1
|
Xiang D, Xu K, Chen M, Zhang Z, Sun N, Qi Y, Lu J, Wang C, Yang S. A rare homozygous mutation in the YARS2 gene presents with hypertrophic cardiomyopathy, lactic acidosis and anemia in a Chinese infant. Gene 2024; 914:148379. [PMID: 38490507 DOI: 10.1016/j.gene.2024.148379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Affiliation(s)
- Dandan Xiang
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Kangkang Xu
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Mei Chen
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Zhongman Zhang
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Ningning Sun
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yuying Qi
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Jie Lu
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Shiwei Yang
- Department of Cardiology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China.
| |
Collapse
|
2
|
Selvanathan A, Teo J, Parayil Sankaran B. Hematologic Manifestations in Primary Mitochondrial Diseases. J Pediatr Hematol Oncol 2024; 46:e338-e347. [PMID: 38857202 DOI: 10.1097/mph.0000000000002890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/23/2024] [Indexed: 06/12/2024]
Abstract
Primary mitochondrial disorders (PMDs) are known for their pleiotropic manifestations in humans, affecting almost any organ or system at any time. Hematologic manifestations, such as cytopenias and sideroblastic anemia, occur in 10% to 30% of patients with confirmed PMDs. These can be the initial presenting features or complications that develop over time. Surveillance for these manifestations allows for prompt identification and treatment. This article provides an overview of the pathophysiology underpinning the hematologic effects of mitochondrial dysfunction, discussing the 3 key roles of the mitochondria in hematopoiesis: providing energy for cell differentiation and function, synthesizing heme, and generating iron-sulfur clusters. Subsequently, the diagnosis and management of mitochondrial disorders are discussed, focusing on hematologic manifestations and the specific conditions commonly associated with them. Through this, we aimed to provide a concise point of reference for those considering a mitochondrial cause for a patient's hematologic abnormality, or for those considering a hematologic manifestation in a patient with known or suspected mitochondrial disease.
Collapse
Affiliation(s)
- Arthavan Selvanathan
- Genetic Metabolic Disorders Service, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Juliana Teo
- Haematology Department, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Bindu Parayil Sankaran
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| |
Collapse
|
3
|
Haque S, Crawley K, Davis R, Schofield D, Shrestha R, Sue CM. Clinical drivers of hospitalisation in patients with mitochondrial diseases. BMJ Neurol Open 2024; 6:e000717. [PMID: 38868460 PMCID: PMC11168164 DOI: 10.1136/bmjno-2024-000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Background Mitochondrial diseases in adults are generally chronic conditions with a wide spectrum of severity contributing to disease burden and healthcare resource utilisation. Data on healthcare resource utilisation in mitochondrial diseases are limited. Objectives We performed a retrospective longitudinal study to investigate the clinical drivers of hospitalisation in adult patients with mitochondrial diseases to better understand healthcare resource utilisation. Methods We recruited participants from our specialised Mitochondrial Disease Clinic in Sydney, Australia between September 2018 and December 2021. We performed a retrospective chart review for the period 2013-2022 considering emergency department (ED) and/or hospital admission notes, as well as discharge summaries. We used multiple linear regression models to examine the association between the type of presenting symptom(s) and duration of hospital stay and frequency of admissions, while adjusting for relevant covariates. Results Of the 99 patients considered, the duration of hospitalisation ranged from 0 to 116 days per participant and the number of admissions ranged from 0 to 21 per participant. Participants with one or more mitochondrial disease-associated admissions constituted 52% of the study cohort. 13% of the participants presented to the ED without requiring an admission and 35% never attended the ED or required a hospital admission during this period. Neurological (p<0.0001), gastroenterological (p=0.01) and symptoms categorised as 'other' (p<0.0001) were the main presentations driving the total number of days admitted to hospital. A statistically significant association was evident for the number of admissions and all types of presenting symptoms (p<0.0001). Conclusion There are variable reasons for hospitalisation in adults with mitochondrial diseases, with neurological and gastroenterological presentations being associated with prolonged and complex hospitalisation. A better understanding of clinical drivers such as these allows for better informed and well-coordinated management aimed at optimising healthcare resource utilisation.
Collapse
Affiliation(s)
- Sameen Haque
- Neurology, Nepean Hospital, Kingswood, New South Wales, Australia
- Neurogenetics, Kolling Institute of Medical Research, St Leonards, New South Wales, Australia
| | - Karen Crawley
- Neurogenetics, Kolling Institute of Medical Research, St Leonards, New South Wales, Australia
| | - Ryan Davis
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Neurogenetics Research Group, Kolling Institute of Medical Research, St Leonards, New South Wales, Australia
| | - Deborah Schofield
- Centre for Economic Impacts of Genomic Medicine (GenIMPACT), Macquarie University, Sydney, New South Wales, Australia
| | - Rupendra Shrestha
- Centre for Economic Impacts of Genomic Medicine (GenIMPACT), Macquarie University, Sydney, New South Wales, Australia
| | - Carolyn M Sue
- Kinghorn Chair, Neurodegeneration, Neuroscience Research Australia, Randwick, New South Wales, Australia
- Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Caraffi SG, van der Laan L, Rooney K, Trajkova S, Zuntini R, Relator R, Haghshenas S, Levy MA, Baldo C, Mandrile G, Lauzon C, Cordelli DM, Ivanovski I, Fetta A, Sukarova E, Brusco A, Pavinato L, Pullano V, Zollino M, McConkey H, Tartaglia M, Ferrero GB, Sadikovic B, Garavelli L. Identification of the DNA methylation signature of Mowat-Wilson syndrome. Eur J Hum Genet 2024; 32:619-629. [PMID: 38351292 PMCID: PMC11153515 DOI: 10.1038/s41431-024-01548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 06/07/2024] Open
Abstract
Mowat-Wilson syndrome (MOWS) is a rare congenital disease caused by haploinsufficiency of ZEB2, encoding a transcription factor required for neurodevelopment. MOWS is characterized by intellectual disability, epilepsy, typical facial phenotype and other anomalies, such as short stature, Hirschsprung disease, brain and heart defects. Despite some recognizable features, MOWS rarity and phenotypic variability may complicate its diagnosis, particularly in the neonatal period. In order to define a novel diagnostic biomarker for MOWS, we determined the genome-wide DNA methylation profile of DNA samples from 29 individuals with confirmed clinical and molecular diagnosis. Through multidimensional scaling and hierarchical clustering analysis, we identified and validated a DNA methylation signature involving 296 differentially methylated probes as part of the broader MOWS DNA methylation profile. The prevalence of hypomethylated CpG sites agrees with the main role of ZEB2 as a transcriptional repressor, while differential methylation within the ZEB2 locus supports the previously proposed autoregulation ability. Correlation studies compared the MOWS cohort with 56 previously described DNA methylation profiles of other neurodevelopmental disorders, further validating the specificity of this biomarker. In conclusion, MOWS DNA methylation signature is highly sensitive and reproducible, providing a useful tool to facilitate diagnosis.
