1
|
Beaudry MS, Bhuiyan MIU, Glenn TC. Enriching the future of public health microbiology with hybridization bait capture. Clin Microbiol Rev 2024:e0006822. [PMID: 39545729 DOI: 10.1128/cmr.00068-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
SUMMARYPublic health microbiology focuses on microorganisms and infectious agents that impact human health. For years, this field has relied on culture or molecular methods to investigate complex samples of public health importance. However, with the increase in accuracy and decrease in sequencing cost over the last decade, there has been a transition to the use of next-generation sequencing in public health microbiology. Nevertheless, many available sequencing methods (e.g., shotgun metagenomics and amplicon sequencing) do not work well in complex sample types, require deep sequencing, or have inherent biases associated with them. Hybridization bait capture, also known as target enrichment, brings in solutions for such limitations. It is an increasingly popular technique to simultaneously characterize many thousands of genetic elements while reducing the amount of sequencing needed (thereby reducing the sequencing costs). Here, we summarize the concept of hybridization bait capture for public health, reviewing a total of 35 bait sets designed in six key topic areas for public health microbiology [i.e., antimicrobial resistance (AMR), bacteria, fungi, parasites, vectors, and viruses], and compare hybridization bait capture to previously relied upon methods. Furthermore, we provide an in-depth comparison of the three most popular bait sets designed for AMR by evaluating each of them against three major AMR databases: Comprehensive Antibiotic Resistance Database, Microbial Ecology Group Antimicrobial Resistance Database, and Pathogenicity Island Database. Thus, this article provides a review of hybridization bait capture for public health microbiologists.
Collapse
Affiliation(s)
- Megan S Beaudry
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | | | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Hamvas A, Chaudhari BP, Nogee LM. Genetic testing for diffuse lung diseases in children. Pediatr Pulmonol 2024; 59:2286-2297. [PMID: 37191361 DOI: 10.1002/ppul.26447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/04/2023] [Accepted: 04/23/2023] [Indexed: 05/17/2023]
Abstract
Newly developing genomic technologies are an increasingly important part of clinical care and thus, it is not only important to understand the technologies and their limitations, but to also interpret the findings in an actionable fashion. Clinical geneticists and genetic counselors are now an integral part of the clinical team and are able to bridge the complexities of this rapidly changing science between the bedside clinicians and patients. This manuscript reviews the terminology, the current technology, some of the known genetic disorders that result in lung disease, and indications for genetic testing with associated caveats. Because this field is evolving quickly, we also provide links to websites that provide continuously updated information important for integrating genomic technology results into clinical decision-making.
Collapse
Affiliation(s)
- Aaron Hamvas
- Department of Pediatrics, Division of Neonatology, Ann and Robert H. Lurie Children's Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bimal P Chaudhari
- Divisions of Genetics and Genomic Medicine, Neonatology, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Lawrence M Nogee
- Department of Pediatrics, Eudowood Neonatal Pulmonary Division, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Caroselli S, Poli M, Gatta V, Stuppia L, Capalbo A. Preconception carrier screening and preimplantation genetic testing in the infertility management. Andrology 2024. [PMID: 39166614 DOI: 10.1111/andr.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/19/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Genetic testing serves as a valuable element of reproductive care, applicable at various stages of the reproductive journey: (i) before pregnancy, when a couple's genetic reproductive risk can be evaluated; (ii) before embryo implantation, as part of in vitro fertilization (IVF) treatment, to ascertain several inherited or de novo genetic/chromosomal diseases of the embryo before transfer; (iii) during the prenatal period, to assess the genetic costitution of the fetus. Preconception carrier screening (CS) is a genetic test typically performed on couples planning a pregnancy. The primary purpose of CS is to identify couples at-risk of conceiving a child affected by a severe genetic disorder with autosomal recessive or X-linked inheritance. Detection of high reproductive risk through CS allows prospective parents to be informed of their predisposition and improve reproductive decision-making. These include undergoing IVF with preimplantation genetic testing (PGT) or donor gametes, prenatal diagnosis, adoption, remaining childless, taking no actions. Both the presence of the affected gene (PGT-M) and chromosomal status (PGT-A) of the embryo can be comprehensively assessed through modern approaches. OBJECTIVES We provide a review of CS and PGT applications to equip healthcare providers with up-to-date information regarding their opportunities and complexities. RESULTS AND DISCUSSION The use of CS and PGT is currently considered the most effective intervention for avoiding both an affected pregnancy whilst using autologous gametes in couples with known increased risk, and chromosomal abnormalities. As our understanding in the genetic component in pathological conditions increases, the number of tested disorders will expand, offering a more thorough assessment of one's genetic inheritance. Nevertheless, implementation and development in this field must be accompanied by scientific and ethical considerations to ensure this approach serves the best long-term interests of individuals and society, promoting justice and autonomy and preserving parenthood and the healthcare system. CONCLUSION The combination of CS and PGT aligns with principles of personalized medicine by offering reproductive care tailored to the individual's genetic makeup.
Collapse
Affiliation(s)
- Silvia Caroselli
- Juno Genetics, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Valentina Gatta
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti-Pescara, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti-Pescara, Italy
| | - Liborio Stuppia
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti-Pescara, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti-Pescara, Italy
| | - Antonio Capalbo
- Juno Genetics, Rome, Italy
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti-Pescara, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti-Pescara, Italy
| |
Collapse
|
4
|
Knoers NV, van Eerde AM. The Role of Genetic Testing in Adult CKD. J Am Soc Nephrol 2024; 35:1107-1118. [PMID: 39288914 PMCID: PMC11377809 DOI: 10.1681/asn.0000000000000401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Mounting evidence indicates that monogenic disorders are the underlying cause in a significant proportion of patients with CKD. In recent years, the diagnostic yield of genetic testing in these patients has increased significantly as a result of revolutionary developments in genetic sequencing techniques and sequencing data analysis. Identification of disease-causing genetic variant(s) in patients with CKD may facilitate prognostication and personalized management, including nephroprotection and decisions around kidney transplantation, and is crucial for genetic counseling and reproductive family planning. A genetic diagnosis in a patient with CKD allows for screening of at-risk family members, which is also important for determining their eligibility as kidney transplant donors. Despite evidence for clinical utility, increased availability, and data supporting the cost-effectiveness of genetic testing in CKD, especially when applied early in the diagnostic process, many nephrologists do not use genetic testing to its full potential because of multiple perceived barriers. Our aim in this article was to empower nephrologists to (further) implement genetic testing as a diagnostic means in their clinical practice, on the basis of the most recent insights and exemplified by patient vignettes. We stress why genetic testing is of significant clinical benefit to many patients with CKD, provide recommendations for which patients to test and which test(s) to order, give guidance about interpretation of genetic testing results, and highlight the necessity for and essential components of pretest and post-test genetic counseling.
Collapse
Affiliation(s)
- Nine V.A.M. Knoers
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | | |
Collapse
|
5
|
Wang X, Le C, Jin X, Feng Y, Chen L, Huang X, Tian S, Wang Q, Ji J, Liu Y, Zhang H, Huang J, Ren Z. Estimating postmortem interval based on oral microbial community succession in rat cadavers. Heliyon 2024; 10:e31897. [PMID: 38882314 PMCID: PMC11177140 DOI: 10.1016/j.heliyon.2024.e31897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024] Open
Abstract
The accurate estimation of the postmortem interval has been one of the crucial issues to be solved in forensic research, and it is influenced by various factors in the process of decay. With the development of high-throughput sequencing technology, forensic microbiology has become the major hot topic in forensic science, which provides new research options for postmortem interval estimation. The oral microbial community is one of the most diverse of microbiomes, ranking as the second most abundant microbiota following the gastrointestinal tract. It is remarkable that oral microorganisms have a significant function in the decay process of cadavers. Therefore, we collected outdoor soil to simulate the death environment and focused on the relationship between oral microbial community succession and PMI in rats above the soil. In addition, linear regression models and random forest regression models were developed for the relationship between the relative abundance of oral microbes and PMI. We also identified a number of microorganisms that may be important to estimate PMI, including: Ignatzschineria, Morganella, Proteus, Lysinibacillus, Pseudomonas, Globicatella, Corynebacterium, Streptococcus, Rothia, Aerococcus, Staphylococcus, and so on.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Cuiyun Le
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaoye Jin
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yuhang Feng
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Li Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaolan Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Shunyi Tian
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Qiyan Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jingyan Ji
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yubo Liu
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hongling Zhang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Zheng Ren
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| |
Collapse
|
6
|
Graham AS, Patel F, Little F, van der Kouwe A, Kaba M, Holmes MJ. Using short-read 16S rRNA sequencing of multiple variable regions to generate high-quality results to a species level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.591068. [PMID: 38798511 PMCID: PMC11118338 DOI: 10.1101/2024.05.13.591068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Introduction Short-read amplicon sequencing studies have typically focused on 1-2 variable regions of the 16S rRNA gene. Species-level resolution is limited in these studies, as each variable region enables the characterisation of a different subsection of the microbiome. Although long-read sequencing techniques take advantage of all 9 variable regions by sequencing the entire 16S rRNA gene, they are substantially more expensive. This work assessed the feasibility of accurate species-level resolution and reproducibility using a relatively new sequencing kit and bioinformatics pipeline developed for short-read sequencing of multiple variable regions of the 16S rRNA gene. In addition, we evaluated the potential impact of different sample collection methods on our outcomes. Methods Using xGen™ 16S Amplicon Panel v2 kits, sequencing of all 9 variable regions of the 16S rRNA gene was carried out on an Illumina MiSeq platform. Mock cells and mock DNA for 8 bacterial species were included as extraction and sequencing controls respectively. Within-run and between-run replicate samples, and pairs of stool and rectal swabs collected at 0-5 weeks from the same participants, were incorporated. Observed relative abundances of each species were compared to theoretical abundances provided by ZymoBIOMICS. Paired Wilcoxon rank sum tests and distance-based intraclass correlation coefficients were used to statistically compare alpha and beta diversity measures, respectively, for pairs of replicates and stool/rectal swab sample pairs. Results Using multiple variable regions of the 16S ribosomal Ribonucleic Acid (rRNA) gene, we found that we could accurately identify taxa to a species level and obtain highly reproducible results at a species level. Yet, the microbial profiles of stool and rectal swab sample pairs differed substantially despite being collected concurrently from the same infants. Conclusion This protocol provides an effective means for studying infant gut microbial samples at a species level. However, sample collection approaches need to be accounted for in any downstream analysis.
Collapse
Affiliation(s)
- Amy S Graham
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
| | - Fadheela Patel
- Department of Pathology, Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Andre van der Kouwe
- Athinoula A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Mamadou Kaba
- Department of Pathology, Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Martha J Holmes
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| |
Collapse
|
7
|
Costanzo H, Gooch J, Tungsirisurp S, Frascione N. The Development and Characterisation of ssDNA Aptamers via a Modified Cell-SELEX Methodology for the Detection of Human Red Blood Cells. Int J Mol Sci 2024; 25:1814. [PMID: 38339091 PMCID: PMC10855528 DOI: 10.3390/ijms25031814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Blood is one of the most commonly found biological fluids at crime scenes, with the detection and identification of blood holding a high degree of evidential value. It can provide not only information about the nature of the crime but can also lead to identification via DNA profiling. Presumptive tests for blood are usually sensitive but not specific, so small amounts of the substrate can be detected, but false-positive results are often encountered, which can be misleading. Novel methods for the detection of red blood cells based on aptamer-target interactions may be able to overcome these issues. Aptamers are single-stranded DNA or RNA sequences capable of undergoing selective antigen association due to three-dimensional structure formation. The use of aptamers as a target-specific moiety poses several advantages and has the potential to replace antibodies within immunoassays. Aptamers are cheaper to produce, display no batch-to-batch variation and can allow for a wide range of chemical modifications. They can help limit cross-reactivity, which is a hindrance to current forensic testing methods. Within this study, a modified Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process was used to generate aptamers against whole red blood cells. Obtained aptamer pools were analysed via massively parallel sequencing to identify viable sequences that demonstrate a high affinity for the target. Using bioinformatics platforms, aptamer candidates were identified via their enrichment profiles. Binding characterisation was also conducted on two selected aptamer candidates via fluorescent microscopy and qPCR to visualise and quantify aptamer binding. The potential for these aptamers is broad as they can be utilised within a range of bioassays for not only forensic applications but also other analytical science and medical applications. Potential future work includes the incorporation of developed aptamers into a biosensing platform that can be used at crime scenes for the real-time detection of human blood.
