1
|
Hossain MF, Popsuj S, Vitrinel B, Kaplan NA, Stolfi A, Christiaen L, Ruggiu M. A conserved RNA switch for acetylcholine receptor clustering at neuromuscular junctions in chordates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602308. [PMID: 39005407 PMCID: PMC11245090 DOI: 10.1101/2024.07.05.602308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In mammals, neuromuscular synapses rely on clustering of acetylcholine receptors (AChRs) in the muscle plasma membrane, ensuring optimal stimulation by motor neuron-released acetylcholine neurotransmitter. This clustering depends on a complex pathway based on alternative splicing of Agrin mRNAs by the RNA-binding proteins Nova1/2. Neuron-specific expression of Nova1/2 ensures the inclusion of small "Z" exons in Agrin, resulting in a neural-specific form of this extracellular proteoglycan carrying a short peptide motif that is required for binding to Lrp4 receptors on the muscle side, which in turn stimulate AChR clustering. Here we show that this intricate pathway is remarkably conserved in Ciona robusta, a non-vertebrate chordate in the tunicate subphylum. We use in vivo tissue-specific CRISPR/Cas9-mediated mutagenesis and heterologous "mini-gene" alternative splicing assays in cultured mammalian cells to show that Ciona Nova is also necessary and sufficient for Agrin Z exon inclusion and downstream AChR clustering. We present evidence that, although the overall pathway is well conserved, there are some surprising differences in Nova structure-function between Ciona and mammals. We further show that, in Ciona motor neurons, the transcription factor Ebf is a key activator of Nova expression, thus ultimately linking this RNA switch to a conserved, motor neuron-specific transcriptional regulatory network.
Collapse
Affiliation(s)
- Md. Faruk Hossain
- Department of Biological Sciences, St. John’s University, New York, NY, USA
| | - Sydney Popsuj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Burcu Vitrinel
- Department of Biology, New York University, New York, NY, USA
| | | | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lionel Christiaen
- Department of Biology, New York University, New York, NY, USA
- Michael Sars Centre, University of Bergen, Bergen, Norway
| | - Matteo Ruggiu
- Department of Biological Sciences, St. John’s University, New York, NY, USA
| |
Collapse
|
2
|
Núñez-Carpintero I, Rigau M, Bosio M, O'Connor E, Spendiff S, Azuma Y, Topf A, Thompson R, 't Hoen PAC, Chamova T, Tournev I, Guergueltcheva V, Laurie S, Beltran S, Capella-Gutiérrez S, Cirillo D, Lochmüller H, Valencia A. Rare disease research workflow using multilayer networks elucidates the molecular determinants of severity in Congenital Myasthenic Syndromes. Nat Commun 2024; 15:1227. [PMID: 38418480 PMCID: PMC10902324 DOI: 10.1038/s41467-024-45099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/15/2024] [Indexed: 03/01/2024] Open
Abstract
Exploring the molecular basis of disease severity in rare disease scenarios is a challenging task provided the limitations on data availability. Causative genes have been described for Congenital Myasthenic Syndromes (CMS), a group of diverse minority neuromuscular junction (NMJ) disorders; yet a molecular explanation for the phenotypic severity differences remains unclear. Here, we present a workflow to explore the functional relationships between CMS causal genes and altered genes from each patient, based on multilayer network community detection analysis of complementary biomedical information provided by relevant data sources, namely protein-protein interactions, pathways and metabolomics. Our results show that CMS severity can be ascribed to the personalized impairment of extracellular matrix components and postsynaptic modulators of acetylcholine receptor (AChR) clustering. This work showcases how coupling multilayer network analysis with personalized -omics information provides molecular explanations to the varying severity of rare diseases; paving the way for sorting out similar cases in other rare diseases.
Collapse
Affiliation(s)
- Iker Núñez-Carpintero
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
| | - Maria Rigau
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Mattia Bosio
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Coordination Unit Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Barcelona Supercomputing Center, Barcelona, Spain
| | - Emily O'Connor
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sally Spendiff
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Yoshiteru Azuma
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Pediatrics, Aichi Medical University, Nagakute, Japan
| | - Ana Topf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Rachel Thompson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Peter A C 't Hoen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Teodora Chamova
- Department of Neurology, Expert Centre for Hereditary Neurologic and Metabolic Disorders, Alexandrovska University Hospital, Medical University-Sofia, Sofia, Bulgaria
| | - Ivailo Tournev
- Department of Neurology, Expert Centre for Hereditary Neurologic and Metabolic Disorders, Alexandrovska University Hospital, Medical University-Sofia, Sofia, Bulgaria
- Department of Cognitive Science and Psychology, New Bulgarian University, Sofia, 1618, Bulgaria
| | - Velina Guergueltcheva
- Clinic of Neurology, University Hospital Sofiamed, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| | - Steven Laurie
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Sergi Beltran
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Salvador Capella-Gutiérrez
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Coordination Unit Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Barcelona Supercomputing Center, Barcelona, Spain
| | - Davide Cirillo
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain.
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Coordination Unit Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Barcelona Supercomputing Center, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
3
|
Zhang L, Zhao F, Ding G, Chen Y, Zhao S, Chen Q, Sha Y, Che R, Huang S, Zheng B, Zhang A. Monogenic Causes Identified in 23.68% of Children with Steroid-Resistant Nephrotic Syndrome: A Single-Centre Study. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:61-68. [PMID: 38322629 PMCID: PMC10843177 DOI: 10.1159/000534853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/22/2023] [Indexed: 02/08/2024]
Abstract
Introduction Steroid-resistant nephrotic syndrome (SRNS) is the second most common cause of end-stage kidney disease in children, mostly associated with focal segmental glomerulosclerosis (FSGS). Advances in genomic science have enabled the identification of causative variants in 20-30% of SRNS patients. Methods We used whole exome sequencing to explore the genetic causes of SRNS in children. Totally, 101 patients with SRNS and 13 patients with nephrotic proteinuria and FSGS were retrospectively enrolled in our hospital between 2018 and 2022. For the known monogenic causes analysis, we generated a known SRNS gene list of 71 genes through reviewing the OMIM database and literature. Results Causative variants were identified in 23.68% of our cohort, and the most frequently mutated genes in our cohort were WT1 (7/27), NPHS1 (3/27), ADCK4 (3/27), and ANLN (2/27). Five patients carried variants in phenocopy genes, including MYH9, MAFB, TTC21B, AGRN, and FAT4. The variant detection rate was the highest in the two subtype groups with congenital nephrotic syndrome and syndromic SRNS. In total, 68.75% of variants we identified were novel and have not been previously reported in the literature. Conclusion Comprehensive genetic analysis is key to realizing the clinical benefits of a genetic diagnosis. We suggest that all children with SRNS undergo genetic testing, especially those with early-onset and extrarenal phenotypes.
Collapse
Affiliation(s)
- Luyan Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Zhao
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Chen
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Sanlong Zhao
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Qiuxia Chen
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yugen Sha
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ruochen Che
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Yildiz EP, Kilic MA, Yalcin EU, Kurekci F, Avci R, Hacıfazlıoğlu NE, Ceylaner S, Gezdirici A, Çalışkan M. Genetic and clinical evaluation of congenital myasthenic syndromes with long-term follow-up: experience of a tertiary center in Turkey. Acta Neurol Belg 2023; 123:1841-1847. [PMID: 36094697 DOI: 10.1007/s13760-022-02090-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Congenital myasthenic syndromes (CMS) are a heterogeneous group of genetic disorders affecting the safety factor which required for neuromuscular transmission. Here we reported our experience in children with CMS. METHODS We retrospectively collected the data of 18 patients with CMS who were examined in our outpatient clinic between January 2021 and January 2022. The diagnosis of CMS was based on the presence of clinical symptoms such as abnormal fatigability and weakness, absence of autoantibodies against acetylcholine receptor and muscle-specific kinase, electromyographic evidence of neuromuscular junction defect, molecular genetic confirmation, and response to treatment. RESULTS The most common mutations were in the acetylcholine receptor (CHRNE) gene (8/18) and choline acetyltransferase (ChAT) (2/18) gene. Despite targeted gene sequencing and whole exome sequencing (WES) were underwent, we couldn't detect a genetic mutation in three out of patients. The most commonly determined initial finding was eyelid ptosis, followed by fatigable weakness, and respiratory insufficiency. Although the most commonly used drug was pyridostigmine, we have experienced that caution should be exercised as it may worsen some types of CMS. DISCUSSION We reported in detail the phenotypic features of very rare gene mutations associated with CMS and our experience in the treatment of this disease. Although CMS are rare genetic disorder, the prognosis can be very promising with appropriate treatment in most CMS subtypes.
Collapse
Affiliation(s)
- Edibe Pembegul Yildiz
- Department of Pediatric Neurology, Istanbul Medical Faculty, Istanbul, Turkey.
- Istanbul University Institute of Child Health, Istanbul, Turkey.
- Istanbul University Medical School. Millet Cd, 34000, Fatih-Istanbul, Turkey.
| | - Mehmet Akif Kilic
- Department of Pediatric Neurology, Istanbul Medical Faculty, Istanbul, Turkey
| | - Emek Uyur Yalcin
- Department of Pediatric Neurology, Zeynep Kamil Maternity and Children's Diseases Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Fulya Kurekci
- Department of Pediatric Neurology, Istanbul Medical Faculty, Istanbul, Turkey
| | - Ridvan Avci
- Department of Pediatric Neurology, Istanbul Medical Faculty, Istanbul, Turkey
| | - Nilüfer Eldeş Hacıfazlıoğlu
- Department of Pediatric Neurology, Zeynep Kamil Maternity and Children's Diseases Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | | | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Mine Çalışkan
- Department of Pediatric Neurology, Istanbul Medical Faculty, Istanbul, Turkey
- Istanbul University Institute of Child Health, Istanbul, Turkey
| |
Collapse
|
5
|
Masingue M, Cattaneo O, Wolff N, Buon C, Sternberg D, Euchparmakian M, Boex M, Behin A, Mamchaouhi K, Maisonobe T, Nougues MC, Isapof A, Fontaine B, Messéant J, Eymard B, Strochlic L, Bauché S. New mutation in the β1 propeller domain of LRP4 responsible for congenital myasthenic syndrome associated with Cenani-Lenz syndrome. Sci Rep 2023; 13:14054. [PMID: 37640745 PMCID: PMC10462681 DOI: 10.1038/s41598-023-41008-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a clinically and genetically heterogeneous group of rare diseases due to mutations in neuromuscular junction (NMJ) protein-coding genes. Until now, many mutations encoding postsynaptic proteins as Agrin, MuSK and LRP4 have been identified as responsible for increasingly complex CMS phenotypes. The majority of mutations identified in LRP4 gene causes bone diseases including CLS and sclerosteosis-2 and rare cases of CMS with mutations in LRP4 gene has been described so far. In the French cohort of CMS patients, we identified a novel LRP4 homozygous missense mutation (c.1820A > G; p.Thy607Cys) within the β1 propeller domain in a patient presenting CMS symptoms, including muscle weakness, fluctuating fatigability and a decrement in compound muscle action potential in spinal accessory nerves, associated with congenital agenesis of the hands and feet and renal malformation. Mechanistic expression studies show a significant decrease of AChR aggregation in cultured patient myotubes, as well as altered in vitro binding of agrin and Wnt11 ligands to the mutated β1 propeller domain of LRP4 explaining the dual phenotype characterized clinically and electoneuromyographically in the patient. These results expand the LRP4 mutations spectrum associated with a previously undescribed clinical association involving impaired neuromuscular transmission and limb deformities and highlighting the critical role of a yet poorly described domain of LRP4 at the NMJ. This study raises the question of the frequency of this rare neuromuscular form and the future diagnosis and management of these cases.
