1
|
Skoczyńska A, Ołdakowska M, Dobosz A, Adamiec R, Gritskevich S, Jonkisz A, Lebioda A, Adamiec-Mroczek J, Małodobra-Mazur M, Dobosz T. PPARs in Clinical Experimental Medicine after 35 Years of Worldwide Scientific Investigations and Medical Experiments. Biomolecules 2024; 14:786. [PMID: 39062500 PMCID: PMC11275227 DOI: 10.3390/biom14070786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
This year marks the 35th anniversary of Professor Walter Wahli's discovery of the PPARs (Peroxisome Proliferator-Activated Receptors) family of nuclear hormone receptors. To mark the occasion, the editors of the scientific periodical Biomolecules decided to publish a special issue in his honor. This paper summarizes what is known about PPARs and shows how trends have changed and how research on PPARs has evolved. The article also highlights the importance of PPARs and what role they play in various diseases and ailments. The paper is in a mixed form; essentially it is a review article, but it has been enriched with the results of our experiments. The selection of works was subjective, as there are more than 200,000 publications in the PubMed database alone. First, all papers done on an animal model were discarded at the outset. What remained was still far too large to describe directly. Therefore, only papers that were outstanding, groundbreaking, or simply interesting were described and briefly commented on.
Collapse
Affiliation(s)
- Anna Skoczyńska
- Department of Internal and Occupational Medicine and Hypertension, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Monika Ołdakowska
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Agnieszka Dobosz
- Department of Basic Medical Sciences and Immunology, Division of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Rajmund Adamiec
- Department of Diabetology and Internal Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
- Department of Internal Medicine, Faculty of Medical and Technical Sciences, Karkonosze University of Applied Sciences, Lwówiecka 18, 58-506 Jelenia Góra, Poland
| | - Sofya Gritskevich
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Anna Jonkisz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Arleta Lebioda
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Joanna Adamiec-Mroczek
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| | - Tadeusz Dobosz
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, M. Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (M.O.); (A.J.); (A.L.); (M.M.-M.); (T.D.)
| |
Collapse
|
2
|
Sharma S, Sharma D, Dhobi M, Wang D, Tewari D. An insight to treat cardiovascular diseases through phytochemicals targeting PPAR-α. Mol Cell Biochem 2024; 479:707-732. [PMID: 37171724 DOI: 10.1007/s11010-023-04755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Peroxisome proliferator-activated receptor-α (PPAR-α) belonging to the nuclear hormone receptor superfamily is a promising target for CVDs which mechanistically improves the production of high-density lipid as well as inhibit vascular smooth muscle cell proliferation. PPAR-α mainly interferes with adenosine monophosphate-activated protein kinase, transforming growth factor-β-activated kinase, and nuclear factor-κB pathways to protect against cardiac complications. Natural products/extracts could serve as a potential therapeutic strategy in CVDs for targeting PPAR-α with broad safety margins. In recent years, the understanding of naturally derived PPAR-α agonists has considerably improved; however, the information is scattered. In vitro and in vivo studies on acacetin, apigenin, arjunolic acid, astaxanthin, berberine, resveratrol, vaticanol C, hispidulin, ginsenoside Rb3, and genistein showed significant effects in CVDs complications by targeting PPAR-α. With the aim of demonstrating the tremendous chemical variety of natural products targeting PPAR-α in CVDs, this review provides insight into various natural products that can work to prevent CVDs by targeting the PPAR-α receptor along with their detailed mechanism.
Collapse
Affiliation(s)
- Supriya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Divya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| |
Collapse
|
3
|
Li S, Zhang Y, Xu W, Lv Z, Xu L, Zhao Z, Zhu D, Song Y. C Allele of the PPARδ+294T>C Polymorphism Confers a Higher Risk of Hypercholesterolemia, but not Obesity and Insulin Resistance: A Systematic Review and Meta-Analysis. Horm Metab Res 2023; 55:355-366. [PMID: 37011890 DOI: 10.1055/a-2043-7707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The relationships of the PPARα Leu162Val and PPARδ+294 T>C polymorphisms with metabolic indexes have been reported to be inconsistent and even contradictory. The meta-analysis was conducted to clarify the relationships between the two variants and the indexes of obesity, insulin resistance, and blood lipids. PubMed, Google Scholar, Embase, and Cochrane Library were searched for eligible studies. Standardized mean difference with 95% confidence interval was calculated to estimate the differences in the metabolic indexes between the genotypes of the Leu162Val and+294 T>C polymorphisms. Heterogeneity among studies was assessed by Cochran's x2-based Q-statistic test. Publication bias was identified by using Begg's test. Forty-one studies (44 585 subjects) and 33 studies (23 018 subjects) were identified in the analyses for the Leu162Val and+294 T>C polymorphisms, respectively. C allele carriers of the+294 T>C polymorphism had significantly higher levels of total cholesterol and low-density lipoprotein cholesterol than TT homozygotes in the whole population. Notably, C allele carriers of the+294 T>C polymorphism had significantly higher levels of triglycerides and total cholesterol in East Asians, but lower levels of triglycerides in West Asians than TT homozygotes. Regarding the Leu162Val polymorphism, it was found that Val allele carriers had significantly higher levels of blood glucose than Leu/Leu homozygotes only in European Caucasians. The meta-analysis demonstrates that C allele of the+294 T>C polymorphism in PPARδ gene confers a higher risk of hypercholesterolemia, which may partly explain the relationship between this variant and coronary artery disease.