Collapse
Affiliation(s)
| | | | | | - Nunzianda Frascione
- Department of Analytical, Environmental & Forensic Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9NH, UK; (H.C.); (J.G.); (S.T.)
| |
Collapse
|
8
|
Helman G, Orthmann-Murphy JL, Vanderver A. Approaches to diagnosis for individuals with a suspected inherited white matter disorder. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:21-35. [PMID: 39322380 DOI: 10.1016/b978-0-323-99209-1.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Leukodystrophies are heritable disorders with white matter abnormalities observed on central nervous system magnetic resonance imaging. Pediatric leukodystrophies have long been known for their classically high, "unsolved" rate. Indeed, these disorders provide a diagnostic dilemma for many clinicians as over 100 genetic disorders alone may present with white matter abnormalities, with this figure not taking into account the substantial number of infectious agents, toxicities, and acquired disorders that may affect the white matter of the brain. Achieving a diagnosis may be the single most important step in the clinical course of a leukodystrophy-affected individual, with important implications for care and quality of life. For certain disorders, prompt recognition can direct therapeutic intervention with significant implications and requires urgent recognition. In this review, we cover newborn screening efforts, standard-of-care testing methodologies, and next generation sequencing approaches that continue to change the landscape of leukodystrophy diagnosis. Early studies have shown that next generation sequencing approaches, particularly exome and now genome sequencing have proven to be powerful in helping resolve many cases that were refractory to a single gene or linkage analysis approach. In addition, other methods are required for cases that remain persistently unsolved after next generation sequencing methods have been used. In the past more than half of affected individuals never achieved an etiologic diagnosis, and when they did, the reported times to diagnosis were >5 years although molecular testing has allowed this to be reduced to closer to 16 months. For affected families, next generation sequencing technologies have finally provided a way to fill gaps in diagnosis.
Collapse
Affiliation(s)
- Guy Helman
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jennifer L Orthmann-Murphy
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Adeline Vanderver
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
9
|
Islam MS, Gopalan V, Lam AK, Shiddiky MJA. Current advances in detecting genetic and epigenetic biomarkers of colorectal cancer. Biosens Bioelectron 2023; 239:115611. [PMID: 37619478 DOI: 10.1016/j.bios.2023.115611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Colorectal carcinoma (CRC) is the third most common cancer in terms of diagnosis and the second in terms of mortality. Recent studies have shown that various proteins, extracellular vesicles (i.e., exosomes), specific genetic variants, gene transcripts, cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and altered epigenetic patterns, can be used to detect, and assess the prognosis of CRC. Over the last decade, a plethora of conventional methodologies (e.g., polymerase chain reaction [PCR], direct sequencing, enzyme-linked immunosorbent assay [ELISA], microarray, in situ hybridization) as well as advanced analytical methodologies (e.g., microfluidics, electrochemical biosensors, surface-enhanced Raman spectroscopy [SERS]) have been developed for analyzing genetic and epigenetic biomarkers using both optical and non-optical tools. Despite these methodologies, no gold standard detection method has yet been implemented that can analyze CRC with high specificity and sensitivity in an inexpensive, simple, and time-efficient manner. Moreover, until now, no study has critically reviewed the advantages and limitations of these methodologies. Here, an overview of the most used genetic and epigenetic biomarkers for CRC and their detection methods are discussed. Furthermore, a summary of the major biological, technical, and clinical challenges and advantages/limitations of existing techniques is also presented.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Muhammad J A Shiddiky
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
10
|
Chen J, Xu F. Application of Nanopore Sequencing in the Diagnosis and Treatment of Pulmonary Infections. Mol Diagn Ther 2023; 27:685-701. [PMID: 37563539 PMCID: PMC10590290 DOI: 10.1007/s40291-023-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 08/12/2023]
Abstract
This review provides an in-depth discussion of the development, principles and utility of nanopore sequencing technology and its diverse applications in the identification of various pulmonary pathogens. We examined the emergence and advancements of nanopore sequencing as a significant player in this field. We illustrate the challenges faced in diagnosing mixed infections and further scrutinize the use of nanopore sequencing in the identification of single pathogens, including viruses (with a focus on its use in epidemiology, outbreak investigation, and viral resistance), bacteria (emphasizing 16S targeted sequencing, rare bacterial lung infections, and antimicrobial resistance studies), fungi (employing internal transcribed spacer sequencing), tuberculosis, and atypical pathogens. Furthermore, we discuss the role of nanopore sequencing in metagenomics and its potential for unbiased detection of all pathogens in a clinical setting, emphasizing its advantages in sequencing genome repeat areas and structural variant regions. We discuss the limitations in dealing with host DNA removal, the inherent high error rate of nanopore sequencing technology, along with the complexity of operation and processing, while acknowledging the possibilities provided by recent technological improvements. We compared nanopore sequencing with the BioFire system, a rapid molecular diagnostic system based on polymerase chain reaction. Although the BioFire system serves well for the rapid screening of known and common pathogens, it falls short in the identification of unknown or rare pathogens and in providing comprehensive genome analysis. As technological advancements continue, it is anticipated that the role of nanopore sequencing technology in diagnosing and treating lung infections will become increasingly significant.
Collapse
Affiliation(s)
- Jie Chen
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
11
|
Wu C, Maegawa GHB, Zhang H. Integrating whole-genome sequencing and transcriptomic findings in the diagnosis and management of Coffin-Siris syndrome. Brain Dev 2023; 45:495-504. [PMID: 37302973 DOI: 10.1016/j.braindev.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/15/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Although the whole-exome sequencing (WES) approach has been widely used in clinic, many rare diseases with syndromic and nonsyndromic neurological manifestations remain undiagnosed. Coffin-Siris syndrome (CSS) is a rare autosomal dominant genetic disease characterized by neurodevelopmental delay. A suspected diagnosis can be made based on the typical CSS clinical features; however, molecular genetic testing is necessary for a confirmed diagnosis. OBJECTIVES Three CSS-like patients with negative results in the WES and chromosomal microarray analysis (CMA) were recruited in this study. METHODS We used whole-genome sequencing (WGS) technology to sequence the peripheral blood of the three families. To further explore the possible pathogenesis of CSS, we performed RNA-sequencing (RNA-seq). RESULTS WGS identified the three CSS patients were carrying de novo copy number variants of the ARID1B gene, which have not been reported before. RNA-seq identified 184 differentially expressed genes (DEGs), with 116 up-regulated and 68 down-regulated. Functional annotation of DEGs showed that two biological processes (immune response, chemokine activity) and two signaling pathways (cytokine-cytokine receptor interaction, chemokine activity) were highlighted. We speculated that ARID1B deficiency might trigger abnormal immune responses, which may be involved in the pathophysiologic mechanisms of CSS. CONCLUSION Our research provided further support for WGS application in CSS diagnosis and made an investigational approach for the underlying mechanisms of CSS.
Collapse
Affiliation(s)
- Chenchen Wu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Gustavo H B Maegawa
- Department of Pediatrics Columbia, University Irving Medical Center, New York-Presbyterian Morgan Stanley Children's Hospital, 622 West 168th Street, PH 17W/PH 11W, New York, NY 10032, United States
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| |
Collapse
|
12
|
Malvasi M, Casillo L, Avogaro F, Abbouda A, Vingolo EM. Gene Therapy in Hereditary Retinal Dystrophies: The Usefulness of Diagnostic Tools in Candidate Patient Selections. Int J Mol Sci 2023; 24:13756. [PMID: 37762059 PMCID: PMC10531171 DOI: 10.3390/ijms241813756] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE Gene therapy actually seems to have promising results in the treatment of Leber Congenital Amaurosis and some different inherited retinal diseases (IRDs); the primary goal of this strategy is to change gene defects with a wild-type gene without defects in a DNA sequence to achieve partial recovery of the photoreceptor function and, consequently, partially restore lost retinal functions. This approach led to the introduction of a new drug (voretigene neparvovec-rzyl) for replacement of the RPE65 gene in patients affected by Leber Congenital Amaurosis (LCA); however, the treatment results are inconstant and with variable long-lasting effects due to a lack of correctly evaluating the anatomical and functional conditions of residual photoreceptors. These variabilities may also be related to host immunoreactive reactions towards the Adenovirus-associated vector. A broad spectrum of retinal dystrophies frequently generates doubt as to whether the disease or the patient is a good candidate for a successful gene treatment, because, very often, different diseases share similar genetic characteristics, causing an inconstant genotype/phenotype correlation between clinical characteristics also within the same family. For example, mutations on the RPE65 gene cause Leber Congenital Amaurosis (LCA) but also some forms of Retinitis Pigmentosa (RP), Bardet Biedl Syndrome (BBS), Congenital Stationary Night Blindness (CSNB) and Usher syndrome (USH), with a very wide spectrum of clinical manifestations. These confusing elements are due to the different pathways in which the product protein (retinoid isomer-hydrolase) is involved and, consequently, the overlapping metabolism in retinal function. Considering this point and the cost of the drug (over USD one hundred thousand), it would be mandatory to follow guidelines or algorithms to assess the best-fitting disease and candidate patients to maximize the output. Unfortunately, at the moment, there are no suggestions regarding who to treat with gene therapy. Moreover, gene therapy might be helpful in other forms of inherited retinal dystrophies, with more frequent incidence of the disease and better functional conditions (actually, gene therapy is proposed only for patients with poor vision, considering possible side effects due to the treatment procedures), in which this approach leads to better function and, hopefully, visual restoration. But, in this view, who might be a disease candidate or patient to undergo gene therapy, in relationship to the onset of clinical trials for several different forms of IRD? Further, what is the gold standard for tests able to correctly select the patient? Our work aims to evaluate clinical considerations on instrumental morphofunctional tests to assess candidate subjects for treatment and correlate them with clinical and genetic defect analysis that, often, is not correspondent. We try to define which parameters are an essential and indispensable part of the clinical rationale to select patients with IRDs for gene therapy. This review will describe a series of models used to characterize retinal morphology and function from tests, such as optical coherence tomography (OCT) and electrophysiological evaluation (ERG), and its evaluation as a primary outcome in clinical trials. A secondary aim is to propose an ancillary clinical classification of IRDs and their accessibility based on gene therapy's current state of the art. MATERIAL AND METHODS OCT, ERG, and visual field examinations were performed in different forms of IRDs, classified based on clinical and retinal conditions; compared to the gene defect classification, we utilized a diagnostic algorithm for the clinical classification based on morphofunctional information of the retina of patients, which could significantly improve diagnostic accuracy and, consequently, help the ophthalmologist to make a correct diagnosis to achieve optimal clinical results. These considerations are very helpful in selecting IRD patients who might respond to gene therapy with possible therapeutic success and filter out those in which treatment has a lower chance or no chance of positive results due to bad retinal conditions, avoiding time-consuming patient management with unsatisfactory results.
