and IL-1β, is emphasized. Genistein modulates inflammatory response pathways like Toll-like receptors (TLRs), NF-κB, chemokines, and MAPK, inhibiting tumor growth, promoting apoptosis, and reducing metastasis. It shows promise in overcoming chemoresistance, particularly in ovarian and neuroblastoma cancers, by inhibiting autophagy. Genistein also affects T-cell execution markers, including granzyme B, TNF-α, and FAS ligand in cancer by influencing key proteins involved in immune response and apoptosis. Clinical trials have investigated genistein's therapeutic potential, revealing its promise in enhancing the efficacy of traditional cancer treatments while mitigating associated toxicities. Genistein helps overcome chemoresistance in various cancers by inhibiting autophagy and promoting apoptosis. It also enhances immunotherapy by boosting immune responses and modifying antigens, but careful dosing is needed when combined with anti-PD-1 treatments to avoid reducing effectiveness.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, 6715847141, Iran.
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, 4816118761, Iran.
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research, Network (USERN), Tehran, Iran.
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, 4815733971, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohanna Khandan
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, 4815733971, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Aryan Rezaee
- Medical Doctor, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Sarvin Sadreddini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 51656-87386, Iran
| | - Pantea Majma Sanaye
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| | - Danaé S Larsen
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, 1010, New Zealand
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples, 80131, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
23
|
Rahat I, Yadav P, Singhal A, Fareed M, Purushothaman JR, Aslam M, Balaji R, Patil-Shinde S, Rizwanullah M. Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1473-1497. [PMID: 39600519 PMCID: PMC11590012 DOI: 10.3762/bjnano.15.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
Phytochemicals, naturally occurring compounds in plants, possess a wide range of therapeutic properties, including antioxidant, anti-inflammatory, anticancer, and antimicrobial activities. However, their clinical application is often hindered by poor water solubility, low bioavailability, rapid metabolism, and instability under physiological conditions. Polymer lipid hybrid nanoparticles (PLHNPs) have emerged as a novel delivery system that combines the advantages of both polymeric and lipid-based nanoparticles to overcome these challenges. This review explores the potential of PLHNPs to enhance the delivery and efficacy of phytochemicals for biomedical applications. We discuss the obstacles in the conventional delivery of phytochemicals, the fundamental architecture of PLHNPs, and the types of PLHNPs, highlighting their ability to improve encapsulation efficiency, stability, and controlled release of the encapsulated phytochemicals. In addition, the surface modification strategies to improve overall therapeutic efficacy by site-specific delivery of encapsulated phytochemicals are also discussed. Furthermore, we extensively discuss the preclinical studies on phytochemical encapsulated PLHNPs for the management of different diseases. Additionally, we explore the challenges ahead and prospects of PLHNPs regarding their widespread use in clinical settings. Overall, PLHNPs hold strong potential for the effective delivery of phytochemicals for biomedical applications. As per the findings from pre-clinical studies, this may offer a promising strategy for managing various diseases.
Collapse
Affiliation(s)
- Iqra Rahat
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Pooja Yadav
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Aditi Singhal
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut-250005, Uttar Pradesh, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Jaganathan Raja Purushothaman
- Department of Orthopaedics, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-602105, Tamil Nadu, India
| | - Mohammed Aslam
- Pharmacy Department, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| | - Raju Balaji
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai-602105, Tamil Nadu, India
| | - Sonali Patil-Shinde
- Department of Pharmaceutical Chemistry, Dr. D.Y Patil Institute of Pharmaceutical Sciences and Research, Pimpri Pune-411018, Maharashtra, India
| | - Md Rizwanullah
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| |
Collapse
|
24
|
Zhao J, Wang D, Zhang X, Di Y, Yang S, Yan L. Preparation of Disulfide/Trisulfide Core-Cross-Linked Polycarbonate Nanocarriers for Intracellular Reduction-Triggered Drug Release. ACS Macro Lett 2024; 13:1433-1441. [PMID: 39383241 DOI: 10.1021/acsmacrolett.4c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Polymeric nanocarriers have attracted significant attention in the field of anticancer drug delivery due to their unique advantages. However, designing nanocarriers that can maintain stability in the bloodstream while achieving specific drug release within tumor cells remains a major challenge. To address this issue, constructing reversible cross-linked polymeric nanocarriers that are sensitive to the intracellular reducible glutathione (GSH) characteristic of the tumor microenvironment is a promising strategy. Based on this, we designed and synthesized two novel six-membered bicyclic carbonate monomers containing disulfide (DSBC) and trisulfide (TSBC) bonds. Through a one-step ring-opening polymerization, a series of reduction-sensitive polycarbonate copolymers (i.e., PEG-PDSBC and PEG-PTSBC) were prepared, and doxorubicin (DOX)-loaded nanoparticles were fabricated using a nanoprecipitation method. The in vitro drug release behaviors of these nanoparticles were systematically investigated. The results showed that these polymers, due to the cross-linked structure formed by the ring-opening polymerization of their bicyclic monomers, could self-assemble into stable nanoparticles. Under different concentrations of glutathione, DOX-loaded PEG-PTSBC nanoparticles demonstrated faster drug release, indicating more optimized intracellular drug release properties. Further cytotoxicity experiments revealed that both types of blank nanoparticles exhibited good biocompatibility with the 4T1 and NIH-3T3 cells. Fluorescence microscopy and flow cytometry results further indicated that DOX-loaded PEG-PTSBC nanoparticles released more drugs in 4T1 cells, significantly inhibiting tumor cell growth compared with DOX-loaded PEG-PDSBC nanoparticles, with no noticeable difference in NIH-3T3 normal cells. In conclusion, this study suggests that trisulfide cross-linked polycarbonate-based nanocarriers hold promise as an anticancer drug delivery system that combines stability in the bloodstream with specific intracellular drug release, offering new insights for the development of novel, efficient, and safe anticancer nanomedicines.
Collapse
Affiliation(s)
- Jiye Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
- Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Zhongshan 528400, China
| | - Dongdong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Xi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Yaodong Di
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Shuai Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Lesan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
- Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Zhongshan 528400, China
| |
Collapse
|
25
|
van Staden D, Gerber M, Lemmer HJR. The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders. Pharmaceutics 2024; 16:1475. [PMID: 39598598 PMCID: PMC11597179 DOI: 10.3390/pharmaceutics16111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The prevalence of female reproductive system disorders is increasing, especially among women of reproductive age, significantly impacting their quality of life and overall health. Managing these diseases effectively is challenging due to the complex nature of the female reproductive system, characterized by dynamic physiological environments and intricate anatomical structures. Innovative drug delivery approaches are necessary to facilitate the precise regulation and manipulation of biological tissues. Nanotechnology is increasingly considered to manage reproductive system disorders, for example, nanomaterial imaging allows for early detection and enhances diagnostic precision to determine disease severity and progression. Additionally, nano drug delivery systems are gaining attention for their ability to target the reproductive system successfully, thereby increasing therapeutic efficacy and decreasing side effects. This comprehensive review outlines the anatomy of the female upper genital tract by highlighting the complex mucosal barriers and their impact on systemic and local drug delivery. Advances in nano drug delivery are described for their sustainable therapeutic action and increased biocompatibility to highlight the potential of nano drug delivery strategies in managing female upper genital tract disorders.