Collapse
Affiliation(s)
- Marion Masingue
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
- Service de Neuromyologie, Centre de Référence Neuromusculaire, APHP, Paris, France
| | - Olivia Cattaneo
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nicolas Wolff
- Institut Pasteur, Channel Receptors Unit, UMR CNRS 3571, Université de Paris, Paris, France
| | - Céline Buon
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
| | - Damien Sternberg
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
- Service de Biochimie Métabolique, UF Cardiogenetics and Myogenetics, Hôpital de la Pitié-Salpêtrière, APHP, Paris, France
| | - Morgane Euchparmakian
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
| | - Myriam Boex
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
| | - Anthony Behin
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
- Service de Neuromyologie, Centre de Référence Neuromusculaire, APHP, Paris, France
| | - Kamel Mamchaouhi
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
| | - Thierry Maisonobe
- Département de Neurophysiologie Clinique, Centre de Référence des Pathologies Neuromusculaires, Hôpital de la Pitié-Salpêtrière, APHP, Paris, France
| | - Marie-Christine Nougues
- Département de Neuropédiatrie, Centre de Référence des Pathologies Neuromusculaires, Hôpital Trousseau, APHP, Paris, France
| | - Arnaud Isapof
- Département de Neuropédiatrie, Centre de Référence des Pathologies Neuromusculaires, Hôpital Trousseau, APHP, Paris, France
| | - Bertrand Fontaine
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
- Service de Neuromyologie, Centre de Référence Canalopathie, Hôpital de la Pitié-Salpêtrière, APHP, Paris, France
| | - Julien Messéant
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
| | - Bruno Eymard
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
| | - Laure Strochlic
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France
| | - Stéphanie Bauché
- INSERM, Myology Research Center-UMRS974, Hôpital Universitaire de la Pitié-Salpêtrière, Institut de Myologie, Sorbonne Université, 105 Boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
6
|
Bulgay C, Kasakolu A, Kazan HH, Mijaica R, Zorba E, Akman O, Bayraktar I, Ekmekci R, Koncagul S, Ulucan K, Semenova EA, Larin AK, Kulemin NA, Generozov EV, Balint L, Badicu G, Ahmetov II, Ergun MA. Exome-Wide Association Study of Competitive Performance in Elite Athletes. Genes (Basel) 2023; 14:genes14030660. [PMID: 36980932 PMCID: PMC10048216 DOI: 10.3390/genes14030660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
The aim of the study was to identify genetic variants associated with personal best scores in Turkish track and field athletes and to compare allelic frequencies between sprint/power and endurance athletes and controls using a whole-exome sequencing (WES) approach, followed by replication studies in independent cohorts. The discovery phase involved 60 elite Turkish athletes (31 sprint/power and 29 endurance) and 20 ethnically matched controls. The replication phase involved 1132 individuals (115 elite Russian sprinters, 373 elite Russian endurance athletes (of which 75 athletes were with VO2max measurements), 209 controls, 148 Russian and 287 Finnish individuals with muscle fiber composition and cross-sectional area (CSA) data). None of the single nucleotide polymorphisms (SNPs) reached an exome-wide significance level (p < 2.3 × 10−7) in genotype–phenotype and case–control studies of Turkish athletes. However, of the 53 nominally (p < 0.05) associated SNPs, four functional variants were replicated. The SIRT1 rs41299232 G allele was significantly over-represented in Turkish (p = 0.047) and Russian (p = 0.018) endurance athletes compared to sprint/power athletes and was associated with increased VO2max (p = 0.037) and a greater proportion of slow-twitch muscle fibers (p = 0.035). The NUP210 rs2280084 A allele was significantly over-represented in Turkish (p = 0.044) and Russian (p = 0.012) endurance athletes compared to sprint/power athletes. The TRPM2 rs1785440 G allele was significantly over-represented in Turkish endurance athletes compared to sprint/power athletes (p = 0.034) and was associated with increased VO2max (p = 0.008). The AGRN rs4074992 C allele was significantly over-represented in Turkish sprint/power athletes compared to endurance athletes (p = 0.037) and was associated with a greater CSA of fast-twitch muscle fibers (p = 0.024). In conclusion, we present the first WES study of athletes showing that this approach can be used to identify novel genetic markers associated with exercise- and sport-related phenotypes.
Collapse
Affiliation(s)
- Celal Bulgay
- Sports Science Faculty, Bingol University, 12000 Bingol, Turkey
| | - Anıl Kasakolu
- Faculty of Agriculture, Ankara University, 06000 Ankara, Turkey
| | - Hasan Hüseyin Kazan
- Medical Genetics Department, Faculty of Medicine, Near East University, 1010–1107 Nicosia, Cyprus
- DESAM Institute, Near East University, 1010–1107 Nicosia, Cyprus
| | - Raluca Mijaica
- Department of Physical Education and Special Motricity, Faculty of Physical Education and Mountain Sports, Transilvania University, 500068 Braşov, Romania
- Correspondence:
| | - Erdal Zorba
- Sports Science Faculty, Gazi University, 06560 Ankara, Turkey
| | - Onur Akman
- Sports Science Faculty, Bayburt University, 69000 Bayburt, Turkey
| | - Isık Bayraktar
- Sports Science Faculty, Alanya Alaaddin Keykubat University, 07450 Alanya, Turkey
| | - Rıdvan Ekmekci
- Sports Science Faculty, Pamukkale University, 20160 Denizli, Turkey
| | | | - Korkut Ulucan
- Sports Department of Medical Biology and Genetics, Marmara University, 34722 Istanbul, Turkey
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Nikolay A. Kulemin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Lorand Balint
- Department of Physical Education and Special Motricity, Faculty of Physical Education and Mountain Sports, Transilvania University, 500068 Braşov, Romania
| | - Georgian Badicu
- Department of Physical Education and Special Motricity, Faculty of Physical Education and Mountain Sports, Transilvania University, 500068 Braşov, Romania
| | - Ildus I. Ahmetov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| | - Mehmet Ali Ergun
- Department of Medical Genetics, Faculty of Medicine, Gazi University, 06560 Ankara, Turkey
| |
Collapse
|
7
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
8
|
Osseni A, Thomas JL, Ghasemizadeh A, Schaeffer L, Gache V. Simple Methods for Permanent or Transient Denervation in Mouse Sciatic Nerve Injury Models. Bio Protoc 2022; 12:e4430. [PMID: 35799900 PMCID: PMC9244497 DOI: 10.21769/bioprotoc.4430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 12/29/2022] Open
Abstract
Our ability to move and breathe requires an efficient communication between nerve and muscle that mainly takes place at the neuromuscular junctions (NMJs), a highly specialized synapse that links the axon of a motor neuron to a muscle fiber. When NMJs or axons are disrupted, the control of muscle fiber contraction is lost and muscle are paralyzed. Understanding the adaptation of the neuromuscular system to permanent or transient denervation is a challenge to understand the pathophysiology of many neuromuscular diseases. There is still a lack of in vitro models that fully recapitulate the in vivo situation, and in vivo denervation, carried out by transiently or permanently severing the nerve afferent to a muscle, remains a method of choice to evaluate reinnervation and/or the consequences of the loss of innervation. We describe here a simple surgical intervention performed at the hip zone to expose the sciatic nerve in order to obtain either permanent denervation (nerve-cut) or transient and reversible denervation (nerve-crush). These two methods provide a convenient in vivo model to study adaptation to denervation. Graphical abstract.
Collapse
Affiliation(s)
- Alexis Osseni
- INSERM U1315 - CNRS/UCBL1 UMR 5261/ INMG-PGNM (NeuroMyoGene Institute – Dpt. of Physiopathology and Genetics of Neurons and Muscles), Lyon, France
| | - Jean-Luc Thomas
- INSERM U1315 - CNRS/UCBL1 UMR 5261/ INMG-PGNM (NeuroMyoGene Institute – Dpt. of Physiopathology and Genetics of Neurons and Muscles), Lyon, France
| | - Alireza Ghasemizadeh
- INSERM U1315 - CNRS/UCBL1 UMR 5261/ INMG-PGNM (NeuroMyoGene Institute – Dpt. of Physiopathology and Genetics of Neurons and Muscles), Lyon, France
| | - Laurent Schaeffer
- INSERM U1315 - CNRS/UCBL1 UMR 5261/ INMG-PGNM (NeuroMyoGene Institute – Dpt. of Physiopathology and Genetics of Neurons and Muscles), Lyon, France
| | - Vincent Gache
- INSERM U1315 - CNRS/UCBL1 UMR 5261/ INMG-PGNM (NeuroMyoGene Institute – Dpt. of Physiopathology and Genetics of Neurons and Muscles), Lyon, France;
,
*For correspondence:
| |
Collapse
|
9
|
Ding Q, Kesavan K, Lee KM, Wimberger E, Robertson T, Gill M, Power D, Chang J, Fard AT, Mar JC, Henderson RD, Heggie S, McCombe PA, Jeffree RL, Colditz MJ, Hilliard MA, Ng DCH, Steyn FJ, Phillips WD, Wolvetang EJ, Ngo ST, Noakes PG. Impaired signaling for neuromuscular synaptic maintenance is a feature of Motor Neuron Disease. Acta Neuropathol Commun 2022; 10:61. [PMID: 35468848 PMCID: PMC9040261 DOI: 10.1186/s40478-022-01360-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
A central event in the pathogenesis of motor neuron disease (MND) is the loss of neuromuscular junctions (NMJs), yet the mechanisms that lead to this event in MND remain to be fully elucidated. Maintenance of the NMJ relies upon neural agrin (n-agrin) which, when released from the nerve terminal, activates the postsynaptic Muscle Specific Kinase (MuSK) signaling complex to stabilize clusters of acetylcholine receptors. Here, we report that muscle from MND patients has an increased proportion of slow fibers and muscle fibers with smaller diameter. Muscle cells cultured from MND biopsies failed to form large clusters of acetylcholine receptors in response to either non-MND human motor axons or n-agrin. Furthermore, levels of expression of MuSK, and MuSK-complex components: LRP4, Caveolin-3, and Dok7 differed between muscle cells cultured from MND patients compared to those from non-MND controls. To our knowledge, this is the first time a fault in the n-agrin-LRP4-MuSK signaling pathway has been identified in muscle from MND patients. Our results highlight the n-agrin-LRP4-MuSK signaling pathway as a potential therapeutic target to prolong muscle function in MND.
Collapse
|
10
|
Jacquier A, Risson V, Simonet T, Roussange F, Lacoste N, Ribault S, Carras J, Theuriet J, Girard E, Grosjean I, Le Goff L, Kröger S, Meltoranta J, Bauché S, Sternberg D, Fournier E, Kostera-Pruszczyk A, O’Connor E, Eymard B, Lochmüller H, Martinat C, Schaeffer L. Severe congenital myasthenic syndromes caused by agrin mutations affecting secretion by motoneurons. Acta Neuropathol 2022; 144:707-731. [PMID: 35948834 PMCID: PMC9468088 DOI: 10.1007/s00401-022-02475-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/28/2023]
Abstract
Congenital myasthenic syndromes (CMS) are predominantly characterized by muscle weakness and fatigability and can be caused by a variety of mutations in genes required for neuromuscular junction formation and maintenance. Among them, AGRN encodes agrin, an essential synaptic protein secreted by motoneurons. We have identified severe CMS patients with uncharacterized p.R1671Q, p.R1698P and p.L1664P mutations in the LG2 domain of agrin. Overexpression in primary motoneurons cultures in vitro and in chick spinal motoneurons in vivo revealed that the mutations modified agrin trafficking, leading to its accumulation in the soma and/or in the axon. Expression of mutant agrins in cultured cells demonstrated accumulation of agrin in the endoplasmic reticulum associated with induction of unfolded protein response (UPR) and impaired secretion in the culture medium. Interestingly, evaluation of the specific activity of individual agrins on AChR cluster formation indicated that when secreted, mutant agrins retained a normal capacity to trigger the formation of AChR clusters. To confirm agrin accumulation and secretion defect, iPS cells were derived from a patient and differentiated into motoneurons. Patient iPS-derived motoneurons accumulated mutant agrin in the soma and increased XBP1 mRNA splicing, suggesting UPR activation. Moreover, co-cultures of patient iPS-derived motoneurons with myotubes confirmed the deficit in agrin secretion and revealed a reduction in motoneuron survival. Altogether, we report the first mutations in AGRN gene that specifically affect agrin secretion by motoneurons. Interestingly, the three patients carrying these mutations were initially suspected of spinal muscular atrophy (SMA). Therefore, in the presence of patients with a clinical presentation of SMA but without mutation in the SMN1 gene, it can be worth to look for mutations in AGRN.