Collapse
Affiliation(s)
- Mariaelena Malvasi
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
| | - Lorenzo Casillo
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
| | - Filippo Avogaro
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
| | - Alessandro Abbouda
- Department of Ophthalmology, Fiorini Hospital Terracina AUSL, 04019 Terracina, Italy
| | - Enzo Maria Vingolo
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
- Department of Ophthalmology, Fiorini Hospital Terracina AUSL, 04019 Terracina, Italy
| |
Collapse
|
13
|
Dwan LN, Gibbons P, Jamil K, Little D, Birke O, Menezes MP, Burns J. Reliability and sensitivity of radiographic measures of hip dysplasia in childhood Charcot-Marie-Tooth disease. Hip Int 2023; 33:323-331. [PMID: 34180253 DOI: 10.1177/11207000211027591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hip dysplasia is a lack of femoral head coverage and disruption of hip and acetabular alignment and congruency, with severity ranging from mild subluxation in nascent at-risk hips to complete dislocation. Presentation of hip dysplasia in neuromuscular conditions can be sub-clinical or associated with a limp with or without hip pain, abductor and flexor weakness and reduced hip range of motion. Untreated hip dysplasia leads to early onset osteoarthritis requiring hip arthroplasty in early adulthood. Hip dysplasia occurs in 6-20% of children with Charcot-Marie-Tooth disease, however little is known about the reliability and sensitivity of detection on plain film pelvic radiographs. METHODS 14 common measures of hip dysplasia on anteroposterior pelvis radiographs were independently assessed by 2 orthopaedic specialists in 30 ambulant children with Charcot-Marie-Tooth disease. Hip health was also categorised based on clinical impression to assess the sensitivity of radiographic measures to identify hip dysplasia status. RESULTS 8 measures (acetabular index, head width, lateral centre-edge angle, lateral uncoverage, medial joint width, migration percentage, neck shaft angle, triradiate status) exhibited 'excellent' reliability between clinical evaluators. 5 of the 30 patients (17%) were identified as having nascent hip dysplasia. Reliable radiographic measures that significantly distinguished between nascent hip dysplasia and healthy hips were acetabular index, lateral centre edge angle, medial joint width and migration percentage. CONCLUSIONS We have identified a subset of reliable and sensitive radiographic hip measures in children with Charcot-Marie-Tooth disease to prioritise during hip screening to mitigate the deleterious effects of hip dysplasia, pain and disability in adulthood.
Collapse
Affiliation(s)
- Leanne N Dwan
- The University of Sydney and The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Paul Gibbons
- The University of Sydney and The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Kamal Jamil
- The University of Sydney and The Children's Hospital at Westmead, Sydney, NSW, Australia.,Universiti Kebangsaan, Malaysia, Kuala Lumpur, Malaysia
| | - David Little
- The University of Sydney and The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Oliver Birke
- The University of Sydney and The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Manoj P Menezes
- The University of Sydney and The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Joshua Burns
- The University of Sydney and The Children's Hospital at Westmead, Sydney, NSW, Australia
| |
Collapse
|
14
|
Benz S, Mitra S. From Genomics to Metagenomics in the Era of Recent Sequencing Technologies. Methods Mol Biol 2023; 2649:1-20. [PMID: 37258855 DOI: 10.1007/978-1-0716-3072-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Metagenomics, also known as environmental genomics, is the study of the genomic content of a sample of organisms obtained from a common habitat. Metagenomics and other "omics" disciplines have captured the attention of researchers for several decades. The effect of microbes in our body is a relevant concern for health studies. Through sampling the sequences of microbial genomes within a certain environment, metagenomics allows study of the functional metabolic capacity of a community as well as its structure based upon distribution and richness of species. Exponentially increasing number of microbiome literatures illustrate the importance of sequencing techniques which have allowed the expansion of microbial research into areas, including the human gut, antibiotics, enzymes, and more. This chapter illustrates how metagenomics field has evolved with the progress of sequencing technologies.Further, from this chapter, researchers will be able to learn about all current options for sequencing techniques and comparison of their cost and read statistics, which will be helpful for planning their own studies.
Collapse
Affiliation(s)
- Saskia Benz
- School of medicine, University of Leeds, Leeds, UK
| | - Suparna Mitra
- Leeds Institute of Medical Research, University of Leeds, Leeds General Infirmary, Leeds, UK.
| |
Collapse
|
15
|
Sun L, Lehnert T, Gijs MAM, Li S. Polydimethylsiloxane microstructure-induced acoustic streaming for enhanced ultrasonic DNA fragmentation on a microfluidic chip. LAB ON A CHIP 2022; 22:4224-4237. [PMID: 36178361 DOI: 10.1039/d2lc00366j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Next-generation sequencing (NGS) is an essential technology for DNA identification in genomic research. DNA fragmentation is a critical step for NGS and doing this on-chip is of great interest for future integrated genomic solutions. Here we demonstrate fast acoustofluidic DNA fragmentation via ultrasound-actuated elastic polydimethylsiloxane (PDMS) microstructures that induce acoustic streaming and associated shear forces when placed in the field of an ultrasonic transducer. Indeed, acoustic streaming locally generates high tensile stresses that can mechanically stretch and break DNA molecule chains. The improvement in efficiency of the on-chip DNA fragmentation is due to the synergistic effect of these tensile stresses and ultrasonic cavitation phenomena. We tested these microstructure-induced effects in a DNA-containing microfluidic channel both experimentally and by simulation. The DNA fragmentation process was evaluated by measuring the change in the DNA fragment size over time. The chip works well with both long and short DNA chains; in particular, purified lambda (λ) DNA was cut from 48.5 kbp to 3 kbp in one minute with selected microstructures and further down to 300 bp within two and a half minutes. The fragment size of mouse genomic DNA was reduced from 1.4 kbp to 400 bp in one minute and then to 200 bp in two and a half minutes. The DNA fragmentation efficiency of the chip equipped with the PDMS microstructures was twice that of the chip without the microstructures. Exhaustive comparison shows that the on-chip fragmentation performance reaches the level of high-end professional standards. Recently, DNA fragmentation was shown to be enhanced using vibrating air microbubbles when the chip was placed in an acoustic field. We think the microbubble-free microstructure-based device we present is easier to operate and more reliable, as it avoids microbubble preparation and maintenance, while showing high DNA fragmentation performance.
Collapse
Affiliation(s)
- Lin Sun
- Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150000, P. R. China.
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Switzerland.
| | - Thomas Lehnert
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Switzerland.
| | - Martin A M Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Switzerland.
| | - Songjing Li
- Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150000, P. R. China.
| |
Collapse
|
16
|
Dotolo S, Esposito Abate R, Roma C, Guido D, Preziosi A, Tropea B, Palluzzi F, Giacò L, Normanno N. Bioinformatics: From NGS Data to Biological Complexity in Variant Detection and Oncological Clinical Practice. Biomedicines 2022; 10:biomedicines10092074. [PMID: 36140175 PMCID: PMC9495893 DOI: 10.3390/biomedicines10092074] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
The use of next-generation sequencing (NGS) techniques for variant detection has become increasingly important in clinical research and in clinical practice in oncology. Many cancer patients are currently being treated in clinical practice or in clinical trials with drugs directed against specific genomic alterations. In this scenario, the development of reliable and reproducible bioinformatics tools is essential to derive information on the molecular characteristics of each patient’s tumor from the NGS data. The development of bioinformatics pipelines based on the use of machine learning and statistical methods is even more relevant for the determination of complex biomarkers. In this review, we describe some important technologies, computational algorithms and models that can be applied to NGS data from Whole Genome to Targeted Sequencing, to address the problem of finding complex cancer-associated biomarkers. In addition, we explore the future perspectives and challenges faced by bioinformatics for precision medicine both at a molecular and clinical level, with a focus on an emerging complex biomarker such as homologous recombination deficiency (HRD).
Collapse
Affiliation(s)
- Serena Dotolo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
| | - Riziero Esposito Abate
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
| | - Cristin Roma
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
| | - Davide Guido
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Alessia Preziosi
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Beatrice Tropea
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Fernando Palluzzi
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Luciano Giacò
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
17
|
Tong K, He W, He Y, Li X, Hu L, Hu H, Lu G, Lin G, Dong C, Zhang VW, Du J, Liu D. Clinical Utility of Medical Exome Sequencing: Expanded Carrier Screening for Patients Seeking Assisted Reproductive Technology in China. Front Genet 2022; 13:943058. [PMID: 36072675 PMCID: PMC9441495 DOI: 10.3389/fgene.2022.943058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Expanded carrier screening (ECS) is an effective method to identify at-risk couples (ARCs) and avoid birth defects. This study aimed to reveal the carrier spectrum in the Chinese population and to delineate an expanded carrier gene panel suitable in China.Methods: Medical exome sequencing (MES), including 4,158 disease-causing genes, was offered to couples at two reproductive centers. It was initially used as a diagnostic yield for potential patients and then used for ECS. Clinical information and ECS results were retrospectively collected.Results: A total of 2,234 couples, representing 4,468 individuals, underwent MES. In total, 254 individuals showed genetic disease symptoms, and 56 of them were diagnosed with genetic diseases by MES. Overall, 94.5% of them were carriers of at least one disease-causing variant. The most prevalent genes were GJB2 for autosomal recessive disorders and G6PD for X-linked diseases. The ARC rate was 9.80%, and couples were inclined to undergo preimplantation genetic testing when diseases were classified as “profound” or “severe.”Conclusion: This study provided insight to establish a suitable ECS gene panel for the Chinese population. Disease severity significantly influenced reproductive decision-making. The results highlighted the importance of conducting ECS for couples before undergoing assisted reproductive technology.
Collapse
Affiliation(s)
- Keya Tong
- Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Human Embryo Engineering, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Wenbin He
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Genetics Centre, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yao He
- Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Human Embryo Engineering, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiurong Li
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Liang Hu
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Hao Hu
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Guangxiu Lu
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Genetics Centre, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ge Lin
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Genetics Centre, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | | | | | - Juan Du
- National Engineering and Research Center of Human Stem Cells, Changsha, China
- School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, China
- Genetics Centre, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- *Correspondence: Juan Du, ; Dongyun Liu,
| | - Dongyun Liu
- Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Human Embryo Engineering, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Juan Du, ; Dongyun Liu,
| |
Collapse
|
18
|
Wang Y, Sun J, Zhao Z, Xu C, Qiao P, Wang S, Wang M, Xu Z, Yuan Q, Guo L, Huang L. Multiplexed Massively Parallel Sequencing of Plastomes Provides Insights Into the Genetic Diversity, Population Structure, and Phylogeography of Wild and Cultivated Coptis chinensis. FRONTIERS IN PLANT SCIENCE 2022; 13:923600. [PMID: 35873994 PMCID: PMC9302112 DOI: 10.3389/fpls.2022.923600] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 05/31/2023]
Abstract
Root rot has been a major problem for cultivated populations of Coptis chinensis var. chinensis in recent years. C. chinensis var. brevisepala, the closest wild relative of C. chinensis var. chinensis, has a scattered distribution across southwestern China and is an important wild resource. Genetic diversity is associated with greater evolutionary potential and resilience of species or populations and is important for the breeding and conservation of species. Here, we conducted multiplexed massively parallel sequencing of the plastomes of 227 accessions of wild and cultivated C. chinensis using 111 marker pairs to study patterns of genetic diversity, population structure, and phylogeography among wild and cultivated C. chinensis populations. Wild and cultivated resources diverged approximately 2.83 Mya. The cultivated resources experienced a severe genetic bottleneck and possess highly mixed germplasm. However, high genetic diversity has been retained in the wild resources, and subpopulations in different locations differed in genotype composition. The significant divergence in the genetic diversity of wild and cultivated resources indicates that they require different conservation strategies. Wild resources require in situ conservation strategies aiming to expand population sizes while maintaining levels of genetic diversity; by contrast, germplasm resource nurseries with genotypes of cultivated resources and planned distribution measures are needed for the conservation of cultivated resources to prevent cultivated populations from undergoing severe genetic bottlenecks. The results of this study provide comprehensive insights into the genetic diversity, population structure, and phylogeography of C. chinensis and will facilitate future breeding and conservation efforts.