Collapse
Affiliation(s)
| | | | - Hendrik J. R. Lemmer
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom 2531, South Africa; (D.v.S.); (M.G.)
| |
Collapse
|
26
|
Cheng Y, Li J, Feng X, Wu Y, Wu X, Lau BWM, Ng SSM, Lee SMY, Seto SW, Leung GPH, Hu Y, Fu C, Zhang S, Zhang J. Taohong Siwu decoction enhances the chemotherapeutic efficacy of doxorubicin by promoting tumor vascular normalization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155995. [PMID: 39270591 DOI: 10.1016/j.phymed.2024.155995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Instead of completely suppressing blood vessels inside tumors, vascular normalization therapy is proposed to normalize and prune the abnormal vasculature in tumor microenvironment (TME) to acquire a normal and stable blood flow and perfusion. The theoretical basis for the use of "blood-activating and stasis-resolving" formulas in Traditional Chinese Medicine to treat cancer is highly consistent with the principle of vascular normalization therapy, suggesting the potential application of these traditional formulas in vascular normalization therapy. PURPOSE To study the underlying mechanisms of a classical "blood-activating and stasis-resolving" formula, Taohong Siwu decoction (TSD), in enhancing the efficacy of chemotherapy for breast cancer treatment. STUDY DESIGN HUVECs and transgenic zebrafish embryos were used as the major model in vitro. A 4T1 mouse breast cancer model was applied to study tumor vasculature normalization of TSD and the combination effects with DOX. RESULTS Our data showed that TSD exhibited anti-angiogenic potential in HUVECs and transgenic zebrafish embryos. After 20 days treatment, TSD significantly normalized the tumor vasculature by remodeling vessel structure, reducing intratumoral hypoxia and vessel leakage, and promoting vessel maturation and blood perfusion in 4T1 breast tumor-bearing mice. Moreover, the anti-tumor efficacy of doxorubicin liposome in 4T1 breast tumors was significantly improved by TSD, including the suppression of tumor cell proliferation, angiogenesis, hypoxia, and the increase of cell apoptosis, which is likely through the vascular normalization induced by TSD. TSD also shifted the macrophage polarization from M2 to M1 phenotype in TME during the combination therapy, as evidenced by the reduced number of CD206+ macrophages and increased number of CD86+ macrophages. Additionally, TSD treatment protected against doxorubicin-induced cardiotoxicity in animals, as evidenced by the reduced cardiomyocytes apoptosis and improved heart function. CONCLUSION This study demonstrated for the first time that TSD as a classical Chinese formula can enhance the drug efficacy and reduce the side effects of doxorubicin. These findings can support that TSD could be used as an adjuvant therapy in combination with conventional chemotherapy for the future breast cancer treatment.
Collapse
Affiliation(s)
- Yanfen Cheng
- School of Food and Biological Engineering, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), University of Chengdu, Chengdu, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue,Wenjiang District, Chengdu city, Chengdu, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions of China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions of China.
| | - Xi Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue,Wenjiang District, Chengdu city, Chengdu, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue,Wenjiang District, Chengdu city, Chengdu, China
| | - Xiaoping Wu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Regions of China
| | - Benson Wui Man Lau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions of China
| | - Shamay Sheung Mei Ng
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions of China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions of China
| | - Simon Ming-Yuen Lee
- The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions of China; Department of Food Science and Nutrition, Faculty of Science, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions of China
| | - Sai-Wang Seto
- The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions of China; Department of Food Science and Nutrition, Faculty of Science, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Regions of China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Regions of China
| | - Yichen Hu
- School of Food and Biological Engineering, Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), University of Chengdu, Chengdu, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue,Wenjiang District, Chengdu city, Chengdu, China
| | - Siyuan Zhang
- Sichuan Provincial Engineering Laboratory for Prevention and Control Technology of Veterinary Drug Residue in Animal-origin Food, School of Laboratory Medicine, Chengdu Medical College, Chengdu, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue,Wenjiang District, Chengdu city, Chengdu, China.
| |
Collapse
|
27
|
Zou L, Yang H, Xie T, Wang LW, Ye Y. Nickel-Catalyzed Cross-Electrophile Vinylation of α-Chloro Phosphonates. J Org Chem 2024; 89:15822-15833. [PMID: 39420776 DOI: 10.1021/acs.joc.4c01929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Herein, we report a general and efficient Ni-catalyzed reductive cross-coupling reaction of substituted vinyl bromides and α-chloro phosphonates to access a set of α-vinyl phosphonates using zinc as the terminal reductant. This reaction exhibits broad substrate adaptability and good functional group tolerance, which allows to afford diverse compounds including structurally complex motifs from natural products and drugs. Furthermore, the practicality was certificated through the gram-scale and transformation experiments. The preliminary mechanistic investigations support a radical chain process. The potential to realize enantiomeric control makes it more valuable for further exploration.
Collapse
Affiliation(s)
- Liang Zou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Huimin Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, PR China
| |
Collapse
|
28
|
Lin Z, Nie F, Cao R, He W, Xu J, Guo Y. Lentinan-based pH-responsive nanoparticles achieve the combination therapy of tumors. Int J Biol Macromol 2024; 279:135300. [PMID: 39236942 DOI: 10.1016/j.ijbiomac.2024.135300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Cancer poses a significant threat to human health, and there is an urgent need for more effective treatments. Combining chemotherapy and immunotherapy is an effective strategy to enhance curative outcomes and holds great potential for widespread application. The natural phytochemical genistein (GEN) exhibits cytotoxicity against tumors and is a potential chemotherapeutic agent. Lentinan (LTN) is a natural polysaccharide with immune-enhancing properties that has been utilized in tumor treatment. This study constructed a pH-responsive nanoparticle GEN@LTN-BDBA with chemotherapy and immunotherapy functions using GEN and LTN. After characterizing the nanoparticles, the molecular mechanism of GEN@LTN-BDBA formation was explored using in silico simulation. GEN@LTN-BDBA can significantly inhibit the proliferation of A549 and HepG2 cells in vitro. The in vivo experiment results demonstrated that treatment with GEN@LTN-BDBA can significantly reduce tumor cell mass and prevent metastasis. In this nanoparticle, GEN induced oxidative stress and apoptosis of tumor cells. Meanwhile, the released LTN initiated an anti-tumor immune response by promoting dendritic cell (DC) maturation and upregulating the expression of costimulatory molecules and major histocompatibility complex. The construction method of GEN@LTN-BDBA can be extended to the preparation of other polysaccharides and hydrophobic chemotherapy molecules, offering a novel strategy to enhance the efficacy of monotherapy.
