1
|
Tunnicliffe DJ, Palmer SC, Cashmore BA, Saglimbene VM, Krishnasamy R, Lambert K, Johnson DW, Craig JC, Strippoli GF. HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database Syst Rev 2023; 11:CD007784. [PMID: 38018702 PMCID: PMC10685396 DOI: 10.1002/14651858.cd007784.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
BACKGROUND Cardiovascular disease is the most frequent cause of death in people with early stages of chronic kidney disease (CKD), and the absolute risk of cardiovascular events is similar to people with coronary artery disease. This is an update of a review first published in 2009 and updated in 2014, which included 50 studies (45,285 participants). OBJECTIVES To evaluate the benefits and harms of statins compared with placebo, no treatment, standard care or another statin in adults with CKD not requiring dialysis. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 4 October 2023. Studies in the Register are identified through searches of CENTRAL, MEDLINE, EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. An updated search will be undertaken every three months. SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs that compared the effects of statins with placebo, no treatment, standard care, or other statins, on death, cardiovascular events, kidney function, toxicity, and lipid levels in adults with CKD (estimated glomerular filtration rate (eGFR) 90 to 15 mL/min/1.73 m2) were included. DATA COLLECTION AND ANALYSIS Two or more authors independently extracted data and assessed the study risk of bias. Treatment effects were expressed as mean difference (MD) for continuous outcomes and risk ratios (RR) for dichotomous benefits and harms with 95% confidence intervals (CI). The risk of bias was assessed using the Cochrane risk of bias tool, and the certainty of the evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS We included 63 studies (50,725 randomised participants); of these, 53 studies (42,752 participants) compared statins with placebo or no treatment. The median duration of follow-up was 12 months (range 2 to 64.8 months), the median dosage of statin was equivalent to 20 mg/day of simvastatin, and participants had a median eGFR of 55 mL/min/1.73 m2. Ten studies (7973 participants) compared two different statin regimens. We were able to meta-analyse 43 studies (41,273 participants). Most studies had limited reporting and hence exhibited unclear risk of bias in most domains. Compared with placebo or standard of care, statins prevent major cardiovascular events (14 studies, 36,156 participants: RR 0.72, 95% CI 0.66 to 0.79; I2 = 39%; high certainty evidence), death (13 studies, 34,978 participants: RR 0.83, 95% CI 0.73 to 0.96; I² = 53%; high certainty evidence), cardiovascular death (8 studies, 19,112 participants: RR 0.77, 95% CI 0.69 to 0.87; I² = 0%; high certainty evidence) and myocardial infarction (10 studies, 9475 participants: RR 0.55, 95% CI 0.42 to 0.73; I² = 0%; moderate certainty evidence). There were too few events to determine if statins made a difference in hospitalisation due to heart failure. Statins probably make little or no difference to stroke (7 studies, 9115 participants: RR 0.64, 95% CI 0.37 to 1.08; I² = 39%; moderate certainty evidence) and kidney failure (3 studies, 6704 participants: RR 0.98, 95% CI 0.91 to 1.05; I² = 0%; moderate certainty evidence) in people with CKD not requiring dialysis. Potential harms from statins were limited by a lack of systematic reporting. Statins compared to placebo may have little or no effect on elevated liver enzymes (7 studies, 7991 participants: RR 0.76, 95% CI 0.39 to 1.50; I² = 0%; low certainty evidence), withdrawal due to adverse events (13 studies, 4219 participants: RR 1.16, 95% CI 0.84 to 1.60; I² = 37%; low certainty evidence), and cancer (2 studies, 5581 participants: RR 1.03, 95% CI 0.82 to 1.30; I² = 0%; low certainty evidence). However, few studies reported rhabdomyolysis or elevated creatinine kinase; hence, we are unable to determine the effect due to very low certainty evidence. Statins reduce the risk of death, major cardiovascular events, and myocardial infarction in people with CKD who did not have cardiovascular disease at baseline (primary prevention). There was insufficient data to determine the benefits and harms of the type of statin therapy. AUTHORS' CONCLUSIONS Statins reduce death and major cardiovascular events by about 20% and probably make no difference to stroke or kidney failure in people with CKD not requiring dialysis. However, due to limited reporting, the effect of statins on elevated creatinine kinase or rhabdomyolysis is unclear. Statins have an important role in the primary prevention of cardiovascular events and death in people who have CKD and do not require dialysis. Editorial note: This is a living systematic review. We will search for new evidence every three months and update the review when we identify relevant new evidence. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.