Collapse
Affiliation(s)
- Yiheng Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiahui Sun
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenyu Zhao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ping Qiao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Academician Workstation, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Sheng Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengli Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zegang Xu
- Lichuan Jianzhuxi Huanglian Cooperative, Lichuan, China
| | - Qingjun Yuan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Sun L, Liu Y, Lehnert T, Gijs MAM, Li S. The enhancement of DNA fragmentation in a bench top ultrasonic water bath with needle-induced air bubbles: Simulation and experimental investigation. BIOMICROFLUIDICS 2022; 16:044103. [PMID: 35909646 PMCID: PMC9337879 DOI: 10.1063/5.0101740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Shearing DNA to a certain size is the first step in many medical and biological applications, especially in next-generation gene sequencing technology. In this article, we introduced a highly efficient ultrasonic DNA fragmentation method enhanced by needle-induced air bubbles, which is easy to operate with high throughput. The principle of the bubble-enhanced sonication system is introduced and verified by flow field and acoustic simulations and experiments. Lambda DNA long chains and mouse genomic DNA short chains are used in the experiments for testing the performance of the bubble-enhanced ultrasonic DNA fragmentation system. Air bubbles are an effective enhancement agent for ultrasonic DNA fragmentation; they can obviously improve the sound pressure level in the whole solution, thus, achieving better absorption of ultrasound energy. Growing bubbles also have a stretched function on DNA molecule chains and form a huge pressure gradient in the solution, which is beneficial to DNA fragmentation. Purified λDNA is cut from 48.5 to 2 kbp in 5 min and cut to 300 bp in 30 min. Mouse genomic DNA (≈1400 bp) decreases to 400 bp in 5 min and then reduces to 200 bp in 30 min. This bubble-enhanced ultrasonic method enables widespread access to genomic DNA fragmentation in a standard ultrasonic water bath for many virus sequencing demands even without good medical facilities.
Collapse
Affiliation(s)
| | | | - Thomas Lehnert
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Martin A. M. Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Songjing Li
- Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China
| |
Collapse
|
20
|
Li J, Liu P, Menguy N, Benzerara K, Bai J, Zhao X, Leroy E, Zhang C, Zhang H, Liu J, Zhang R, Zhu K, Roberts AP, Pan Y. Identification of sulfate-reducing magnetotactic bacteria via a group-specific 16S rDNA primer and correlative fluorescence and electron microscopy: strategy for culture-independent study. Environ Microbiol 2022; 24:5019-5038. [PMID: 35726890 DOI: 10.1111/1462-2920.16109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/02/2022] [Accepted: 06/18/2022] [Indexed: 11/28/2022]
Abstract
Magnetotactic bacteria (MTB) biomineralize intracellular magnetic nanocrystals and swim along geomagnetic field lines. While few axenic MTB cultures exist, living cells can be separated magnetically from natural environments for analysis. The bacterial universal 27F/1492R primer pair has been used widely to amplify nearly full-length 16S rRNA genes and to provide phylogenetic portraits of MTB communities. However, incomplete coverage and amplification biases inevitably prevent detection of some phylogenetically specific or non-abundant MTB. Here, we propose a new formulation of the upstream 390F primer that we combined with the downstream 1492R primer to specifically amplify 1,100-bp 16S rRNA gene sequences of sulfate-reducing MTB in freshwater sediments from Lake Weiyanghu, Xi'an, northwestern China. With correlative fluorescence in situ hybridization and scanning/transmission electron microscopy, three novel MTB strains (WYHR-2, WYHR-3, and WYHR-4) from the Desulfobacterota phylum were identified phylogenetically and structurally at the single cell level. Strain WYHR-2 produces bullet-shaped magnetosome magnetite, while the other two strains produce both cubic/prismatic greigite and bullet-shaped magnetite. Our results expand knowledge of bacterial diversity and magnetosome biomineralization of sulfate-reducing MTB. We also propose a general strategy for identifying and characterizing uncultured MTB from natural environments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nicolas Menguy
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Karim Benzerara
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Jinling Bai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Eric Leroy
- ICMPE, University Paris East, UMR 7182, CNRS, 2-8 rue Henri Dunant, Thiais Cedex, France
| | - Chaoqun Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Heng Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Jiawei Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongrong Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Keilei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Akoniyon OP, Adewumi TS, Maharaj L, Oyegoke OO, Roux A, Adeleke MA, Maharaj R, Okpeku M. Whole Genome Sequencing Contributions and Challenges in Disease Reduction Focused on Malaria. BIOLOGY 2022; 11:587. [PMID: 35453786 PMCID: PMC9027812 DOI: 10.3390/biology11040587] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
Abstract
Malaria elimination remains an important goal that requires the adoption of sophisticated science and management strategies in the era of the COVID-19 pandemic. The advent of next generation sequencing (NGS) is making whole genome sequencing (WGS) a standard today in the field of life sciences, as PCR genotyping and targeted sequencing provide insufficient information compared to the whole genome. Thus, adapting WGS approaches to malaria parasites is pertinent to studying the epidemiology of the disease, as different regions are at different phases in their malaria elimination agenda. Therefore, this review highlights the applications of WGS in disease management, challenges of WGS in controlling malaria parasites, and in furtherance, provides the roles of WGS in pursuit of malaria reduction and elimination. WGS has invaluable impacts in malaria research and has helped countries to reach elimination phase rapidly by providing required information needed to thwart transmission, pathology, and drug resistance. However, to eliminate malaria in sub-Saharan Africa (SSA), with high malaria transmission, we recommend that WGS machines should be readily available and affordable in the region.
Collapse
Affiliation(s)
- Olusegun Philip Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Taiye Samson Adewumi
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Olukunle Olugbenle Oyegoke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Alexandra Roux
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town 7505, South Africa;
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| |
Collapse
|
22
|
Xia Y, Gawad C. Bringing precision oncology to cellular resolution with single-cell genomics. Clin Exp Metastasis 2022; 39:79-83. [PMID: 34807338 PMCID: PMC8969191 DOI: 10.1007/s10585-021-10129-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/23/2021] [Indexed: 02/03/2023]
Abstract
Single-cell sequencing technologies have undergone rapid development and adoption by the scientific community in the past 5 years, fueling discoveries about the etiology, pathogenesis, and treatment responsiveness of individual tumor cells within cancer ecosystems. Most of the advancements in our understanding of cancer with these new technologies have focused on basic tumor biology. However, the knowledge produced by these and other studies are beginning to provide biomarkers and drug targets for clinically-relevant subpopulations within a tumor, creating opportunities for the development of biologically-informed, clone-specific combination treatment strategies. Here we provide an overview of the development of the field of single-cell cancer sequencing and provide a roadmap for shepherding these technologies from research tools to diagnostic instruments that provide high-resolution, treatment-directing details of tumors to clinical oncologists.
Collapse
Affiliation(s)
- Yuntao Xia
- Department of Pediatrics, Division of Hematology/Oncology, Stanford University, Stanford, USA
| | - Charles Gawad
- Department of Pediatrics, Division of Hematology/Oncology, Stanford University, Stanford, USA.
| |
Collapse
|
23
|
Wang XQ, Goytain A, Dickson BC, Nielsen TO. Advances in Sarcoma Molecular Diagnostics. Genes Chromosomes Cancer 2022; 61:332-345. [DOI: 10.1002/gcc.23025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xue Qi Wang
- Faculty of Medicine University of British Columbia Vancouver Canada
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine University of British Columbia Vancouver Canada
| | - Angela Goytain
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine University of British Columbia Vancouver Canada
| | - Brendan C. Dickson
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital; Department of Laboratory Medicine and Pathobiology University of Toronto Toronto ON Canada
| | - Torsten Owen Nielsen
- Genetic Pathology Evaluation Centre, Department of Pathology and Laboratory Medicine University of British Columbia Vancouver Canada
| |
Collapse
|
24
|
Hosseini K, Ranjbar M, Pirpour Tazehkand A, Asgharian P, Montazersaheb S, Tarhriz V, Ghasemnejad T. Evaluation of exosomal non-coding RNAs in cancer using high-throughput sequencing. J Transl Med 2022; 20:30. [PMID: 35033106 PMCID: PMC8760667 DOI: 10.1186/s12967-022-03231-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Clinical oncologists need more reliable and non-invasive diagnostic and prognostic biomarkers to follow-up cancer patients. However, the existing biomarkers are often invasive and costly, emphasizing the need for the development of biomarkers to provide convenient and precise detection. Extracellular vesicles especially exosomes have recently been the focus of translational research to develop non-invasive and reliable biomarkers for several diseases such as cancers, suggesting as a valuable source of tumor markers. Exosomes are nano-sized extracellular vesicles secreted by various living cells that can be found in all body fluids including serum, urine, saliva, cerebrospinal fluid, and ascites. Different molecular and genetic contents of their origin such as nucleic acids, proteins, lipids, and glycans in a stable form make exosomes a promising approach for various cancers' diagnoses, prediction, and follow-up in a minimally invasive manner. Since exosomes are used by cancer cells for intercellular communication, they play a critical role in the disease process, highlighting the importance of their use as clinically relevant biomarkers. However, regardless of the advantages that exosome-based diagnostics have, they suffer from problems regarding their isolation, detection, and characterization of their contents. This study reviews the history and biogenesis of exosomes and discusses non-coding RNAs (ncRNAs) and their potential as tumor markers in different types of cancer, with a focus on next generation sequencing (NGS) as a detection method. Moreover, the advantages and challenges associated with exosome-based diagnostics are also presented.