Collapse
Affiliation(s)
- Arnaud Jacquier
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France ,grid.413852.90000 0001 2163 3825Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Valérie Risson
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France
| | - Thomas Simonet
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France ,grid.413852.90000 0001 2163 3825Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Florine Roussange
- grid.503216.30000 0004 0618 2124INSERM/UEPS UMR 861, Paris Saclay Université, I-STEM, 91100 Corbeil-Essonnes, France
| | - Nicolas Lacoste
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France
| | - Shams Ribault
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France ,grid.413852.90000 0001 2163 3825Service de Médecine Physique et de Réadaptation, Hôpital Henry Gabrielle, Hospices Civils de Lyon, 69230 Saint-Genis-Laval, France
| | - Julien Carras
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France ,grid.413852.90000 0001 2163 3825Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Julian Theuriet
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France ,grid.413852.90000 0001 2163 3825Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Emmanuelle Girard
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France
| | - Isabelle Grosjean
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France
| | - Laure Le Goff
- grid.413852.90000 0001 2163 3825Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Stephan Kröger
- Department of Physiological Genomics, Biomedical Center, Planegg, Martinsried, Germany
| | - Julia Meltoranta
- Department of Physiological Genomics, Biomedical Center, Planegg, Martinsried, Germany
| | - Stéphanie Bauché
- grid.462844.80000 0001 2308 1657Inserm U 1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, Sorbonne Universités, 75013 Paris, France
| | - Damien Sternberg
- grid.462844.80000 0001 2308 1657Inserm U 1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, Sorbonne Universités, 75013 Paris, France ,grid.411439.a0000 0001 2150 9058APHP, UF Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Emmanuel Fournier
- grid.462844.80000 0001 2308 1657Inserm U 1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, Sorbonne Universités, 75013 Paris, France ,grid.411439.a0000 0001 2150 9058AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France ,grid.462844.80000 0001 2308 1657Département d’Éthique de l’Université et des enseignements de Physiologie de la Faculté de Médecine Pitié-Salpêtrière, 75013 Paris, France
| | - Anna Kostera-Pruszczyk
- grid.13339.3b0000000113287408Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Emily O’Connor
- grid.28046.380000 0001 2182 2255Division of Neurology, Department of Medicine, Children’s Hospital of Eastern Ontario Research Institute, The Ottawa Hospital and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Bruno Eymard
- grid.462844.80000 0001 2308 1657Inserm U 1127, CNRS UMR 7225, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Épinière, ICM, Sorbonne Universités, 75013 Paris, France ,grid.411439.a0000 0001 2150 9058AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Hanns Lochmüller
- grid.28046.380000 0001 2182 2255Division of Neurology, Department of Medicine, Children’s Hospital of Eastern Ontario Research Institute, The Ottawa Hospital and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Cécile Martinat
- grid.503216.30000 0004 0618 2124INSERM/UEPS UMR 861, Paris Saclay Université, I-STEM, 91100 Corbeil-Essonnes, France
| | - Laurent Schaeffer
- Pathophysiology and Genetics of Neuron and Muscle, Faculté de Médecine Lyon Est, CNRS UMR 5261, INSERM U1315, Université Lyon1, Lyon, France ,grid.413852.90000 0001 2163 3825Hospices Civils de Lyon, Groupement Est, Bron, France
| |
Collapse
|
11
|
Wang S, Yang H, Guo R, Wang L, Zhang Y, Lv J, Zhao X, Zhang J, Fang H, Zhang Q, Zhang Y, Yang J, Cui X, Gao P, Chang T, Gao F. Antibodies to Full-Length Agrin Protein in Chinese Patients With Myasthenia Gravis. Front Immunol 2021; 12:753247. [PMID: 34956185 PMCID: PMC8692888 DOI: 10.3389/fimmu.2021.753247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to establish a cell-based assay (CBA) for the detection of agrin antibodies (Agrin-Ab) to explore the clinical features of agrin antibody-positive Chinese patients with myasthenia gravis (Agrin-MG). We developed a CBA based on the human full-length agrin protein expressed in HEK293T cells for the reliable and efficient detection of Agrin-Ab. Clinical data and serum samples were collected from 1948 MG patients in 26 provinces in China. The demographic and clinical features of Agrin-MG patients were compared with those of other MG patient subsets. Eighteen Agrin-MG cases were identified from 1948 MG patients. Nine patients were Agrin-Ab positive, and nine were AChR-Ab and Agrin-Ab double-positive (Agrin/AChR-MG). Eleven (61.11%) patients were males older than 40 years of age. The initial symptom in 13 (81.25%) cases was ocular weakness. Occasionally, the initial symptom was limb-girdle weakness (two cases) or bulbar muscle weakness (one case). Agrin-MG patients demonstrated slight improvement following treatment with either acetylcholinesterase inhibitor or prednisone; however, the combination of the two drugs could effectively relieve MG symptoms. In China, Agrin-MG demonstrated seropositivity rates of 0.92%. These patients were commonly middle-aged or elderly men. The patients usually presented weakness in the ocular, bulbar, and limb muscles, which may be combined with thymoma. These patients have more severe diseases, although the combination of pyridostigmine and prednisone was usually effective in relieving symptoms.
Collapse
Affiliation(s)
- Shumin Wang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Haonan Yang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,BGI College, Zhengzhou University, Zhengzhou, China
| | - Rongjing Guo
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Lulu Wang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China.,Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingna Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Jie Lv
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xue Zhao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Jing Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Hua Fang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Qingyong Zhang
- Myasthenia Gravis Comprehensive Diagnosis and Treatment Center, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yunke Zhang
- Department of Encephalopathy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine (TCM), Zhengzhou, China
| | - Junhong Yang
- Department of Encephalopathy, First Affiliated Hospital of Henan University of Traditional Chinese Medicine (TCM), Zhengzhou, China
| | - Xinzheng Cui
- Myasthenia Gravis Comprehensive Diagnosis and Treatment Center, Henan Provincial People's Hospital, Zhengzhou, China
| | - Peiyang Gao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi'an, China
| | - Feng Gao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Mizumoto S, Yamada S. Congenital Disorders of Deficiency in Glycosaminoglycan Biosynthesis. Front Genet 2021; 12:717535. [PMID: 34539746 PMCID: PMC8446454 DOI: 10.3389/fgene.2021.717535] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/04/2022] Open
Abstract
Glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, and heparan sulfate are covalently attached to specific core proteins to form proteoglycans, which are distributed at the cell surface as well as in the extracellular matrix. Proteoglycans and GAGs have been demonstrated to exhibit a variety of physiological functions such as construction of the extracellular matrix, tissue development, and cell signaling through interactions with extracellular matrix components, morphogens, cytokines, and growth factors. Not only connective tissue disorders including skeletal dysplasia, chondrodysplasia, multiple exostoses, and Ehlers-Danlos syndrome, but also heart and kidney defects, immune deficiencies, and neurological abnormalities have been shown to be caused by defects in GAGs as well as core proteins of proteoglycans. These findings indicate that GAGs and proteoglycans are essential for human development in major organs. The glycobiological aspects of congenital disorders caused by defects in GAG-biosynthetic enzymes including specific glysocyltransferases, epimerases, and sulfotransferases, in addition to core proteins of proteoglycans will be comprehensively discussed based on the literature to date.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
13
|
Fernandes M, Caetano A, Pinto M, Medeiros E, Santos L. Diagnosis of DOK7 congenital myasthenic syndrome during pregnancy: A case report and literature review. Clin Neurol Neurosurg 2021; 203:106591. [PMID: 33714798 DOI: 10.1016/j.clineuro.2021.106591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/14/2021] [Accepted: 02/27/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Pregnancy among patients with congenital myasthenic syndrome (CMS) is a rare occurrence. Since most of the patients with CMS reach adulthood, questions regarding clinical outcome with pregnancy arise. CASE REPORT We describe a 38-year-old Portuguese female who presented in the second trimester of pregnancy with proximal fluctuating limb-girdle weakness, hyperlordosis, waddling gait, dysphagia, dysphonia and ptosis, with no ophthalmoparesis. Initial diagnosis of seronegative myasthenia, supported by neurophysiology findings, led to unsuccessful treatment with intravenous immunoglobulin, pyridostigmine, prednisolone and plasmapheresis, and the patient slowly progressed to a severe tetraparesis with facial and bulbar involvement. Genetic testing for CMS identified a novel compound heterozygous mutation (c.1124_1127dupTGCC and c.935_936del) in the DOK7 gene. Subsequent treatment with salbutamol resulted in substantial clinical benefit. CONCLUSIONS This case underlines the importance of considering the diagnosis of CMS in patients with fluctuating weakness during pregnancy. Patients of child-bearing potential diagnosed with CMS, particularly due to DOK7 mutations, should be counseled in advance and closely followed during pregnancy.
Collapse
Affiliation(s)
- Marco Fernandes
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisbon, Portugal.
| | - André Caetano
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisbon, Portugal; CEDOC Chronic Diseases Research Centre, Nova Medical School / Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Miguel Pinto
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisbon, Portugal
| | - Elmira Medeiros
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisbon, Portugal; CEDOC Chronic Diseases Research Centre, Nova Medical School / Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Luís Santos
- Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1349-019, Lisbon, Portugal; CEDOC Chronic Diseases Research Centre, Nova Medical School / Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Ohkawara B, Ito M, Ohno K. Secreted Signaling Molecules at the Neuromuscular Junction in Physiology and Pathology. Int J Mol Sci 2021; 22:ijms22052455. [PMID: 33671084 PMCID: PMC7957818 DOI: 10.3390/ijms22052455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
Signal transduction at the neuromuscular junction (NMJ) is affected in many human diseases, including congenital myasthenic syndromes (CMS), myasthenia gravis, Lambert–Eaton myasthenic syndrome, Isaacs’ syndrome, Schwartz–Jampel syndrome, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. The NMJ is a prototypic cholinergic synapse between the motor neuron and the skeletal muscle. Synaptogenesis of the NMJ has been extensively studied, which has also been extrapolated to further understand synapse formation in the central nervous system. Studies of genetically engineered mice have disclosed crucial roles of secreted molecules in the development and maintenance of the NMJ. In this review, we focus on the secreted signaling molecules which regulate the clustering of acetylcholine receptors (AChRs) at the NMJ. We first discuss the signaling pathway comprised of neural agrin and its receptors, low-density lipoprotein receptor-related protein 4 (Lrp4) and muscle-specific receptor tyrosine kinase (MuSK). This pathway drives the clustering of acetylcholine receptors (AChRs) to ensure efficient signal transduction at the NMJ. We also discuss three secreted molecules (Rspo2, Fgf18, and connective tissue growth factor (Ctgf)) that we recently identified in the Wnt/β-catenin and fibroblast growth factors (FGF) signaling pathways. The three secreted molecules facilitate the clustering of AChRs by enhancing the agrin-Lrp4-MuSK signaling pathway.
Collapse
Affiliation(s)
- Bisei Ohkawara
- Correspondence: ; Tel.: +81-52-744-2447; Fax: +81-52-744-2449
| | | | | |
Collapse
|
15
|
Spendiff S, Howarth R, McMacken G, Davey T, Quinlan K, O'Connor E, Slater C, Hettwer S, Mäder A, Roos A, Horvath R, Lochmüller H. Modulation of the Acetylcholine Receptor Clustering Pathway Improves Neuromuscular Junction Structure and Muscle Strength in a Mouse Model of Congenital Myasthenic Syndrome. Front Mol Neurosci 2021; 13:594220. [PMID: 33390901 PMCID: PMC7773664 DOI: 10.3389/fnmol.2020.594220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
Introduction: Congenital myasthenic syndromes (CMS) are a diverse group of inherited neuromuscular disorders characterized by a failure of synaptic transmission at the neuromuscular junction (NMJ). CMS often present early with fatigable weakness and can be fatal through respiratory complications. The AGRN gene is one of over 30 genes known to harbor mutations causative for CMS. In this study, we aimed to determine if a compound (NT1654), developed to stimulate the acetylcholine receptor (AChR) clustering pathway, would benefit a mouse model of CMS caused by a loss-of-function mutation in Agrn (Agrnnmf380 mouse). Methods:Agrnnmf380 mice received an injection of either NT1654 or vehicle compound daily, with wild-type litter mates used for comparison. Animals were weighed daily and underwent grip strength assessments. After 30 days of treatment animals were sacrificed, and muscles collected. Investigations into NMJ and muscle morphology were performed on collected tissue. Results: While minimal improvements in NMJ ultrastructure were observed with electron microscopy, gross NMJ structure analysis using fluorescent labelling and confocal microscopy revealed extensive postsynaptic improvements in Agrnnmf380 mice with NT1654 administration, with variables frequently returning to wild type levels. An improvement in muscle weight and myofiber characteristics helped increase forelimb grip strength and body weight. Conclusions: We conclude that NT1654 restores NMJ postsynaptic structure and improves muscle strength through normalization of muscle fiber composition and the prevention of atrophy. We hypothesize this occurs through the AChR clustering pathway in Agrnnmf380 mice. Future studies should investigate if this may represent a viable treatment option for patients with CMS, especially those with mutations in proteins of the AChR clustering pathway.