Collapse
Affiliation(s)
- Shujin Li
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Youjin Zhang
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| | - Wenhao Xu
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Zhimin Lv
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Luying Xu
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Zixuan Zhao
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Dan Zhu
- Clinical Medical College of Chengdu University, Chengdu, China
| | - Yongyan Song
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, China
| |
Collapse
|
4
|
Identification of Differential Expression Genes between Volume and Pressure Overloaded Hearts Based on Bioinformatics Analysis. Genes (Basel) 2022; 13:genes13071276. [PMID: 35886059 PMCID: PMC9318830 DOI: 10.3390/genes13071276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/27/2023] Open
Abstract
Volume overload (VO) and pressure overload (PO) are two common pathophysiological conditions associated with cardiac disease. VO, in particular, often occurs in a number of diseases, and no clinically meaningful molecular marker has yet been established. We intend to find the main differential gene expression using bioinformatics analysis. GSE97363 and GSE52796 are the two gene expression array datasets related with VO and PO, respectively. The LIMMA algorithm was used to identify differentially expressed genes (DEGs) of VO and PO. The DEGs were divided into three groups and subjected to functional enrichment analysis, which comprised GO analysis, KEGG analysis, and the protein–protein interaction (PPI) network. To validate the sequencing data, cardiomyocytes from AR and TAC mouse models were used to extract RNA for qRT-PCR. The three genes with random absolute values of LogFC and indicators of heart failure (natriuretic peptide B, NPPB) were detected: carboxylesterase 1D (CES1D), whirlin (WHRN), and WNK lysine deficient protein kinase 2 (WNK2). The DEGs in VO and PO were determined to be 2761 and 1093, respectively, in this study. Following the intersection, 305 genes were obtained, 255 of which expressed the opposing regulation and 50 of which expressed the same regulation. According to the GO and pathway enrichment studies, DEGs with opposing regulation are mostly common in fatty acid degradation, propanoate metabolism, and other signaling pathways. Finally, we used Cytoscape’s three techniques to identify six hub genes by intersecting 255 with the opposite expression and constructing a PPI network. Peroxisome proliferator-activated receptor (PPARα), acyl-CoA dehydrogenase medium chain (ACADM), patatin-like phospholipase domain containing 2 (PNPLA2), isocitrate dehydrogenase 3 (IDH3), heat shock protein family D member 1 (HSPD1), and dihydrolipoamide S-acetyltransferase (DLAT) were identified as six potential genes. Furthermore, we predict that the hub genes PPARα, ACADM, and PNPLA2 regulate VO myocardial changes via fatty acid metabolism and acyl-Coa dehydrogenase activity, and that these genes could be employed as basic biomarkers for VO diagnosis and treatment.
Collapse
|
5
|
Aparicio-Siegmund S, Garbers Y, Flynn CM, Waetzig GH, Gouni-Berthold I, Krone W, Berthold HK, Laudes M, Rose-John S, Garbers C. The IL-6-neutralizing sIL-6R-sgp130 buffer system is disturbed in patients with type 2 diabetes. Am J Physiol Endocrinol Metab 2019; 317:E411-E420. [PMID: 31237452 DOI: 10.1152/ajpendo.00166.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Serum levels of interleukin-6 (IL-6) are increased in patients with type 2 diabetes (T2D). IL-6 exerts its pleiotropic effects via the IL-6 α-receptor (IL-6R), which exists in membrane-bound and soluble (sIL-6R) forms and activates cells via the β-receptor glycoprotein 130 (gp130). The nonsynonymous single-nucleotide polymorphism (SNP) rs2228145 (Asp358Ala) within the IL6R locus is associated with T2D. The aim of this study was to determine whether sIL-6R in combination with soluble gp130 (sgp130) is able to form an IL-6-neutralizing buffer in healthy subjects and whether this is disturbed in T2D. We found that sIL-6R-sgp130 indeed forms an IL-6-neutralizing buffer in the serum of healthy humans, whose capacity is controlled by the SNP of the IL-6R. Circulating sIL-6R-sgp130 levels were lower in T2D subjects (P < 0.001), whereas IL-6 was high and inversely correlated with sIL-6R (r = -0.57, P < 0.001), indicating a severe disturbance of the buffer. This phenomenon is also observed in sex- and age-matched patients with both T2D and atherosclerosis but not in patients with atherosclerosis alone. In conclusion, sIL-6R and sgp130 serum levels were significantly lower in T2D patients compared with healthy subjects or atherosclerosis patients, although IL-6 levels were high. These data suggest that disturbance of the protective buffer may be closely associated with T2D pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | - Ioanna Gouni-Berthold
- Polyclinic for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Cologne, Germany
| | - Wilhelm Krone
- Polyclinic for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Cologne, Germany
| | - Heiner K Berthold
- Department of Internal Medicine and Geriatrics, Bethel Clinic, Bielefeld, Germany
| | - Matthias Laudes
- Department of Internal Medicine I, Kiel University, Kiel, Germany
| | | | - Christoph Garbers
- Department of Pathology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
6
|