Collapse
Affiliation(s)
- Zhen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Fan Nie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Ruyu Cao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Wenrui He
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
29
|
Han S, Zou J, Xiao F, Xian J, Liu Z, Li M, Luo W, Feng C, Kong N. Nanobiotechnology boosts ferroptosis: opportunities and challenges. J Nanobiotechnology 2024; 22:606. [PMID: 39379969 PMCID: PMC11460037 DOI: 10.1186/s12951-024-02842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/07/2024] [Indexed: 10/10/2024] Open
Abstract
Ferroptosis, distinct from apoptosis, necrosis, and autophagy, is a unique type of cell death driven by iron-dependent phospholipid peroxidation. Since ferroptosis was defined in 2012, it has received widespread attention from researchers worldwide. From a biochemical perspective, the regulation of ferroptosis is strongly associated with cellular metabolism, primarily including iron metabolism, lipid metabolism, and redox metabolism. The distinctive regulatory mechanism of ferroptosis holds great potential for overcoming drug resistance-a major challenge in treating cancer. The considerable role of nanobiotechnology in disease treatment has been widely reported, but further and more systematic discussion on how nanobiotechnology enhances the therapeutic efficacy on ferroptosis-associated diseases still needs to be improved. Moreover, while the exciting therapeutic potential of ferroptosis in cancer has been relatively well summarized, its applications in other diseases, such as neurodegenerative diseases, cardiovascular and cerebrovascular diseases, and kidney disease, remain underreported. Consequently, it is necessary to fill these gaps to further complete the applications of nanobiotechnology in ferroptosis. In this review, we provide an extensive introduction to the background of ferroptosis and elaborate its regulatory network. Subsequently, we discuss the various advantages of combining nanobiotechnology with ferroptosis to enhance therapeutic efficacy and reduce the side effects of ferroptosis-associated diseases. Finally, we analyze and discuss the feasibility of nanobiotechnology and ferroptosis in improving clinical treatment outcomes based on clinical needs, as well as the current limitations and future directions of nanobiotechnology in the applications of ferroptosis, which will not only provide significant guidance for the clinical applications of ferroptosis and nanobiotechnology but also accelerate their clinical translations.
Collapse
Affiliation(s)
- Shiqi Han
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Jianhua Zou
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Fan Xiao
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jing Xian
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Ziwei Liu
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China
| | - Meng Li
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Wei Luo
- College of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Chan Feng
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China.
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, Zhejiang, China.
| |
Collapse
|
30
|
Li Z, Chen Z, Shi K, Huang P, Zeng W, Huang Q, Peng J, Yang L, Chen H, Zhao Y, Zeng X. Polyphenol-Based Self-Assembled Nanomedicine for a Three-Pronged Approach to Reversing Tumor Immunosuppression. Adv Healthc Mater 2024:e2402127. [PMID: 39344218 DOI: 10.1002/adhm.202402127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/14/2024] [Indexed: 10/01/2024]
Abstract
The challenges of multi-pathway immune resistance and systemic toxicity caused by the direct injection of immune checkpoint inhibitors are critical factors that compromise the effectiveness of clinical immune checkpoint blockade therapy. In this context, natural polyphenols have been employed as the primary component to construct a targeted and acid-responsive PD-L1 antibody (αPD-L1) delivery nanoplatform. This platform incorporates garcinol, an inhibitor of the Nuclear Factor Kappa-B (NF-κB) signaling pathway, to regulate pro-tumor immune escape cytokines and regulatory T cells. Additionally, the nanoplatform has been verified to induce immunogenic cell death (ICD), which promotes the maturation of dendritic cells and enhances the activity of cytotoxic T lymphocytes. In vivo and in vitro experimental results demonstrated that the nanoplatform can boost the immune response through a PD-L1 and NF-κB blocking/ICD inducing three-pronged strategy, thereby effectively combating tumor growth and metastasis.
Collapse
Affiliation(s)
- Zimu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zirui Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Kexin Shi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Ping Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenfeng Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qili Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jingwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
31
|
Jiang H, Bao Q, Yang T, Yang M, Mao C. Precision Treatment of Colon Cancer Using Doxorubicin-Loaded Metal-Organic-Framework-Coated Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49003-49012. [PMID: 39226043 PMCID: PMC11420861 DOI: 10.1021/acsami.4c08602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Due to the limited efficacy and evident side effects of traditional chemotherapy drugs attributed to their lack of specificity and selectivity, novel strategies are essential for improving cancer treatment outcomes. Here, we successfully engineered Fe3O4 magnetic nanoparticles coated with zeolitic imidazolate framework-8 (ZIF-8). The resulting nanocomposite (Fe3O4@ZIF-8) demonstrates efficient adsorption of a substantial amount of doxorubicin (DOX) due to the porous nature of ZIF-8. The drug-loaded nanoparticles, Fe3O4@ZIF-8/DOX, exhibit significant accumulation at the tumor site in SW620 colon-cancer-bearing mice when guided by an external magnetic field. Within the acidic microenvironment of the tumor, the ZIF-8 framework collapses, releasing DOX and effectively inducing tumor cell death, thereby inhibiting cancer progression while not causing undesired side effects, as confirmed by a variety of in vitro and in vivo characterizations. In comparison to free DOX, Fe3O4@ZIF-8/DOX nanoparticles show superior efficacy in colon cancer treatment. Our findings suggest that Fe3O4@ZIF-8 holds promise as a carrier for small-molecule drug adsorption and its ferromagnetic properties provide drug targeting capabilities, thereby enhancing therapeutic effects on tumors at the same drug dosage. With excellent biocompatibility, Fe3O4@ZIF-8 demonstrates potential as a drug carrier in targeted cancer chemotherapy. Our work suggests that a combination of magnetic targeting and acid-responsiveness holds great promise for advancing targeted cancer therapy in precision nanomedicine.