Collapse
Grants
- MNESYS (PE0000006) Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- 20203P8C3X Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- FOE 2020 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- RCR-2022-23682289 Ministero della Salute (Ministry of Health, Italy)
- PNRR-MR1-2022-12376811 Ministero della Salute (Ministry of Health, Italy)
- OGI-188 Ontario Genomics Institute (OGI)
- Ministero dell'Istruzione, dell'Universit&#x00E0; e della Ricerca (Ministry of Education, University and Research)
Collapse
Affiliation(s)
| | - Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Slavica Trajkova
- Department of Medical Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126, Torino, Italy
| | - Roberta Zuntini
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42122, Reggio Emilia, Italy
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Sadegheh Haghshenas
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Chiara Baldo
- Laboratory of Human Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Giorgia Mandrile
- Medical Genetics Unit and Thalassemia Center, San Luigi University Hospital, University of Torino, 10043, Orbassano (Torino), Italy
| | - Carolyn Lauzon
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
| | - Duccio Maria Cordelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, 40139, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Ivan Ivanovski
- Institute of Medical Genetics, University of Zürich, Zürich, Switzerland
| | - Anna Fetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell'Età Pediatrica, 40139, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126, Bologna, Italy
| | - Elena Sukarova
- Department of Endocrinology and Genetics, University Clinic for Pediatric Diseases, Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, 1000, Skopje, Republic of North Macedonia
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, Italy
| | - Lisa Pavinato
- Department of Medical Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126, Torino, Italy
| | - Verdiana Pullano
- Department of Medical Sciences, University of Torino, Torino, Italy
- Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126, Torino, Italy
| | - Marcella Zollino
- Institute of Genomic Medicine, Department of Life Sciences and Public Health, 'Sacro Cuore' Catholic University of Rome, 00168, Rome, Italy
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | | | - Bekim Sadikovic
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada.
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42122, Reggio Emilia, Italy.
| |
Collapse
|
5
|
Guo M, He Y, Chen A, Zhuang Z, Pan X, Guan M. Clinical and genetic analysis of essential hypertension with mitochondrial tRNA Met 4435A>G and YARS2 mutation. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:184-193. [PMID: 38562030 PMCID: PMC11057996 DOI: 10.3724/zdxbyxb-2023-0571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES To investigate the role of m.4435A>G and YARS2 c.572G>T (p.G191V) mutations in the development of essential hypertension. METHODS A hypertensive patient with m.4435A>G and YARS2 p.G191V mutations was identified from previously collected mitochondrial genome and exon sequencing data. Clinical data were collected, and a molecular genetic study was conducted in the proband and his family members. Peripheral venous blood was collected, and immortalized lymphocyte lines constructed. The mitochondrial transfer RNA (tRNA), mitochondrial protein, adenosine triphosphate (ATP), mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) in the constructed lymphocyte cell lines were measured. RESULTS Mitochondrial genome sequencing showed that all maternal members carried a highly conserved m.4435A>G mutation. The m.4435A>G mutation might affect the secondary structure and folding free energy of mitochondrial tRNA and change its stability, which may influence the anticodon ring structure. Compared with the control group, the cell lines carrying m.4435A>G and YARS2 p.G191V mutations had decreased mitochondrial tRNA homeostasis, mitochondrial protein expression, ATP production and MMP levels, as well as increased ROS levels (all P<0.05). CONCLUSIONS The YARS2 p.G191V mutation aggravates the changes in mitochondrial translation and mitochondrial function caused by m.4435A>G through affecting the steady-state level of mitochondrial tRNA and further leads to cell dysfunction, indicating that YARS2 p.G191V and m.4435A>G mutations have a synergistic effect in this family and jointly participate in the occurrence and development of essential hypertension.
Collapse
Affiliation(s)
- Meili Guo
- Clinical Laboratory, Cangnan County People's Hospital, Wenzhou 325800, Zhejiang Province, China.
| | - Yunfan He
- Institute of Genetics, Zhejiang University, Zhejiang Provincial Key Lab of Genetic and Developmental Disorders, Hangzhou 310058, China
| | - Ade Chen
- Clinical Laboratory, Cangnan County People's Hospital, Wenzhou 325800, Zhejiang Province, China
| | - Zaishou Zhuang
- Clinical Laboratory, Cangnan County People's Hospital, Wenzhou 325800, Zhejiang Province, China
| | - Xiaoyong Pan
- Clinical Laboratory, Cangnan County People's Hospital, Wenzhou 325800, Zhejiang Province, China
| | - Minxin Guan
- Institute of Genetics, Zhejiang University, Zhejiang Provincial Key Lab of Genetic and Developmental Disorders, Hangzhou 310058, China.
| |
Collapse
|
6
|
Shi D, Wang B, Li H, Lian Y, Ma Q, Liu T, Cao M, Ma Y, Shi L, Yuan W, Shi J, Chu Y. Pseudouridine synthase 1 regulates erythropoiesis via transfer RNAs pseudouridylation and cytoplasmic translation. iScience 2024; 27:109265. [PMID: 38450158 PMCID: PMC10915626 DOI: 10.1016/j.isci.2024.109265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/21/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Pseudouridylation plays a regulatory role in various physiological and pathological processes. A prime example is the mitochondrial myopathy, lactic acidosis, and sideroblastic anemia syndrome (MLASA), characterized by defective pseudouridylation resulting from genetic mutations in pseudouridine synthase 1 (PUS1). However, the roles and mechanisms of pseudouridylation in normal erythropoiesis and MLASA-related anemia remain elusive. We established a mouse model carrying a point mutation (R110W) in the enzymatic domain of PUS1, mimicking the common mutation in human MLASA. Pus1-mutant mice exhibited anemia at 4 weeks old. Impaired mitochondrial oxidative phosphorylation was also observed in mutant erythroblasts. Mechanistically, mutant erythroblasts showed defective pseudouridylation of targeted tRNAs, altered tRNA profiles, decreased translation efficiency of ribosomal protein genes, and reduced globin synthesis, culminating in ineffective erythropoiesis. Our study thus provided direct evidence that pseudouridylation participates in erythropoiesis in vivo. We demonstrated the critical role of pseudouridylation in regulating tRNA homeostasis, cytoplasmic translation, and erythropoiesis.
Collapse
Affiliation(s)
- Deyang Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Department of Hematology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Bichen Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Haoyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yu Lian
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Qiuyi Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Tong Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Mutian Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Lei Shi
- Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), Haihe Laboratory of Cell Ecosystem, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
7
|
Gerard A, Mizerik E, Mohila CA, AlAwami S, Hunter JV, Kearney DL, Lalani SR, Scaglia F. Intracranial calcifications simulating Aicardi-Goutières syndrome in PARS2-related mitochondrial disease. Am J Med Genet A 2024:e63589. [PMID: 38469956 DOI: 10.1002/ajmg.a.63589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/05/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
PARS2 encodes an aminoacyl-tRNA synthetase that catalyzes the ligation of proline to mitochondrial prolyl-tRNA molecules. Diseases associated with PARS2 primarily affect the central nervous system, causing early infantile developmental epileptic encephalopathies (EIDEE; DEE75; MIM #618437) with infantile-onset neurodegeneration. Dilated cardiomyopathy has also been reported in the affected individuals. About 10 individuals to date have been described with pathogenic biallelic variants in PARS2. While many of the reported individuals succumbed to the disease in the first two decades of life, autopsy findings have not yet been reported. Here, we describe neuropathological findings in a deceased male with evidence of intracranial calcifications in the basal ganglia, thalamus, cerebellum, and white matter, similar to Aicardi-Goutières syndrome. This report describes detailed autopsy findings in a child with PARS2-related mitochondrial disease and provides plausible evidence that intracranial calcifications may be a previously unrecognized feature of this disorder.