Tong Y, Cai L, Wang Z, Zhang Y, Guan X, Zhan F, Liu J, Lu Q. Association between PPARs Gene Functional Polymorphisms and Ischemic Stroke in Chinese Uyghur Population. J Nutr Health Aging 2019; 23:175-180. [PMID: 30697628 DOI: 10.1007/s12603-018-1140-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PPARγ and PPARα belong to a receptor family of ligand-activated transcription factors involved in the regulation of inflammation, cellular glucose uptake, protection against atherosclerosis and endothelial cell function. Through these effects, they might be involved with the ischemic stroke (IS). We recruited 100 IS patients diagnosed by CTs or/and magnetic resonance imaging (MRI) and 100 normal healthy controls from Chinese Uyghur Population to assess the nature of the functional polymorphisms of PPARs and any links with IS in this unique population which has 60% European ancestry and 40% East Asian ancestry. We found that the Ala allele of the PPARγ Pro12Ala polymorphism was more common in controls than IS subjects (P = 0.008, corrected for multiple testing) in the Uyghur Population. Pro/Ala carriage may be associated with a decreased risk of IS in Uyghurs (OR 0.542, 95% CI 0.346-0.850). Additionally, the 162Val allele frequency at the DNA-binding region of PPARα was extremely rare in Chinese Uguhur IS patients and controls. Our population and ethnic-based study demonstrates that the 162Val allele frequency was extremely low in the Chinese Uyghur Population different from Some European and African populations and the PPARγ 12 Pro/Ala resulting in an amino acid exchange in N-terminal sequence may be an independent protective factor for IS in the Chinese Uyghur Population.
Collapse
Affiliation(s)
- Y Tong
- Jiafa Liu, Center for Disease Control and Prevention, Hubei 430079, China,
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr Rev 2018; 39:760-802. [PMID: 30020428 DOI: 10.1210/er.2018-00064] [Citation(s) in RCA: 482] [Impact Index Per Article: 68.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor of clinical interest as a drug target in various metabolic disorders. PPARα also exhibits marked anti-inflammatory capacities. The first-generation PPARα agonists, the fibrates, have however been hampered by drug-drug interaction issues, statin drop-in, and ill-designed cardiovascular intervention trials. Notwithstanding, understanding the molecular mechanisms by which PPARα works will enable control of its activities as a drug target for metabolic diseases with an underlying inflammatory component. Given its role in reshaping the immune system, the full potential of this nuclear receptor subtype as a versatile drug target with high plasticity becomes increasingly clear, and a novel generation of agonists may pave the way for novel fields of applications.
Collapse
Affiliation(s)
- Nadia Bougarne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Basiel Weyers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Sofie J Desmet
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Julie Deckers
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium
| | - David W Ray
- Division of Metabolism and Endocrinology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Bart Staels
- Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
- INSERM, U1011, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Karolien De Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
8
|
Qian Y, Li P, Zhang J, Shi Y, Chen K, Yang J, Wu Y, Ye X. Association between peroxisome proliferator-activated receptor-alpha, delta, and gamma polymorphisms and risk of coronary heart disease: A case-control study and meta-analysis. Medicine (Baltimore) 2016; 95:e4299. [PMID: 27512842 PMCID: PMC4985297 DOI: 10.1097/md.0000000000004299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Risk of coronary heart disease (CHD) has been suggested to be associated with polymorphisms of peroxisome proliferator-activated receptors (PPARs), while the results were controversial. We aimed to systematically assess the association between PPAR polymorphisms and CHD risk. METHODS A case-control study with 446 subjects was conducted to evaluate the association between CHD risk and C161T polymorphism, which was of our special interest as this polymorphism showed different effects on risks of CHD and acute coronary syndrome (ACS). Meta-analyses were conducted to assess all PPAR polymorphisms. Either a fixed- or a random-effects model was adopted to estimate overall odds ratios (ORs). RESULTS In the case-control study, T allele carriers of C161T polymorphism were not significantly associated with CHD risk (Odds ratio (OR) = 0.74, 95% confidence interval (CI) 0.47-1.15, P = 0.19), while T allele carriers showed higher risk of ACS (OR = 1.63, 95% CI 1.00-2.65, P = 0.048). The meta-analysis indicated that compared with CC homozygous, T allele carriers had lower CHD risk (OR = 0.69, 95% CI 0.59-0.82, P < 0.001) but higher ACS risk (OR = 1.43, 95% CI 1.09-1.87, P = 0.010). Three other polymorphisms were also found to be significantly associated with CHD risk under dominant model: PPAR-alpha intron 7G/C polymorphism (CC+GC vs GG, OR 1.42, 95% CI 1.13-1.78, P = 0.003), L162V polymorphism (VV+LV vs LL, OR 0.74, 95% CI 0.56-0.97, P = 0.031), and PPAR-delta +294T/C polymorphism (CC+TC vs TT, OR 1.51, 95% CI 1.12-2.05, P = 0.007). CONCLUSIONS The results suggested that PPAR-alpha intron 7G/C and L162V, PPAR-delta +294T/C and PPAR-gamma C161T polymorphisms could affect CHD susceptibility, and C161T polymorphism might have different effects on CHD and ACS.