Collapse
Affiliation(s)
- Kamran Hosseini
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Ranjbar
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Pirpour Tazehkand
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parina Asgharian
- Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Hussen BM, Abdullah ST, Salihi A, Sabir DK, Sidiq KR, Rasul MF, Hidayat HJ, Ghafouri-Fard S, Taheri M, Jamali E. The emerging roles of NGS in clinical oncology and personalized medicine. Pathol Res Pract 2022; 230:153760. [PMID: 35033746 DOI: 10.1016/j.prp.2022.153760] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has been increasingly popular in genomics studies over the last decade, as new sequencing technology has been created and improved. Recently, NGS started to be used in clinical oncology to improve cancer therapy through diverse modalities ranging from finding novel and rare cancer mutations, discovering cancer mutation carriers to reaching specific therapeutic approaches known as personalized medicine (PM). PM has the potential to minimize medical expenses by shifting the current traditional medical approach of treating cancer and other diseases to an individualized preventive and predictive approach. Currently, NGS can speed up in the early diagnosis of diseases and discover pharmacogenetic markers that help in personalizing therapies. Despite the tremendous growth in our understanding of genetics, NGS holds the added advantage of providing more comprehensive picture of cancer landscape and uncovering cancer development pathways. In this review, we provided a complete overview of potential NGS applications in scientific and clinical oncology, with a particular emphasis on pharmacogenomics in the direction of precision medicine treatment options.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Abbas Salihi
- Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq; Department of Biology, College of Science, Salahaddin University, Kurdistan Region, Erbil, Iraq
| | - Dana Khdr Sabir
- Department of Medical Laboratory Sciences, Charmo University, Kurdistan Region, Iraq
| | - Karzan R Sidiq
- Department of Biology, College of Education, University of Sulaimani, Sulaimani 334, Kurdistan, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University, Kurdistan Region, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elena Jamali
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Shukla R, Yadav AK, Sote WO, Junior MC, Singh TR. Systems biology and big data analytics. Bioinformatics 2022. [DOI: 10.1016/b978-0-323-89775-4.00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
27
|
Scott F, Menezes M, Smet ME, Carey K, Hardy T, Fullston T, Rolnik DL, McLennan A. Influence of fibroids on cell-free DNA screening accuracy. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 59:114-119. [PMID: 34396623 DOI: 10.1002/uog.23763] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Cell-free DNA (cfDNA) screening assesses both maternal and placental cfDNA. Fibroids are common and release cfDNA into maternal serum. Genetic abnormality is seen in 50% of fibroids. We aimed to assess the impact of fibroids on the accuracy of genome-wide cfDNA screening. METHODS This was a prospective cohort study of singleton pregnancies examined at one of two centers in Melbourne and Sydney, Australia, between 1 November 2019 and 31 December 2020. All cases underwent pretest ultrasound examination to confirm an ongoing pregnancy of at least 10 weeks' gestation, and, at this stage, the number and volume of any uterine fibroid were documented. Genome-wide cfDNA screening was performed to detect all copy-number variants (CNV) > 7 megabases. The incidence of a false-positive result was compared between cases with and those without fibroids. RESULTS Over the 14-month study period, 13 184 patients underwent cfDNA screening, of whom 1017 (7.7%) had fibroids. Fibroids were not identified in any of the 17 participants who had a false-positive result for chromosomes 13, 18, 21, X or Y. Ninety-five (0.7%) cases were screen-positive for subchromosomal aberration (SA), rare autosomal trisomy (RAT) or multiple abnormalities (MA), with 10 of these cases having a fetal genetic abnormality. The incidence of a false-positive RAT, MA or SA result was significantly higher in participants with fibroids (20/1017 (2.0%)) than in those without fibroids (64/12 167 (0.5%)). Women with fibroids were approximately six times as likely to have a false-positive result for SA, and this was associated positively with both fibroid number and volume. CONCLUSIONS Most women with fibroids do not have an abnormal result on genome-wide cfDNA screening. However, CNVs due to fibroids are associated with false-positive SA findings, although fibroids do not appear to influence cfDNA screening accuracy for the common autosomal trisomies or sex-chromosomal abnormalities. © 2021 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- F Scott
- Sydney Ultrasound for Women, Sydney, Australia
- University of New South Wales, Sydney, Australia
| | - M Menezes
- Monash Ultrasound for Women, Melbourne, Australia
| | - M E Smet
- Sydney Ultrasound for Women, Sydney, Australia
- Department of Obstetrics and Gynaecology, Westmead Hospital, Sydney, Australia
| | - K Carey
- Sydney Ultrasound for Women, Sydney, Australia
| | - T Hardy
- Repromed, Adelaide, Australia
- South Australia Pathology, Adelaide, Australia
| | | | - D L Rolnik
- Monash Ultrasound for Women, Melbourne, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - A McLennan
- Sydney Ultrasound for Women, Sydney, Australia
- University of Sydney, Sydney, Australia
| |
Collapse
|
28
|
Fadaie Z, Whelan L, Ben-Yosef T, Dockery A, Corradi Z, Gilissen C, Haer-Wigman L, Corominas J, Astuti GDN, de Rooij L, van den Born LI, Klaver CCW, Hoyng CB, Wynne N, Duignan ES, Kenna PF, Cremers FPM, Farrar GJ, Roosing S. Whole genome sequencing and in vitro splice assays reveal genetic causes for inherited retinal diseases. NPJ Genom Med 2021; 6:97. [PMID: 34795310 PMCID: PMC8602293 DOI: 10.1038/s41525-021-00261-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a major cause of visual impairment. These clinically heterogeneous disorders are caused by pathogenic variants in more than 270 genes. As 30-40% of cases remain genetically unexplained following conventional genetic testing, we aimed to obtain a genetic diagnosis in an IRD cohort in which the genetic cause was not found using whole-exome sequencing or targeted capture sequencing. We performed whole-genome sequencing (WGS) to identify causative variants in 100 unresolved cases. After initial prioritization, we performed an in-depth interrogation of all noncoding and structural variants in genes when one candidate variant was detected. In addition, functional analysis of putative splice-altering variants was performed using in vitro splice assays. We identified the genetic cause of the disease in 24 patients. Causative coding variants were observed in genes such as ATXN7, CEP78, EYS, FAM161A, and HGSNAT. Gene disrupting structural variants were also detected in ATXN7, PRPF31, and RPGRIP1. In 14 monoallelic cases, we prioritized candidate noncanonical splice sites or deep-intronic variants that were predicted to disrupt the splicing process based on in silico analyses. Of these, seven cases were resolved as they carried pathogenic splice defects. WGS is a powerful tool to identify causative variants residing outside coding regions or heterozygous structural variants. This approach was most efficient in cases with a distinct clinical diagnosis. In addition, in vitro splice assays provide important evidence of the pathogenicity of rare variants.
Collapse
Affiliation(s)
- Zeinab Fadaie
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laura Whelan
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Tamar Ben-Yosef
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adrian Dockery
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jordi Corominas
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Galuh D N Astuti
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Laura de Rooij
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carel B Hoyng
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Niamh Wynne
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Emma S Duignan
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Paul F Kenna
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin, Ireland
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - G Jane Farrar
- The School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
29
|
Diagnostic Yield of Targeted Hearing Loss Gene Panel Sequencing in a Large German Cohort With a Balanced Age Distribution from a Single Diagnostic Center: An Eight-year Study. Ear Hear 2021; 43:1049-1066. [PMID: 34753855 PMCID: PMC9007094 DOI: 10.1097/aud.0000000000001159] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objectives: Hereditary hearing loss exhibits high degrees of genetic and clinical heterogeneity. To elucidate the population-specific and age-related genetic and clinical spectra of hereditary hearing loss, we investigated the sequencing data of causally associated hearing loss genes in a large cohort of hearing-impaired probands with a balanced age distribution from a single center in Southwest Germany. Design: Genetic testing was applied to 305 hearing-impaired probands/families with a suspected genetic hearing loss etiology and a balanced age distribution over a period of 8 years (2011–2018). These individuals were representative of the regional population according to age and sex distributions. The genetic testing workflow consisted of single-gene screening (n = 21) and custom-designed hearing loss gene panel sequencing (n = 284) targeting known nonsyndromic and syndromic hearing loss genes in a diagnostic setup. Retrospective reanalysis of sequencing data was conducted by applying the current American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines. Results: A genetic diagnosis was established for 75 (25%) of the probands that involved 75 causal variants in 35 genes, including 16 novel causal variants and 9 medically significant variant reclassifications. Nearly half of the solved cases (47%; n = 35) were related to variants in the five most frequently affected genes: GJB2 (25%), MYO15A, WFS1, SLC26A4, and COL11A1 (all 5%). Nearly one-quarter of the cases (23%; n = 17) were associated with variants in seven additional genes (TMPRSS3, COL4A3, LOXHD1, EDNRB, MYO6, TECTA, and USH2A). The remaining one-third of single cases (33%; n = 25) were linked to variants in 25 distinct genes. Diagnostic rates and gene distribution were highly dependent on phenotypic characteristics. A positive family history of autosomal-recessive inheritance in combination with early onset and higher grades of hearing loss significantly increased the solve rate up to 60%, while late onset and lower grades of hearing loss yielded significantly fewer diagnoses. Regarding genetic diagnoses, autosomal-dominant genes accounted for 37%, autosomal-recessive genes for 60%, and X-linked genes for 3% of the solved cases. Syndromic/nonsyndromic hearing loss mimic genes were affected in 27% of the genetic diagnoses. Conclusions: The genetic epidemiology of the largest German cohort subjected to comprehensive targeted sequencing for hereditary hearing loss to date revealed broad causal gene and variant spectra in this population. Targeted hearing loss gene panel analysis proved to be an effective tool for ensuring an appropriate diagnostic yield in a routine clinical setting including the identification of novel variants and medically significant reclassifications. Solve rates were highly sensitive to phenotypic characteristics. The unique population-adapted and balanced age distribution of the cohort favoring late hearing loss onset uncovered a markedly large contribution of autosomal-dominant genes to the diagnoses which may be a representative for other age balanced cohorts in other populations.
Collapse
|
30
|
Long-read technologies identify a hidden inverted duplication in a family with choroideremia. HGG ADVANCES 2021; 2:100046. [PMID: 35047838 PMCID: PMC8756506 DOI: 10.1016/j.xhgg.2021.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/01/2021] [Indexed: 12/03/2022] Open
Abstract
The lack of molecular diagnoses in rare genetic diseases can be explained by limitations of current standard genomic technologies. Upcoming long-read techniques have complementary strengths to overcome these limitations, with a particular strength in identifying structural variants. By using optical genome mapping and long-read sequencing, we aimed to identify the pathogenic variant in a large family with X-linked choroideremia. In this family, aberrant splicing of exon 12 of the choroideremia gene CHM was detected in 2003, but the underlying genomic defect remained elusive. Optical genome mapping and long-read sequencing approaches now revealed an intragenic 1,752 bp inverted duplication including exon 12 and surrounding regions, located downstream of the wild-type copy of exon 12. Both breakpoint junctions were confirmed with Sanger sequencing and segregate with the X-linked inheritance in the family. The breakpoint junctions displayed sequence microhomology suggestive for an erroneous replication mechanism as the origin of the structural variant. The inverted duplication is predicted to result in a hairpin formation of the pre-mRNA with the wild-type exon 12, leading to exon skipping in the mature mRNA. The identified inverted duplication is deemed the hidden pathogenic cause of disease in this family. Our study shows that optical genome mapping and long-read sequencing have significant potential for the identification of (hidden) structural variants in rare genetic diseases.
Collapse
|
31
|
Rosenbaum JN, Berry AB, Church AJ, Crooks K, Gagan JR, López-Terrada D, Pfeifer JD, Rennert H, Schrijver I, Snow AN, Wu D, Ewalt MD. A Curriculum for Genomic Education of Molecular Genetic Pathology Fellows: A Report of the Association for Molecular Pathology Training and Education Committee. J Mol Diagn 2021; 23:1218-1240. [PMID: 34245921 DOI: 10.1016/j.jmoldx.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
Molecular genetic pathology (MGP) is a subspecialty of pathology and medical genetics and genomics. Genomic testing, which we define as that which generates large data sets and interrogates large segments of the genome in a single assay, is increasingly recognized as essential for optimal patient care through precision medicine. The most common genomic testing technologies in clinical laboratories are next-generation sequencing and microarray. It is essential to train in these methods and to consider the data generated in the context of the diagnosis, medical history, and other clinical findings of individual patients. Accordingly, updating the MGP fellowship curriculum to include genomics is timely, important, and challenging. At the completion of training, an MGP fellow should be capable of independently interpreting and signing out results of a wide range of genomic assays and, given the appropriate context and institutional support, of developing and validating new assays in compliance with applicable regulations. The Genomics Task Force of the MGP Program Directors, a working group of the Association for Molecular Pathology Training and Education Committee, has developed a genomics curriculum framework and recommendations specific to the MGP fellowship. These recommendations are presented for consideration and implementation by MGP fellowship programs with the understanding that MGP programs exist in a diversity of clinical practice environments with a spectrum of available resources.
Collapse
Affiliation(s)
- Jason N Rosenbaum
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anna B Berry
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Swedish Cancer Institute and Institute of Systems Biology, Seattle, Washington
| | - Alanna J Church
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Kristy Crooks
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jeffrey R Gagan
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Dolores López-Terrada
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - John D Pfeifer
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Washington University School of Medicine, St. Louis, Missouri
| | - Hanna Rennert
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Iris Schrijver
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Anthony N Snow
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - David Wu
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Mark D Ewalt
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
32
|
Sharma D, Subramaniam G, Sharma N, Sharma P. Cell-free DNA in the surveillance of heart transplant rejection. Indian J Thorac Cardiovasc Surg 2021; 37:257-264. [PMID: 33967413 PMCID: PMC8079572 DOI: 10.1007/s12055-020-01130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Circulating cell-free deoxyribonucleic acid (cfDNA) is promptly materializing as a highly useful tool for the surveillance of solid-organ transplant rejection. Donor-specific fraction (DF) cfDNA is a potential marker of selective donor organ injury. It is emerging as a promising analytical target in the near future. The aim of this systematic review is to throw light on the importance of cfDNA and future perspective in detecting acute rejection in heart transplantation. METHODS An exhaustive search was carried out for this review article on the basis of literature available including scientific databases of PubMed, Embase, and ClinicalTrials.gov. The search engines were systematically explored using the search terms "cell free DNA," "Heart transplant," and "Rejection" from inception until August 2020, and narrative analysis was accomplished. Majority of the studies described endomyocardial biopsy-proven acute rejection as reference standard. RESULTS After initial screening of 331 articles, 11 studies were included and discussed in detail in the present review article. Majority of the studies showed prospective designs. A firm correlation was noted between acute rejection (identified on endomyocardial biopsy) and cfDNA levels by most of the studies. CONCLUSIONS cfDNA is a promising tool to replace repeated biopsies to detect rejection. The development in the area of digital droplet polymerase chain reaction and massive parallel sequencing, along with the overall reduction in cost of sequencing with its automation, has helped establish its role in the transplant population.