Collapse
Affiliation(s)
- David J Tunnicliffe
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Suetonia C Palmer
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Brydee A Cashmore
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| | - Valeria M Saglimbene
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | | | - Kelly Lambert
- School of Medicine, University of Wollongong, Wollongong, Australia
| | - David W Johnson
- Department of Nephrology, Princess Alexandra Hospital, Woolloongabba, Australia
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, Australia
- Translational Research Institute, Brisbane, Australia
| | - Jonathan C Craig
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Giovanni Fm Strippoli
- Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
- Cochrane Kidney and Transplant, Centre for Kidney Research, The Children's Hospital at Westmead, Westmead, Australia
| |
Collapse
|
2
|
Potential Alteration of Statin-Related Pharmacological Features in Diabetes Mellitus. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6698743. [PMID: 33834073 PMCID: PMC8018846 DOI: 10.1155/2021/6698743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Objective Type 2 diabetes mellitus is a chronic metabolic disease caused by insulin resistance or insulin deficiency resulting in elevated blood glucose levels. Poorly controlled diabetes is associated with the development of cardiovascular disease and dyslipidemia. 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statin) are an important class of therapeutic agents used to control hyperlipidemia and prevent cardiovascular disease in diabetic and nondiabetic patients. Since the effect of diabetes on the pharmacokinetics and pharmacodynamics of drugs and toxins has been shown, the aim was to review previous studies on the efficacy of statins such as atorvastatin, simvastatin, pravastatin, pitavastatin, fluvastatin, and rosuvastatin in clinical and preclinical studies in both diabetic and nondiabetic groups. Method For this purpose, Web of Science, PubMed, Scopus, and Google Scholar databases were reviewed, and related English articles published until October 2020 were included in this review article. Results The findings revealed that diabetes affected statin effectiveness through changes in pharmacokinetic parameters such as clearance and biotransformation biomarkers at mRNA and protein levels. Plasma and serum concentrations of statins were accompanied by alteration in cellular activities including oxidative stress, Akt inhibition, and endothelial nitric oxide synthase (eNOS) and phosphorylation that were reflected in changes in the adverse drug reaction profile of the differing statins. Conclusion Given that dyslipidemia frequently accompanies diabetes and statin therapy is common, more clinical studies are needed regarding the effects of diabetes on the effectiveness of these drugs.
Collapse
|
3
|
Timmons JA, Volmar C, Crossland H, Phillips BE, Sood S, Janczura KJ, Törmäkangas T, Kujala UM, Kraus WE, Atherton PJ, Wahlestedt C. Longevity-related molecular pathways are subject to midlife "switch" in humans. Aging Cell 2019; 18:e12970. [PMID: 31168962 PMCID: PMC6612641 DOI: 10.1111/acel.12970] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence indicates that molecular aging may follow nonlinear or discontinuous trajectories. Whether this occurs in human neuromuscular tissue, particularly for the noncoding transcriptome, and independent of metabolic and aerobic capacities, is unknown. Applying our novel RNA method to quantify tissue coding and long noncoding RNA (lncRNA), we identified ~800 transcripts tracking with age up to ~60 years in human muscle and brain. In silico analysis demonstrated that this temporary linear "signature" was regulated by drugs, which reduce mortality or extend life span in model organisms, including 24 inhibitors of the IGF-1/PI3K/mTOR pathway that mimicked, and 5 activators that opposed, the signature. We profiled Rapamycin in nondividing primary human myotubes (n = 32 HTA 2.0 arrays) and determined the transcript signature for reactive oxygen species in neurons, confirming that our age signature was largely regulated in the "pro-longevity" direction. Quantitative network modeling demonstrated that age-regulated ncRNA equaled the contribution of protein-coding RNA within structures, but tended to have a lower heritability, implying lncRNA may better reflect environmental influences. Genes ECSIT, UNC13, and SKAP2 contributed to a network that did not respond to Rapamycin, and was associated with "neuron apoptotic processes" in protein-protein interaction analysis (FDR = 2.4%). ECSIT links inflammation with the continued age-related downwards trajectory of mitochondrial complex I gene expression (FDR < 0.01%), implying that sustained inhibition of ECSIT may be maladaptive. The present observations link, for the first time, model organism longevity programs with the endogenous but temporary genome-wide responses to aging in humans, revealing a pattern that may ultimately underpin personalized rates of health span.