Collapse
Affiliation(s)
- Yufeng Qian
- Department of Cardiology, Hangzhou First People's Hospital
| | - Peiwei Li
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health
| | - Jinjie Zhang
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health
| | - Yu Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine
| | - Kun Chen
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health
| | - Jun Yang
- Department of Toxicology, Hangzhou Normal University School of Public Health, Hangzhou, China
| | - Yihua Wu
- Department of Epidemiology and Health Statistics, Zhejiang University School of Public Health
| | - Xianhua Ye
- Department of Cardiology, Hangzhou First People's Hospital
| |
Collapse
|
9
|
Dong C, Zhou H, Shen C, Yu LG, Ding Y, Zhang YH, Guo ZR. Role of peroxisome proliferator-activated receptors gene polymorphisms in type 2 diabetes and metabolic syndrome. World J Diabetes 2015; 6:654-661. [PMID: 25987964 PMCID: PMC4434087 DOI: 10.4239/wjd.v6.i4.654] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/27/2014] [Accepted: 02/11/2015] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM) are the serious public health problems worldwide. Moreover, it is estimated that MetS patients have about five-fold greater risk of the T2DM development compared with people without the syndrome. Peroxisome proliferator-activated receptors are a subgroup of the nuclear hormone receptor superfamily of ligand-activated transcription factors which play an important role in the pathogenesis of MetS and T2DM. All three members of the peroxisome proliferator-activated receptor (PPAR) nuclear receptor subfamily, PPARα, PPARβ/δ and PPARγ are critical in regulating insulin sensitivity, adipogenesis, lipid metabolism, and blood pressure. Recently, more and more studies indicated that the gene polymorphism of PPARs, such as Leu162Val and Val227Ala of PPARα, +294T > C of PPARβ/δ, Pro12Ala and C1431T of PPARγ, are significantly associated with the onset and progressing of MetS and T2DM in different population worldwide. Furthermore, a large body of evidence demonstrated that the glucose metabolism and lipid metabolism were influenced by gene-gene interaction among PPARs genes. However, given the complexity pathogenesis of metabolic disease, it is unlikely that genetic variation of a single locus would provide an adequate explanation of inter-individual differences which results in diverse clinical syndromes. Thus, gene-gene interactions and gene-environment interactions associated with T2DM and MetS need future comprehensive studies.
Collapse
|
10
|
Yilmaz-Aydogan H, Kurnaz O, Kucukhuseyin O, Akadam-Teker B, Kurt O, Eronat AP, Tekeli A, Bugra Z, Ozturk O. Different effects of PPARA, PPARG and ApoE SNPs on serum lipids in patients with coronary heart disease based on the presence of diabetes. Gene 2013; 523:20-6. [DOI: 10.1016/j.gene.2013.03.136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/18/2013] [Accepted: 03/28/2013] [Indexed: 02/06/2023]
|
11
|
Influence of serum selenium concentrations on hypertension: the Lipid Analytic Cologne cross-sectional study. J Hypertens 2012; 30:1328-35. [PMID: 22573120 DOI: 10.1097/hjh.0b013e32835414df] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIMS Selenium is an antioxidant micronutrient with potential associations with hypertension. Few studies have investigated the association of serum selenium concentrations with blood pressure and hypertension in countries with low dietary selenium intake such as Germany, with inconsistent findings. METHODS We undertook a cross-sectional analysis of participants in the Lipid Analytic Cologne (LIANCO) cohort. To reduce potential confounding, we restricted the analysis to 792 participants who were never smokers, who did not use antihypertensive medications, and who did not have diabetes or known atherosclerotic disease. Hypertension was defined as blood pressure at least 140 and/or at least 90 mmHg. About half of the cohort was diagnosed as hypertensive. Selenium was measured by inductively coupled plasma-dynamic reaction cell-mass spectrometry (ICP-DRC-MS). RESULTS Mean ± standard deviation (SD) serum selenium concentration was 68 ± 32 μg/l. The multivariable adjusted differences (95% confidence intervals) in blood pressure levels comparing the highest (>91.9 μg/l) to the lowest (≤ 42.8 μg/l) quartile of serum selenium were 5.2 (1.4 to 8.9), 2.8 (0.7 to 4.8), and 2.4 (-0.4 to 5.2) mmHg for systolic, diastolic, and pulse pressure, respectively (P for trend for all <0.003). The corresponding multivariable adjusted odds ratio for the presence of hypertension was 1.52 (0.98 to 2.36; P trend = 0.004). CONCLUSIONS The data suggest that even in a population with very low serum selenium concentrations higher serum selenium concentrations are associated with higher blood pressure levels and a higher prevalence of hypertension. These findings call for careful evaluation of the effects of selenium on blood pressure endpoints in randomized clinical trials.