Collapse
Affiliation(s)
- Sally Spendiff
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Rachel Howarth
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Grace McMacken
- Department of Neurosciences, Royal Victoria Hospital, Belfast, United Kingdom
| | - Tracey Davey
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kaitlyn Quinlan
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Emily O'Connor
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Clarke Slater
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | - Andreas Roos
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Department of Paediatric Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| |
Collapse
|
16
|
Rodríguez Cruz PM, Cossins J, Beeson D, Vincent A. The Neuromuscular Junction in Health and Disease: Molecular Mechanisms Governing Synaptic Formation and Homeostasis. Front Mol Neurosci 2020; 13:610964. [PMID: 33343299 PMCID: PMC7744297 DOI: 10.3389/fnmol.2020.610964] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
The neuromuscular junction (NMJ) is a highly specialized synapse between a motor neuron nerve terminal and its muscle fiber that are responsible for converting electrical impulses generated by the motor neuron into electrical activity in the muscle fibers. On arrival of the motor nerve action potential, calcium enters the presynaptic terminal, which leads to the release of the neurotransmitter acetylcholine (ACh). ACh crosses the synaptic gap and binds to ACh receptors (AChRs) tightly clustered on the surface of the muscle fiber; this leads to the endplate potential which initiates the muscle action potential that results in muscle contraction. This is a simplified version of the events in neuromuscular transmission that take place within milliseconds, and are dependent on a tiny but highly structured NMJ. Much of this review is devoted to describing in more detail the development, maturation, maintenance and regeneration of the NMJ, but first we describe briefly the most important molecules involved and the conditions that affect their numbers and function. Most important clinically worldwide, are myasthenia gravis (MG), the Lambert-Eaton myasthenic syndrome (LEMS) and congenital myasthenic syndromes (CMS), each of which causes specific molecular defects. In addition, we mention the neurotoxins from bacteria, snakes and many other species that interfere with neuromuscular transmission and cause potentially fatal diseases, but have also provided useful probes for investigating neuromuscular transmission. There are also changes in NMJ structure and function in motor neuron disease, spinal muscle atrophy and sarcopenia that are likely to be secondary but might provide treatment targets. The NMJ is one of the best studied and most disease-prone synapses in the nervous system and it is amenable to in vivo and ex vivo investigation and to systemic therapies that can help restore normal function.
Collapse
Affiliation(s)
- Pedro M. Rodríguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Judith Cossins
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
17
|
Gan S, Yang H, Xiao T, Pan Z, Wu L. AGRN Gene Mutation Leads to Congenital Myasthenia Syndromes: A Pediatric Case Report and Literature Review. Neuropediatrics 2020; 51:364-367. [PMID: 32221959 DOI: 10.1055/s-0040-1708534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The congenital myasthenia syndromes (CMS) are a group of autosomal recessive or autosomal dominant diseases that affect neuromuscular junctions. CMS caused by AGRN mutations is very uncommon typically characterized by ptosis, mild weakness, and proximal limb weakness. We report the case of an 8-year-old female who exhibited the onset of motor development retardation from infancy and slow progression to proximal muscle weakness. Repeated nerve stimulation at 3 Hz showed a clear decrement with 17%. Whole exon sequencing showed an AGRN gene compound heterozygous mutation (c.5009C >T and c.5078T > C). She was treated with salbutamol but without improvement. Then pseudoephedrine was adapted as a treatment choice and obtained remarkable curative effect. We have summarized and analyzed 12 patients who have been reported in the literature. An early age of onset and muscle weakness in the lower limbs are the main feature of an early AGRN gene mutation. Both types of AGRN-related CMS respond favorably to ephedrine. This is the first report showing that pseudoephedrine is effective as a choice for the treatment of AGRN-related CMS.
Collapse
Affiliation(s)
- Siyi Gan
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Haiyan Yang
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Ting Xiao
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Zou Pan
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Liwen Wu
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| |
Collapse
|
18
|
Rivner MH, Quarles BM, Pan JX, Yu Z, Howard JF, Corse A, Dimachkie MM, Jackson C, Vu T, Small G, Lisak RP, Belsh J, Lee I, Nowak RJ, Baute V, Scelsa S, Fernandes JA, Simmons Z, Swenson A, Barohn R, Sanka RB, Gooch C, Ubogu E, Caress J, Pasnoor M, Xu H, Mei L. Clinical features of LRP4/agrin-antibody-positive myasthenia gravis: A multicenter study. Muscle Nerve 2020; 62:333-343. [PMID: 32483837 PMCID: PMC7496236 DOI: 10.1002/mus.26985] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Introduction Our aim in this study was to identify the prevalence and clinical characteristics of LRP4/agrin‐antibody–positive double‐seronegative myasthenia gravis (DNMG). Methods DNMG patients at 16 sites in the United States were tested for LRP4 and agrin antibodies, and the clinical data were collected. Results Of 181 DNMG patients, 27 (14.9%) were positive for either low‐density lipoprotein receptor–related protein 4 (LRP4) or agrin antibodies. Twenty‐three DNMG patients (12.7%) were positive for both antibodies. More antibody‐positive patients presented with generalized symptoms (69%) compared with antibody‐negative patients (43%) (P ≤ .02). Antibody‐positive patients’ maximum classification on the Myasthenia Gravis Foundation of America (MGFA) scale was significantly higher than that for antibody‐negative patients (P ≤ .005). Seventy percent of antibody‐positive patients were classified as MGFA class III, IV, or V compared with 39% of antibody‐negative patients. Most LRP4‐ and agrin‐antibody–positive patients (24 of 27, 89%) developed generalized myathenia gravis (MG), but with standard MG treatment 81.5% (22 of 27) improved to MGFA class I or II during a mean follow‐up of 11 years. Discussion Antibody‐positive patients had more severe clinical disease than antibody‐negative patients. Most DNMG patients responded to standard therapy regardless of antibody status.
Collapse
Affiliation(s)
| | | | - Jin-Xiu Pan
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
| | - Zheng Yu
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
| | - James F Howard
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Andrea Corse
- Department of Neurology, The Johns Hopkins University, Baltimore, Maryland
| | | | - Carlayne Jackson
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Tuan Vu
- Department of Neurology, University of South Florida, Tampa, Florida
| | - George Small
- Department of Neurology, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Robert P Lisak
- Department of Neurology, Wayne State University, Detroit, Michigan
| | - Jerry Belsh
- Department of Neurology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Ikjae Lee
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Richard J Nowak
- Department of Neurology, Yale University, New Haven, Connecticut
| | - Vanessa Baute
- Department of Neurology, Wake Forest University, Winston-Salem, North Carolina
| | - Stephen Scelsa
- Department of Neurology, Mount Sinai-Beth Israel Hospital, New York, New York
| | - J Americo Fernandes
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Zachary Simmons
- Department of Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Andrea Swenson
- Department of Neurology, University of Iowa, Iowa City, Iowa
| | - Richard Barohn
- Department of Neurology, University of Kansas, Kansas City, Kansas
| | - R Bhavaraju Sanka
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Clifton Gooch
- Department of Neurology, University of South Florida, Tampa, Florida
| | - Eroboghene Ubogu
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - James Caress
- Department of Neurology, Wake Forest University, Winston-Salem, North Carolina
| | - Mamatha Pasnoor
- Department of Neurology, University of Kansas, Kansas City, Kansas
| | - Hongyan Xu
- Department of Population Health Sciences, Augusta University, Augusta, Georgia
| | - Lin Mei
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
19
|
Xiao T, Wu LW. [Advances in the diagnosis and treatment of congenital myasthenic syndrome]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:672-676. [PMID: 32571471 PMCID: PMC7390217 DOI: 10.7499/j.issn.1008-8830.1912095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Congenital myasthenic syndrome (CMS) is a group of clinical and genetic heterogeneous diseases caused by impaired neuromuscular transmission due to genetic defects. At present, it has been reported that more than 30 genes can cause CMS. All CMS subtypes have the clinical features of fatigue and muscle weakness, but age of onset, symptoms, and treatment response vary with the molecular mechanisms underlying genetic defects. Pharmacotherapy and symptomatic/supportive treatment are the main methods for the treatment of CMS, and antisense oligonucleotide technology has been proven to be beneficial for CHRNA 1-related CMS in animals. Since CMS is a group of increasingly recognized clinical and genetic heterogeneous diseases, an understanding of the latest knowledge and research advances in its clinical features, genetic research, and treatment helps to give early diagnosis and treatment as well as gain a deeper understanding of the pathogenesis of CMS, so as to make new breakthroughs in the treatment of CMS.
Collapse
Affiliation(s)
- Ting Xiao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China.
| | | |
Collapse
|
20
|
Xiao T, Wu LW. [Advances in the diagnosis and treatment of congenital myasthenic syndrome]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:672-676. [PMID: 32571471 PMCID: PMC7390217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/24/2020] [Indexed: 11/12/2023]
Abstract
Congenital myasthenic syndrome (CMS) is a group of clinical and genetic heterogeneous diseases caused by impaired neuromuscular transmission due to genetic defects. At present, it has been reported that more than 30 genes can cause CMS. All CMS subtypes have the clinical features of fatigue and muscle weakness, but age of onset, symptoms, and treatment response vary with the molecular mechanisms underlying genetic defects. Pharmacotherapy and symptomatic/supportive treatment are the main methods for the treatment of CMS, and antisense oligonucleotide technology has been proven to be beneficial for CHRNA 1-related CMS in animals. Since CMS is a group of increasingly recognized clinical and genetic heterogeneous diseases, an understanding of the latest knowledge and research advances in its clinical features, genetic research, and treatment helps to give early diagnosis and treatment as well as gain a deeper understanding of the pathogenesis of CMS, so as to make new breakthroughs in the treatment of CMS.
Collapse
Affiliation(s)
- Ting Xiao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China.
| | | |
Collapse
|
21
|
Ohkawara B, Shen X, Selcen D, Nazim M, Bril V, Tarnopolsky MA, Brady L, Fukami S, Amato AA, Yis U, Ohno K, Engel AG. Congenital myasthenic syndrome-associated agrin variants affect clustering of acetylcholine receptors in a domain-specific manner. JCI Insight 2020; 5:132023. [PMID: 32271162 DOI: 10.1172/jci.insight.132023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 02/28/2020] [Indexed: 12/17/2022] Open
Abstract
Congenital myasthenic syndromes (CMS) are caused by mutations in molecules expressed at the neuromuscular junction. We report clinical, structural, ultrastructural, and electrophysiologic features of 4 CMS patients with 6 heteroallelic variants in AGRN, encoding agrin. One was a 7.9-kb deletion involving the N-terminal laminin-binding domain. Another, c.4744G>A - at the last nucleotide of exon 26 - caused skipping of exon 26. Four missense mutations (p.S1180L, p.R1509W, p.G1675S, and p.Y1877D) expressed in conditioned media decreased AChR clusters in C2C12 myotubes. The agrin-enhanced phosphorylation of MuSK was markedly attenuated by p.Y1877D in the LG3 domain and moderately attenuated by p.R1509W in the LG1 domain but not by the other 2 mutations. The p.S1180L mutation in the SEA domain facilitated degradation of secreted agrin. The p.G1675S mutation in the LG2 domain attenuated anchoring of agrin to the sarcolemma by compromising its binding to heparin. Anchoring of agrin with p.R1509W in the LG1 domain was similarly attenuated. Mutations of agrin affect AChR clustering by enhancing agrin degradation or by suppressing MuSK phosphorylation and/or by compromising anchoring of agrin to the sarcolemma of the neuromuscular junction.
Collapse
Affiliation(s)
- Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - XinMing Shen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Duygu Selcen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mohammad Nazim
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Vera Bril
- Vera Bril, Department of Neurology, University of Toronto, Toronto, Canada
| | - Mark A Tarnopolsky
- Department of Pediatrics, McMaster University Medical Center, Hamilton, Ontario, Canada
| | - Lauren Brady
- Department of Pediatrics, McMaster University Medical Center, Hamilton, Ontario, Canada
| | - Sae Fukami
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Anthony A Amato
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Uluc Yis
- Division of Child Neurology, Department of Pediatrics, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
22
|
Wang A, Xiao Y, Huang P, Liu L, Xiong J, Li J, Mao D, Liu L. Novel NtA and LG1 Mutations in Agrin in a Single Patient Causes Congenital Myasthenic Syndrome. Front Neurol 2020; 11:239. [PMID: 32328026 PMCID: PMC7160337 DOI: 10.3389/fneur.2020.00239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/12/2020] [Indexed: 12/27/2022] Open
Abstract
Congenital myasthenic syndrome (CMS) is a group of genetic disorders of neuromuscular transmission that is characterized by muscle weakness. A mutation in the gene encoding agrin (AGRN) is a rare cause of CMS, and only a few families or isolated cases have been reported. We reported a pediatric proband exhibiting muscle weakness in the trunk and limbs with skeletal malformation and intellectual disability and performed whole-exome sequencing (WES) of the proband parent-offspring trio. Results revealed a new compound heterozygous mutation in AGRN: c.125A>C (p.Glu42Ala) in the N-terminal agrin domain (NtA) and c.4516G>A (p.Ala1506Thr) in the laminin G1 domain (LG1). Bioinformatic analysis predicted the mutation as possibly pathogenic. The new compound heterozygous mutation in AGRN may disrupt agrin's known function of bridging laminin and α-dystroglycan and undermine the formation and maintenance of the neuromuscular junction (NMJ) via both muscular and neural agrin pathways. It may also induce secondary peripheral neuropathy and skeletal malformation.