Collapse
Affiliation(s)
- James A. Timmons
- Division of Genetics and Molecular MedicineKing's College LondonLondonUK
- Scion HouseStirling University Innovation ParkStirlingUK
| | - Claude‐Henry Volmar
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic InnovationUniversity of Miami Miller School of MedicineMiamiFlorida
| | - Hannah Crossland
- Division of Genetics and Molecular MedicineKing's College LondonLondonUK
- School of Medicine, Royal Derby HospitalUniversity of NottinghamDerbyUK
| | | | - Sanjana Sood
- Division of Genetics and Molecular MedicineKing's College LondonLondonUK
| | - Karolina J. Janczura
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic InnovationUniversity of Miami Miller School of MedicineMiamiFlorida
| | - Timo Törmäkangas
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Urho M. Kujala
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | | | | | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic InnovationUniversity of Miami Miller School of MedicineMiamiFlorida
| |
Collapse
|
4
|
Yin N, Zhang H, Ye R, Dong M, Lin J, Zhou H, Huang Y, Chen L, Jiang X, Nagaoka K, Zhang C, Jin W. Fluvastatin Sodium Ameliorates Obesity through Brown Fat Activation. Int J Mol Sci 2019; 20:ijms20071622. [PMID: 30939798 PMCID: PMC6479292 DOI: 10.3390/ijms20071622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 01/13/2023] Open
Abstract
Brown adipose tissue (BAT), an organ that burns energy through uncoupling thermogenesis, is a promising therapeutic target for obesity. However, there are still no safe anti-obesity drugs that target BAT in the market. In the current study, we performed large scale screening of 636 compounds which were approved by Food and Drug Administration (FDA) to find drugs that could significantly increase uncoupling protein 1 (UCP1) mRNA expression by real-time PCR. Among those UCP1 activators, most of them were antibiotics or carcinogenic compounds. We paid particular attention to fluvastatin sodium (FS), because as an inhibitor of the cellular hydroxymethyl glutaryl coenzyme A (HMG-CoA) reductase, FS has already been approved for treatment of hypercholesteremia. We found that in the cellular levels, FS treatment significantly increased UCP1 expression and BAT activity in human brown adipocytes. Consistently, the expression of oxidative phosphorylation-related genes was significantly increased upon FS treatment without differences in adipogenic gene expression. Furthermore, FS treatment resisted to high-fat diet (HFD)-induced body weight gain by activating BAT in the mice model. In addition, administration of FS significantly increased energy expenditure, improved glucose homeostasis and ameliorated hepatic steatosis. Furthermore, we reveal that FS induced browning in subcutaneous white adipose tissue (sWAT) known to have a beneficial effect on energy metabolism. Taken together, our results clearly demonstrate that as an effective BAT activator, FS may have great potential for treatment of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Na Yin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Hanlin Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Rongcai Ye
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Meng Dong
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Lin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Huiqiao Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuanyuan Huang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoxiao Jiang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan.
| | - Chuanhai Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
- University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Yang H, Juang SY, Liao KF. Proton pump inhibitors use and risk of chronic kidney disease in diabetic patients. Diabetes Res Clin Pract 2019; 147:67-75. [PMID: 30500543 DOI: 10.1016/j.diabres.2018.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/14/2018] [Accepted: 11/23/2018] [Indexed: 01/15/2023]
Abstract
AIMS Chronic kidney disease consumes a huge amount of medical resources and proton pump inhibitors may be a potential factor for the increasing prevalence. This population-based cohort study investigates the risk of chronic kidney disease in a diabetic population using proton pump inhibitors in Taiwan. METHODS This study is based on a specific diabetic database obtained from the National Health Insurance Research Database. Individuals with a new diagnosis of diabetes from 2002 to 2013 were enrolled. "Exposure" to proton pump inhibitors was defined as at least one prescription and dosage over 180 DDD (defined daily dose) in one year after the index date. A multivariable Cox proportional hazard model and competing-risk regression model were applied. RESULTS There were 5994 patients in the final cohort of proton pump inhibitor users and 23,976 patients in the matched controlled cohort based on 1:4 propensity score matching. Compared with no exposure users, PPIs exposure group had more anemia prevalence, anti-hypertension medication and NSAIDs prescriptions. The multivariable Cox proportional hazard model showed that the adjusted hazard ratio of chronic kidney disease was 1.52 (95% CI 1.40-1.65) in diabetic individuals with PPIs exposure, compared with no exposure users. CONCLUSIONS Proton pump inhibitors use is associated with 1.52-fold increased risk of chronic kidney disease in diabetic patients when the dosage is over 180 DDD in one year in Taiwan.