Collapse
|
12
|
Vanden Heuvel JP. Nutrigenomics and Nutrigenetics of ω3 Polyunsaturated Fatty Acids. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:75-112. [DOI: 10.1016/b978-0-12-398397-8.00004-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Rakhshandehroo M, Knoch B, Müller M, Kersten S. Peroxisome proliferator-activated receptor alpha target genes. PPAR Res 2010; 2010:612089. [PMID: 20936127 PMCID: PMC2948931 DOI: 10.1155/2010/612089] [Citation(s) in RCA: 565] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 08/09/2010] [Indexed: 12/11/2022] Open
Abstract
The peroxisome proliferator-activated receptor alpha (PPARα) is a ligand-activated transcription factor involved in the regulation of a variety of processes, ranging from inflammation and immunity to nutrient metabolism and energy homeostasis. PPARα serves as a molecular target for hypolipidemic fibrates drugs which bind the receptor with high affinity. Furthermore, PPARα binds and is activated by numerous fatty acids and fatty acid-derived compounds. PPARα governs biological processes by altering the expression of a large number of target genes. Accordingly, the specific role of PPARα is directly related to the biological function of its target genes. Here, we present an overview of the involvement of PPARα in lipid metabolism and other pathways through a detailed analysis of the different known or putative PPARα target genes. The emphasis is on gene regulation by PPARα in liver although many of the results likely apply to other organs and tissues as well.
Collapse
Affiliation(s)
- Maryam Rakhshandehroo
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | - Bianca Knoch
- Food, Metabolism & Microbiology, Food & Textiles Group, AgResearch, Palmerston North 4442, New Zealand
- Institute of Food, Nutrition & Human Health, Massey University, Tennent Drive, Palmerston North 4442, New Zealand
| | - Michael Müller
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HD Wageningen, The Netherlands
| |
Collapse
|
14
|
Influence of ghrelin gene polymorphisms on hypertension and atherosclerotic disease. Hypertens Res 2009; 33:155-60. [PMID: 20010782 DOI: 10.1038/hr.2009.194] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ghrelin is involved in several metabolic and cardiovascular processes. Recent evidence suggests its involvement in blood pressure regulation and hypertension. The aim of the study was to determine associations of single-nucleotide polymorphisms (SNPs) and haplotypes of the ghrelin gene (GHRL) with hypertension and atherosclerotic disease. Six GHRL SNPs (rs27647, rs26802, rs34911341, rs696217, rs4684677 and a -473G/A (with no assigned rsID)) were investigated in a sample of 1143 hypertensive subjects and 1489 controls of Caucasian origin. Both single-locus and haplotype association analyses were performed. In single-locus analyses, only the non-synonymous rs34911341 was associated with hypertension (odds ratio (OR)=1.95 (95% confidence interval (CI): 1.26-3.02), P=0.003). Six common haplotypes with frequency >1% were inferred from the studied GHRL SNPs, and their frequency distribution was significantly different between hypertensive subjects and controls (chi(2)=12.96 with 5 d.f. (degree of freedom), P=0.024). The effect of rs26802 was found to be significantly (P=0.017) modulated by other GHRL SNPs, as its C allele conferred either an increased risk (OR=1.30 (1.08-1.57), P=0.005) or a decreased risk (OR=0.50 (0.23-1.06), P=0.07) of hypertension according to the two different haplotypes on which it can be found. No association of GHRL SNPs or haplotypes with atherosclerotic disease was observed. In conclusion, we observed statistical evidence for association between GHRL SNPs and risk of hypertension.