Collapse
Affiliation(s)
- Aiping Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Neurology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Neurology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Neurology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Neurology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Xiong
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Neurology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jian Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Neurology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ding'an Mao
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Neurology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics Neurology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Guarino SR, Canciani A, Forneris F. Dissecting the Extracellular Complexity of Neuromuscular Junction Organizers. Front Mol Biosci 2020; 6:156. [PMID: 31998752 PMCID: PMC6966886 DOI: 10.3389/fmolb.2019.00156] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
Synapse formation is a very elaborate process dependent upon accurate coordination of pre and post-synaptic specialization, requiring multiple steps and a variety of receptors and signaling molecules. Due to its relative structural simplicity and the ease in manipulation and observation, the neuromuscular synapse or neuromuscular junction (NMJ)-the connection between motor neurons and skeletal muscle-represents the archetype junction system for studying synapse formation and conservation. This junction is essential for survival, as it controls our ability to move and breath. NMJ formation requires coordinated interactions between motor neurons and muscle fibers, which ultimately result in the formation of a highly specialized post-synaptic architecture and a highly differentiated nerve terminal. Furthermore, to ensure a fast and reliable synaptic transmission following neurotransmitter release, ligand-gated channels (acetylcholine receptors, AChRs) are clustered on the post-synaptic muscle cell at high concentrations in sites opposite the presynaptic active zone, supporting a direct role for nerves in the organization of the post-synaptic membrane architecture. This organized clustering process, essential for NMJ formation and for life, relies on key signaling molecules and receptors and is regulated by soluble extracellular molecules localized within the synaptic cleft. Notably, several mutations as well as auto-antibodies against components of these signaling complexes have been related to neuromuscular disorders. The recent years have witnessed strong progress in the understanding of molecular identities, architectures, and functions of NMJ macromolecules. Among these, prominent roles have been proposed for neural variants of the proteoglycan agrin, its receptor at NMJs composed of the lipoprotein receptor-related protein 4 (LRP4) and the muscle-specific kinase (MuSK), as well as the regulatory soluble synapse-specific protease Neurotrypsin. In this review we summarize the current state of the art regarding molecular structures and (agrin-dependent) canonical, as well as (agrin-independent) non-canonical, MuSK signaling mechanisms that underscore the formation of neuromuscular junctions, with the aim of providing a broad perspective to further stimulate molecular, cellular and tissue biology investigations on this fundamental intercellular contact.
Collapse
Affiliation(s)
| | | | - Federico Forneris
- The Armenise-Harvard Laboratory of Structural Biology, Department Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
24
|
Reactivation of Denervated Schwann Cells by Embryonic Spinal Cord Neurons to Promote Axon Regeneration and Remyelination. Stem Cells Int 2019; 2019:7378594. [PMID: 31885623 PMCID: PMC6915008 DOI: 10.1155/2019/7378594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/06/2019] [Indexed: 01/04/2023] Open
Abstract
In peripheral nerve injuries (PNIs) in which proximal axons do not regenerate quickly enough, significant chronic degeneration of Schwann cells (SCs) can occur at the distal stump of the injured nerve and obstruct regeneration. Cell transplantation can delay the degeneration of SCs, but transplanted cells fail to generate voluntary electrical impulses without downstream signal stimulation from the central nervous system. In this study, we combined cell transplantation and nerve transfer strategies to investigate whether the transplantation of embryonic spinal cord cells could benefit the microenvironment of the distal stump of the injured nerve. The experiment consisted of two stages. In the first-stage surgery, common peroneal nerves were transected, and embryonic day 14 (E14) cells or cell culture medium was transplanted into the distal stump of the CPs. Six months after the first-stage surgery, the transplanted cells were removed, and the nerve segment distal to the transplanted site was used to bridge freshly cut tibial nerves to detect whether the cell-treated graft promoted axon growth. The phenotypic changes and the neurotrophic factor expression pattern of SCs distal to the transplanted site were detected at several time points after cell transplantation and excision. The results showed that at different times after transplantation, the cells could survive and generate neurons. Thus, the neurons play the role of proximal axons to prevent chronic degeneration and fibrosis of SCs. After excision of the transplanted cells, the SCs returned to their dedifferentiated phenotype and upregulated growth-associated gene expression. The ability of SCs to be activated again allowed a favorable microenvironment to be created and enhanced the regeneration and remyelination of proximal axons. Muscle reinnervation was also elevated. This transplantation strategy could provide a treatment option for complex neurological injuries in the clinic.
Collapse
|
25
|
Geremek M, Dudarewicz L, Obersztyn E, Paczkowska M, Smyk M, Sobecka K, Nowakowska B. Null variants in AGRN cause lethal fetal akinesia deformation sequence. Clin Genet 2019; 97:634-638. [PMID: 31730230 DOI: 10.1111/cge.13677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/19/2023]
Abstract
We present a case of lethal fetal akinesia deformation sequence (FADS) caused by a frameshift variant in trans with a 148 kbp deletion encompassing 3-36 exons of AGRN. Pathogenic variants in AGRN have been described in families with a form of congenital myasthenic syndrome (CMS), manifesting in the early childhood with variable fatigable muscle weakness. To the best of our knowledge, this is the first case of FADS caused by defects in AGRN gene. FADS has been reported to be caused by pathogenic variants in genes previously associated with CMS including these involved in endplate development and maintenance: MuSK, DOK7, and RAPSN. FADS seems to be the most severe form of CMS. None of the reported in the literature CMS cases associated with AGRN had two null variants, like the case presented herein. This indicates a strong genotype-phenotype correlation.
Collapse
Affiliation(s)
- Maciej Geremek
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Lech Dudarewicz
- Department of Medical Genetics, Polish Mother's Memorial Hospital, Łódź, Poland
| | - Ewa Obersztyn
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | - Marta Smyk
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Katarzyna Sobecka
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Beata Nowakowska
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| |
Collapse
|
26
|
Previtali SC, Zhao E, Lazarevic D, Pipitone GB, Fabrizi GM, Manganelli F, Mazzeo A, Pareyson D, Schenone A, Taroni F, Vita G, Bellone E, Ferrarini M, Garibaldi M, Magri S, Padua L, Pennisi E, Pisciotta C, Riva N, Scaioli V, Scarlato M, Tozza S, Geroldi A, Jordanova A, Ferrari M, Molineris I, Reilly MM, Comi G, Carrera P, Devoto M, Bolino A. Expanding the spectrum of genes responsible for hereditary motor neuropathies. J Neurol Neurosurg Psychiatry 2019; 90:1171-1179. [PMID: 31167812 DOI: 10.1136/jnnp-2019-320717] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/24/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inherited peripheral neuropathies (IPNs) represent a broad group of genetically and clinically heterogeneous disorders, including axonal Charcot-Marie-Tooth type 2 (CMT2) and hereditary motor neuropathy (HMN). Approximately 60%-70% of cases with HMN/CMT2 still remain without a genetic diagnosis. Interestingly, mutations in HMN/CMT2 genes may also be responsible for motor neuron disorders or other neuromuscular diseases, suggesting a broad phenotypic spectrum of clinically and genetically related conditions. Thus, it is of paramount importance to identify novel causative variants in HMN/CMT2 patients to better predict clinical outcome and progression. METHODS We designed a collaborative study for the identification of variants responsible for HMN/CMT2. We collected 15 HMN/CMT2 families with evidence for autosomal recessive inheritance, who had tested negative for mutations in 94 known IPN genes, who underwent whole-exome sequencing (WES) analyses. Candidate genes identified by WES were sequenced in an additional cohort of 167 familial or sporadic HMN/CMT2 patients using next-generation sequencing (NGS) panel analysis. RESULTS Bioinformatic analyses led to the identification of novel or very rare variants in genes, which have not been previously associated with HMN/CMT2 (ARHGEF28, KBTBD13, AGRN and GNE); in genes previously associated with HMN/CMT2 but in combination with different clinical phenotypes (VRK1 and PNKP), and in the SIGMAR1 gene, which has been linked to HMN/CMT2 in only a few cases. These findings were further validated by Sanger sequencing, segregation analyses and functional studies. CONCLUSIONS These results demonstrate the broad spectrum of clinical phenotypes that can be associated with a specific disease gene, as well as the complexity of the pathogenesis of neuromuscular disorders.
Collapse
Affiliation(s)
- Stefano C Previtali
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Edward Zhao
- Division of Genetics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dejan Lazarevic
- Center for Translational Genomics and Bioinformatics, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Giovanni Battista Pipitone
- Laboratory of Clinical and Molecular Biology and Unit of Genomics for Diagnosis of Genetic Diseases, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Gian Maria Fabrizi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Napoli, Italy
| | - Anna Mazzeo
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Davide Pareyson
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences, University of Genoa, and IRCCS Policlinico San Martino, Genova, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giuseppe Vita
- Unit of Neurology and Neuromuscular Diseases, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Emilia Bellone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences, University of Genoa, and IRCCS Policlinico San Martino, Genova, Italy
| | - Moreno Ferrarini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Matteo Garibaldi
- Unit of Neuromuscular Disorders, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, Sant'Andrea Hospital, Roma, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Luca Padua
- Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica, Roma, Italy
| | | | - Chiara Pisciotta
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Nilo Riva
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Vidmer Scaioli
- Neurophysiopathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Marina Scarlato
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Stefano Tozza
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University Federico II of Naples, Napoli, Italy
| | - Alessandro Geroldi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences, University of Genoa, and IRCCS Policlinico San Martino, Genova, Italy
| | - Albena Jordanova
- VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium
- Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria
| | - Maurizio Ferrari
- Laboratory of Clinical and Molecular Biology and Unit of Genomics for Diagnosis of Genetic Diseases, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Ivan Molineris
- Center for Translational Genomics and Bioinformatics, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Giancarlo Comi
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Paola Carrera
- Laboratory of Clinical and Molecular Biology and Unit of Genomics for Diagnosis of Genetic Diseases, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milano, Italy
| | - Marcella Devoto
- Division of Genetics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Translational and Precision Medicine, University La Sapienza, Roma, Italy
| | - Alessandra Bolino
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
27
|
Rivner MH, Pasnoor M, Dimachkie MM, Barohn RJ, Mei L. Muscle-Specific Tyrosine Kinase and Myasthenia Gravis Owing to Other Antibodies. Neurol Clin 2019; 36:293-310. [PMID: 29655451 DOI: 10.1016/j.ncl.2018.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Around 20% of patients with myasthenia gravis are acetylcholine receptor antibody negative; muscle-specific tyrosine kinase antibodies (MuSK) were identified as the cause of myasthenia gravis in 30% to 40% of these cases. Anti MuSK myasthenia gravis is associated with specific clinical phenotypes. One is a bulbar form with fewer ocular symptoms. Others show an isolated head drop or symptoms indistinguishable from acetylcholine receptor-positive myasthenia gravis. These patients usually respond well to immunosuppressive therapy, but not as well to cholinesterase inhibitors. Other antibodies associated with myasthenia gravis, including low-density lipoprotein receptor-related protein 4, are discussed.