Collapse
Affiliation(s)
- Dhruva Sharma
- Department of Cardiothoracic and Vascular Surgery, SMS Medical College & Attached Hospitals, J L N Marg, Jaipur, Rajasthan 302001 India
| | - Ganapathy Subramaniam
- Institute of Heart and Lung Transplant and Mechanical Circulatory Support, MGM Healthcare, No. 72, Nelson Manickam Road, Aminjikarai, Chennai, Tamil Nadu 600029 India
| | - Neha Sharma
- Department of Pharmacology, SMS Medical College & Attached Hospitals, J L N Marg, Jaipur, Rajasthan 302001 India
| | - Preksha Sharma
- Department of Anatomy, SMS Medical College & Attached Hospitals, J L N Marg, Jaipur, Rajasthan 302001 India
| |
Collapse
|
33
|
Kısakol B, Sarıhan Ş, Ergün MA, Baysan M. Detailed evaluation of cancer sequencing pipelines in different microenvironments and heterogeneity levels. ACTA ACUST UNITED AC 2021; 45:114-126. [PMID: 33907494 PMCID: PMC8068765 DOI: 10.3906/biy-2008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/03/2021] [Indexed: 11/25/2022]
Abstract
The importance of next generation sequencing (NGS) rises in cancer research as accessing this key technology becomes easier for researchers. The sequence data created by NGS technologies must be processed by various bioinformatics algorithms within a pipeline in order to convert raw data to meaningful information. Mapping and variant calling are the two main steps of these analysis pipelines, and many algorithms are available for these steps. Therefore, detailed benchmarking of these algorithms in different scenarios is crucial for the efficient utilization of sequencing technologies. In this study, we compared the performance of twelve pipelines (three mapping and four variant discovery algorithms) with recommended settings to capture single nucleotide variants. We observed significant discrepancy in variant calls among tested pipelines for different heterogeneity levels in real and simulated samples with overall high specificity and low sensitivity. Additional to the individual evaluation of pipelines, we also constructed and tested the performance of pipeline combinations. In these analyses, we observed that certain pipelines complement each other much better than others and display superior performance than individual pipelines. This suggests that adhering to a single pipeline is not optimal for cancer sequencing analysis and sample heterogeneity should be considered in algorithm optimization.
Collapse
Affiliation(s)
- Batuhan Kısakol
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin Ireland
| | - Şahin Sarıhan
- Computer Engineering Department, Faculty of Engineering, Marmara University, İstanbul, Turkey Turkey
| | - Mehmet Arif Ergün
- Computer Engineering Department, Faculty of Computer and Informatics Engineering, İstanbul Technical University,İstanbul Turkey
| | - Mehmet Baysan
- Computer Engineering Department, Faculty of Computer and Informatics Engineering, İstanbul Technical University,İstanbul Turkey
| |
Collapse
|
34
|
Kupče Ē, Frydman L, Webb AG, Yong JRJ, Claridge TDW. Parallel nuclear magnetic resonance spectroscopy. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00024-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Hu T, Chitnis N, Monos D, Dinh A. Next-generation sequencing technologies: An overview. Hum Immunol 2021; 82:801-811. [PMID: 33745759 DOI: 10.1016/j.humimm.2021.02.012] [Citation(s) in RCA: 282] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
Since the days of Sanger sequencing, next-generation sequencing technologies have significantly evolved to provide increased data output, efficiencies, and applications. These next generations of technologies can be categorized based on read length. This review provides an overview of these technologies as two paradigms: short-read, or "second-generation," technologies, and long-read, or "third-generation," technologies. Herein, short-read sequencing approaches are represented by the most prevalent technologies, Illumina and Ion Torrent, and long-read sequencing approaches are represented by Pacific Biosciences and Oxford Nanopore technologies. All technologies are reviewed along with reported advantages and disadvantages. Until recently, short-read sequencing was thought to provide high accuracy limited by read-length, while long-read technologies afforded much longer read-lengths at the expense of accuracy. Emerging developments for third-generation technologies hold promise for the next wave of sequencing evolution, with the co-existence of longer read lengths and high accuracy.
Collapse
Affiliation(s)
- Taishan Hu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Nilesh Chitnis
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Dimitri Monos
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Anh Dinh
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
36
|
de Bruijn SE, Fadaie Z, Cremers FPM, Kremer H, Roosing S. The Impact of Modern Technologies on Molecular Diagnostic Success Rates, with a Focus on Inherited Retinal Dystrophy and Hearing Loss. Int J Mol Sci 2021; 22:2943. [PMID: 33799353 PMCID: PMC7998853 DOI: 10.3390/ijms22062943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The identification of pathogenic variants in monogenic diseases has been of interest to researchers and clinicians for several decades. However, for inherited diseases with extremely high genetic heterogeneity, such as hearing loss and retinal dystrophies, establishing a molecular diagnosis requires an enormous effort. In this review, we use these two genetic conditions as examples to describe the initial molecular genetic identification approaches, as performed since the early 90s, and subsequent improvements and refinements introduced over the years. Next, the history of DNA sequencing from conventional Sanger sequencing to high-throughput massive parallel sequencing, a.k.a. next-generation sequencing, is outlined, including their advantages and limitations and their impact on identifying the remaining genetic defects. Moreover, the development of recent technologies, also coined "third-generation" sequencing, is reviewed, which holds the promise to overcome these limitations. Furthermore, we outline the importance and complexity of variant interpretation in clinical diagnostic settings concerning the massive number of different variants identified by these methods. Finally, we briefly mention the development of novel approaches such as optical mapping and multiomics, which can help to further identify genetic defects in the near future.
Collapse
Affiliation(s)
- Suzanne E. de Bruijn
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Zeinab Fadaie
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Hannie Kremer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
- Department of Otorhinolaryngology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.E.d.B.); (Z.F.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| |
Collapse
|
37
|
Khella CA, Mehta GA, Mehta RN, Gatza ML. Recent Advances in Integrative Multi-Omics Research in Breast and Ovarian Cancer. J Pers Med 2021; 11:149. [PMID: 33669749 PMCID: PMC7922242 DOI: 10.3390/jpm11020149] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023] Open
Abstract
The underlying molecular heterogeneity of cancer is responsible for the dynamic clinical landscape of this disease. The combination of genomic and proteomic alterations, including both inherited and acquired mutations, promotes tumor diversity and accounts for variable disease progression, therapeutic response, and clinical outcome. Recent advances in high-throughput proteogenomic profiling of tumor samples have resulted in the identification of novel oncogenic drivers, tumor suppressors, and signaling networks; biomarkers for the prediction of drug sensitivity and disease progression; and have contributed to the development of novel and more effective treatment strategies. In this review, we will focus on the impact of historical and recent advances in single platform and integrative proteogenomic studies in breast and ovarian cancer, which constitute two of the most lethal forms of cancer for women, and discuss the molecular similarities of these diseases, the impact of these findings on our understanding of tumor biology as well as the clinical applicability of these discoveries.
Collapse
Affiliation(s)
- Christen A Khella
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Gaurav A Mehta
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Rushabh N Mehta
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Michael L Gatza
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
38
|
Otuboah FY, Zheng J, Chen C, Wang Z, Wan X, Sun L. High-throughput and uniform large field-of-view multichannel fluorescence microscopy with super-thin dichroism for a dPCR gene chip. APPLIED OPTICS 2020; 59:10768-10776. [PMID: 33361897 DOI: 10.1364/ao.403495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
With the rapid development of digital precision medicine, the digital polymerase chain reaction (dPCR) deoxyribonucleic acid (DNA) gene chip integrates more channels with smaller size and larger area, which leads to a higher technical requirement for commercial optical fluorescence microscopy. The multitime image splicing method is widely used for DNA detection. However, it consumes time and has visible seamless image results. This work has demonstrated the design and fabrication of a three channel reversed and reduced fluorescence microscopic imaging system with high-resolution and large field of view for one-time imaging. We introduced the super ultra-thin dichroic mirror into the space between the objective lens and the gene chip to achieve a uniform illumination and a strong signal for the large area gene chip. The fabricated new fluorescence microscopy can take a one-time imaging for the 28×18mm dPCR gene chip with more than 20,000 multi micro-droplets within FAM, HEX, and ROX fluorescence channels. The optical system was designed with a numerical aperture (NA) of 0.106. Modulation transfer function (MTF) is higher than 0.675 at 70 lp/mm, and the function resolution capability is 10 µm with the whole magnification of -0.65times. The fly's eye lens-based illumination system was tested with a uniform output of over 90% in the whole ϕ34.7mm chip area. The design was tested, and the experimental results showed that this new system provides a fast, efficient, and professional optical imaging method for detection of the new emerged digital PCR gene chip, which has larger area and more channels.
Collapse
|
39
|
Shepherd BA, Tanjil MRE, Jeong Y, Baloğlu B, Liao J, Wang MC. Ångström- and Nano-scale Pore-Based Nucleic Acid Sequencing of Current and Emergent Pathogens. MRS ADVANCES 2020; 5:2889-2906. [PMID: 33437534 PMCID: PMC7790041 DOI: 10.1557/adv.2020.402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
State-of-the-art nanopore sequencing enables rapid and real-time identification of novel pathogens, which has wide application in various research areas and is an emerging diagnostic tool for infectious diseases including COVID-19. Nanopore translocation enables de novo sequencing with long reads (> 10 kb) of novel genomes, which has advantages over existing short-read sequencing technologies. Biological nanopore sequencing has already achieved success as a technology platform but it is sensitive to empirical factors such as pH and temperature. Alternatively, ångström- and nano-scale solid-state nanopores, especially those based on two-dimensional (2D) membranes, are promising next-generation technologies as they can surpass biological nanopores in the variety of membrane materials, ease of defining pore morphology, higher nucleotide detection sensitivity, and facilitation of novel and hybrid sequencing modalities. Since the discovery of graphene, atomically-thin 2D materials have shown immense potential for the fabrication of nanopores with well-defined geometry, rendering them viable candidates for nanopore sequencing membranes. Here, we review recent progress and future development trends of 2D materials and their ångström- and nano-scale pore-based nucleic acid (NA) sequencing including fabrication techniques and current and emerging sequencing modalities. In addition, we discuss the current challenges of translocation-based nanopore sequencing and provide an outlook on promising future research directions.