Collapse
|
15
|
Pishva H, Mahboob SA, Mehdipour P, Eshraghian MR, Mohammadi-Asl J, Hosseini S, Rahmany M. Association between the FABP2 Ala54Thr, PPARα Leu162/Val, and PPARα intron7 polymorphisms and blood lipids ApoB and ApoCIII in hypertriglyceridemic subjects in Tehran. J Clin Lipidol 2009; 3:187-94. [PMID: 21291813 DOI: 10.1016/j.jacl.2009.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 04/07/2009] [Accepted: 04/13/2009] [Indexed: 02/08/2023]
Abstract
BACKGROUND The alanine to threonine substitution at codon 54 in the FABP2 gene and PPARα Val162 allele have been associated with hypertriglyceridemia. OBJECTIVE We sought to determine the prevalence of the Ala54Thr polymorphism of fatty acid binding protein (FABP) 2 gene and the Leu162/Val in exon 5 and G/C in intron7 polymorphism of peroxisome proliferator-activated receptor alpha (PPARα) gene in hypertriglyceridemic patients and their associations with blood lipid concentrations. METHODS A total of 170 hypertriglyceridemic subjects were enrolled and genotyped for Ala54Thr, Leu162Val, and intron 7 polymorphism by the use of a polymerase chain reaction-restriction fragment length polymorphism method. Fasting blood triglyceride, total cholesterol (TC), low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, apolipoprotein (Apo)B, and ApoCIII also were determined. RESULTS We found frequency of 81.2% for the Thr54 polymorphism among hypertriglyceridemic subjects. Positive associations were observed between this polymorphism and greater blood triglyceride, very low-density lipoprotein, and ApoCIII levels and lower blood high-density lipoprotein cholesterol concentration both in men and women. However, no association was found between the Thr54 polymorphism and TC, low-density lipoprotein cholesterol, ApoB, and body mass index. Frequency of the Leu162Val polymorphism was 21.8%. The Leu162Val polymorphism was not associated with lipid and lipoprotein concentrations in hypertriglyceridemic subjects (both in men and women). The frequency of intron7 polymorphism was 55.3% in subjects studied and, except for body mass index and TC, no association was found between the intron7 allele and blood lipids ApoB, and ApoCIII. CONCLUSION Frequency of the Thr54 polymorphism is high in hypertriglyceridemic subjects, and the presence of this allele may increase some blood lipid and lipoprotein concentrations. In addition, the frequency of intron7 polymorphism may be greater than Leu162Val in hypertriglyceridemic patients.
Collapse
Affiliation(s)
- Hamideh Pishva
- Department of Nutrition and Biochemistry, School of Public Health and Institute of Public Research, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
16
|
Roy H, Bhardwaj S, Yla-Herttuala S. Molecular genetics of atherosclerosis. Hum Genet 2009; 125:467-91. [DOI: 10.1007/s00439-009-0654-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/04/2009] [Indexed: 12/17/2022]
|
17
|
Berthold HK, Giannakidou E, Krone W, Mantzoros CS, Gouni-Berthold I. The Leu72Met polymorphism of the ghrelin gene is associated with a decreased risk for type 2 diabetes. Clin Chim Acta 2009; 399:112-6. [DOI: 10.1016/j.cca.2008.09.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 09/18/2008] [Accepted: 09/18/2008] [Indexed: 12/20/2022]
|
18
|
Gu CC, Flores HR, de las Fuentes L, Dávila-Román VG. Enhanced detection of genetic association of hypertensive heart disease by analysis of latent phenotypes. Genet Epidemiol 2008; 32:528-38. [PMID: 18435473 DOI: 10.1002/gepi.20326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hypertension and hypertensive heart disease (HHD) are inter-related phenotypes frequently observed with other comorbidities such as diabetes, obesity, and dyslipidemia, which probably reflect the complex gene-gene and/or gene-environment interactions resulting in HHD. The complexity of HHD led us to examine intermediate phenotypes (e.g., echocardiographically-derived measures) for simpler clues to the genetic underpinnings of the disease. We applied the method of independent component analysis to a prospective study of the metabolic predictors of left ventricular hypertrophy and extracted latent traits of HHD from panels of multi-dimensional anthropomorphic, hemodynamic echocardiographic and metabolic data. Based on the latent trait values, classification of subjects into different risk groups for HHD captured meaningful subtypes of the disease as reflected in the distributions of primary clinical indicators. Furthermore, we detected genetic associations of the latent HHD traits with single nucleotide polymorphisms in three candidate genes in the peroxisome proliferator-activated receptors complex, for which no significant association was found with the original clinical indicators of HHD. Consensus analysis of the results from repeated independent component analysis runs showed satisfactory robustness and estimated about 3-4 separate unseen sources for the observed HHD-related outcomes.
Collapse
Affiliation(s)
- C Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
19
|
Kanter JE, Johansson F, LeBoeuf RC, Bornfeldt KE. Do glucose and lipids exert independent effects on atherosclerotic lesion initiation or progression to advanced plaques? Circ Res 2007; 100:769-81. [PMID: 17395883 DOI: 10.1161/01.res.0000259589.34348.74] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It is becoming increasingly clear that suboptimal blood glucose control results in adverse effects on large blood vessels, thereby accelerating atherosclerosis and cardiovascular disease, manifested as myocardial infarction, stroke, and peripheral vascular disease. Cardiovascular disease is accelerated by both type 1 and type 2 diabetes. In type 1 diabetes, hyperglycemia generally occurs in the absence of elevated blood lipid levels, whereas type 2 diabetes is frequently associated with dyslipidemia. In this review article, we discuss hyperglycemia versus hyperlipidemia as culprits in diabetes-accelerated atherosclerosis and cardiovascular disease, with emphasis on studies in mouse models and isolated vascular cells. Recent studies on LDL receptor-deficient mice that are hyperglycemic, but exhibit no marked dyslipidemia compared with nondiabetic controls, show that diabetes in the absence of diabetes-induced hyperlipidemia is associated with an accelerated formation of atherosclerotic lesions, similar to what is seen in fat-fed nondiabetic mice. These effects of diabetes are masked in severely dyslipidemic mice, suggesting that the effects of glucose and lipids on lesion initiation might be mediated by similar mechanisms. Recent evidence from isolated endothelial cells demonstrates that glucose and lipids can induce endothelial dysfunction through similar intracellular mechanisms. Analogous effects of glucose and lipids are also seen in macrophages. Furthermore, glucose exerts many of its cellular effects through lipid mediators. We propose that diabetes without associated dyslipidemia accelerates atherosclerosis by mechanisms that can also be activated by hyperlipidemia.