Collapse
Affiliation(s)
- Hsun Yang
- Division of Nephrology, Department of Internal Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Shiun-Yang Juang
- Department of Medical Research, Taichung Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Kuan-Fu Liao
- Division of Gastroenterology, Department of Internal Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan; College of Medicine, Tzu Chi University, Hualien, Taiwan; Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
6
|
Abstract
BACKGROUND Fluvastatin is thought to be the least potent statin on the market, however, the dose-related magnitude of effect of fluvastatin on blood lipids is not known. OBJECTIVES Primary objectiveTo quantify the effects of various doses of fluvastatin on blood total cholesterol, low-density lipoprotein (LDL cholesterol), high-density lipoprotein (HDL cholesterol), and triglycerides in participants with and without evidence of cardiovascular disease.Secondary objectivesTo quantify the variability of the effect of various doses of fluvastatin.To quantify withdrawals due to adverse effects (WDAEs) in randomised placebo-controlled trials. SEARCH METHODS The Cochrane Hypertension Information Specialist searched the following databases for randomised controlled trials up to February 2017: the Cochrane Central Register of Controlled Trials (CENTRAL) (2017, Issue 1), MEDLINE (1946 to February Week 2 2017), MEDLINE In-Process, MEDLINE Epub Ahead of Print, Embase (1974 to February Week 2 2017), the World Health Organization International Clinical Trials Registry Platform, CDSR, DARE, Epistemonikos and ClinicalTrials.gov. We also contacted authors of relevant papers regarding further published and unpublished work. No language restrictions were applied. SELECTION CRITERIA Randomised placebo-controlled and uncontrolled before and after trials evaluating the dose response of different fixed doses of fluvastatin on blood lipids over a duration of three to 12 weeks in participants of any age with and without evidence of cardiovascular disease. DATA COLLECTION AND ANALYSIS Two review authors independently assessed eligibility criteria for studies to be included, and extracted data. We entered data from placebo-controlled and uncontrolled before and after trials into Review Manager 5 as continuous and generic inverse variance data, respectively. WDAEs information was collected from the placebo-controlled trials. We assessed all trials using the 'Risk of bias' tool under the categories of sequence generation, allocation concealment, blinding, incomplete outcome data, selective reporting, and other potential biases. MAIN RESULTS One-hundred and forty-five trials (36 placebo controlled and 109 before and after) evaluated the dose-related efficacy of fluvastatin in 18,846 participants. The participants were of any age with and without evidence of cardiovascular disease, and fluvastatin effects were studied within a treatment period of three to 12 weeks. Log dose-response data over doses of 2.5 mg to 80 mg revealed strong linear dose-related effects on blood total cholesterol and LDL cholesterol and a weak linear dose-related effect on blood triglycerides. There was no dose-related effect of fluvastatin on blood HDL cholesterol. Fluvastatin 10 mg/day to 80 mg/day reduced LDL cholesterol by 15% to 33%, total cholesterol by 11% to 25% and triglycerides by 3% to 17.5%. For every two-fold dose increase there was a 6.0% (95% CI 5.4 to 6.6) decrease in blood LDL cholesterol, a 4.2% (95% CI 3.7 to 4.8) decrease in blood total cholesterol and a 4.2% (95% CI 2.0 to 6.3) decrease in blood triglycerides. The quality of evidence for these effects was judged to be high. When compared to atorvastatin and rosuvastatin, fluvastatin was about 12-fold less potent than atorvastatin and 46-fold less potent than rosuvastatin at reducing LDL cholesterol. Very low quality of evidence showed no difference in WDAEs between fluvastatin and placebo in 16 of 36 of these short-term trials (risk ratio 1.52 (95% CI 0.94 to 2.45). AUTHORS' CONCLUSIONS Fluvastatin lowers blood total cholesterol, LDL cholesterol and triglyceride in a dose-dependent linear fashion. Based on the effect on LDL cholesterol, fluvastatin is 12-fold less potent than atorvastatin and 46-fold less potent than rosuvastatin. This review did not provide a good estimate of the incidence of harms associated with fluvastatin because of the short duration of the trials and the lack of reporting of adverse effects in 56% of the placebo-controlled trials.