Collapse
Affiliation(s)
- Britney A. Shepherd
- Department of Medical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620 USA
| | - Md Rubayat-E Tanjil
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620 USA
| | - Yunjo Jeong
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620 USA
| | - Bilgenur Baloğlu
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - Jingqiu Liao
- Department of Systems Biology, Columbia University, 1130 St. Nicholas Avenue, New York, New York 10032 USA
| | - Michael Cai Wang
- Department of Medical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620 USA
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620 USA
| |
Collapse
|
40
|
Bregni G, Sticca T, Camera S, Akin Telli T, Craciun L, Trevisi E, Pretta A, Kehagias P, Leduc S, Senti C, Deleporte A, Vandeputte C, Saad ED, Kerger J, Gil T, Piccart-Gebhart M, Awada A, Demetter P, Larsimont D, Hendlisz A, Aftimos P, Sclafani F. Feasibility and clinical impact of routine molecular testing of gastrointestinal cancers at a tertiary centre with a multi-gene, tumor-agnostic, next generation sequencing panel. Acta Oncol 2020; 59:1438-1446. [PMID: 32820683 DOI: 10.1080/0284186x.2020.1809704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND High-throughput sequencing technologies are increasingly used in research but limited data are available on the feasibility and value of these when routinely adopted in clinical practice. MATERIAL AND METHODS We analyzed all consecutive cancer patients for whom genomic testing by a 48-gene next-generation sequencing (NGS) panel (Truseq Amplicon Cancer Panel, Illumina) was requested as part of standard care in one of the largest Belgian cancer networks between 2014 and 2019. Feasibility of NGS was assessed in all study patients, while the impact of NGS on the decision making was analyzed in the group of gastrointestinal cancer patients. RESULTS Tumor samples from 1064 patients with varying tumor types were tested, the number of NGS requests increasing over time (p < .0001). Success rate and median turnaround time were 91.4% and 12.5 days, respectively, both significantly decreasing over time (p ≤ .0002). Non-surgical sampling procedure (OR 7.97, p < .0001), tissue from metastatic site (OR 2.35, p = .0006) and more recent year of testing (OR 1.79, p = .0258) were independently associated with NGS failure. Excluding well-known actionable or clinically relevant mutations which are recommended by international guidelines and commonly tested by targeted sequencing, 57/279 (20.4%) assessable gastrointestinal cancer patients were found to have tumors harboring at least one actionable altered gene according to the OncoKB database. NGS results, however, had a direct impact on management decisions by the treating physician in only 3 cases (1.1%). CONCLUSIONS Our findings confirm that NGS is feasible in the clinical setting with acceptably low failure rates and rapid turnaround time. In gastrointestinal cancers, however, NGS-based multiple-gene testing adds very little to standard targeted sequencing, and in routine practice the clinical impact of NGS panels including genes which are not routinely recommended by international guidelines remains limited.
Collapse
Affiliation(s)
- Giacomo Bregni
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Tiberio Sticca
- Department of Pathology and Molecular Biology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Silvia Camera
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Tugba Akin Telli
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ligia Craciun
- Department of Pathology and Molecular Biology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Elena Trevisi
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Andrea Pretta
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pashalina Kehagias
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sophia Leduc
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Chiara Senti
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Amélie Deleporte
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Caroline Vandeputte
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Everardo Delforge Saad
- Dendrix Research, Sao Paulo, Brazil
- International Drug Development Institute, Louvain-la-Neuve, Belgium
| | - Joseph Kerger
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Thierry Gil
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Martine Piccart-Gebhart
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ahmad Awada
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pieter Demetter
- Department of Pathology and Molecular Biology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Denis Larsimont
- Department of Pathology and Molecular Biology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alain Hendlisz
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Philippe Aftimos
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Francesco Sclafani
- Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- GUTS lab, Department of Medical Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
41
|
Pinkova B, Buckova H, Borska R, Fajkusova L. Types of congenital nonsyndromic ichthyoses. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:357-365. [PMID: 33087941 DOI: 10.5507/bp.2020.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/12/2020] [Indexed: 11/23/2022] Open
Abstract
Congenital ichthyoses are a very heterogeneous group of diseases manifested by dry, rough and scaling skin. In all forms of ichthyoses, the skin barrier is damaged to a certain degree. Congenital ichthyoses are caused by various gene mutations. Clinical manifestations of the individual types vary as the patient ages. Currently, the diagnosis of congenital ichthyoses is based on molecular analysis, which also allows a complete genetic counseling and genetic prevention. It is appropriate to refer the patients to specialized medical centers, where the cooperation of a neonatologist, a pediatric dermatologist, a geneticist and other specialists is ensured.
Collapse
Affiliation(s)
- Blanka Pinkova
- Children's Dermatological Department of the Paediatric Clinic, Faculty of Medicine, Masaryk University and University Hospital Brno, Czech Republic
| | - Hana Buckova
- Children's Dermatological Department of the Paediatric Clinic, Faculty of Medicine, Masaryk University and University Hospital Brno, Czech Republic
| | - Romana Borska
- Center of Molecular Biology and Gene Therapy IHOK University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic Corresponding author: Blanka Pinkova, e-mail
| | - Lenka Fajkusova
- Center of Molecular Biology and Gene Therapy IHOK University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic Corresponding author: Blanka Pinkova, e-mail
| |
Collapse
|
42
|
Khan SY, Ali M, Lee MCW, Ma Z, Biswas P, Khan AA, Naeem MA, Riazuddin S, Riazuddin S, Ayyagari R, Hejtmancik JF, Riazuddin SA. Whole genome sequencing data of multiple individuals of Pakistani descent. Sci Data 2020; 7:350. [PMID: 33051442 PMCID: PMC7555865 DOI: 10.1038/s41597-020-00664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/02/2020] [Indexed: 11/25/2022] Open
Abstract
Here we report whole genome sequencing of four individuals (H3, H4, H5, and H6) from a family of Pakistani descent. Whole genome sequencing yielded 1084.92, 894.73, 1068.62, and 1005.77 million mapped reads corresponding to 162.73, 134.21, 160.29, and 150.86 Gb sequence data and 52.49x, 43.29x, 51.70x, and 48.66x average coverage for H3, H4, H5, and H6, respectively. We identified 3,529,659, 3,478,495, 3,407,895, and 3,426,862 variants in the genomes of H3, H4, H5, and H6, respectively, including 1,668,024 variants common in the four genomes. Further, we identified 42,422, 39,824, 28,599, and 35,206 novel variants in the genomes of H3, H4, H5, and H6, respectively. A major fraction of the variants identified in the four genomes reside within the intergenic regions of the genome. Single nucleotide polymorphism (SNP) genotype based comparative analysis with ethnic populations of 1000 Genomes database linked the ancestry of all four genomes with the South Asian populations, which was further supported by mitochondria based haplogroup analysis. In conclusion, we report whole genome sequencing of four individuals of Pakistani descent. Measurement(s) | SNV • genome | Technology Type(s) | whole genome sequencing • DNA sequencing | Factor Type(s) | individual | Sample Characteristic - Organism | Homo sapiens | Sample Characteristic - Location | Pakistan |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.12642761
Collapse
Affiliation(s)
- Shahid Y Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Muhammad Ali
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Mei-Chong W Lee
- Department of Computer Science, San José State University, San José, CA, 95192, USA
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pooja Biswas
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Asma A Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Maryland School Medicine, Baltimore, MD, 21201, USA
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, 53700, Pakistan.,Allama Iqbal Medical College, University of Health Sciences, Lahore, 54550, Pakistan.,Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, 44080, Pakistan
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
43
|
Li S, Tollefsbol TO. DNA methylation methods: Global DNA methylation and methylomic analyses. Methods 2020; 187:28-43. [PMID: 33039572 DOI: 10.1016/j.ymeth.2020.10.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
DNA methylation provides a pivotal layer of epigenetic regulation in eukaryotes that has significant involvement for numerous biological processes in health and disease. The function of methylation of cytosine bases in DNA was originally proposed as a "silencing" epigenetic marker and focused on promoter regions of genes for decades. Improved technologies and accumulating studies have been extending our understanding of the roles of DNA methylation to various genomic contexts including gene bodies, repeat sequences and transcriptional start sites. The demand for comprehensively describing DNA methylation patterns spawns a diversity of DNA methylation profiling technologies that target its genomic distribution. These approaches have enabled the measurement of cytosine methylation from specific loci at restricted regions to single-base-pair resolution on a genome-scale level. In this review, we discuss the different DNA methylation analysis technologies primarily based on the initial treatments of DNA samples: bisulfite conversion, endonuclease digestion and affinity enrichment, involving methodology evolution, principles, applications, and their relative merits. This review may offer referable information for the selection of various platforms for genome-wide analysis of DNA methylation.
Collapse
Affiliation(s)
- Shizhao Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, United States; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
44
|
Ryu JS, Lee HY, Cho EH, Yoon KA, Kim MK, Joo J, Lee ES, Kang HS, Lee S, Lee DO, Lim MC, Kong SY. Exon splicing analysis of intronic variants in multigene cancer panel testing for hereditary breast/ovarian cancer. Cancer Sci 2020; 111:3912-3925. [PMID: 32761968 PMCID: PMC7540976 DOI: 10.1111/cas.14600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
The use of multigene panel testing for patients with a predisposition to breast/ovarian cancer is increasing as the identification of variants is useful for diagnosis and disease management. We identified pathogenic and likely pathogenic (P/LP) variants of high-and moderate-risk genes using a 23-gene germline cancer panel in 518 patients with hereditary breast and ovarian cancers (HBOC). The frequency of P/LP variants was 12.4% (64/518) for high- and moderate-penetrant genes, namely, BRCA2 (5.6%), BRCA1 (3.3%), CHEK2 (1.2%), MUTYH (0.8%), PALB2 (0.8%), MLH1 (0.4%), ATM (0.4%), BRIP1 (0.4%), TP53 (0.2%), and PMS2 (0.2%). Five patients possessed two P/LP variants in BRCA1/2 and other genes. We also compared the results from in silico splicing predictive tools and exon splicing patterns from patient samples by analyzing RT-PCR product sequences in six P/LP intronic variants and two intronic variants of unknown significance (VUS). Altered transcriptional fragments were detected for P/LP intronic variants in BRCA1, BRIP1, CHEK2, PARB2, and PMS2. Notably, we identified an in-frame deletion of the BRCA1 C-terminal (BRCT) domain by exon skipping in BRCA1 c.5152+6T>C-as known VUS-indicating a risk for HBOC. Thus, exon splicing analysis can improve the identification of veiled intronic variants that would aid decision making and determination of hereditary cancer risk.
Collapse
Affiliation(s)
- Jin-Sun Ryu
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Korea
| | - Hye-Young Lee
- Department of Laboratory Medicine, Hospital, National Cancer Center, Goyang, Korea
| | - Eun Hae Cho
- Genomic research center, Green Cross Genome, Yongin, Korea
| | - Kyong-Ah Yoon
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Min-Kyeong Kim
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Korea
| | - Jungnam Joo
- Division of Cancer Epidemiology and Management, Research Institute, National Cancer Center, Goyang, Korea
| | - Eun-Sook Lee
- Center for Breast Cancer, Hospital, National Cancer Center, Goyang, Korea
| | - Han-Sung Kang
- Center for Breast Cancer, Hospital, National Cancer Center, Goyang, Korea
| | - Seeyoun Lee
- Center for Breast Cancer, Hospital, National Cancer Center, Goyang, Korea
| | - Dong Ock Lee
- Center for Gynecologic Cancer, Hospital, National Cancer Center, Goyang, Korea
| | - Myong Cheol Lim
- Center for Gynecologic Cancer, Hospital, National Cancer Center, Goyang, Korea.,Division of Tumor Immunology and Center for Clinical Trial, Research Institute, National Cancer Center, Goyang, Korea
| | - Sun-Young Kong
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Korea.,Department of Laboratory Medicine, Hospital, National Cancer Center, Goyang, Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| |
Collapse
|
45
|
Sun MW, Moretti S, Paskov KM, Stockham NT, Varma M, Chrisman BS, Washington PY, Jung JY, Wall DP. Game theoretic centrality: a novel approach to prioritize disease candidate genes by combining biological networks with the Shapley value. BMC Bioinformatics 2020; 21:356. [PMID: 32787845 PMCID: PMC7430867 DOI: 10.1186/s12859-020-03693-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Abstract
Background Complex human health conditions with etiological heterogeneity like Autism Spectrum Disorder (ASD) often pose a challenge for traditional genome-wide association study approaches in defining a clear genotype to phenotype model. Coalitional game theory (CGT) is an exciting method that can consider the combinatorial effect of groups of variants working in concert to produce a phenotype. CGT has been applied to associate likely-gene-disrupting variants encoded from whole genome sequence data to ASD; however, this previous approach cannot take into account for prior biological knowledge. Here we extend CGT to incorporate a priori knowledge from biological networks through a game theoretic centrality measure based on Shapley value to rank genes by their relevance–the individual gene’s synergistic influence in a gene-to-gene interaction network. Game theoretic centrality extends the notion of Shapley value to the evaluation of a gene’s contribution to the overall connectivity of its corresponding node in a biological network. Results We implemented and applied game theoretic centrality to rank genes on whole genomes from 756 multiplex autism families. Top ranking genes with the highest game theoretic centrality in both the weighted and unweighted approaches were enriched for pathways previously associated with autism, including pathways of the immune system. Four of the selected genes HLA-A, HLA-B, HLA-G, and HLA-DRB1–have also been implicated in ASD and further support the link between ASD and the human leukocyte antigen complex. Conclusions Game theoretic centrality can prioritize influential, disease-associated genes within biological networks, and assist in the decoding of polygenic associations to complex disorders like autism.