Collapse
Affiliation(s)
- Amanda Gerard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Elizabeth Mizerik
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Carrie A Mohila
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Sarah AlAwami
- King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Jill V Hunter
- Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
- E.B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas, USA
| | - Debra L Kearney
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
- Joint BCM-CUHK Center of Medical Genetics, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Beecher G, Gavrilova RH, Mandrekar J, Naddaf E. Mitochondrial myopathies diagnosed in adulthood: clinico-genetic spectrum and long-term outcomes. Brain Commun 2024; 6:fcae041. [PMID: 38434220 PMCID: PMC10906953 DOI: 10.1093/braincomms/fcae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Mitochondrial myopathies are frequently recognized in childhood as part of a broader multisystem disorder and often overlooked in adulthood. Herein, we describe the phenotypic and genotypic spectrum and long-term outcomes of mitochondrial myopathies diagnosed in adulthood, focusing on neuromuscular features, electrodiagnostic and myopathological findings and survival. We performed a retrospective chart review of adult patients diagnosed with mitochondrial myopathy at Mayo Clinic (2005-21). We identified 94 patients. Median time from symptom onset to diagnosis was 11 years (interquartile range 4-21 years). Median age at diagnosis was 48 years (32-63 years). Primary genetic defects were identified in mitochondrial DNA in 48 patients (10 with single large deletion, 38 with point mutations) and nuclear DNA in 29. Five patients had multiple mitochondrial DNA deletions or depletion without nuclear DNA variants. Twelve patients had histopathological features of mitochondrial myopathy without molecular diagnosis. The most common phenotypes included multisystem disorder (n = 30); mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (14); limb myopathy (13); chronic progressive external ophthalmoplegia (12); and chronic progressive external ophthalmoplegia-plus (12). Isolated skeletal muscle manifestations occurred in 27%. Sixty-nine per cent had CNS and 21% had cardiac involvement. Mutations most frequently involved MT-TL1 (27) and POLG (17); however, a wide spectrum of established and novel molecular defects, with overlapping phenotypes, was identified. Electrodiagnostic studies identified myopathy (77%), fibrillation potentials (27%) and axonal peripheral neuropathy (42%, most common with nuclear DNA variants). Among 42 muscle biopsies available, median percentage counts were highest for cytochrome C oxidase negative fibres (5.1%) then ragged blue (1.4%) and ragged red fibres (0.5%). Skeletal muscle weakness was mild and slowly progressive (decline in strength summated score of 0.01/year). Median time to gait assistance was 5.5 years from diagnosis and 17 years from symptom onset. Thirty patients died, with median survival of 33.4 years from symptom onset and 10.9 years from diagnosis. Median age at death was 55 years. Cardiac involvement was associated with increased mortality [hazard ratio 2.36 (1.05, 5.29)]. There was no difference in survival based on genotype or phenotype. Despite the wide phenotypic and genotypic spectrum, mitochondrial myopathies in adults share similar features with slowly progressive limb weakness, contrasting with common multiorgan involvement and high mortality.
Collapse
Affiliation(s)
- Grayson Beecher
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | - Ralitza H Gavrilova
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jay Mandrekar
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Matveeva A, Watters O, Rukhadze A, Khemka N, Gentile D, Perez IF, Llorente-Folch I, Farrell C, Lo Cacciato E, Jackson J, Piazzesi A, Wischhof L, Woods I, Halang L, Hogg M, Muñoz AG, Dillon ET, Matallanas D, Arijs I, Lambrechts D, Bano D, Connolly NMC, Prehn JHM. Integrated analysis of transcriptomic and proteomic alterations in mouse models of ALS/FTD identify early metabolic adaptions with similarities to mitochondrial dysfunction disorders. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:135-149. [PMID: 37779364 DOI: 10.1080/21678421.2023.2261979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/10/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE Sporadic and familial amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disease that results in loss of motor neurons and, in some patients, associates with frontotemporal dementia (FTD). Apart from the accumulation of proteinaceous deposits, emerging literature indicates that aberrant mitochondrial bioenergetics may contribute to the onset and progression of ALS/FTD. Here we sought to investigate the pathophysiological signatures of mitochondrial dysfunction associated with ALS/FTD. METHODS By means of label-free mass spectrometry (MS) and mRNA sequencing (mRNA-seq), we report pre-symptomatic changes in the cortices of TDP-43 and FUS mutant mouse models. Using tissues from transgenic mouse models of mitochondrial diseases as a reference, we performed comparative analyses and extracted unique and common mitochondrial signatures that revealed neuroprotective compensatory mechanisms in response to early damage. RESULTS In this regard, upregulation of both Acyl-CoA Synthetase Long-Chain Family Member 3 (ACSL3) and mitochondrial tyrosyl-tRNA synthetase 2 (YARS2) were the most representative change in pre-symptomatic ALS/FTD tissues, suggesting that fatty acid beta-oxidation and mitochondrial protein translation are mechanisms of adaptation in response to ALS/FTD pathology. CONCLUSIONS Together, our unbiased integrative analyses unveil novel molecular components that may influence mitochondrial homeostasis in the earliest phase of ALS.
Collapse
Affiliation(s)
- Anna Matveeva
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Orla Watters
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- SFI FutureNeuro Research Centre, Dublin 2, Ireland
| | - Ani Rukhadze
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Niraj Khemka
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Debora Gentile
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ivan Fernandez Perez
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Irene Llorente-Folch
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Cliona Farrell
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | - Joshua Jackson
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ina Woods
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Luise Halang
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Marion Hogg
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- SFI FutureNeuro Research Centre, Dublin 2, Ireland
- Department of Biosciences, Nottingham Trent University, Clifton Campus, Nottingham, UK
| | - Amaya Garcia Muñoz
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Belfield, Ireland
| | - Eugène T Dillon
- Mass Spectrometry Resource, Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Belfield, Ireland
| | - Ingrid Arijs
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium, and
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Niamh M C Connolly
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- SFI FutureNeuro Research Centre, Dublin 2, Ireland
| |
Collapse
|
10
|
Chin HL, Lai PS, Tay SKH. A clinical approach to diagnosis and management of mitochondrial myopathies. Neurotherapeutics 2024; 21:e00304. [PMID: 38241155 PMCID: PMC10903095 DOI: 10.1016/j.neurot.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/11/2023] [Indexed: 01/21/2024] Open
Abstract
This paper provides an overview of the different types of mitochondrial myopathies (MM), associated phenotypes, genotypes as well as a practical clinical approach towards disease diagnosis, surveillance, and management. nDNA-related MM are more common in pediatric-onset disease whilst mtDNA-related MMs are more frequent in adults. Genotype-phenotype correlation in MM is challenging due to clinical and genetic heterogeneity. The multisystemic nature of many MMs adds to the diagnostic challenge. Diagnostic approaches utilizing genetic sequencing with next generation sequencing approaches such as gene panel, exome and genome sequencing are available. This aids molecular diagnosis, heteroplasmy detection in MM patients and furthers knowledge of known mitochondrial genes. Precise disease diagnosis can end the diagnostic odyssey for patients, avoid unnecessary testing, provide prognosis, facilitate anticipatory management, and enable access to available therapies or clinical trials. Adjunctive tests such as functional and exercise testing could aid surveillance of MM patients. Management requires a multi-disciplinary approach, systemic screening for comorbidities, cofactor supplementation, avoidance of substances that inhibit the respiratory chain and exercise training. This update of the current understanding on MMs provides practical perspectives on current diagnostic and management approaches for this complex group of disorders.