Collapse
Affiliation(s)
- Michael H Rivner
- EMG Lab, Augusta University, 1120 15th Street, BP-4390, Augusta, GA 30912, USA.
| | - Mamatha Pasnoor
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Mazen M Dimachkie
- Department of Neurology, University of Kansas Medical Center, 3599 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66103, USA
| | - Richard J Barohn
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 4017, Kansas City, KS 66160, USA
| | - Lin Mei
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, CA-2014, Augusta, GA 30912, USA
| |
Collapse
|
28
|
He D, Zhang H, Xiao J, Zhang X, Xie M, Pan D, Wang M, Luo X, Bu B, Zhang M, Wang W. Molecular and clinical relationship between live-attenuated Japanese encephalitis vaccination and childhood onset myasthenia gravis. Ann Neurol 2019; 84:386-400. [PMID: 30246904 PMCID: PMC6175482 DOI: 10.1002/ana.25267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 11/12/2022]
Abstract
Objective The incidence of childhood onset myasthenia gravis (CMG) in China is higher than that in other countries; however, the reasons for this are unclear. Methods We investigated the clinical and immunological profiles of CMG, and assessed the potential precipitating factors. For the mouse studies, the possible implication of vaccination in the pathogenesis was explored. Results In our retrospective study, 51.22% of the 4,219 cases of myasthenia gravis (MG) were of the childhood onset type. The cohort study uncovered that the pathophysiology of CMG was mediated by immune deviation, rather than through gene mutations or virus infections. The administration of the live‐attenuated Japanese encephalitis vaccine (LA‐JEV), but not the inactivated vaccine or other vaccines, in mice induced serum acetylcholine receptor (AChR) antibody production, reduced the AChR density at the endplates, and decreased both muscle strength and response to repetitive nerve stimulation. We found a peptide (containing 7 amino acids) of LA‐JEV similar to the AChR‐α subunit, and immunization with a synthesized protein containing this peptide reproduced the MG‐like phenotype in mice. Interpretation Our results describe the immunological profile of CMG. Immunization with LA‐JEV induced an autoimmune reaction against the AChR through molecular mimicry. These findings might explain the higher occurrence rate of CMG in China, where children are routinely vaccinated with LA‐JEV, compared with that in countries, where this vaccination is not as common. Efforts should be made to optimize immunization strategies and reduce the risk for developing autoimmune disorders among children. Ann Neurol 2018;84:386–400
Collapse
Affiliation(s)
- Dan He
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Han Zhang
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Jun Xiao
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Xiaofan Zhang
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Minjie Xie
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Key Laboratory of Neurological Disease of Education Committee of ChinaWuhanHubeiChina
| | - Dengji Pan
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Minghuan Wang
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Xiang Luo
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Bitao Bu
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Min Zhang
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Wei Wang
- Department of NeurologyTongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Key Laboratory of Neurological Disease of Education Committee of ChinaWuhanHubeiChina
| |
Collapse
|
29
|
Rudell JB, Maselli RA, Yarov-Yarovoy V, Ferns MJ. Pathogenic effects of agrin V1727F mutation are isoform specific and decrease its expression and affinity for HSPGs and LRP4. Hum Mol Genet 2019; 28:2648-2658. [PMID: 30994901 PMCID: PMC6687949 DOI: 10.1093/hmg/ddz081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/27/2019] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
Agrin is a large extracellular matrix protein whose isoforms differ in their tissue distribution and function. Motoneuron-derived y+z+ agrin regulates the formation of the neuromuscular junction (NMJ), while y-z- agrin is widely expressed and has diverse functions. Previously we identified a missense mutation (V1727F) in the second laminin globular (LG2) domain of agrin that causes severe congenital myasthenic syndrome. Here, we define pathogenic effects of the agrin V1727F mutation that account for the profound dysfunction of the NMJ. First, by expressing agrin variants in heterologous cells, we show that the V1727F mutation reduces the secretion of y+z+ agrin compared to wild type, whereas it has no effect on the secretion of y-z- agrin. Second, we find that the V1727F mutation significantly impairs binding of y+z+ agrin to both heparin and the low-density lipoprotein receptor-related protein 4 (LRP4) coreceptor. Third, molecular modeling of the LG2 domain suggests that the V1727F mutation primarily disrupts the y splice insert, and consistent with this we find that it partially occludes the contribution of the y splice insert to agrin binding to heparin and LRP4. Together, these findings identify several pathogenic effects of the V1727F mutation that reduce its expression and ability to bind heparan sulfate proteoglycan and LRP4 coreceptors involved in the muscle-specific kinase signaling pathway. These defects primarily impair the function of neural y+z+ agrin and combine to cause a severe CMS phenotype, whereas y-z- agrin function in other tissues appears preserved.
Collapse
Affiliation(s)
- John B Rudell
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Ricardo A Maselli
- Department of Neurology, University of California Davis, Davis, CA, USA
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Michael J Ferns
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
- Department of Anesthesiology and Pain Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
30
|
Taylor J, Craft J, Blair E, Wordsworth S, Beeson D, Chandratre S, Cossins J, Lester T, Németh AH, Ormondroyd E, Patel SY, Pagnamenta AT, Taylor JC, Thomson KL, Watkins H, Wilkie AOM, Knight JC. Implementation of a genomic medicine multi-disciplinary team approach for rare disease in the clinical setting: a prospective exome sequencing case series. Genome Med 2019; 11:46. [PMID: 31345272 PMCID: PMC6659244 DOI: 10.1186/s13073-019-0651-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A multi-disciplinary approach to promote engagement, inform decision-making and support clinicians and patients is increasingly advocated to realise the potential of genome-scale sequencing in the clinic for patient benefit. Here we describe the results of establishing a genomic medicine multi-disciplinary team (GM-MDT) for case selection, processing, interpretation and return of results. METHODS We report a consecutive case series of 132 patients (involving 10 medical specialties with 43.2% cases having a neurological disorder) undergoing exome sequencing over a 10-month period following the establishment of the GM-MDT in a UK NHS tertiary referral hospital. The costs of running the MDT are also reported. RESULTS In total 76 cases underwent exome sequencing following triage by the GM-MDT with a clinically reportable molecular diagnosis in 24 (31.6%). GM-MDT composition, operation and rationale for whether to proceed to sequencing are described, together with the health economics (cost per case for the GM-MDT was £399.61), the utility and informativeness of exome sequencing for molecular diagnosis in a range of traits, the impact of choice of sequencing strategy on molecular diagnostic rates and challenge of defining pathogenic variants. In 5 cases (6.6%), an alternative clinical diagnosis was indicated by sequencing results. Examples were also found where findings from initial genetic testing were reconsidered in the light of exome sequencing including TP63 and PRKAG2 (detection of a partial exon deletion and a mosaic missense pathogenic variant respectively); together with tissue-specific mosaicism involving a cytogenetic abnormality following a normal prenatal array comparative genomic hybridization. CONCLUSIONS This consecutive case series describes the results and experience of a multidisciplinary team format that was found to promote engagement across specialties and facilitate return of results to the responsible clinicians.
Collapse
Affiliation(s)
- John Taylor
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jude Craft
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Edward Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sarah Wordsworth
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - David Beeson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Saleel Chandratre
- Children’s Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Judith Cossins
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tracy Lester
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrea H. Németh
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Clinical Neurosciences, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Smita Y. Patel
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Department of Clinical Immunology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alistair T. Pagnamenta
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jenny C. Taylor
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kate L. Thomson
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Andrew O. M. Wilkie
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Julian C. Knight
- National Institute for Health Research Biomedical Research Centre, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Nicole S, Azuma Y, Bauché S, Eymard B, Lochmüller H, Slater C. Congenital Myasthenic Syndromes or Inherited Disorders of Neuromuscular Transmission: Recent Discoveries and Open Questions. J Neuromuscul Dis 2019; 4:269-284. [PMID: 29125502 PMCID: PMC5701762 DOI: 10.3233/jnd-170257] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Congenital myasthenic syndromes (CMS) form a heterogeneous group of rare diseases characterized by fatigable muscle weakness. They are genetically-inherited and caused by defective synaptic transmission at the cholinergic neuromuscular junction (NMJ). The number of genes known to cause CMS when mutated is currently 30, and the relationship between fatigable muscle weakness and defective functions is quite well-understood for many of them. However, some of the most recent discoveries in individuals with CMS challenge our knowledge of the NMJ, where the basis of the pathology has mostly been investigated in animal models. Frontier forms between CMS and congenital myopathy, which have been genetically and clinically identified, underline the poorly understood interplay between the synaptic and extrasynaptic molecules in the neuromuscular system. In addition, precise electrophysiological and histopathological investigations of individuals with CMS suggest an important role of NMJ plasticity in the response to CMS pathogenesis. While efficient drug-based treatments are already available to improve neuromuscular transmission for most forms of CMS, others, as well as neurological and muscular comorbidities, remain resistant. Taken together, the available pathological data point to physiological issues which remain to be understood in order to achieve precision medicine with efficient therapeutics for all individuals suffering from CMS.
Collapse
Affiliation(s)
- Sophie Nicole
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013 Paris, France
| | - Yoshiteru Azuma
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Stéphanie Bauché
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013 Paris, France
| | - Bruno Eymard
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013 Paris, France.,AP-HP, Hôpital Pitié-Salpétrière, 75013 Paris, France
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Clarke Slater
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
32
|
Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J 2019; 286:2830-2869. [PMID: 30908868 DOI: 10.1111/febs.14818] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/06/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
Extracellular matrices (ECMs) are highly specialized and dynamic three-dimensional (3D) scaffolds into which cells reside in tissues. ECM is composed of a variety of fibrillar components, such as collagens, fibronectin, and elastin, and non-fibrillar molecules as proteoglycans, hyaluronan, and glycoproteins including matricellular proteins. These macromolecular components are interconnected forming complex networks that actively communicate with cells through binding to cell surface receptors and/or matrix effectors. ECMs exert diverse roles, either providing tissues with structural integrity and mechanical properties essential for tissue functions or regulating cell phenotype and functions to maintain tissue homeostasis. ECM molecular composition and structure vary among tissues, and is markedly modified during normal tissue repair as well as during the progression of various diseases. Actually, abnormal ECM remodeling occurring in pathologic circumstances drives disease progression by regulating cell-matrix interactions. The importance of matrix molecules to normal tissue functions is also highlighted by mutations in matrix genes that give rise to genetic disorders with diverse clinical phenotypes. In this review, we present critical and emerging issues related to matrix assembly in tissues and the multitasking roles for ECM in diseases such as osteoarthritis, fibrosis, cancer, and genetic diseases. The mechanisms underlying the various matrix-based diseases are also discussed. Research focused on the highly dynamic 3D ECM networks will help to discover matrix-related causative abnormalities of diseases as well as novel diagnostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
33
|
Tadenev ALD, Burgess RW. Model validity for preclinical studies in precision medicine: precisely how precise do we need to be? Mamm Genome 2019; 30:111-122. [PMID: 30953144 PMCID: PMC6606658 DOI: 10.1007/s00335-019-09798-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/27/2019] [Indexed: 12/15/2022]
Abstract
The promise of personalized medicine is that each patient’s treatment can be optimally tailored to their disease. In turn, their disease, as well as their response to the treatment, is determined by their genetic makeup and the “environment,” which relates to their general health, medical history, personal habits, and surroundings. Developing such optimized treatment strategies is an admirable goal and success stories include examples such as switching chemotherapy agents based on a patient’s tumor genotype. However, it remains a challenge to apply precision medicine to diseases for which there is no known effective treatment. Such diseases require additional research, often using experimentally tractable models. Presumably, models that recapitulate as much of the human pathophysiology as possible will be the most predictive. Here we will discuss the considerations behind such “precision models.” What sort of precision is required and under what circumstances? How can the predictive validity of such models be improved? Ultimately, there is no perfect model, but our continually improving ability to genetically engineer a variety of systems allows the generation of more and more precise models. Furthermore, our steadily increasing awareness of risk alleles, genetic background effects, multifactorial disease processes, and gene by environment interactions also allows increasingly sophisticated models that better reproduce patients’ conditions. In those cases where the research has progressed sufficiently far, results from these models appear to often be translating to effective treatments for patients.
Collapse
Affiliation(s)
- Abigail L D Tadenev
- The Center for Precision Genetics, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Robert W Burgess
- The Center for Precision Genetics, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| |
Collapse
|
34
|
Dempsey CE, Bigotti MG, Adams JC, Brancaccio A. Analysis of α-Dystroglycan/LG Domain Binding Modes: Investigating Protein Motifs That Regulate the Affinity of Isolated LG Domains. Front Mol Biosci 2019; 6:18. [PMID: 30984766 PMCID: PMC6450144 DOI: 10.3389/fmolb.2019.00018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/07/2019] [Indexed: 12/25/2022] Open
Abstract
Dystroglycan (DG) is an adhesion complex that links the cytoskeleton to the surrounding extracellular matrix in skeletal muscle and a wide variety of other tissues. It is composed of a highly glycosylated extracellular α-DG associated noncovalently with a transmembrane β-DG whose cytodomain interacts with dystrophin and its isoforms. Alpha-dystroglycan (α-DG) binds tightly and in a calcium-dependent fashion to multiple extracellular proteins and proteoglycans, each of which harbors at least one, or, more frequently, tandem arrays of laminin-globular (LG) domains. Considerable biochemical and structural work has accumulated on the α-DG-binding LG domains, highlighting a significant heterogeneity in ligand-binding properties of domains from different proteins as well as between single and multiple LG domains within the same protein. Here we review biochemical, structural, and functional information on the LG domains reported to bind α-dystroglycan. In addition, we have incorporated bioinformatics and modeling to explore whether specific motifs responsible for α-dystroglycan recognition can be identified within isolated LG domains. In particular, we analyzed the LG domains of slits and agrin as well as those of paradigmatic α-DG non-binders such as laminin-α3. While some stretches of basic residues may be important, no universally conserved motifs could be identified. However, the data confirm that the coordinated calcium atom within the LG domain is needed to establish an interaction with the sugars of α-DG, although it appears that this alone is insufficient to mediate significant α-DG binding. We develop a scenario involving different binding modes of a single LG domain unit, or tandemly repeated units, with α-DG. A variability of binding modes might be important to generate a range of affinities to allow physiological regulation of this interaction, reflecting its crucial biological importance.