Collapse
Affiliation(s)
- Jenny E Kanter
- Department of Pathology, University of Washington, Seattle, WA 98195-7470, USA
| | | | | | | |
Collapse
|
20
|
Sparsø T, Hussain MS, Andersen G, Hainerova I, Borch-Johnsen K, Jørgensen T, Hansen T, Pedersen O. Relationships between the functional PPARalpha Leu162Val polymorphism and obesity, type 2 diabetes, dyslipidaemia, and related quantitative traits in studies of 5799 middle-aged white people. Mol Genet Metab 2007; 90:205-9. [PMID: 17129741 DOI: 10.1016/j.ymgme.2006.10.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 10/24/2006] [Accepted: 10/24/2006] [Indexed: 11/24/2022]
Abstract
Peroxisome proliferator-activated receptor-alpha (PPARalpha) is a nuclear receptor capable of regulating the expression of genes involved in peroxisomal and mitochondrial beta-oxidation pathways. The common Leu162Val polymorphism in the gene encoding PPARalpha has inconsistently shown association with quantitative traits related to obesity, type 2 diabetes, and dyslipidaemia. We genotyped the Leu162Val polymorphism in 1383 patients with type 2 diabetes and 4401 control subjects with normal glucose tolerance (NGT) without showing any association between diabetes and genotype. In addition, the Leu162Val polymorphism was not associated with WHO-defined obesity or dyslipidaemia in case-control settings involving 961 obese and 2563 lean subjects and 1399 dyslipidaemic and 4399 normolipidaemic subjects, respectively. Quantitative trait studies of metabolic variables were carried out in 5799 middle-aged, treatment-naïve subjects showing a difference in fasting serum triglyceride concentrations among homozygous Val-carriers (Leu/Leu+Leu/Val, n=5782, 1.33+/-1.35 mmol/l vs. Val/Val, n=17, 2.22+/-2.4 mmol/l, p=0.007). Similarly, Val/Val was associated with increased fasting serum total cholesterol concentrations (p=0.01). In conclusion, in a relative large-scale study of middle-aged whites we found no evidence of association between the PPARalpha Leu162Val polymorphism and obesity or type 2 diabetes. If replicated, the Val162Val variant may, however, confer an increase in fasting levels of serum lipids.
Collapse
Affiliation(s)
- Thomas Sparsø
- Steno Diabetes Center, 521, Niels Steensens Vej 2, 2820 Gentofte, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tai ES, Collins D, Robins SJ, O'Connor JJ, Bloomfield HE, Ordovas JM, Schaefer EJ, Brousseau ME. The L162V polymorphism at the peroxisome proliferator activated receptor alpha locus modulates the risk of cardiovascular events associated with insulin resistance and diabetes mellitus: The Veterans Affairs HDL Intervention Trial (VA-HIT). Atherosclerosis 2006; 187:153-60. [PMID: 16221474 DOI: 10.1016/j.atherosclerosis.2005.08.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 08/25/2005] [Accepted: 08/29/2005] [Indexed: 11/20/2022]
Abstract
BACKGROUND The Veterans Affairs HDL Intervention Trial (VA-HIT) showed that gemfibrozil, which activates peroxisome proliferator-activator receptor alpha (PPARalpha), significantly reduced the risk of cardiovascular (CV) events in men with low HDL cholesterol (< 40 mg/dl) and established coronary heart disease. Treatment was particularly beneficial in those with insulin resistance (IR) or diabetes mellitus (DM). We hypothesized that the association between a functional polymorphism at the PPARA locus (L162V) and the risk of a CV event, as well as response to fibrate therapy, might be greatest in those with either IR or DM (DM/IR) in VA-HIT. METHODS AND RESULTS A total of 827 men (placebo, n = 413; gemfibrozil, n = 414) from the VA-HIT were genotyped. This population included a high proportion of subjects with DM/IR. In VA-HIT, the PPARA V162 allele was associated with reduced levels of HDL cholesterol and the presence of DM/IR at baseline. It was also associated with reduced risk of CV events in those with DM/IR but not in those with neither (DM/IR *PPARA genotype, P = 0.005). Among subjects with DM/IR, treatment with gemfibrozil reduced CV events in non-carriers from 29.9 to 17.8% and carriers of the V162 allele from 14.7 to 4.8%. In contrast, carriers of the V162 allele with no DM/IR who were treated with gemfibrozil experienced significantly more CV events than did those who received placebo (20.6% versus 13.6%; P = 0.01). CONCLUSIONS The effect of the L162V polymorphism at the PPARA locus on CV risk depends on the presence of DM/IR. Among subjects treated with gemfibrozil, the V162 allele was associated not only with reduced CV risk in subjects with DM/IR, but also with significantly increased CV risk in the absence of these traits, identifying this genetic variant as a potential marker for predicting which subjects may have a favorable response to fibrate therapy.