Collapse
Affiliation(s)
- Hui-Lin Chin
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stacey Kiat Hong Tay
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Neurology, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore.
| |
Collapse
|
11
|
Poquérusse J, Nolan M, Thorburn DR, Van Hove JLK, Friederich MW, Love DR, Taylor J, Powell CA, Minczuk M, Snell RG, Lehnert K, Glamuzina E, Jacobsen JC. Severe neonatal onset neuroregression with paroxysmal dystonia and apnoea: Expanding the phenotypic and genotypic spectrum of CARS2-related mitochondrial disease. JIMD Rep 2023; 64:223-232. [PMID: 37151360 PMCID: PMC10159863 DOI: 10.1002/jmd2.12360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Disorders of mitochondrial function are a collectively common group of genetic diseases in which deficits in core mitochondrial translation machinery, including aminoacyl tRNA synthetases, are key players. Biallelic variants in the CARS2 gene (NM_024537.4), which encodes the mitochondrial aminoacyl-tRNA synthetase for cysteine (CARS2, mt-aaRScys; MIM*612800), result in childhood onset epileptic encephalopathy and complex movement disorder with combined oxidative phosphorylation deficiency (MIM#616672). Prior to this report, eight unique pathogenic variants in the CARS2 gene had been reported in seven individuals. Here, we describe a male who presented in the third week of life with apnoea. He rapidly deteriorated with paroxysmal dystonic crises and apnoea resulting in death at 16 weeks. He had no evidence of seizure activity or multisystem disease and had normal brain imaging. Skeletal muscle biopsy revealed a combined disorder of oxidative phosphorylation. Whole-exome sequencing identified biallelic variants in the CARS2 gene: one novel (c.1478T>C, p.Phe493Ser), and one previously reported (c.655G>A, p.Ala219Thr; rs727505361). Northern blot analysis of RNA isolated from the patient's fibroblasts confirmed a clear defect in aminoacylation of the mitochondrial tRNA for cysteine (mt-tRNACys). To our knowledge, this is the earliest reported case of CARS2 deficiency with severe, early onset dystonia and apnoea, without epilepsy.
Collapse
Affiliation(s)
- Jessie Poquérusse
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- Centre for Brain ResearchThe University of AucklandAucklandNew Zealand
| | - Melinda Nolan
- Department of NeurologyStarship Children's HealthAucklandNew Zealand
| | - David R. Thorburn
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
- Department of PaediatricsThe University of MelbourneMelbourneVictoriaAustralia
| | - Johan L. K. Van Hove
- Department of Pediatrics, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Department of Pathology and Laboratory MedicineChildren's Hospital ColoradoAuroraColoradoUSA
| | - Marisa W. Friederich
- Department of Pediatrics, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Department of Pathology and Laboratory MedicineChildren's Hospital ColoradoAuroraColoradoUSA
| | - Donald R. Love
- Diagnostic GeneticsLabPLUS, Auckland City HospitalAucklandNew Zealand
- Present address:
Division Chief, Pathology GeneticsSidra MedicineDohaQatar
| | - Juliet Taylor
- Genetic Health Service New ZealandAuckland City HospitalAucklandNew Zealand
| | | | - Michal Minczuk
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Russell G. Snell
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- Centre for Brain ResearchThe University of AucklandAucklandNew Zealand
| | - Klaus Lehnert
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- Centre for Brain ResearchThe University of AucklandAucklandNew Zealand
| | - Emma Glamuzina
- Adult and Paediatric National Metabolic ServiceAuckland City HospitalAucklandNew Zealand
| | - Jessie C. Jacobsen
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- Centre for Brain ResearchThe University of AucklandAucklandNew Zealand
| |
Collapse
|
12
|
Fang Q, Lin J, Gao L, Pan R, Zheng X. Targeting mitochondrial tyrosyl-tRNA synthetase YARS2 suppresses colorectal cancer progression. Cancer Biol Ther 2022; 23:1-8. [PMID: 36154909 PMCID: PMC9518999 DOI: 10.1080/15384047.2022.2127603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Defects in tRNA expressions and modifications had been linked to various types of tumorigenesis and progression in recent studies, including colorectal cancer. In the present study, we evaluated transcript levels of mitochondrial tyrosyl-tRNA synthetase YARS2 in both colorectal cancer tissues and normal colorectal tissues using qRT-PCR. The results revealed that the mRNA expression level of YARS2 in colorectal cancer tissues was significantly higher than those in normal intestinal tissues. Knockdown of YARS2 in human colon cancer cell-line SW620 leads to significant inhibition of cell proliferation and migration. The steady-state level of tRNATyr, OCR, and ATP synthesis were decreased in the YARS2 knockdown cells. Moreover, our data indicated that inhibition of YARS2 is associated with increased reactive oxygen species levels which sensitize these cells to 5-FU treatment. In conclusion, our study revealed that targeting YARS2 could inhibit colorectal cancer progression. Thus, YARS2 might be a carcinogenesis candidate gene and can serve as a potential target for clinical therapy.
Collapse
Affiliation(s)
- Qingxia Fang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Jingyang Lin
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Liang Gao
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Institute for Cell-Based Drug Development of Zhejiang Province, Hangzhou, China
| | - Xiaochun Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| |
Collapse
|
13
|
Del Greco C, Antonellis A. The Role of Nuclear-Encoded Mitochondrial tRNA Charging Enzymes in Human Inherited Disease. Genes (Basel) 2022; 13:2319. [PMID: 36553587 PMCID: PMC9777667 DOI: 10.3390/genes13122319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are highly conserved essential enzymes that charge tRNA with cognate amino acids-the first step of protein synthesis. Of the 37 nuclear-encoded human ARS genes, 17 encode enzymes are exclusively targeted to the mitochondria (mt-ARSs). Mutations in nuclear mt-ARS genes are associated with rare, recessive human diseases with a broad range of clinical phenotypes. While the hypothesized disease mechanism is a loss-of-function effect, there is significant clinical heterogeneity among patients that have mutations in different mt-ARS genes and also among patients that have mutations in the same mt-ARS gene. This observation suggests that additional factors are involved in disease etiology. In this review, we present our current understanding of diseases caused by mutations in the genes encoding mt-ARSs and propose explanations for the observed clinical heterogeneity.
Collapse
Affiliation(s)
- Christina Del Greco
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Yu T, Zhang Y, Zheng WQ, Wu S, Li G, Zhang Y, Li N, Yao R, Fang P, Wang J, Zhou XL. Selective degradation of tRNASer(AGY) is the primary driver for mitochondrial seryl-tRNA synthetase-related disease. Nucleic Acids Res 2022; 50:11755-11774. [PMID: 36350636 PMCID: PMC9723649 DOI: 10.1093/nar/gkac1028] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
Mitochondrial translation is of high significance for cellular energy homeostasis. Aminoacyl-tRNA synthetases (aaRSs) are crucial translational components. Mitochondrial aaRS variants cause various human diseases. However, the pathogenesis of the vast majority of these diseases remains unknown. Here, we identified two novel SARS2 (encoding mitochondrial seryl-tRNA synthetase) variants that cause a multisystem disorder. c.654-14T > A mutation induced mRNA mis-splicing, generating a peptide insertion in the active site; c.1519dupC swapped a critical tRNA-binding motif in the C-terminus due to stop codon readthrough. Both mutants exhibited severely diminished tRNA binding and aminoacylation capacities. A marked reduction in mitochondrial tRNASer(AGY) was observed due to RNA degradation in patient-derived induced pluripotent stem cells (iPSCs), causing impaired translation and comprehensive mitochondrial function deficiencies. These impairments were efficiently rescued by wild-type SARS2 overexpression. Either mutation caused early embryonic fatality in mice. Heterozygous mice displayed reduced muscle tissue-specific levels of tRNASers. Our findings elucidated the biochemical and cellular consequences of impaired translation mediated by SARS2, suggesting that reduced abundance of tRNASer(AGY) is a key determinant for development of SARS2-related diseases.