Collapse
Affiliation(s)
- Stephen P Adams
- University of British ColumbiaDepartment of Anesthesiology, Pharmacology and Therapeutics2176 Health Sciences Mall, Medical Block CVancouverBCCanadaV6T 1Z3
| | - Sarpreet S Sekhon
- University of British ColumbiaDepartment of Anesthesiology, Pharmacology and Therapeutics2176 Health Sciences Mall, Medical Block CVancouverBCCanadaV6T 1Z3
| | - Michael Tsang
- McMaster UniversityDepartment of Internal Medicine, Internal Medicine Residency Office, Faculty of Medicine1200 Main Street WestHSC 3W10HamiltonONCanadaL8N 3N5
| | - James M Wright
- University of British ColumbiaDepartment of Anesthesiology, Pharmacology and Therapeutics2176 Health Sciences Mall, Medical Block CVancouverBCCanadaV6T 1Z3
| | | |
Collapse
|
7
|
Opie LH. Present status of statin therapy. Trends Cardiovasc Med 2015; 25:216-25. [DOI: 10.1016/j.tcm.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/08/2014] [Accepted: 10/08/2014] [Indexed: 01/17/2023]
|
8
|
Lewicki M, Ng I, Schneider AG. HMG CoA reductase inhibitors (statins) for preventing acute kidney injury after surgical procedures requiring cardiac bypass. Cochrane Database Syst Rev 2015; 2015:CD010480. [PMID: 25758322 PMCID: PMC10788137 DOI: 10.1002/14651858.cd010480.pub2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is common in patients undergoing cardiac surgery among whom it is associated with poor outcomes, prolonged hospital stays and increased mortality. Statin drugs can produce more than one effect independent of their lipid lowering effect, and may improve kidney injury through inhibition of postoperative inflammatory responses. OBJECTIVES This review aimed to look at the evidence supporting the benefits of perioperative statins for AKI prevention in hospitalised adults after surgery who require cardiac bypass. The main objectives were to 1) determine whether use of statins was associated with preventing AKI development; 2) determine whether use of statins was associated with reductions in in-hospital mortality; 3) determine whether use of statins was associated with reduced need for RRT; and 4) determine any adverse effects associated with the use of statins. SEARCH METHODS We searched the Cochrane Renal Group's Specialised Register to 13 January 2015 through contact with the Trials' Search Co-ordinator using search terms relevant to this review. SELECTION CRITERIA Randomised controlled trials (RCTs) that compared administration of statin therapy with placebo or standard clinical care in adult patients undergoing surgery requiring cardiopulmonary bypass and reporting AKI, serum creatinine (SCr) or need for renal replacement therapy (RRT) as an outcome were eligible for inclusion. All forms and dosages of statins in conjunction with any duration of pre-operative therapy were considered for inclusion in this review. DATA COLLECTION AND ANALYSIS All authors extracted data independently and assessments were cross-checked by a second author. Likewise, assessment of study risk of bias was initially conducted by one author and then by a second author to ensure accuracy. Disagreements were arbitrated among authors until consensus was reached. Authors from two of the included studies provided additional data surrounding post-operative SCr as well as need for RRT. Meta-analyses were used to assess the outcomes of AKI, SCr and mortality rate. Data for the outcomes of RRT and adverse effects were not pooled. Adverse effects taken into account were those reported by the authors of included studies. MAIN RESULTS We included seven studies (662 participants) in this review. All except one study was assessed as being at high risk of bias. Three studies assessed atorvastatin, three assessed simvastatin and one investigated rosuvastatin. All studies collected data during the immediate perioperative period only; data collection to hospital discharge and postoperative biochemical data collection ranged from 24 hours to 7 days. Overall, pre-operative statin treatment was not associated with a reduction in postoperative AKI, need for RRT, or mortality. Only two studies (195 participants) reported postoperative SCr level. In those studies, patients allocated to receive statins had lower postoperative SCr concentrations compared with those allocated to no drug treatment/placebo (MD 21.2 µmol/L, 95% CI -31.1 to -11.1). Adverse effects were adequately reported in only one study; no difference was found between the statin group compared to placebo. AUTHORS' CONCLUSIONS Analysis of currently available data did not suggest that preoperative statin use is associated with decreased incidence of AKI in adults after surgery who required cardiac bypass. Although a significant reduction in SCr was seen postoperatively in people treated with statins, this result was driven by results from a single study, where SCr was considered as a secondary outcome. The results of the meta-analysis should be interpreted with caution; few studies were included in subgroup analyses, and significant differences in methodology exist among the included studies. Large high quality RCTs are required to establish the safety and efficacy of statins to prevent AKI after cardiac surgery.