Collapse
Affiliation(s)
- Honglin Jiang
- School
of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qing Bao
- School
of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Tao Yang
- School
of Materials Science & Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Mingying Yang
- Key
Laboratory of Silkworm and Bee Resource Utilization and Innovation
of Zhejiang Province, Institute of Applied Bioresource Research, College
of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chuanbin Mao
- Department
of Biomedical Engineering, The Chinese University
of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
32
|
Zhang P, Zhang L, Wang Z, Cheng Q, Wu W, Li J, Liang G, Narain R. Acid-Responsive Polymer Micelles for Targeted Delivery and Bioorthogonal Activation of Prodrug through Ru Catalyst in Tumor Cells. Biomacromolecules 2024; 25:5834-5846. [PMID: 39191734 DOI: 10.1021/acs.biomac.4c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Bioorthogonal reactions present a promising strategy for minimizing off-target toxicity in cancer chemotherapy, yet a dependable nanoplatform is urgently required. Here, we have fabricated an acid-responsive polymer micelle for the specific delivery and activation of the prodrug within tumor cells through Ru catalyst-mediated bioorthogonal reactions. The decomposition of micelles, triggered by the cleavage of the hydrazone bond in the acidic lysosomal environment, facilitated the concurrent release of Alloc-DOX and the Ru catalyst within the cells. Subsequently, the uncaging process of Alloc-DOX was demonstrated to be induced by the high levels of glutathione within tumor cells. Notably, the limited glutathione inside normal cells prevented the conversion of Alloc-DOX into active DOX, thereby minimizing the toxicity toward normal cells. In tumor-bearing mice, this nanoplatform exhibited enhanced efficacy in tumor suppression while minimizing off-target toxicity. Our study provides an innovative approach for in situ drug activation that combines safety and effectiveness in cancer chemotherapy.
Collapse
Affiliation(s)
- Panpan Zhang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Leitao Zhang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Zhihao Wang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Qiuli Cheng
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Wenlan Wu
- School of Medicine, Henan University of Science & Technology, Luoyang 471023, P. R. China
| | - Junbo Li
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Gaofeng Liang
- School of Medicine, Henan University of Science & Technology, Luoyang 471023, P. R. China
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada
| |
Collapse
|
33
|
Yu H, Liu S, Yuan Z, Huang H, Yan P, Zhu W. Targeted co-delivery of rapamycin and oxaliplatin by liposomes suppresses tumor growth and metastasis of colorectal cancer. Biomed Pharmacother 2024; 178:117192. [PMID: 39098178 DOI: 10.1016/j.biopha.2024.117192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024] Open
Abstract
The activation of tumor cell immunogenicity through oxaliplatin (OXP)-induced immunogenic cell death (ICD) has significant implications in cancer treatment. However, the anti-tumor effect of OXP monotherapy still has many shortcomings, and the systemic administration of OXP leads to low drug concentration at the tumor site, which is susceptible to systemic toxic side effects. In this study, a combined therapeutic strategy using folate-modified nanoliposomes co-delivered with rapamycin (Rapa) and OXP (abbreviated as FA@R/O Lps) is proposed for the treatment of colorectal cancer (CRC). Rapa and OXP can directly inhibit tumor cell proliferation and induce apoptosis. OXP induces ICD by triggering the release of danger signals, such as HMGB1, ATP, and calreticulin. FA@R/O Lps with a particle size of about 134.1±1.8 nm and a small dispersion were successfully prepared. This novel liposomal system can be used to target and increase drug accumulation in tumors. In-vivo experiments showed that FA@R/O Lps successfully inhibit CRC growth and liver metastasis, and simultaneously reduce off-target toxicity. In particular, FA@R/O Lps showed greater therapeutic effects than free Rapa/OXP and R/O Lps. Taken together, this study provides a novel combination of Rapa and OXP, and a nano-delivery system for enhanced anti-CRC efficacy. The results suggest that FA@R/O Lps could be a promising strategy for the treatment of CRC.
Collapse
Affiliation(s)
- Hang Yu
- Department of Pharmacy, Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Shengyao Liu
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 250, Changgangdong Road, Guangzhou 510260, China
| | - Zhongwen Yuan
- Department of Pharmacy, Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Hanhui Huang
- Department of Pharmacy, Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China
| | - Pengke Yan
- Department of Pharmacy, Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China.
| | - Wenting Zhu
- Department of Pharmacy, Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China.
| |
Collapse
|
34
|
Liu J, Zhang X, Zhang Y, Zhao B, Liu Z, Dong X, Feng S, Du Y. Mn-based Prussian blue analogues: Multifunctional nanozymes for hydrogen peroxide detection and photothermal therapy of tumors. Talanta 2024; 277:126320. [PMID: 38824861 DOI: 10.1016/j.talanta.2024.126320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Nanozymes have the advantages of simple synthesis, high stability, low cost and easy recycling, and can be applied in many fields including molecular detection, disease diagnosis and cancer therapy. However, most of the current nanozymes suffer from the defects of low catalytic activity and single function, which limits their sensing sensitivity and multifunctional applications. The development of highly active and multifunctional nanozymes is an important way to realize multidisciplinary applications. In this work, Mn-based Prussian blue analogues (Mn-PBA) and their derived double-shelled nanoboxes (DSNBs) are synthesized by co-precipitation method. The nanobox structure of DSNBs formed by etching Mn-PBA with tannic acid endows Mn-PBA DSNBs with better peroxidase-like activity than Mn-PBA. A colorimetric method for the rapid and sensitive determination of H2O2 is developed using Mn-PBA DSNBs-1.5 as a sensor with a detection limit as low as 0.62 μM. Moreover, Mn-PBA DSNBs-2 has excellent photothermal conversion ability, which can be applied to the photothermal therapy of tumors to inhibit the proliferation of tumor cells without damaging other tissues and organs. This study provides a new idea for the rational design of nanozymes and the expansion of their multi-functional applications in various fields.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China
| | - Xiaojun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China
| | - Yuan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, PR China
| | - Bo Zhao
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China.
| | - Zhelin Liu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China.
| | - Xiangting Dong
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, Jilin, 130022, PR China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, PR China
| | - Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, PR China.
| |
Collapse
|
35
|
Singh AK, Sai Pradyuth K, Chitkara D, Mittal A. Restoring physiological parameters of the pancreas and kidney through treatment with a polymeric nano-formulation of C-peptide and lisofylline combination in diabetic nephropathy. NANOSCALE 2024; 16:16058-16074. [PMID: 39082128 DOI: 10.1039/d4nr02010c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Diabetic nephropathy (DN) is a progressive kidney disorder that develops as a complication of diabetes due to long-term exposure to elevated blood glucose levels (BGLs). In this case, an intervention of therapeutic moieties is needed to target the specific elements involved in diabetes to prevent/delay the deterioration of kidney function. Therefore, the present study focused on designing and evaluating a potent nano-formulation of a combination of C-peptide (CPep) and the anti-diabetic drug lisofylline (LSF) to prevent streptozotocin (STZ)-induced DN. As a strategic intervention, an LSF-oleic acid prodrug (LSF-OA) was initially synthesized and further encapsulated in an in-house-synthesized cationic polymer [(mPEG-b-P(CB-{g-DMDP}-co-LA)); mPLM] to prepare polymeric nano-complexes of CPep via electrostatic interaction, possessing a size of 218.6 ± 14.4 nm and zeta potential of +5.2 mV together with stability for 30 days at 25 °C. mPLM-LSF-OA-CPep nanoparticles demonstrated hemocompatibility with RBCs and exhibited potent anti-oxidant activity by reducing nitrite levels, inducing the release of anti-oxidant GSH and protecting metabolically stressed rat kidneys and murine insulinoma cells from apoptosis. In vivo pharmacokinetics depicted an increase in t½ and mean residence time in rats, which further improved the BGL and renal conditions and reduced plasma IL-6 and TNF-α levels in the STZ-induced DN animal model when treated with mPLM-LSF-OA-CPep compared to free LSF and CPep. Moreover, an increase in the plasma insulin level and detection of proliferative marker cells in pancreatic islets suggested the regeneration of β-cells in diabetic animals.