Collapse
Affiliation(s)
- Min Woo Sun
- Department of Biomedical Data Science, Stanford University, Stanford, USA.,Department of Pediatrics, Stanford University, Stanford, USA
| | - Stefano Moretti
- LAMSADE, CNRS, Université Paris-Dauphine, Université PSL, Paris, France
| | - Kelley M Paskov
- Department of Biomedical Data Science, Stanford University, Stanford, USA
| | - Nate T Stockham
- Department of Neuroscience, Stanford University, Stanford, USA
| | - Maya Varma
- Department of Computer Science, Stanford University, Stanford, USA
| | | | | | - Jae-Yoon Jung
- Department of Biomedical Data Science, Stanford University, Stanford, USA.,Department of Pediatrics, Stanford University, Stanford, USA
| | - Dennis P Wall
- Department of Biomedical Data Science, Stanford University, Stanford, USA. .,Department of Pediatrics, Stanford University, Stanford, USA. .,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States.
| |
Collapse
|
46
|
Farajzadeh Valilou S, Alavi A, Pashaei M, Ghasemi Firouzabadi S, Shafeghati Y, Nozari A, Hadipour F, Hadipour Z, Maghsoodlou Estrabadi B, Gholamreza Noorazar S, Banihashemi S, Karimian J, Fattahi M, Behjati F. Whole-Exome Sequencing Identifies Three Candidate Homozygous Variants in a Consanguineous Iranian Family with Autism Spectrum Disorder and Skeletal Problems. Mol Syndromol 2020; 11:62-72. [PMID: 32655337 DOI: 10.1159/000506530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2020] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by 3 core symptoms with impaired social communication, repetitive behavior, and/or restricted interests in early childhood. As a complex neurodevelopmental disorder (NDD), the phenotype and severity of autism are extremely heterogeneous. Genetic factors have a key role in the etiology of autism. In this study, we investigated an Azeri Turkish family with 2 ASD-affected individuals to identify probable ASD-causing variants. First, the affected individuals were karyotyped in order to exclude chromosomal abnormalities. Then, whole-exome sequencing was carried out in one affected sibling followed by cosegregation analysis for the candidate variants in the family. In addition, SNP genotyping was carried out in the patients to identify possible homozygosity regions. Both proband and sibling had a normal karyotype. We detected 3 possible causative variants in this family: c.5443G>A; p.Gly1815Ser, c.1027C>T; p.Arg343Trp, and c.382A>G; p.Lys128Glu, which are in the FBN1, TF, and PLOD2 genes, respectively. All of the variants cosegregated in the family, and SNP genotyping revealed that these 3 variants are located in the homozygosity regions. This family serves as an example of a multimodal polygenic risk for a complex developmental disorder. Of these 3 genes, confluence of the variants in FBN1 and PLOD2 may contribute to the autistic features of the patient in addition to skeletal problems. Our study highlights the genetic complexity and heterogeneity of NDDs such as autism. In other words, in some patients with ASD, multiple rare variants in different loci rather than a monogenic state may contribute to the development of phenotypes.
Collapse
Affiliation(s)
- Saeed Farajzadeh Valilou
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mahdiyeh Pashaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Yousef Shafeghati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Department of Medical Genetics and Sarem Cell Research Center (SCRC), Sarem Womens' Hospital, Tehran, Iran
| | - Ahoura Nozari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Hadipour
- Department of Medical Genetics and Sarem Cell Research Center (SCRC), Sarem Womens' Hospital, Tehran, Iran
| | - Zahra Hadipour
- Department of Medical Genetics and Sarem Cell Research Center (SCRC), Sarem Womens' Hospital, Tehran, Iran
| | | | - Seyed Gholamreza Noorazar
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Susan Banihashemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Javad Karimian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mahshid Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Farkhondeh Behjati
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
47
|
Melas M, Subbiah S, Saadat S, Rajurkar S, McDonnell KJ. The Community Oncology and Academic Medical Center Alliance in the Age of Precision Medicine: Cancer Genetics and Genomics Considerations. J Clin Med 2020; 9:E2125. [PMID: 32640668 PMCID: PMC7408957 DOI: 10.3390/jcm9072125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Recent public policy, governmental regulatory and economic trends have motivated the establishment and deepening of community health and academic medical center alliances. Accordingly, community oncology practices now deliver a significant portion of their oncology care in association with academic cancer centers. In the age of precision medicine, this alliance has acquired critical importance; novel advances in nucleic acid sequencing, the generation and analysis of immense data sets, the changing clinical landscape of hereditary cancer predisposition and ongoing discovery of novel, targeted therapies challenge community-based oncologists to deliver molecularly-informed health care. The active engagement of community oncology practices with academic partners helps with meeting these challenges; community/academic alliances result in improved cancer patient care and provider efficacy. Here, we review the community oncology and academic medical center alliance. We examine how practitioners may leverage academic center precision medicine-based cancer genetics and genomics programs to advance their patients' needs. We highlight a number of project initiatives at the City of Hope Comprehensive Cancer Center that seek to optimize community oncology and academic cancer center precision medicine interactions.
Collapse
Affiliation(s)
- Marilena Melas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Shanmuga Subbiah
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Glendora, CA 91741, USA;
| | - Siamak Saadat
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Colton, CA 92324, USA;
| | - Swapnil Rajurkar
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Upland, CA 91786, USA;
| | - Kevin J. McDonnell
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, CA 91010, USA
- Center for Precision Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
48
|
Fernandes AM, Rocha-Braz MGM, França MM, Lerario AM, Simões VRF, Zanardo EA, Kulikowski LD, Martin RM, Mendonca BB, Ferraz-de-Souza B. The molecular landscape of osteogenesis imperfecta in a Brazilian tertiary service cohort. Osteoporos Int 2020; 31:1341-1352. [PMID: 32123938 DOI: 10.1007/s00198-020-05366-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
UNLABELLED We have sought the molecular diagnosis of OI in 38 Brazilian cases through targeted sequencing of 15 candidate genes. While 71% had type 1 collagen-related OI, defects in FKBP10, PLOD2 and SERPINF1, and a potential digenic P3H1/WNT1 interaction were prominent causes of OI in this underrepresented population. INTRODUCTION Defects in type 1 collagen reportedly account for 85-90% of osteogenesis imperfecta (OI) cases, but most available molecular data has derived from Sanger sequencing-based approaches in developed countries. Massively parallel sequencing (MPS) allows for systematic and comprehensive analysis of OI genes simultaneously. Our objective was to obtain the molecular diagnosis of OI in a single Brazilian tertiary center cohort. METHODS Forty-nine individuals (84% adults) with a clinical diagnosis of OI, corresponding to 30 sporadic and 8 familial cases, were studied. Sixty-three percent had moderate to severe OI, and consanguinity was common (26%). Coding regions and 25-bp boundaries of 15 OI genes (COL1A1, COL1A2, IFITM5 [plus 5'UTR], SERPINF1, CRTAP, P3H1, PPIB, SERPINH1, FKBP10, PLOD2, BMP1, SP7, TMEM38B, WNT1, CREB3L1) were analyzed by targeted MPS and variants of interest were confirmed by Sanger sequencing or SNP array. RESULTS A molecular diagnosis was obtained in 97% of cases. COL1A1/COL1A2 variants were identified in 71%, whereas 26% had variants in other genes, predominantly FKBP10, PLOD2, and SERPINF1. A potential digenic interaction involving P3H1 and WNT1 was identified in one case. Phenotypic variability with collagen defects could not be explained by evident modifying variants. Four consanguineous cases were associated to heterozygous COL1A1/COL1A2 variants, and two nonconsanguineous cases had compound PLOD2 heterozygosity. CONCLUSIONS Novel disease-causing variants were identified in 29%, and a higher proportion of non-collagen defects was seen. Obtaining a precise diagnosis of OI in underrepresented populations allows expanding our understanding of its molecular landscape, potentially leading to improved personalized care in the future.
Collapse
Affiliation(s)
- A M Fernandes
- Laboratorio de Endocrinologia Celular e Molecular LIM-25 e Unidade de Doencas Osteometabolicas, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - M G M Rocha-Braz
- Laboratorio de Endocrinologia Celular e Molecular LIM-25 e Unidade de Doencas Osteometabolicas, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - M M França
- Laboratorio de Hormonios e Genetica Molecular LIM-42, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Department of Medicine, Section of Endocrinology, The University of Chicago, Chicago, IL, 60637, USA
| | - A M Lerario
- Laboratorio de Hormonios e Genetica Molecular LIM-42, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Laboratorio de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - V R F Simões
- Laboratorio de Endocrinologia Celular e Molecular LIM-25 e Unidade de Doencas Osteometabolicas, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - E A Zanardo
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - L D Kulikowski
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - R M Martin
- Laboratorio de Hormonios e Genetica Molecular LIM-42, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - B B Mendonca
- Laboratorio de Sequenciamento em Larga Escala (SELA), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - B Ferraz-de-Souza
- Laboratorio de Endocrinologia Celular e Molecular LIM-25 e Unidade de Doencas Osteometabolicas, Divisao de Endocrinologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
49
|
Mesothelioma in the age of "Omics": Before and after The Cancer Genome Atlas. J Thorac Cardiovasc Surg 2020; 160:1078-1083.e2. [PMID: 32475501 DOI: 10.1016/j.jtcvs.2020.02.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 01/25/2020] [Accepted: 02/29/2020] [Indexed: 01/28/2023]
|
50
|
Rubio S, Pacheco-Orozco RA, Gómez AM, Perdomo S, García-Robles R. Secuenciación de nueva generación (NGS) de ADN: presente y futuro en la práctica clínica. ACTA ACUST UNITED AC 2020. [DOI: 10.11144/javeriana.umed61-2.sngs] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introducción: el término secuenciación de nueva generación (NGS) hace referencia a las tecnologías diseñadas para analizar gran cantidad de ADN de forma masiva y paralela. Abordamos en esta revisión los conceptos básicos de estas tecnologías, las consideraciones de su uso clínico actual y perspectivas a futuro. Desarrollo: las pruebas basadas en NGS han revolucionado el estudio de los genomas pues permiten la lectura de millones de secuencias de ADN de forma masiva y paralela en un menor lapso de tiempo y a menor costo por base. Estas pruebas incluyen la secuenciación de panel de genes, la secuenciación completa del exoma y la secuenciación completa del genoma. El análisis de sus resultados es complejo y requiere de un proceso bioinformático y clínico exhaustivo para su adecuada interpretación. Las limitaciones de las pruebas NGS incluyen aspectos técnicos como la cobertura, profundidad y longitud de las secuencias, las cuales se pueden solventar implementando buenas prácticas de laboratorio. Conclusiones: las pruebas basadas en la secuenciación por NGS son herramientas diagnósticas que deben partir de una aproximación clínica adecuada para su uso razonado, correcta interpretación y toma de decisiones acertadas. Es de gran trascendencia que los médicos tengan la información básica para poder solicitar e interpretar estas pruebas dada su relevancia clínica actual.
Collapse
|