Collapse
Affiliation(s)
- Michelle Lewicki
- Monash Medical CentreDepartment of Nephrology246 Clayton RoadClaytonVICAustralia3168
- Monash UniversityDepartment of MedicineClaytonVICAustralia
- Monash UniversityDepartment of Epidemiology and Preventative MedicineClaytonVICAustralia
| | - Irene Ng
- Monash UniversityDepartment of Epidemiology and Preventative MedicineClaytonVICAustralia
- Royal Melbourne HospitalDepartment of AnaesthesiaParkvilleVICAustralia
| | - Antoine G Schneider
- Monash UniversityDepartment of Epidemiology and Preventative MedicineClaytonVICAustralia
- Hospitalo‐Universitaire Vaudois (CHUV)Intensive Care UnitLausanneSwitzerland
| | | |
Collapse
|
9
|
Matsumura T, Taketa K, Shimoda S, Araki E. Thiazolidinedione-independent activation of peroxisome proliferator-activated receptor γ is a potential target for diabetic macrovascular complications. J Diabetes Investig 2014; 3:11-23. [PMID: 24843540 PMCID: PMC4014927 DOI: 10.1111/j.2040-1124.2011.00182.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Macrovascular complications are responsible for the high morbidity and mortality in patients with diabetes. Peroxisome proliferator‐activated receptor γ (PPARγ) plays a central role in the process of adipocyte differentiation and insulin sensitization, and also possesses anti‐atherogenic effects. Recently, some statins, angiotensin II type 1 receptor blockers and calcium channel blockers have been reported to activate PPARγ. However, the impact of PPARγ activation on diabetic macrovascular complications is not fully understood. It has been reported that the activation of PPARγ by thiazolidinediones induces anti‐atherogenic effects in vascular cells, including monocytes/macrophages, endothelial cells and smooth muscle cells, in atherosclerotic animal models and in clinical studies. We have reported that hydroxymethylglutaryl coenzyme A reductase inhibitors (statins), which are used for treatment of hypercholesterolemia, activate PPARγ and mediate anti‐atherogenic effects through PPARγ activation in macrophages. Also, telmisartan, an angiotensin type I receptor blocker, has been reported to have anti‐atherogenic effects through PPARγ activation. Furthermore, we have reported that nifedipine, a dihydropyridine calcium channel blocker, can activate PPARγ, thereby mediating anti‐atherogenic effects in macrophages. Therefore, statin therapy and part of anti‐hypertensive therapy might produce beneficial effects through PPARγ activation in hypercholesterolemic and/or hypertensive patients with diabetes, and PPARγ might be a therapeutic target for diabetic macrovascular complications. In the present review, we focus on the anti‐atherogenic effects of PPARγ and suggest potential therapeutic approaches to prevent diabetic macrovascular complications. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2011.00182.x, 2012)
Collapse
Affiliation(s)
- Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kayo Taketa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Seiya Shimoda
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
10
|
Abstract
Cardiovascular disease is more prevalent in type 1 and type 2 diabetes, and continues to be the leading cause of death among adults with diabetes. Although atherosclerotic vascular disease has a multi-factorial etiology, disorders of lipid metabolism play a central role. The coexistence of diabetes with other risk factors, in particular with dyslipidemia, further increases cardiovascular disease risk. A characteristic pattern, termed diabetic dyslipidemia, consists of increased levels of triglycerides, low levels of high density lipoprotein cholesterol, and postprandial lipemia, and is mostly seen in patients with type 2 diabetes or metabolic syndrome. This review summarizes the trends in the prevalence of lipid disorders in diabetes, advances in the mechanisms contributing to diabetic dyslipidemia, and current evidence regarding appropriate therapeutic recommendations.