Collapse
Affiliation(s)
| | | | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Andrea Brancaccio
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.,Istituto di Chimica del Riconoscimento Molecolare - CNR, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
35
|
Nicolau S, Milone M. The Electrophysiology of Presynaptic Congenital Myasthenic Syndromes With and Without Facilitation: From Electrodiagnostic Findings to Molecular Mechanisms. Front Neurol 2019; 10:257. [PMID: 30941097 PMCID: PMC6433874 DOI: 10.3389/fneur.2019.00257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/26/2019] [Indexed: 11/13/2022] Open
Abstract
Congenital myasthenic syndromes (CMS) are a group of inherited disorders of neuromuscular transmission most commonly presenting with early onset fatigable weakness, ptosis, and ophthalmoparesis. CMS are classified according to the localization of the causative molecular defect. CMS with presynaptic dysfunction can be caused by mutations in several different genes, including those involved in acetylcholine synthesis, its packaging into synaptic vesicles, vesicle docking, and release from the presynaptic nerve terminal and neuromuscular junction development and maintenance. Electrodiagnostic testing is key in distinguishing CMS from other neuromuscular disorders with similar clinical features as well as for revealing features pointing to a specific molecular diagnosis. A decremental response on low-frequency repetitive nerve stimulation (RNS) is present in most presynaptic CMS. In CMS with deficits in acetylcholine resynthesis however, a decrement may only appear after conditioning with exercise or high-frequency RNS and characteristically displays a slow recovery. Facilitation occurs in CMS caused by mutations in VAMP1, UNC13A, SYT2, AGRN, LAMA5. By contrast, facilitation is absent in the other presynaptic CMS described to date. An understanding of the underlying molecular mechanisms therefore assists the interpretation of electrodiagnostic findings in patients with suspected CMS.
Collapse
Affiliation(s)
- Stefan Nicolau
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | | |
Collapse
|
36
|
Heikkinen A, Härönen H, Norman O, Pihlajaniemi T. Collagen XIII and Other ECM Components in the Assembly and Disease of the Neuromuscular Junction. Anat Rec (Hoboken) 2019; 303:1653-1663. [PMID: 30768864 DOI: 10.1002/ar.24092] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/17/2018] [Accepted: 09/27/2018] [Indexed: 12/15/2022]
Abstract
Alongside playing structural roles, the extracellular matrix (ECM) acts as an interaction platform for cellular homeostasis, organ development, and maintenance. The necessity of the ECM is highlighted by the diverse, sometimes very serious diseases that stem from defects in its components. The neuromuscular junction (NMJ) is a large peripheral motor synapse differing from its central counterparts through the ECM included at the synaptic cleft. Such synaptic basal lamina (BL) is specialized to support NMJ establishment, differentiation, maturation, stabilization, and function and diverges in molecular composition from the extrasynaptic ECM. Mutations, toxins, and autoantibodies may compromise NMJ integrity and function, thereby leading to congenital myasthenic syndromes (CMSs), poisoning, and autoimmune diseases, respectively, and all these conditions may involve synaptic ECM molecules. With neurotransmission degraded or blocked, muscle function is impaired or even prevented. At worst, this can be fatal. The article reviews the synaptic BL composition required for assembly and function of the NMJ molecular machinery through the lens of studies primarily with mouse models but also with human patients. In-depth focus is given to collagen XIII, a postsynaptic-membrane-spanning but also shed ECM protein that in recent years has been revealed to be a significant component for the NMJ. Its deficiency in humans causes CMS, and autoantibodies against it have been recognized in autoimmune myasthenia gravis. Mouse models have exposed numerous details that appear to recapitulate human NMJ phenotypes relatively faithfully and thereby can be readily used to generate information necessary for understanding and ultimately treating human diseases. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anne Heikkinen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Heli Härönen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Oula Norman
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
37
|
Abstract
OBJECTIVES Congenital myasthenic syndromes (CMSs) are a genotypically and phenotypically heterogeneous group of neuromuscular disorders, which have in common an impaired neuromuscular transmission. Since the field of CMSs is steadily expanding, the present review aimed at summarizing and discussing current knowledge and recent advances concerning the etiology, clinical presentation, diagnosis, and treatment of CMSs. METHODS Systematic literature review. RESULTS Currently, mutations in 32 genes are made responsible for autosomal dominant or autosomal recessive CMSs. These mutations concern 8 presynaptic, 4 synaptic, 15 post-synaptic, and 5 glycosilation proteins. These proteins function as ion-channels, enzymes, or structural, signalling, sensor, or transporter proteins. The most common causative genes are CHAT, COLQ, RAPSN, CHRNE, DOK7, and GFPT1. Phenotypically, these mutations manifest as abnormal fatigability or permanent or fluctuating weakness of extra-ocular, facial, bulbar, axial, respiratory, or limb muscles, hypotonia, or developmental delay. Cognitive disability, dysmorphism, neuropathy, or epilepsy are rare. Low- or high-frequency repetitive nerve stimulation may show an abnormal increment or decrement, and SF-EMG an increased jitter or blockings. Most CMSs respond favourably to acetylcholine-esterase inhibitors, 3,4-diamino-pyridine, salbutamol, albuterol, ephedrine, fluoxetine, or atracurium. CONCLUSIONS CMSs are an increasingly recognised group of genetically transmitted defects, which usually respond favorably to drugs enhancing the neuromuscular transmission. CMSs need to be differentiated from neuromuscular disorders due to muscle or nerve dysfunction.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Veterinary University of Vienna, Postfach 20, 1180, Vienna, Austria.
| |
Collapse
|
38
|
Chardon JW, Jasmin BJ, Kothary R, Parks RJ. Report on the 4th Ottawa International Conference on Neuromuscular Disease and Biology - September 5-7, 2017, Ottawa, Canada. J Neuromuscul Dis 2018; 5:539-552. [PMID: 30373960 DOI: 10.3233/jnd-180353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jodi Warman Chardon
- Department of Medicine, The Ottawa Hospital and University of Ottawa, ON, Canada.,Department of Pediatrics (Genetics), Children's Hospital of Eastern Ontario, ON, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, ON, Canada.,Centre for Neuromuscular Disease, University of Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, ON, Canada
| | - Bernard J Jasmin
- Centre for Neuromuscular Disease, University of Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, ON, Canada
| | - Rashmi Kothary
- Department of Medicine, The Ottawa Hospital and University of Ottawa, ON, Canada.,Centre for Neuromuscular Disease, University of Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, ON, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, ON, Canada
| | - Robin J Parks
- Department of Medicine, The Ottawa Hospital and University of Ottawa, ON, Canada.,Centre for Neuromuscular Disease, University of Ottawa, ON, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada
| |
Collapse
|
39
|
Farmakidis C, Pasnoor M, Barohn RJ, Dimachkie MM. Congenital Myasthenic Syndromes: a Clinical and Treatment Approach. Curr Treat Options Neurol 2018; 20:36. [DOI: 10.1007/s11940-018-0520-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Husi H, MacDonald A, Skipworth RJE, Miller J, Cronshaw A, Fearon KCH, Ross JA. Proteomic identification of potential markers of myosteatosis in human urine. Biomed Rep 2018; 8:557-564. [PMID: 29904612 DOI: 10.3892/br.2018.1091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/19/2018] [Indexed: 01/06/2023] Open
Abstract
Myosteatosis, the infiltration of fat in skeletal muscle, is associated with lower skeletal muscle density (SMD) as detected by computed tomography (CT). It increases with aging and obesity and is thought to play a role in the aetiology of insulin resistance and type II diabetes. The clinical significance of myosteatosis in cancer cachexia, however, remains to be determined. Along with demonstrable subcutaneous and visceral lipolysis, myosteatosis may also be a key component of the syndrome. We aimed to investigate the use of human urine as a non-invasive way to screen for molecular biomarkers of myosteatosis/reduced SMD using SELDI-TOF mass spectrometry. Pre-operative CT scans of patients undergoing surgery for upper gastrointestinal or hepatopancreaticobiliary cancer were analysed at the level of the third lumbar vertebrae. Myosteatosis was inferred as the presence of reduced SMD, which was defined as Hounsfield units for skeletal muscle <39.5 (two standard deviations below a normal healthy cohort). Urine was analysed by mass spectrometry using CM10 and IMAC30 SELDI-chips. Peaks observed in the CM10 and IMAC30 chip types, showed marked expressional differences between control and myosteatosis, were further investigated by mascot SELDI matrix matching. A total of 55 patients was recruited; 31 patients were found to be myosteatotic on CT scan. Application of the IMAC30-derived model to the entire cohort showed a sensitivity of 97%, specificity of 71% and an overall correctness of 85%. Application of the CM10 chipset-based model to the entire cohort, showed a 77% sensitivity, 67% specificity and 73% overall correctness. Analysis of the peaks of interest resulted in the identification of significant fragments of cathepsin C, argin, arylsulfatase A and glial fibrillary acidic protein. We identified several potential urinary molecular biomarkers associated with reduced SMD in cancer. Such markers are potentially useful in deriving a clinical screening test for myosteatosis.
Collapse
Affiliation(s)
- Holger Husi
- Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Centre for Health Science, IV2 3JH Inverness, UK
| | - Alisdair MacDonald
- Department of Clinical Sciences, University of Edinburgh, EH16 4SB Edinburgh, UK
| | | | - Janice Miller
- Department of Clinical Sciences, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - Andrew Cronshaw
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Kenneth C H Fearon
- Department of Clinical Sciences, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - James A Ross
- Department of Clinical Sciences, University of Edinburgh, EH16 4SB Edinburgh, UK
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Summarize features of the currently recognized congenital myasthenic syndromes (CMS) with emphasis on novel findings identified in the past 6 years. RECENT FINDINGS Since the last review of the CMS in this journal in 2012, several novel CMS were identified. The identified disease proteins are SNAP25B, synaptotagmin 2, Munc13-1, synaptobrevin-1, GFPT1, DPAGT1, ALG2, ALG14, Agrin, GMPPB, LRP4, myosin 9A, collagen 13A1, the mitochondrial citrate carrier, PREPL, LAMA5, the vesicular ACh transporter, and the high-affinity presynaptic choline transporter. Exome sequencing has provided a powerful tool for identifying novel CMS. Identifying the disease genes is essential for determining optimal therapy. The landscape of the CMS is still unfolding.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
42
|
Rodríguez Cruz PM, Palace J, Beeson D. The Neuromuscular Junction and Wide Heterogeneity of Congenital Myasthenic Syndromes. Int J Mol Sci 2018; 19:ijms19061677. [PMID: 29874875 PMCID: PMC6032286 DOI: 10.3390/ijms19061677] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/17/2018] [Accepted: 05/21/2018] [Indexed: 01/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are genetic disorders characterised by impaired neuromuscular transmission. This review provides an overview on CMS and highlights recent advances in the field, including novel CMS causative genes and improved therapeutic strategies. CMS due to mutations in SLC5A7 and SLC18A3, impairing the synthesis and recycling of acetylcholine, have recently been described. In addition, a novel group of CMS due to mutations in SNAP25B, SYT2, VAMP1, and UNC13A1 encoding molecules implicated in synaptic vesicles exocytosis has been characterised. The increasing number of presynaptic CMS exhibiting CNS manifestations along with neuromuscular weakness demonstrate that the myasthenia can be only a small part of a much more extensive disease phenotype. Moreover, the spectrum of glycosylation abnormalities has been increased with the report that GMPPB mutations can cause CMS, thus bridging myasthenic disorders with dystroglycanopathies. Finally, the discovery of COL13A1 mutations and laminin α5 deficiency has helped to draw attention to the role of extracellular matrix proteins for the formation and maintenance of muscle endplates. The benefit of β2-adrenergic agonists alone or combined with pyridostigmine or 3,4-Dyaminopiridine is increasingly being reported for different subtypes of CMS including AChR-deficiency and glycosylation abnormalities, thus expanding the therapeutic repertoire available.