Collapse
Affiliation(s)
| | | | - Wen-Qiang Zheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Siqi Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guoqiang Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Yong Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jian Wang
- Correspondence may also be addressed to Jian Wang. Tel: +86 21 3808 7371;
| | - Xiao-Long Zhou
- To whom correspondence should be addressed. Tel: +86 21 5492 1247; Fax: +86 21 5492 1011;
| |
Collapse
|
15
|
Sait B, Chidambaram AC, Dinesh Babu RM, Vidhyasagar K, Xavier JR, Sagayaraj B. MLASA-1: A Rare Cause of Myopathy with Sideroblastic Anemia. Ann Indian Acad Neurol 2022; 25:1202-1204. [PMID: 36911436 PMCID: PMC9996516 DOI: 10.4103/aian.aian_661_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Benazer Sait
- Department of Pediatrics, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Aakash C. Chidambaram
- Department of Pediatrics, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - R. M. Dinesh Babu
- Department of Pediatrics, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Krishnamoorthy Vidhyasagar
- Department of Pediatrics, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Joshua R. Xavier
- Department of Pediatrics, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Benjamin Sagayaraj
- Department of Pediatrics, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
16
|
Turvey AK, Horvath GA, Cavalcanti ARO. Aminoacyl-tRNA synthetases in human health and disease. Front Physiol 2022; 13:1029218. [PMID: 36330207 PMCID: PMC9623071 DOI: 10.3389/fphys.2022.1029218] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
The Aminoacyl-tRNA Synthetases (aaRSs) are an evolutionarily ancient family of enzymes that catalyze the esterification reaction linking a transfer RNA (tRNA) with its cognate amino acid matching the anticodon triplet of the tRNA. Proper functioning of the aaRSs to create aminoacylated (or “charged”) tRNAs is required for efficient and accurate protein synthesis. Beyond their basic canonical function in protein biosynthesis, aaRSs have a surprisingly diverse array of non-canonical functions that are actively being defined. The human genome contains 37 genes that encode unique aaRS proteins. To date, 56 human genetic diseases caused by damaging variants in aaRS genes have been described: 46 are autosomal recessive biallelic disorders and 10 are autosomal dominant monoallelic disorders. Our appreciation of human diseases caused by damaging genetic variants in the aaRSs has been greatly accelerated by the advent of next-generation sequencing, with 89% of these gene discoveries made since 2010. In addition to these genetic disorders of the aaRSs, anti-synthetase syndrome (ASSD) is a rare autoimmune inflammatory myopathy that involves the production of autoantibodies that disrupt aaRS proteins. This review provides an overview of the basic biology of aaRS proteins and describes the rapidly growing list of human diseases known to be caused by genetic variants or autoimmune targeting that affect both the canonical and non-canonical functions of these essential proteins.
Collapse
Affiliation(s)
- Alexandra K. Turvey
- Department of Biology, Pomona College, Claremont, CA, United States
- *Correspondence: Alexandra K. Turvey,
| | - Gabriella A. Horvath
- Division of Biochemical Genetics, Department of Pediatrics, University of British Columbia, BC Children’s Hospital, Vancouver, BC, Canada
- Adult Metabolic Diseases Clinic, Vancouver General Hospital, Vancouver, BC, Canada
| | | |
Collapse
|
17
|
Rudaks LI, Watson E, Oboudiyat C, Kumar KR, Sullivan P, Cowley MJ, Davis RL, Sue CM. Decompensation of cardiorespiratory function and emergence of anemia during pregnancy in a case of mitochondrial myopathy, lactic acidosis, and sideroblastic anemia 2 with compound heterozygous YARS2 pathogenic variants. Am J Med Genet A 2022; 188:2226-2230. [PMID: 35393742 PMCID: PMC9541592 DOI: 10.1002/ajmg.a.62755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 03/13/2022] [Indexed: 12/03/2022]
Abstract
Myopathy, lactic acidosis, and sideroblastic anemia 2 (MLASA2) is an autosomal recessive mitochondrial disorder caused by pathogenic variants in YARS2. YARS2 variants confer heterogeneous phenotypes ranging from the full MLASA syndrome to a clinically unaffected state. Symptom onset is most common in the first decade of life but can occur in adulthood and has been reported following intercurrent illness. Early death can result from respiratory muscle weakness and cardiomyopathy. We report a case of MLASA2 with compound heterozygous YARS2 pathogenic variants; a known pathogenic nonsense variant [NM_001040436.3:c.98C>A (p.Ser33Ter)] and a likely pathogenic missense variant not previously associated with disease [NM_001040436.3:c.948G>T (p.Arg316Ser)]. The proband initially presented with a relatively mild phenotype of myopathy and lactic acidosis. During pregnancy, anemia emerged as an additional feature and in the postpartum period she experienced severe decompensation of cardiorespiratory function. This is the first reported case of pregnancy‐related complications in a patient with YARS2‐related mitochondrial disease. This case highlights the need for caution and careful counseling when considering pregnancy in mitochondrial disease, due to the risk of disease exacerbation and pregnancy complications.
Collapse
Affiliation(s)
- Laura I Rudaks
- Department of Neurology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Eloise Watson
- Department of Neurology, Royal North Shore Hospital, St Leonards, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Carly Oboudiyat
- Department of Neurology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Kishore R Kumar
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales, Australia.,Translational Genome Informatics Group, Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Patricia Sullivan
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales, Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark J Cowley
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales, Sydney, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Ryan L Davis
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Translational Genome Informatics Group, Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,Kolling Institute, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, New South Wales, Australia
| | - Carolyn M Sue
- Department of Neurology, Royal North Shore Hospital, St Leonards, New South Wales, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,Translational Genome Informatics Group, Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,Kolling Institute, Royal North Shore Hospital, Northern Sydney Local Health District, St Leonards, New South Wales, Australia
| |
Collapse
|
18
|
Levy MA, McConkey H, Kerkhof J, Barat-Houari M, Bargiacchi S, Biamino E, Bralo MP, Cappuccio G, Ciolfi A, Clarke A, DuPont BR, Elting MW, Faivre L, Fee T, Fletcher RS, Cherik F, Foroutan A, Friez MJ, Gervasini C, Haghshenas S, Hilton BA, Jenkins Z, Kaur S, Lewis S, Louie RJ, Maitz S, Milani D, Morgan AT, Oegema R, Østergaard E, Pallares NR, Piccione M, Pizzi S, Plomp AS, Poulton C, Reilly J, Relator R, Rius R, Robertson S, Rooney K, Rousseau J, Santen GWE, Santos-Simarro F, Schijns J, Squeo GM, St John M, Thauvin-Robinet C, Traficante G, van der Sluijs PJ, Vergano SA, Vos N, Walden KK, Azmanov D, Balci T, Banka S, Gecz J, Henneman P, Lee JA, Mannens MMAM, Roscioli T, Siu V, Amor DJ, Baynam G, Bend EG, Boycott K, Brunetti-Pierri N, Campeau PM, Christodoulou J, Dyment D, Esber N, Fahrner JA, Fleming MD, Genevieve D, Kerrnohan KD, McNeill A, Menke LA, Merla G, Prontera P, Rockman-Greenberg C, Schwartz C, Skinner SA, Stevenson RE, Vitobello A, Tartaglia M, Alders M, Tedder ML, Sadikovic B. Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders. HGG ADVANCES 2022; 3:100075. [PMID: 35047860 PMCID: PMC8756545 DOI: 10.1016/j.xhgg.2021.100075] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Overlapping clinical phenotypes and an expanding breadth and complexity of genomic associations are a growing challenge in the diagnosis and clinical management of Mendelian disorders. The functional consequences and clinical impacts of genomic variation may involve unique, disorder-specific, genomic DNA methylation episignatures. In this study, we describe 19 novel episignature disorders and compare the findings alongside 38 previously established episignatures for a total of 57 episignatures associated with 65 genetic syndromes. We demonstrate increasing resolution and specificity ranging from protein complex, gene, sub-gene, protein domain, and even single nucleotide-level Mendelian episignatures. We show the power of multiclass modeling to develop highly accurate and disease-specific diagnostic classifiers. This study significantly expands the number and spectrum of disorders with detectable DNA methylation episignatures, improves the clinical diagnostic capabilities through the resolution of unsolved cases and the reclassification of variants of unknown clinical significance, and provides further insight into the molecular etiology of Mendelian conditions.