Collapse
Affiliation(s)
- Mamta Jaiswal
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Banerjee S, Kahali D, Banerjee A, Brilakis ES. LDL cholesterol: should guidelines include targets? Expert Rev Cardiovasc Ther 2014; 12:285-90. [PMID: 24502625 DOI: 10.1586/14779072.2014.874284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Elevated low-density lipoprotein cholesterol (LDL-C) is associated with adverse cardiovascular outcomes. The strategy of target-based LDL-C lowering to reduce the risk of coronary heart disease and secondary event rates is now well established. However, the strategy for treating to a target LDL-C, and whether there is a lower threshold level for LDL-C continues to be debated. We present, and critically analyze the evidence for a target-based LDL-C lowering strategy, and the safety and efficacy of intensive plasma LDL-C-lowering with traditional, and novel LDL-lowering therapies below current guideline targets.
Collapse
|
12
|
Standl E. Statins and beyond: concurrent strategies for prevention of cardiovascular disease in patients with type 2 diabetes. Diab Vasc Dis Res 2013; 10:99-114. [PMID: 22718811 DOI: 10.1177/1479164112448876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Diabetes is a significant risk factor for the development of cardiovascular disease (CVD), particularly in the presence of high blood pressure, poor glycaemic control and high total cholesterol. While efforts to control blood pressure or blood glucose beyond levels considered 'normal' in patients with diabetes have not produced the expected reduction in CVD, treatment with statins to reduce levels of low-density lipoprotein cholesterol (LDL-C) has been much more successful. However, many patients with diabetes who receive statins (even at high doses) remain at significant residual risk of CVD due to the presence of atherogenic dyslipidaemia. Markers of persisting risk include low levels of high-density lipoprotein cholesterol (HDL-C), high levels of triglycerides (TG) and LDL-C levels above target despite high-dose statin therapy. Combining statins with drugs that target HDL-C and TG, such as fibrates, niacin and omega-3 polyunsaturated fatty acid (PUFA) ethyl esters, may offer further protection from CVD in patients with diabetes.
Collapse
Affiliation(s)
- Eberhard Standl
- Munich Diabetes Research Group at the Munich Helmholtz Centre, Germany.
| |
Collapse
|
13
|
Xie F, Sun C, Sun LH, Li JY, Chen X, Che H, Lu GY, Yang BF, Ai J. Influence of fluvastatin on cardiac function and baroreflex sensitivity in diabetic rats. Acta Pharmacol Sin 2011; 32:321-8. [PMID: 21372824 DOI: 10.1038/aps.2010.221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM To investigate whether fluvastatin is able to ameliorate the impaired cardiac function or baroreflex sensitivity (BRS) in rats with type 1 diabetes. METHODS Type 1 diabetic rats were induced by intraperitoneal injection of streptozotocin (STZ) and then administered fluvastatin (1.5, 3.0, and 6.0 mg·kg(-1)·d(-1)) for 30 d. Food and drink intake was recorded every day. Fasting blood glucose (FBG) level, blood lipid level, cardiac function and BRS were measured in diabetic rats after fluvastatin treatment for 30 d. RESULTS The polydipsia, polyphagia and abnormal biochemical indexes of blood were significantly ameliorated by the the 3.0- and 6.0-mg doses of fluvastatin in STZ-induced diabetic rats. FBG was decreased in diabetic rats after fluvastatin treatment for 30 d. The left ventricular systolic pressure (LVSP) and the maximum rate of change of left ventricular pressure in the isovolumic contraction and relaxation period (±dp/dt(max)) were elevated, and left ventricular diastolic pressure (LVEDP) was decreased by fluvastatin. The attenuated heart rate responses to arterial blood pressure (ABP) increase induced by phenylephrine (PE) and ABP decrease induced by sodium nitroprusside (SNP) were reversed by the 3.0-mg dose of fluvastatin. CONCLUSION Fluvastatin regulates blood lipid levels and decreases the FBG level in diabetic rats. These responses can protect the diabetic heart from complications by improving cardiac function and BRS.