Collapse
Affiliation(s)
- Pedro M Rodríguez Cruz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | - David Beeson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
43
|
Schneider M, Al-Shareffi E, Haltiwanger RS. Biological functions of fucose in mammals. Glycobiology 2018; 27:601-618. [PMID: 28430973 DOI: 10.1093/glycob/cwx034] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022] Open
Abstract
Fucose is a 6-deoxy hexose in the l-configuration found in a large variety of different organisms. In mammals, fucose is incorporated into N-glycans, O-glycans and glycolipids by 13 fucosyltransferases, all of which utilize the nucleotide-charged form, GDP-fucose, to modify targets. Three of the fucosyltransferases, FUT8, FUT12/POFUT1 and FUT13/POFUT2, are essential for proper development in mice. Fucose modifications have also been implicated in many other biological functions including immunity and cancer. Congenital mutations of a Golgi apparatus localized GDP-fucose transporter causes leukocyte adhesion deficiency type II, which results in severe developmental and immune deficiencies, highlighting the important role fucose plays in these processes. Additionally, changes in levels of fucosylated proteins have proven as useful tools for determining cancer diagnosis and prognosis. Chemically modified fucose analogs can be used to alter many of these fucose dependent processes or as tools to better understand them. In this review, we summarize the known roles of fucose in mammalian physiology and pathophysiology. Additionally, we discuss recent therapeutic advances for cancer and other diseases that are a direct result of our improved understanding of the role that fucose plays in these systems.
Collapse
Affiliation(s)
- Michael Schneider
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Esam Al-Shareffi
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Psychiatry, Georgetown University Hospital, Washington, DC 20007, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
44
|
Zhang Y, Dai Y, Han JN, Chen ZH, Ling L, Pu CQ, Cui LY, Huang XS. A Novel AGRN Mutation Leads to Congenital Myasthenic Syndrome Only Affecting Limb-girdle Muscle. Chin Med J (Engl) 2018; 130:2279-2282. [PMID: 28937031 PMCID: PMC5634075 DOI: 10.4103/0366-6999.215332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Congenital myasthenic syndromes (CMSs) are a group of clinically and genetically heterogeneous disorders caused by impaired neuromuscular transmission. The defect of AGRN was one of the causes of CMS through influencing the development and maintenance of neuromuscular transmission. However, CMS reports about this gene mutation were rare. Here, we report a novel homozygous missense mutation (c.5302G>C) of AGRN in a Chinese CMS pedigree. METHODS We performed a detailed clinical assessment of a Chinese family with three affected members. We screened for pathogenic mutations using a disease-related gene panel containing 519 genes associated with genetic myopathy (including 17 CMS genes). RESULTS In the family, the proband showed limb-girdle pattern of weakness with sparing of ocular, facial, bulbar, and respiratory muscles. Repetitive nerve stimulation showed a clear decrement of the compound muscle action potentials at 3 Hz only. Pathological analysis of the left tibialis anterior muscle showed predominance of type I fiber and the presence of scattered small angular fibers. The proband's two elder sisters shared a similar but more severe phenotype. By gene analysis, the same novel homozygous mutation (c.5302G>C, p. A1768P) of AGRN was identified in all three affected members, whereas the same heterozygous mutation was found in both parents, revealing an autosomal recessive transmission pattern. All patients showed beneficial responses to adrenergic agonists. CONCLUSIONS This study reports a Chinese pedigree in which all three children carried the same novel AGRN mutation have CMS only affecting limb-girdle muscle. These findings might expand the spectrum of mutation in AGRN and enrich the phenotype of CMS.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853; Cadre Ward Two, The First Affiliated Hospital of Chinese People's Liberation Army General Hospital, Beijing 100843, China
| | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Jing-Na Han
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Zhao-Hui Chen
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Li Ling
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Chuan-Qiang Pu
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Li-Ying Cui
- Department of Neurology, Peking Union Medical College Hospital; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xu-Sheng Huang
- Department of Neurology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
45
|
|
46
|
Animal Models of the Neuromuscular Junction, Vitally Informative for Understanding Function and the Molecular Mechanisms of Congenital Myasthenic Syndromes. Int J Mol Sci 2018; 19:ijms19051326. [PMID: 29710836 PMCID: PMC5983836 DOI: 10.3390/ijms19051326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 01/16/2023] Open
Abstract
The neuromuscular junction is the point of contact between motor nerve and skeletal muscle, its vital role in muscle function is reliant on the precise location and function of many proteins. Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders of neuromuscular transmission with 30 or more implicated proteins. The use of animal models has been instrumental in determining the specific role of many CMS-related proteins. The mouse neuromuscular junction (NMJ) has been extensively studied in animal models of CMS due to its amenability for detailed electrophysiological and histological investigations and relative similarity to human NMJ. As well as their use to determine the precise molecular mechanisms of CMS variants, where an animal model accurately reflects the human phenotype they become useful tools for study of therapeutic interventions. Many of the animal models that have been important in deconvolving the complexities of neuromuscular transmission and revealing the molecular mechanisms of disease are highlighted.
Collapse
|
47
|
O’Connor E, Phan V, Cordts I, Cairns G, Hettwer S, Cox D, Lochmüller H, Roos A. MYO9A deficiency in motor neurons is associated with reduced neuromuscular agrin secretion. Hum Mol Genet 2018; 27:1434-1446. [PMID: 29462312 PMCID: PMC5991207 DOI: 10.1093/hmg/ddy054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
Congenital myasthenic syndromes (CMS) are a group of rare, inherited disorders characterized by compromised function of the neuromuscular junction, manifesting with fatigable muscle weakness. Mutations in MYO9A were previously identified as causative for CMS but the precise pathomechanism remained to be characterized. On the basis of the role of MYO9A as an actin-based molecular motor and as a negative regulator of RhoA, we hypothesized that loss of MYO9A may affect the neuronal cytoskeleton, leading to impaired intracellular transport. To investigate this, we used MYO9A-depleted NSC-34 cells (mouse motor neuron-derived cells), revealing altered expression of a number of cytoskeletal proteins important for neuron structure and intracellular transport. On the basis of these findings, the effect on protein transport was determined using a vesicular recycling assay which revealed impaired recycling of a neuronal growth factor receptor. In addition, an unbiased approach utilizing proteomic profiling of the secretome revealed a key role for defective intracellular transport affecting proper protein secretion in the pathophysiology of MYO9A-related CMS. This also led to the identification of agrin as being affected by the defective transport. Zebrafish with reduced MYO9A orthologue expression were treated with an artificial agrin compound, ameliorating defects in neurite extension and improving motility. In summary, loss of MYO9A affects the neuronal cytoskeleton and leads to impaired transport of proteins, including agrin, which may provide a new and unexpected treatment option.
Collapse
Affiliation(s)
- Emily O’Connor
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Vietxuan Phan
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V, Dortmund, Germany
| | - Isabell Cordts
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - George Cairns
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Daniel Cox
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andreas Roos
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V, Dortmund, Germany
| |
Collapse
|
48
|
Ito M, Ohno K. Protein-anchoring therapy to target extracellular matrix proteins to their physiological destinations. Matrix Biol 2018; 68-69:628-636. [PMID: 29475025 DOI: 10.1016/j.matbio.2018.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
Abstract
Endplate acetylcholinesterase (AChE) deficiency is a form of congenital myasthenic syndrome (CMS) caused by mutations in COLQ, which encodes collagen Q (ColQ). ColQ is an extracellular matrix (ECM) protein that anchors AChE to the synaptic basal lamina. Biglycan, encoded by BGN, is another ECM protein that binds to the dystrophin-associated protein complex (DAPC) on skeletal muscle, which links the actin cytoskeleton and ECM proteins to stabilize the sarcolemma during repeated muscle contractions. Upregulation of biglycan stabilizes the DPAC. Gene therapy can potentially ameliorate any disease that can be recapitulated in cultured cells. However, the difficulty of tissue-specific and developmental stage-specific regulated expression of transgenes, as well as the difficulty of introducing a transgene into all cells in a specific tissue, prevents us from successfully applying gene therapy to many human diseases. In contrast to intracellular proteins, an ECM protein is anchored to the target tissue via its specific binding affinity for protein(s) expressed on the cell surface within the target tissue. Exploiting this unique feature of ECM proteins, we developed protein-anchoring therapy in which a transgene product expressed even in remote tissues can be delivered and anchored to a target tissue using specific binding signals. We demonstrate the application of protein-anchoring therapy to two disease models. First, intravenous administration of adeno-associated virus (AAV) serotype 8-COLQ to Colq-deficient mice, resulting in specific anchoring of ectopically expressed ColQ-AChE at the NMJ, markedly improved motor functions, synaptic transmission, and the ultrastructure of the neuromuscular junction (NMJ). In the second example, Mdx mice, a model for Duchenne muscular dystrophy, were intravenously injected with AAV8-BGN. The treatment ameliorated motor deficits, mitigated muscle histopathologies, decreased plasma creatine kinase activities, and upregulated expression of utrophin and DAPC component proteins. We propose that protein-anchoring therapy could be applied to hereditary/acquired defects in ECM and secreted proteins, as well as therapeutic overexpression of such factors.
Collapse
Affiliation(s)
- Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Japan.
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Japan
| |
Collapse
|
49
|
Lee M, Beeson D, Palace J. Therapeutic strategies for congenital myasthenic syndromes. Ann N Y Acad Sci 2018; 1412:129-136. [DOI: 10.1111/nyas.13538] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Manon Lee
- Nuffield Department of Clinical Neurosciences; John Radcliffe Hospital; Oxford United Kingdom
| | - David Beeson
- The Weatherall Institute of Molecular Medicine, John Radcliffe Hospital; University of Oxford; Oxford United Kingdom
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences; John Radcliffe Hospital; Oxford United Kingdom
| |
Collapse
|
50
|
Maselli RA, Arredondo J, Vázquez J, Chong JX, Bamshad MJ, Nickerson DA, Lara M, Ng F, Lo VL, Pytel P, McDonald CM. A presynaptic congenital myasthenic syndrome attributed to a homozygous sequence variant in LAMA5. Ann N Y Acad Sci 2018; 1413:119-125. [PMID: 29377152 DOI: 10.1111/nyas.13585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/18/2017] [Accepted: 11/27/2017] [Indexed: 12/23/2022]
Abstract
We report a severe defect of neuromuscular transmission in a consanguineous patient with a homozygous variant in the laminin α5 subunit gene (LAMA5). The variant c.8046C > T (p.Arg2659Trp) is rare and has a predicted deleterious effect. The affected individual, who also carries a rare homozygous sequence variant in LAMA1, had normal cognitive function, but magnetic resonance brain imaging showed mild volume loss and periventricular T2 prolongation. Repetitive nerve stimulation at 2 Hz showed 50% decrement of compound muscle action potential amplitudes but 250% facilitation immediately after exercise, similar to that seen in Lambert-Eaton myasthenic syndrome. Endplate studies demonstrated a profound reduction of the endplate potential quantal content but normal amplitudes of miniature endplate potentials. Electron microscopy showed endplates with increased postsynaptic folding that were denuded or only partially occupied by small nerve terminals. Expression studies revealed that p.Arg2659Trp caused decreased binding of laminin α5 to SV2A and impaired laminin-521 cell adhesion and cell projection support in primary neuronal cultures. In summary, this report describing severe neuromuscular transmission failure in a patient with a LAMA5 mutation expands the list of phenotypes associated with defects in genes encoding α-laminins.
Collapse
Affiliation(s)
- Ricardo A Maselli
- Department of Neurology, University of California Davis, Sacramento, California
| | - Juan Arredondo
- Department of Neurology, University of California Davis, Sacramento, California
| | - Jessica Vázquez
- Department of Neurology, University of California Davis, Sacramento, California
| | - Jessica X Chong
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, Washington.,Department of Genome Sciences, University of Washington, Seattle, Washington.,Division of Genetic Medicine, Seattle Children's Hospital, Seattle, Washington
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Marian Lara
- Department of Neurology, University of California Davis, Sacramento, California
| | - Fiona Ng
- Department of Neurology, University of California Davis, Sacramento, California
| | - Victoria Lee Lo
- Department of Neurology, University of California Davis, Sacramento, California
| | - Peter Pytel
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Craig M McDonald
- Department of Medicine and Rehabilitation, University of California Davis, Sacramento, California
| |
Collapse
|