Collapse
Affiliation(s)
- Michael A Levy
- Verspeeten Clinical Genome Centre; London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre; London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre; London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Mouna Barat-Houari
- Autoinflammatory and Rare Diseases Unit, Medical Genetic Department for Rare Diseases and Personalized Medicine, CHU Montpellier, Montpellier, France
| | - Sara Bargiacchi
- Medical Genetics Unit, "A. Meyer" Children's Hospital of Florence, Florence, Italy
| | - Elisa Biamino
- Department of Pediatrics, University of Turin, Turin, Italy
| | - María Palomares Bralo
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Angus Clarke
- Cardiff University School of Medicine, Cardiff, UK
| | | | - Mariet W Elting
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Laurence Faivre
- INSERM-Université de Bourgogne UMR1231 GAD « Génétique Des Anomalies du Développement », FHU-TRANSLAD, UFR Des Sciences de Santé, Dijon, France.,Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Timothy Fee
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | - Florian Cherik
- Genetic medical center, CHU Clermont Ferrand, France.,Montpellier University, Reference Center for Rare Disease, Medical Genetic Department for Rare Disease and Personalize Medicine, Inserm Unit 1183, CHU Montpellier, Montpellier, France
| | - Aidin Foroutan
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | | | - Cristina Gervasini
- Division of Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sadegheh Haghshenas
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | | | - Zandra Jenkins
- Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Simranpreet Kaur
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Suzanne Lewis
- BC Children's and Women's Hospital and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | - Silvia Maitz
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, Hospital San Gerardo, Monza, Italy
| | - Donatella Milani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela T Morgan
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Elsebet Østergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nathalie Ruiz Pallares
- Autoinflammatory and Rare Diseases Unit, Medical Genetic Department for Rare Diseases and Personalized Medicine, CHU Montpellier, Montpellier, France
| | - Maria Piccione
- Medical Genetics Unit Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Astrid S Plomp
- Amsterdam UMC, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Cathryn Poulton
- Undiagnosed Diseases Program, Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, Australia
| | - Jack Reilly
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre; London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Rocio Rius
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Stephen Robertson
- Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre; London Health Sciences Centre, London, ON N6A 5W9, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Justine Rousseau
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Gijs W E Santen
- Department of Clinical Genetics, LUMC, Leiden, the Netherlands
| | - Fernando Santos-Simarro
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | - Josephine Schijns
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Gabriella Maria Squeo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Miya St John
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Christel Thauvin-Robinet
- INSERM-Université de Bourgogne UMR1231 GAD « Génétique Des Anomalies du Développement », FHU-TRANSLAD, UFR Des Sciences de Santé, Dijon, France.,Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Unité Fonctionnelle d'Innovation Diagnostique des Maladies Rares, FHU-TRANSLAD, France Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon Bourgogne, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital D'Enfants, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Giovanna Traficante
- Medical Genetics Unit, "A. Meyer" Children's Hospital of Florence, Florence, Italy
| | | | - Samantha A Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, VA, USA.,Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Niels Vos
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, Amsterdam, the Netherlands
| | | | - Dimitar Azmanov
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Perth, Australia
| | - Tugce Balci
- Department of Pediatrics, Division of Medical Genetics, Western University, London, ON N6A 3K7, Canada.,Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre and Children's Health Research Institute, London, ON N6A5W9, Canada
| | - Siddharth Banka
- Division of Evolution, Infection & Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Jozef Gecz
- School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia
| | - Peter Henneman
- Amsterdam UMC, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | | | - Marcel M A M Mannens
- Amsterdam UMC, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), Sydney, Australia.,Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, Australia
| | - Victoria Siu
- Department of Pediatrics, Division of Medical Genetics, Western University, London, ON N6A 3K7, Canada.,Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre and Children's Health Research Institute, London, ON N6A5W9, Canada
| | - David J Amor
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Gareth Baynam
- Undiagnosed Diseases Program, Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, Australia.,Undiagnosed Diseases Program, Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, Australia.,Division of Paediatrics and Telethon Kids Institute, Faculty of Health and Medical Sciences, Perth, Australia
| | | | - Kym Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Philippe M Campeau
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - David Dyment
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | - Jill A Fahrner
- Departments of Genetic Medicine and Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - David Genevieve
- Montpellier University, Reference Center for Rare Disease, Medical Genetic Department for Rare Disease and Personalize Medicine, Inserm Unit 1183, CHU Montpellier, Montpellier, France
| | - Kristin D Kerrnohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Alisdair McNeill
- Department of Neuroscience, University of Sheffield, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Leonie A Menke
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Giuseppe Merla
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.,Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (Foggia), Italy
| | - Paolo Prontera
- Medical Genetics Unit, University of Perugia Hospital SM della Misericordia, Perugia, Italy
| | - Cheryl Rockman-Greenberg
- Department of Pediatrics and Child Health, Rady Faculty of Health Sciences, University of Manitoba and Program in Genetics and Metabolism, Shared Health MB, Winnipeg, MB, Canada
| | | | | | | | - Antonio Vitobello
- INSERM-Université de Bourgogne UMR1231 GAD « Génétique Des Anomalies du Développement », FHU-TRANSLAD, UFR Des Sciences de Santé, Dijon, France.,Unité Fonctionnelle d'Innovation Diagnostique des Maladies Rares, FHU-TRANSLAD, France Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon Bourgogne, CHU Dijon Bourgogne, Dijon, France
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Marielle Alders
- Amsterdam UMC, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | | | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre; London Health Sciences Centre, London, ON N6A 5W9, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
19
|
Beecher G, Fleming MD, Liewluck T. Hereditary myopathies associated with hematological abnormalities. Muscle Nerve 2022; 65:374-390. [PMID: 34985130 DOI: 10.1002/mus.27474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 01/19/2023]
Abstract
The diagnostic evaluation of a patient with suspected hereditary muscle disease can be challenging. Clinicians rely largely on clinical history and examination features, with additional serological, electrodiagnostic, radiologic, histopathologic, and genetic investigations assisting in definitive diagnosis. Hematological testing is inexpensive and widely available, but frequently overlooked in the hereditary myopathy evaluation. Hematological abnormalities are infrequently encountered in this setting; however, their presence provides a valuable clue, helps refine the differential diagnosis, tailors further investigation, and assists interpretation of variants of uncertain significance. A diverse spectrum of hematological abnormalities is associated with hereditary myopathies, including anemias, leukocyte abnormalities, and thrombocytopenia. Recurrent rhabdomyolysis in certain glycolytic enzymopathies co-occurs with hemolytic anemia, often chronic and mild in phosphofructokinase and phosphoglycerate kinase deficiencies, or acute and fever-associated in aldolase-A and triosephosphate isomerase deficiency. Sideroblastic anemia, commonly severe, accompanies congenital-to-childhood onset mitochondrial myopathies including Pearson marrow-pancreas syndrome and mitochondrial myopathy, lactic acidosis, and sideroblastic anemia phenotypes. Congenital megaloblastic macrocytic anemia and mitochondrial dysfunction characterize SFXN4-related myopathy. Neutropenia, chronic or cyclical, with recurrent infections, infantile-to-childhood onset skeletal myopathy and cardiomyopathy are typical of Barth syndrome, while chronic neutropenia without infection occurs rarely in DNM2-centronuclear myopathy. Peripheral eosinophilia may accompany eosinophilic inflammation in recessive calpainopathy. Lipid accumulation in leukocytes on peripheral blood smear (Jordans' anomaly) is pathognomonic for neutral lipid storage diseases. Mild thrombocytopenia occurs in autosomal dominant, childhood-onset STIM1 tubular aggregate myopathy, STIM1 and ORAI1 deficiency syndromes, and GNE myopathy. Herein, we review these hereditary myopathies in which hematological features play a prominent role.