Collapse
Affiliation(s)
- E Shyong Tai
- Nutrition and Genomics Unit, Jean Mayer USDA Human Nutrition Research Center for Aging at Tufts University, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Doney ASF, Fischer B, Lee SP, Morris AD, Leese G, Palmer CNA. Association of common variation in the PPARA gene with incident myocardial infarction in individuals with type 2 diabetes: a Go-DARTS study. NUCLEAR RECEPTOR 2005; 3:4. [PMID: 16309557 PMCID: PMC1318486 DOI: 10.1186/1478-1336-3-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 11/25/2005] [Indexed: 11/10/2022]
Abstract
BACKGROUND Common variants of the PPARA gene have been found to associate with ischaemic heart disease in non diabetic men. The L162V variant was found to be protective while the C2528G variant increased risk. L162V has also been associated with altered lipid measures. We therefore sought to determine the effect of PPARA gene variation on susceptibility to myocardial infarction in patients with type 2 diabetes. 1810 subjects with type 2 diabetes from the prospective Go-DARTS study were genotyped for the L162V and C2528G variants in the PPARA gene and the association of the variants with incident non-fatal myocardial infarction was examined. Cox's proportional hazards was used to interrogate time to event from recruitment, and linear regression for analysing association of genotype with quantitative clinical traits. RESULTS The V162 allele was associated with decreased risk of non-fatal myocardial infarction (HR = 0.31, 95%CI 0.10-0.93 p = 0.037) whereas the C2528 allele was associated with increased risk (HR = 2.77 95%CI 1.34-5.75 p = 0.006). Similarly V162 was associated with a later mean age of diagnosis with type 2 diabetes and C2582 an earlier age of diagnosis. C2528 was also associated with increased total cholesterol and LDL cholesterol, which did not account for the observed increased risk. Haplotype analysis demonstrated that when both rare variants occurred on the same haplotype the effect of each was abrogated. CONCLUSION Genetic variation at the PPARA locus is important in determining cardiovascular risk in both male and female patients with diabetes. This genotype associated risk appears to be independent of the effect of these genotypes on lipid profiles and age of diagnosis with diabetes.
Collapse
Affiliation(s)
- Alex SF Doney
- The Institute of Cardiovascular Research, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, UK
- Division of Medicine and Therapeutics, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, UK
| | - Bettina Fischer
- Biomedical Research Centre, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, UK
| | - Simon P Lee
- Biomedical Research Centre, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, UK
| | - Andrew D Morris
- Division of Medicine and Therapeutics, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, UK
| | - Graham Leese
- Division of Medicine and Therapeutics, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, UK
| | - Colin NA Palmer
- The Institute of Cardiovascular Research, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, UK
- Biomedical Research Centre, Ninewells Hospital and Medical School, Dundee, DD1 9SY, Scotland, UK
| |
Collapse
|
23
|
Verdi H, Koytak ES, Onder O, Ergül AA, Cinar K, Idilman R, Erden E, Bozdayi AM, Yurdaydin C, Uzunalimoglu O, Bozkaya H. Peroxisome Proliferator-Activated Receptor α L162V Polymorphism in Nonalcoholic Steatohepatitis and Genotype 1 Hepatitis C Virus-Related Liver Steatosis. J Investig Med 2005; 53:353-9. [PMID: 16297361 DOI: 10.2310/6650.2005.53706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Peroxisome proliferator-activated receptor alpha (PPARalpha) plays important roles in lipid metabolism. A recently discovered L162V polymorphism of the PPARalpha gene is associated with enhanced transcriptional activity. In this study, the frequency of L162V was investigated in nonalcoholic steatohepatitis (NASH) and genotype 1 hepatitis C virus (HCV)-related liver steatosis. METHODS Seventy-two NASH and 141 HCV-infected patients (54 with steatosis, 87 without steatosis) and 119 healthy controls were included. L162V polymorphism of the PPARalpha gene was analyzed by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). RESULTS PCR and RFLP analysis of the related gene segment was successful in 93%, 96%, and 100% of NASH and HCV-infected patients and controls, respectively. The frequency of the L162V polymorphism was similar in the NASH and HCV-infected patients and controls (5.9%, 3.6%, and 2.5%, respectively). No difference in the frequency of this polymorphism was observed in HCV-infected patients with or without significant liver steatosis. L162V was not associated with obesity, type 2 diabetes mellitus, hypercholesterolemia, or hypertriglyceridemia. CONCLUSIONS Neither NASH nor genotype 1 HCV-related liver steatosis seems to be associated with the PPARalpha L162V polymorphism. This polymorphism may have no association with the presence of type 2 diabetes mellitus, obesity, or various blood lipid alterations in NASH and HCV-infected patients.
Collapse
Affiliation(s)
- Hasibe Verdi
- Institute of Hepatology, Ankara University, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|