Collapse
Affiliation(s)
- Arihant Kumar Singh
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, 333031, India.
| | - Kommera Sai Pradyuth
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, 333031, India.
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, 333031, India.
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan, 333031, India.
| |
Collapse
|
36
|
Balcorta HV, Contreras Guerrero VG, Bisht D, Poon W. Nucleic Acid Delivery Nanotechnologies for In Vivo Cell Programming. ACS APPLIED BIO MATERIALS 2024; 7:5020-5036. [PMID: 38288693 DOI: 10.1021/acsabm.3c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
In medicine, it is desirable for clinicians to be able to restore function and imbue novel function into selected cells for therapy and disease prevention. Cells damaged by disease, injury, or aging could be programmed to restore normal or lost functions, such as retinal cells in inherited blindness and neuronal cells in Alzheimer's disease. Cells could also be genetically programmed with novel functions such as immune cells expressing synthetic chimeric antigen receptors for immunotherapy. Furthermore, knockdown or modification of risk factor proteins can mitigate disease development. Currently, nucleic acids are emerging as a versatile and potent therapeutic modality for achieving this cellular programming. In this review, we highlight the latest developments in nanobiomaterials-based nucleic acid therapeutics for cellular programming from a biomaterial design and delivery perspective and how to overcome barriers to their clinical translation to benefit patients.
Collapse
Affiliation(s)
- Hannia V Balcorta
- Department of Metallurgical, Materials, and Biomedical Engineering, College of Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| | - Veronica G Contreras Guerrero
- Department of Metallurgical, Materials, and Biomedical Engineering, College of Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| | - Deepali Bisht
- Department of Metallurgical, Materials, and Biomedical Engineering, College of Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| | - Wilson Poon
- Department of Metallurgical, Materials, and Biomedical Engineering, College of Engineering, University of Texas at El Paso, 500 W. University Ave., El Paso, Texas 79968, United States
| |
Collapse
|
37
|
Fan QQ, Tian H, Cheng JX, Zou JB, Luan F, Qiao JX, Zhang D, Tian Y, Zhai BT, Guo DY. Research progress of sorafenib drug delivery system in the treatment of hepatocellular carcinoma: An update. Biomed Pharmacother 2024; 177:117118. [PMID: 39002440 DOI: 10.1016/j.biopha.2024.117118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors in the contemporary era, representing a significant global health concern. Early HCC patients have mild symptoms or are asymptomatic, which promotes the onset and progression of the disease. Moreover, advanced HCC is insensitive to chemotherapy, making traditional clinical treatment unable to block cancer development. Sorafenib (SFB) is a first-line targeted drug for advanced HCC patients with anti-angiogenesis and anti-tumor cell proliferation effects. However, the efficacy of SFB is constrained by its off-target distribution, rapid metabolism, and multi-drug resistance. In recent years, nanoparticles based on a variety of materials have been demonstrated to enhance the targeting and therapeutic efficacy of SFB against HCC. Concurrently, the advent of joint drug delivery systems has furnished crucial empirical evidence for reversing SFB resistance. This review will summarize the application of nanotechnology in the field of HCC treatment over the past five years. It will focus on the research progress of SFB delivery systems combined with multiple therapeutic modalities in HCC treatment.
Collapse
Affiliation(s)
- Qiang-Qiang Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Huan Tian
- Xi'an Hospital of Traditional Chinese Medicine, 710021, China
| | - Jiang-Xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jun-Bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Fei Luan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jia-Xin Qiao
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Dan Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Yuan Tian
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Bing-Tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Dong-Yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| |
Collapse
|
38
|
Ilie CI, Spoiala A, Chircov C, Dolete G, Oprea OC, Vasile BS, Crainiceanu SA, Nicoara AI, Marinas IC, Stan MS, Ditu LM, Ficai A, Oprea E. Antioxidant, Antitumoral, Antimicrobial, and Prebiotic Activity of Magnetite Nanoparticles Loaded with Bee Pollen/Bee Bread Extracts and 5-Fluorouracil. Antioxidants (Basel) 2024; 13:895. [PMID: 39199141 PMCID: PMC11351729 DOI: 10.3390/antiox13080895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
The gut microbiota dysbiosis that often occurs in cancer therapy requires more efficient treatment options to be developed. In this concern, the present research approach is to develop drug delivery systems based on magnetite nanoparticles (MNPs) as nanocarriers for bioactive compounds. First, MNPs were synthesized through the spraying-assisted coprecipitation method, followed by loading bee pollen or bee bread extracts and an antitumoral drug (5-fluorouracil/5-FU). The loaded-MNPs were morphologically and structurally characterized through transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Dynamic Light Scattering (DLS), and thermogravimetric analysis. UV-Vis spectroscopy was applied to establish the release profiles and antioxidant activity. Furthermore, the antibacterial and antitumoral activity of loaded-MNPs was assessed. The results demonstrate that MNPs with antioxidant, antibacterial, antiproliferative, and prebiotic properties are obtained. Moreover, the data highlight the improvement of 5-FU antibacterial activity by loading on the MNPs' surface and the synergistic effects between the anticancer drug and phenolic compounds (PCs). In addition, the prolonged release behavior of PCs for many hours (70-75 h) after the release of 5-FU from the developed nanocarriers is an advantage, at least from the point of view of the antioxidant activity of PCs. Considering the enhancement of L. rhamnosus MF9 growth and antitumoral activity, this study developed promising drug delivery alternatives for colorectal cancer therapy.
Collapse
Affiliation(s)
- Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Angela Spoiala
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Bogdan-Stefan Vasile
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
| | - Simona Adriana Crainiceanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
| | - Adrian-Ionut Nicoara
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | | | - Miruna Silvia Stan
- The Research Institute, University of Bucharest, 050663 Bucharest, Romania (M.S.S.)
- Department of Biochemistry, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Lia-Mara Ditu
- The Research Institute, University of Bucharest, 050663 Bucharest, Romania (M.S.S.)