Collapse
|
14
|
Wu J, Seiber E, Lacombe VA, Nahata MC, Balkrishnan R. Medical utilization and costs associated with statin adherence in Medicaid enrollees with type 2 diabetes. Ann Pharmacother 2011; 45:342-9. [PMID: 21325098 DOI: 10.1345/aph.1p539] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Statin adherence is a serious problem in patients with hyperlipidemia. However, it is not clear whether statin adherence is associated with medical utilization or health-care costs. OBJECTIVE To study statin adherence and assess associated medical utilization and health-care costs in patients with type 2 diabetes, based on a national Medicaid database. METHODS A retrospective claims-based study was conducted using the records of patients with type 2 diabetes with comorbid hyperlipidemia who were continuously enrolled in Medicaid from January 2004 to December 2006. All data were drawn from MarketScan Medicaid Database, including inpatient, outpatient, and drug claims. The eligible patients starting statins in 2005 were followed for 1 year to measure medication use, hospitalization, outpatient visits, emergency department (ED) visits, and health-care costs based on Medicaid medical and drug claims. Adherence was measured by medication possession ratio (MPR). Multiple regression analyses were implemented to assess statin adherence-associated outcomes, including medical utilization (risks for hospitalization and ED visits), all-cause costs, and hyperlipidemia-related medical costs. RESULTS A total of 1705 eligible patients with type 2 diabetes and hyperlipidemia were identified. The average adherence rate to statins (MPR) at 1 year was 0.61, and 37% of the patients (n=624) were adherent to statins (MPR≥0.8). Regression analyses indicated that diabetic patients who were adherent to statins showed lower risks for hospitalization (OR 0.80; 95% CI 0.636 to 0.966) and ED visits (OR 0.71; 95% CI 0.519 to 0.812) and decreased all-cause medical costs by 15% (p<0.05) and hyperlipidemia-related medical costs by 12% (p<0.05). CONCLUSIONS Our study found high prevalence of nonadherence to statins in Medicaid patients with type 2 diabetes. Adherence to statins (MPR≥0.8) was associated with reduced medical utilization and lower medical costs.
Collapse
Affiliation(s)
- Jun Wu
- The Ohio State University, College of Public Health, Columbus, OH, USA.
| | | | | | | | | |
Collapse
|
15
|
Dogan S, Kastelein JJP, Grobbee DE, Bots ML. Mean Common or Mean Maximum Carotid Intima-Media Thickness as Primary Outcome in Lipid-Modifying Intervention Studies. J Atheroscler Thromb 2011; 18:946-57. [DOI: 10.5551/jat.8623] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
16
|
Cigolle CT, Blaum CS, Halter JB. Diabetes and Cardiovascular Disease Prevention in Older Adults. Clin Geriatr Med 2009; 25:607-41, vii-viii. [DOI: 10.1016/j.cger.2009.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Wienbergen H, Senges J, Gitt AK. Should we prescribe statin and aspirin for every diabetic patient? Is it time for a polypill? Diabetes Care 2008; 31 Suppl 2:S222-5. [PMID: 18227489 DOI: 10.2337/dc08-s253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Harm Wienbergen
- Institut für Herzinfarktforschung an der Universität Heidelberg, c/o Klinikum Ludwigshafen, Bremserstrasse 79, 67063 Ludwigshafen, Germany
| | | | | |
Collapse
|
18
|
Guías de práctica clínica sobre diabetes, prediabetes y enfermedades cardiovasculares: versión resumida. Rev Esp Cardiol 2007. [DOI: 10.1016/s0300-8932(07)75070-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Petersen JL, Harrington RA. Revascularization of coronary atherosclerosis in patients with diabetes mellitus--there is more to it than meets the image intensifier. Am Heart J 2005; 149:190-3. [PMID: 15846254 DOI: 10.1016/j.ahj.2004.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|