Collapse
Affiliation(s)
- Grayson Beecher
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Teerin Liewluck
- Division of Neuromuscular Medicine, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
20
|
Olimpio C, Tiet MY, Horvath R. Primary mitochondrial myopathies in childhood. Neuromuscul Disord 2021; 31:978-987. [PMID: 34736635 DOI: 10.1016/j.nmd.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022]
Abstract
Primary mitochondrial myopathies are genetic metabolic disorders of mitochondrial dysfunction affecting mainly, but not exclusively, skeletal muscle. Although individually rare, they are the most common inherited metabolic disorders in childhood. They can be similar to other childhood muscle diseases such as congenital myopathies, dystrophies, myasthenic syndromes or metabolic myopathies and a muscle biopsy and genetic testing are important in the differential diagnosis. Mitochondrial myopathies can present at any age but typically childhood onset myopathies have more significant muscle involvement and are caused by genes encoded in the nuclear DNA. Mitochondrial myopathy in infants presents with hypotonia, muscle weakness and difficulty feeding. In toddlers and older children delayed motor development, exercise intolerance and premature fatigue are common. A number of nuclear DNA and mitochondrial DNA encoded genes are known to cause isolated myopathy in childhood and they are important in a range of mitochondrial functions such as oxidative phosphorylation, mitochondrial transcription/translation and mitochondrial fusion/fission. A rare cause of isolated myopathy in children, reversible infantile respiratory chain deficiency myopathy, is non-progressive and typically associated with spontaneous full recovery. Promising targeted treatments have been reported for a number or mitochondrial myopathies including riboflavin in ACAD9 and ETFDH-myopathies and deoxynucleoside for TK2-related disease.
Collapse
Affiliation(s)
- Catarina Olimpio
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - May Yung Tiet
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
21
|
Aksu-Menges E, Eylem CC, Nemutlu E, Gizer M, Korkusuz P, Topaloglu H, Talim B, Balci-Hayta B. Reduced mitochondrial fission and impaired energy metabolism in human primary skeletal muscle cells of Megaconial Congenital Muscular Dystrophy. Sci Rep 2021; 11:18161. [PMID: 34518586 PMCID: PMC8438035 DOI: 10.1038/s41598-021-97294-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/13/2021] [Indexed: 11/09/2022] Open
Abstract
Megaconial Congenital Muscular Dystrophy (CMD) is a rare autosomal recessive disorder characterized by enlarged mitochondria located mainly at the periphery of muscle fibers and caused by mutations in the Choline Kinase Beta (CHKB) gene. Although the pathogenesis of this disease is not well understood, there is accumulating evidence for the presence of mitochondrial dysfunction. In this study, we aimed to investigate whether imbalanced mitochondrial dynamics affects mitochondrial function and bioenergetic efficiency in skeletal muscle cells of Megaconial CMD. Immunofluorescence, confocal and transmission electron microscopy studies revealed impaired mitochondrial network, morphology, and localization in primary skeletal muscle cells of Megaconial CMD. The organelle disruption was specific only to skeletal muscle cells grown in culture. The expression levels of mitochondrial fission proteins (DRP1, MFF, FIS1) were found to be decreased significantly in both primary skeletal muscle cells and tissue sections of Megaconial CMD by Western blotting and/or immunofluorescence analysis. The metabolomic and fluxomic analysis, which were performed in Megaconial CMD for the first time, revealed decreased levels of phosphonucleotides, Krebs cycle intermediates, ATP, and altered energy metabolism pathways. Our results indicate that reduced mitochondrial fission and altered mitochondrial energy metabolism contribute to mitochondrial dysmorphology and dysfunction in the pathogenesis of Megaconial CMD.
Collapse
Affiliation(s)
- Evrim Aksu-Menges
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Cemil Can Eylem
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Merve Gizer
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Haluk Topaloglu
- Department of Pediatrics, Division of Child Neurology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.,Department of Pediatrics, Yeditepe University, Istanbul, Turkey
| | - Beril Talim
- Department of Pediatrics, Pathology Unit, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Burcu Balci-Hayta
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
| |
Collapse
|
22
|
Two Novel Variants in YARS2 Gene Are Responsible for an Extended MLASA Phenotype with Pancreatic Insufficiency. J Clin Med 2021; 10:jcm10163471. [PMID: 34441767 PMCID: PMC8397107 DOI: 10.3390/jcm10163471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
Pathogenic variants in the mitochondrial tyrosyl-tRNA synthetase gene (YARS2) were associated with myopathy, lactic acidosis, and sideroblastic anemia (MLASA). However, patients can present mitochondrial myopathy, with exercise intolerance and muscle weakness, leading from mild to lethal phenotypes. Genes implicated in mtDNA replication were studied by Next Generation Sequencing (NGS) and whole exome sequence with the TruSeq Rapid Exome kit (Illumina, San Diego, CA, USA). Mitochondrial protein translation was studied following the Sasarman and Shoubridge protocol and oxygen consumption rates with Agilent Seahorse XF24 Analyzer Mitostress Test, (Agilent, Santa Clara, CA, USA). We report two siblings with two novel compound heterozygous pathogenic variants in YARS2 gene: a single nucleotide deletion in exon 1, c.314delG (p.(Gly105Alafs*4)), which creates a premature stop codon in the amino acid 109, and a single nucleotide change in exon 5 c.1391T>C (p.(Ile464Thr)), that cause a missense variant in amino acid 464. We demonstrate the pathogenicity of these new variants associated with reduced YARS2 mRNA transcript, reduced mitochondrial protein translation and dysfunctional organelle function. These pathogenic variants are responsible for late onset MLASA, herein accompanied by pancreatic insufficiency, observed in both brothers, clinically considered as Pearson's syndrome. Molecular study of YARS2 gene should be considered in patients presenting Pearson's syndrome characteristics and MLASA related phenotypes.
Collapse
|
23
|
Wang J, Deng Q, He X, Chen D, Hang S, Gao Y, Chen Y. Two cases of sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD) syndrome in Chinese Han children caused by novel compound heterozygous variants of the TRNT1 gene. Clin Chim Acta 2021; 521:244-250. [PMID: 34310935 DOI: 10.1016/j.cca.2021.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 01/03/2023]
Abstract
Sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD) syndrome is a serious autosomal recessive genetic disease. So far, <40 cases have been reported worldwide, and only one case has been reported in China. The main clinical features of SIFD are sideroblastic or microcytic anemia, immune deficiency, and recurrent episodes of inflammation. Here, we describe two unrelated cases of SIFD from China with different clinical manifestations and mild symptoms. Patient 1 was hospitalized at the age of 3.5 years due to persistent joint swelling with imaging of multiple joint effusions. Patient 2 was hospitalized at the age of 12 years due to repeated rashes on both lower limbs and oral ulcers. SIFD was detected using gene testing, which revealed the following compound heterozygous variants in TRNT1 in cases 1 and 2, respectively: c.88A > G/c.363G > T and c.302 T > C/c.1234cC > T. Searches of the HGMD databases revealed that these variants were all novel. Molecular dynamics simulations revealed that the missense variants c.363G > T and c.302 T > C would cause changes in protein structure and thus affect protein function. Finally, through literature reviewing, we found that the mortality in cases of SIFD was approximately 44% (14/32), and about 79% of individuals who died carried the hot-spot mutation c.668 T > C. Moreover, variants in the non-coding region were significantly more common among patients who died than among survivors. Our cases further expand the existing knowledge of the phenotype and variation spectrums of SIFD and suggest that genomic diagnosis is valuable for the hierarchical clinical management of this disease.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Rheumatology and Immunology, Anhui Provincial Children's Hospital, China
| | - Qian Deng
- Department of Rheumatology and Immunology, Anhui Provincial Children's Hospital, China
| | - Xiaoliang He
- Department of Rheumatology and Immunology, Anhui Provincial Children's Hospital, China
| | - Denghuan Chen
- Department of Rheumatology and Immunology, Anhui Provincial Children's Hospital, China
| | - Shouwei Hang
- Department of Rheumatology and Immunology, Anhui Provincial Children's Hospital, China
| | - Yutong Gao
- Department of Rheumatology and Immunology, Anhui Provincial Children's Hospital, China
| | - Yuqing Chen
- Department of Rheumatology and Immunology, Anhui Provincial Children's Hospital, China.