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
| | - Eliza Oprea
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| |
Collapse
|
39
|
Mao X, Wu S, Huang D, Li C. Complications and comorbidities associated with antineoplastic chemotherapy: Rethinking drug design and delivery for anticancer therapy. Acta Pharm Sin B 2024; 14:2901-2926. [PMID: 39027258 PMCID: PMC11252465 DOI: 10.1016/j.apsb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 07/20/2024] Open
Abstract
Despite the considerable advancements in chemotherapy as a cornerstone modality in cancer treatment, the prevalence of complications and pre-existing diseases is on the rise among cancer patients along with prolonged survival and aging population. The relationships between these disorders and cancer are intricate, bearing significant influence on the survival and quality of life of individuals with cancer and presenting challenges for the prognosis and outcomes of malignancies. Herein, we review the prevailing complications and comorbidities that often accompany chemotherapy and summarize the lessons to learn from inadequate research and management of this scenario, with an emphasis on possible strategies for reducing potential complications and alleviating comorbidities, as well as an overview of current preclinical cancer models and practical advice for establishing bio-faithful preclinical models in such complex context.
Collapse
Affiliation(s)
- Xiaoman Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shuang Wu
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Dandan Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Medical Research Institute, Southwest University, Chongqing 400715, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
40
|
Xu Z, Zhou H, Li T, Yi Q, Thakur A, Zhang K, Ma X, Qin JJ, Yan Y. Application of biomimetic nanovaccines in cancer immunotherapy: A useful strategy to help combat immunotherapy resistance. Drug Resist Updat 2024; 75:101098. [PMID: 38833804 DOI: 10.1016/j.drup.2024.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Breakthroughs in actual clinical applications have begun through vaccine-based cancer immunotherapy, which uses the body's immune system, both humoral and cellular, to attack malignant cells and fight diseases. However, conventional vaccine approaches still face multiple challenges eliciting effective antigen-specific immune responses, resulting in immunotherapy resistance. In recent years, biomimetic nanovaccines have emerged as a promising alternative to conventional vaccine approaches by incorporating the natural structure of various biological entities, such as cells, viruses, and bacteria. Biomimetic nanovaccines offer the benefit of targeted antigen-presenting cell (APC) delivery, improved antigen/adjuvant loading, and biocompatibility, thereby improving the sensitivity of immunotherapy. This review presents a comprehensive overview of several kinds of biomimetic nanovaccines in anticancer immune response, including cell membrane-coated nanovaccines, self-assembling protein-based nanovaccines, extracellular vesicle-based nanovaccines, natural ligand-modified nanovaccines, artificial antigen-presenting cells-based nanovaccines and liposome-based nanovaccines. We also discuss the perspectives and challenges associated with the clinical translation of emerging biomimetic nanovaccine platforms for sensitizing cancer cells to immunotherapy.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haiyan Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
41
|
Dhandapani S, Samad A, Liu Y, Wang R, Balusamy SR, Perumalsamy H, Kim YJ. Coprisin/Compound K Conjugated Gold Nanoparticles Induced Cell Death through Apoptosis and Ferroptosis Pathway in Adenocarcinoma Gastric Cells. ACS OMEGA 2024; 9:25932-25944. [PMID: 38911731 PMCID: PMC11190908 DOI: 10.1021/acsomega.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/03/2024] [Accepted: 04/26/2024] [Indexed: 06/25/2024]
Abstract
Ferroptosis and apoptosis are programmed cell death pathways with distinct characteristics. Sometimes, cancer cells are aided by the induction of a different pathway, such as ferroptosis, when they develop chemoresistance and avoid apoptosis. Identifying the nanomedicine that targets dual pathways is considered as one of the best strategies for diverse cancer types. In our previous work, we synthesized gold nanoparticles (GNP) utilizing Gluconacetobacter liquefaciens in conjunction with compound K (CK) and coprisin (CopA3), yielding GNP-CK-CopA3. Here, we assessed the inhibitory effect of GNP-CK-CopA3 on AGS cells and the induction of apoptosis using Hoechst and PI, Annexin V-FITC/PI, and qRT-PCR. Subsequently, we conducted downstream proteomic analysis and molecular dynamic stimulation to identify the underlying molecular mechanisms. Our investigation of cultured AGS cells treated with varying concentrations of GNP-CK-CopA3 demonstrated the anticancer properties of these nanoparticles. Penetration of GNP-CK-CopA3 into AGS cells was visualized using an enhanced dark field microscope. Apoptosis induction was initially confirmed by treating AGS cells with GNP-CK-CopA3, as evidenced by staining with dyes such as Hoechst and PI. Additionally, mitochondrial disruption and cellular localization induced by GNP-CK-CopA3 were validated through Mito-tracker staining and transmission electron microscopy images. Annexin V-FITC/PI staining was used to distinguish early and late-stage apoptosis or necrosis based on fluorescence patterns. The gene expression of apoptotic markers indicated the initiation of cellular apoptosis. Further, proteomic analysis suggested that the treatment of GNP-CK-CopA3 to AGS cells led to the suppression of 439 proteins and the stimulation of 832 proteins. Among these, ferroptosis emerged as a significant interconnected pathway where glutathione peroxidase 4 (GPX4) and glutathione synthetase (GSS) were significant interacting proteins. Molecular docking and dynamic simulation studies confirmed the binding affinity and stability between CopA3 and CK with GSS and GPX4 proteins, suggesting the role of GNP-CK-CopA3 in ferroptosis induction. Overall, our study showed GNP-CK-CopA3 could play a dual role by inducing apoptosis and ferroptosis to induce AGS cell death.
Collapse
Affiliation(s)
- Sanjeevram Dhandapani
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Abdus Samad
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ying Liu
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Rongbo Wang
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Sri Renukadevi Balusamy
- Department
of Food Science and Biotechnology, Sejong
University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Haribalan Perumalsamy
- Center
for Creative Convergence Education, Hanyang
University, Seoul 04763, Republic of Korea
- Research
Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, South Korea
| | - Yeon-Ju Kim
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| |
Collapse
|
42
|
Wang M, Wang Y, Fu Q. Magneto-optical nanosystems for tumor multimodal imaging and therapy in-vivo. Mater Today Bio 2024; 26:101027. [PMID: 38525310 PMCID: PMC10959709 DOI: 10.1016/j.mtbio.2024.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Multimodal imaging, which combines the strengths of two or more imaging modalities to provide complementary anatomical and molecular information, has emerged as a robust technology for enhancing diagnostic sensitivity and accuracy, as well as improving treatment monitoring. Moreover, the application of multimodal imaging in guiding precision tumor treatment can prevent under- or over-treatment, thereby maximizing the benefits for tumor patients. In recent years, several intriguing magneto-optical nanosystems with both magnetic and optical properties have been developed, leading to significant breakthroughs in the field of multimodal imaging and image-guided tumor therapy. These advancements pave the way for precise tumor medicine. This review summarizes various types of magneto-optical nanosystems developed recently and describes their applications as probes for multimodal imaging and agents for image-guided therapeutic interventions. Finally, future research and development prospects of magneto-optical nanosystems are discussed along with an outlook on their further applications in the biomedical field.
Collapse
Affiliation(s)
- Mengzhen Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qinrui Fu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
43
|
Wong KY, Nie Z, Wong MS, Wang Y, Liu J. Metal-Drug Coordination Nanoparticles and Hydrogels for Enhanced Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404053. [PMID: 38602715 DOI: 10.1002/adma.202404053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Indexed: 04/12/2024]
Abstract
Drug delivery is a key component of nanomedicine, and conventional delivery relies on the adsorption or encapsulation of drug molecules to a nanomaterial. Many delivery vehicles contain metal ions, such as metal-organic frameworks, metal oxides, transition metal dichalcogenides, MXene, and noble metal nanoparticles. These materials have a high metal content and pose potential long-term toxicity concerns leading to difficulties for clinical approval. In this review, recent developments are summarized in the use of drug molecules as ligands for metal coordination forming various nanomaterials and soft materials. In these cases, the drug-to-metal ratio is much higher than conventional adsorption-based strategies. The drug molecules are divided into small-molecule drugs, nucleic acids, and proteins. The formed hybrid materials mainly include nanoparticles and hydrogels, upon which targeting ligands can be grafted to improve efficacy and further decrease toxicity. The application of these materials for addressing cancer, viral infection, bacterial infection inflammatory bowel disease, and bone diseases is reviewed. In the end, some future directions are discussed from fundamental research, materials science, and medicine.
Collapse
Affiliation(s)
- Ka-Ying Wong
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
| | - Zhenyu Nie
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha , 410008, P. R. China
| | - Man-Sau Wong
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha , 410008, P. R. China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Eye and Vision Research (CEVR), 17W, Hong Kong Science Park, Pak Shek Kok, 999077, Hong Kong
| |
Collapse
|
44
|
Hristova-Panusheva K, Xenodochidis C, Georgieva M, Krasteva N. Nanoparticle-Mediated Drug Delivery Systems for Precision Targeting in Oncology. Pharmaceuticals (Basel) 2024; 17:677. [PMID: 38931344 PMCID: PMC11206252 DOI: 10.3390/ph17060677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Nanotechnology has emerged as a transformative force in oncology, facilitating advancements in site-specific cancer therapy and personalized oncomedicine. The development of nanomedicines explicitly targeted to cancer cells represents a pivotal breakthrough, allowing the development of precise interventions. These cancer-cell-targeted nanomedicines operate within the intricate milieu of the tumour microenvironment, further enhancing their therapeutic efficacy. This comprehensive review provides a contemporary perspective on precision cancer medicine and underscores the critical role of nanotechnology in advancing site-specific cancer therapy and personalized oncomedicine. It explores the categorization of nanoparticle types, distinguishing between organic and inorganic variants, and examines their significance in the targeted delivery of anticancer drugs. Current insights into the strategies for developing actively targeted nanomedicines across various cancer types are also provided, thus addressing relevant challenges associated with drug delivery barriers. Promising future directions in personalized cancer nanomedicine approaches are delivered, emphasising the imperative for continued optimization of nanocarriers in precision cancer medicine. The discussion underscores translational research's need to enhance cancer patients' outcomes by refining nanocarrier technologies in nanotechnology-driven, site-specific cancer therapy.
Collapse
Affiliation(s)
- Kamelia Hristova-Panusheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (K.H.-P.); (C.X.)
| | - Charilaos Xenodochidis
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (K.H.-P.); (C.X.)
| | - Milena Georgieva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (K.H.-P.); (C.X.)
| |
Collapse
|
45
|
Wang C, Pan J, Chen S, Qiu L, Hu H, Ji L, Wang J, Liu W, Ni X. Polyvinylpyrrolidone Assisted One-Pot Synthesis of Size-Tunable Cocktail Nanodrug for Multifunctional Combat of Cancer. Int J Nanomedicine 2024; 19:4339-4356. [PMID: 38774026 PMCID: PMC11107942 DOI: 10.2147/ijn.s459428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
Background The in vivo barriers and multidrug resistance (MDR) are well recognized as great challenges for the fulfillment of antitumor effects of current drugs, which calls for the development of novel therapeutic agents and innovative drug delivery strategies. Nanodrug (ND) combining multiple drugs with distinct modes of action holes the potential to circumvent these challenges, while the introduction of photothermal therapy (PTT) can give further significantly enhanced efficacy in cancer therapy. However, facile preparation of ND which contains dual drugs and photothermal capability with effective cancer treatment ability has rarely been reported. Methods In this study, we selected curcumin (Cur) and doxorubicin (Dox) as two model drugs for the creation of a cocktail ND (Cur-Dox ND). We utilized polyvinylpyrrolidone (PVP) as a stabilizer and regulator to prepare Cur-Dox ND in a straightforward one-pot method. Results The size of the resulting Cur-Dox ND can be easily adjusted by tuning the charged ratios. It was noted that both loaded drugs in Cur-Dox ND can realize their functions in the same target cell. Especially, the P-glycoprotein inhibition effect of Cur can synergistically cooperate with Dox, leading to enhanced inhibition of 4T1 cancer cells. Furthermore, Cur-Dox ND exhibited pH-responsive dissociation of loaded drugs and a robust photothermal translation capacity to realize multifunctional combat of cancer for photothermal enhanced anticancer performance. We further demonstrated that this effect can also be realized in 3D multicellular model, which possibly attributed to its superior drug penetration as well as photothermal-enhanced cellular uptake and drug release. Conclusion In summary, Cur-Dox ND might be a promising ND for better cancer therapy.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Jiaoyang Pan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Shaoqing Chen
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Huaanzi Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Li Ji
- Department of Otorhinolaryngology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Wenjia Liu
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Xinye Ni
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
46
|
Zhang X, Ma Y, Shi Y, Jiang L, Wang L, Ur Rashid H, Yuan M, Liu X. Advances in liposomes loaded with photoresponse materials for cancer therapy. Biomed Pharmacother 2024; 174:116586. [PMID: 38626516 DOI: 10.1016/j.biopha.2024.116586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024] Open
Abstract
Cancer treatment is presently a significant challenge in the medical domain, wherein the primary modalities of intervention include chemotherapy, radiation therapy and surgery. However, these therapeutic modalities carry side effects. Photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as promising modalities for the treatment of tumors in recent years. Phototherapy is a therapeutic approach that involves the exposure of materials to specific wavelengths of light, which can subsequently be converted into either heat or Reactive Oxygen Species (ROS) to effectively eradicate cancer cells. Due to the hydrophobicity and lack of targeting of many photoresponsive materials, the use of nano-carriers for their transportation has been extensively explored. Among these nanocarriers, liposomes have been identified as an effective drug delivery system due to their controllability and availability in the biomedical field. By binding photoresponsive materials to liposomes, it is possible to reduce the cytotoxicity of the material and regulate drug release and accumulation at the tumor site. This article provides a comprehensive review of the progress made in cancer therapy using photoresponsive materials loaded onto liposomes. Additionally, the article discusses the potential synergistic treatment through the combination of phototherapy with chemo/immuno/gene therapy using liposomes.
Collapse
Affiliation(s)
- Xianwei Zhang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Youfu Ma
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Yenong Shi
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Lihe Jiang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Lisheng Wang
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| | - Haroon Ur Rashid
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas (UFPel), Pelotas, RS 96010-900, Brazil
| | - Mingqing Yuan
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Xu Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| |
Collapse
|
47
|
Wang L, He S, Liu R, Xue Y, Quan Y, Shi R, Yang X, Lin Q, Sun X, Zhang Z, Zhang L. A pH/ROS dual-responsive system for effective chemoimmunotherapy against melanoma via remodeling tumor immune microenvironment. Acta Pharm Sin B 2024; 14:2263-2280. [PMID: 38799639 PMCID: PMC11119573 DOI: 10.1016/j.apsb.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 05/29/2024] Open
Abstract
Chemotherapeutics can induce immunogenic cell death (ICD) in tumor cells, offering new possibilities for cancer therapy. However, the efficiency of the immune response generated is insufficient due to the inhibitory nature of the tumor microenvironment (TME). Here, we developed a pH/reactive oxygen species (ROS) dual-response system to enhance chemoimmunotherapy for melanoma. The system productively accumulated in tumors by specific binding of phenylboronic acid (PBA) to sialic acids (SA). The nanoparticles (NPs) rapidly swelled and released quercetin (QUE) and doxorubicin (DOX) upon the stimulation of tumor microenvironment (TME). The in vitro and in vivo results consistently demonstrated that the NPs improved anti-tumor efficacy and prolonged survival of mice, significantly enhancing the effects of the combination. Our study revealed DOX was an ICD inducer, stimulating immune responses and promoting maturation of dendritic cells (DCs). Additionally, QUE served as a TME regulator by inhibiting the cyclooxygenase-2 (COX2)-prostaglandin E2 (PGE2) axis, which influenced various immune cells, including increasing cytotoxic T cells (CLTs) infiltration, promoting M1 macrophage polarization, and reducing regulatory T cells (Tregs) infiltration. The combination synergistically facilitated chemoimmunotherapy efficacy by remodeling the immunosuppressive microenvironment. This work presents a promising strategy to increase anti-tumor efficiency of chemotherapeutic agents.
Collapse
Affiliation(s)
- Leilei Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shanshan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Quan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rongying Shi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xueying Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qing Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- Med-X Center for Materials, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
48
|
Liang G, Cao W, Tang D, Zhang H, Yu Y, Ding J, Karges J, Xiao H. Nanomedomics. ACS NANO 2024; 18:10979-11024. [PMID: 38635910 DOI: 10.1021/acsnano.3c11154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Nanomaterials have attractive physicochemical properties. A variety of nanomaterials such as inorganic, lipid, polymers, and protein nanoparticles have been widely developed for nanomedicine via chemical conjugation or physical encapsulation of bioactive molecules. Superior to traditional drugs, nanomedicines offer high biocompatibility, good water solubility, long blood circulation times, and tumor-targeting properties. Capitalizing on this, several nanoformulations have already been clinically approved and many others are currently being studied in clinical trials. Despite their undoubtful success, the molecular mechanism of action of the vast majority of nanomedicines remains poorly understood. To tackle this limitation, herein, this review critically discusses the strategy of applying multiomics analysis to study the mechanism of action of nanomedicines, named nanomedomics, including advantages, applications, and future directions. A comprehensive understanding of the molecular mechanism could provide valuable insight and therefore foster the development and clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wanqing Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
49
|
Wang Y, Wang Z, Li S, Ma J, Dai X, Lu J. Deciphering JAK/STAT signaling pathway: A multifaceted approach to tumorigenesis, progression and therapeutic interventions. Int Immunopharmacol 2024; 131:111846. [PMID: 38520787 DOI: 10.1016/j.intimp.2024.111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024]
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, essential for cellular communication, orchestrates a myriad of physiological and pathological processes. Recently, the intricate association between the pathway's dysregulation and the progression of malignant tumors has garnered increasing attention. Nevertheless, there is no systematic summary detailing the anticancer effects of molecules targeting the JAK/STAT pathway in the context of tumor progression. This review offers a comprehensive overview of pharmaceutical agents targeting the JAK/STAT pathway, encompassing phytochemicals, synthetic drugs, and biomolecules. These agents can manifest their anticancer effects through various mechanisms, including inhibiting proliferation, inducing apoptosis, suppressing tumor metastasis, and angiogenesis. Notably, we emphasize the clinical challenges of drug resistance while spotlighting the potential of integrating JAK/STAT inhibitors with other therapies as a transformative approach in cancer treatment. Moreover, this review delves into the avant-garde strategy of employing nanocarriers to enhance the solubility and bioavailability of anticancer drugs, significantly amplifying their therapeutic prowess. Through this academic exploration of the multifaceted roles of the JAK/STAT pathway in the cancer milieu, we aim to sketch a visionary trajectory for future oncological interventions.
Collapse
Affiliation(s)
- Yihui Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Department of Anesthesiology, School of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Zhe Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Department of Clinical Medicine, School of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Shuyu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Department of Clinical Medicine, School of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Juntao Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Department of Clinical Medicine, School of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China.
| |
Collapse
|
50
|
Jia Q, Yue Z, Li Y, Zhang Y, Zhang J, Nie R, Li P. Bioinspired cytomembrane coating besieges tumor for blocking metabolite transportation. Sci Bull (Beijing) 2024; 69:933-948. [PMID: 38350739 DOI: 10.1016/j.scib.2024.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/15/2024]
Abstract
The metabolite transport inhibition of tumor cells holds promise to achieve anti-tumor efficacy. Herein, we presented an innovative strategy to hinder the delivery of metabolites through the in-situ besieging tumor cells with polyphenolic polymers that strongly adhere to the cytomembrane of tumor cells. Simultaneously, these polymers underwent self-crosslinking under the induction of tumor oxidative stress microenvironment to form an adhesive coating on the surface of the tumor cells. This polyphenol coating effectively obstructed glucose uptake, reducing metabolic products such as lactic acid, glutathione, and adenosine triphosphate, while also causing reactive oxygen species to accumulate in the tumor cells. The investigation of various tumor models, including 2D cells, 3D multicellular tumor spheroids, and xenograft tumors, demonstrated that the polyphenolic polymers effectively inhibited the growth of tumor cells by blocking key metabolite transport processes. Moreover, this highly adhesive coating could bind tumor cells to suppress their metastasis and invasion. This work identified polyphenolic polymers as a promising anticancer candidate with a mechanism by impeding the mass transport of tumor cells.
Collapse
Affiliation(s)
- Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China; Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
| | - Zilin Yue
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuanying Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Yunxiu Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China; School of Flexible Electronics (SoFE) and Henan Institute of Flexible Electronics (HIFE), Henan University, Zhengzhou 450046, China.
| | - Jianhong Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Renhao Nie
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|