| |
Collapse
|
24
|
Jin X, Zhang J, Yi Q, Meng F, Yu J, Ji Y, Mo JQ, Tong Y, Jiang P, Guan MX. Leber's Hereditary Optic Neuropathy Arising From the Synergy Between ND1 3635G>A Mutation and Mitochondrial YARS2 Mutations. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 34156427 PMCID: PMC8237128 DOI: 10.1167/iovs.62.7.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose To investigate the mechanism underlying the synergic interaction between Leber's hereditary optic neuropathy (LHON)-associated ND1 and mitochondrial tyrosyl-tRNA synthetase (YARS2) mutations. Methods Molecular dynamics simulation and differential scanning fluorimetry were used to evaluate the structure and stability of proteins. The impact of ND1 3635G>A and YARS2 p.G191V mutations on the oxidative phosphorylation machinery was evaluated using blue native gel electrophoresis and enzymatic activities assays. Assessment of reactive oxygen species (ROS) production in cell lines was performed by flow cytometry with MitoSOX Red reagent. Analysis of effect of mutations on autophagy was undertaken via flow cytometry for autophagic flux. Results Members of one Chinese family bearing both the YARS2 p.191Gly>Val and m.3635G>A mutations exhibited much higher penetrance of optic neuropathy than those pedigrees carrying only the m.3635G>A mutation. The m.3635G>A (p.Ser110Asn) mutation altered the ND1 structure and function, whereas the p.191Gly>Val mutation affected the stability of YARS2. Lymphoblastoid cell lines harboring both m.3635G>A and p.191Gly>Val mutations revealed more reductions in the levels of mitochondrion-encoding ND1 and CO2 than cells bearing only the m.3635G>A mutation. Strikingly, both m.3635G>A and p.191Gly>Val mutations exhibited decreases in the nucleus-encoding subunits of complex I and IV. These deficiencies manifested greater defects in the stability and activities of complex I and complex IV and overproduction of ROS and promoted greater autophagy in cell lines harboring both m.3635G>A and p.191Gly>Val mutations compared with cells bearing only the m.3635G>A mutation. Conclusions Our findings provide new insights into the pathophysiology of LHON arising from the synergy between ND1 3635G>A mutation and mitochondrial YARS2 mutations.
Collapse
Affiliation(s)
- Xiaofen Jin
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Juanjuan Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiuzi Yi
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Feilong Meng
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jialing Yu
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yanchun Ji
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California School of Medicine, San Diego, California, United States
| | - Yi Tong
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pingping Jiang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China.,Zhejiang University-University of Toronto Joint Institute of Genetics and Genome Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
A Novel PUS1 Mutation in 2 Siblings with MLASA Syndrome: A Review of the Literature. J Pediatr Hematol Oncol 2021; 43:e592-e595. [PMID: 32287105 DOI: 10.1097/mph.0000000000001806] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/20/2020] [Indexed: 01/28/2023]
Abstract
ABSTRACT Myopathy, lactic acidosis, and sideroblastic anemia (MLASA) is a rare mitochondrial disorder characterized by MLASA. Variable features of this condition include failure to thrive, and developmental delay or intellectual disability. Additional symptoms consist of cognitive impairment, skeletal and dental abnormalities, delayed motor milestones, cardiomyopathy, dysphagia, and respiratory insufficiency. MLASA has previously been associated with mutations in pseudouridylate synthase 1 (PUS1) and YARS2. PUS1 encodes the nuclear PUS1 enzyme, which is located in both the nucleus and the mitochondria. PUS1 converts uridine into pseudouridine in several cytosolic and mitochondrial transfer RNA positions and increases the efficiency of protein synthesis in both compartments.In the present report, we report on 2 Turkish sisters 4 and 11 of years with an MLASA plus phenotype. Both patients have sideroblastic anemia, lactic acidosis, failure to thrive, developmental delay, and chronic diarrhea; in addition, the older sister has strabismus and skeletal anomalies. The sequencing of the PUS1 gene revealed a novel homozygous p.Glu311* mutation. The phenotype of the older sibling is also unique because of the strabismus and skeletal anomalies, when compared with her sister and other previously reported patients with MLASA. The structural differences in the nuclear versus mitochondrial isoforms of PUS1 and modifier genes may be implicated in the variability of the clinical presentations in MLASA. CONCLUSION This report adds to the growing number of mutations causing complex clinical manifestations of MLASA including lactic acidosis, sideroblastic anemia, chronic diarrhea, and myopathy.
Collapse
|
26
|
Figuccia S, Degiorgi A, Ceccatelli Berti C, Baruffini E, Dallabona C, Goffrini P. Mitochondrial Aminoacyl-tRNA Synthetase and Disease: The Yeast Contribution for Functional Analysis of Novel Variants. Int J Mol Sci 2021; 22:ijms22094524. [PMID: 33926074 PMCID: PMC8123711 DOI: 10.3390/ijms22094524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
In most eukaryotes, mitochondrial protein synthesis is essential for oxidative phosphorylation (OXPHOS) as some subunits of the respiratory chain complexes are encoded by the mitochondrial DNA (mtDNA). Mutations affecting the mitochondrial translation apparatus have been identified as a major cause of mitochondrial diseases. These mutations include either heteroplasmic mtDNA mutations in genes encoding for the mitochondrial rRNA (mtrRNA) and tRNAs (mttRNAs) or mutations in nuclear genes encoding ribosomal proteins, initiation, elongation and termination factors, tRNA-modifying enzymes, and aminoacyl-tRNA synthetases (mtARSs). Aminoacyl-tRNA synthetases (ARSs) catalyze the attachment of specific amino acids to their cognate tRNAs. Differently from most mttRNAs, which are encoded by mitochondrial genome, mtARSs are encoded by nuclear genes and then imported into the mitochondria after translation in the cytosol. Due to the extensive use of next-generation sequencing (NGS), an increasing number of mtARSs variants associated with large clinical heterogeneity have been identified in recent years. Being most of these variants private or sporadic, it is crucial to assess their causative role in the disease by functional analysis in model systems. This review will focus on the contributions of the yeast Saccharomyces cerevisiae in the functional validation of mutations found in mtARSs genes associated with human disorders.
Collapse
Affiliation(s)
| | | | | | | | - Cristina Dallabona
- Correspondence: (C.D.); (P.G.); Tel.: +39-0521-905600 (C.D.); +39-0521-905107 (P.G.)
| | - Paola Goffrini
- Correspondence: (C.D.); (P.G.); Tel.: +39-0521-905600 (C.D.); +39-0521-905107 (P.G.)
| |
Collapse
|
27
|
Barcia G, Pandithan D, Ruzzenente B, Assouline Z, Pennisi A, Ormieres C, Besmond C, Roux CJ, Boddaert N, Desguerre I, Thorburn DR, Bratkovic D, Munnich A, Bonnefont JP, Rötig A, Steffann J. Biallelic <i>IARS2</i> mutations presenting as sideroblastic anemia. Haematologica 2021; 106:1220-1225. [PMID: 33327715 PMCID: PMC8018106 DOI: 10.3324/haematol.2020.270710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Indexed: 11/09/2022] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Giulia Barcia
- Federation of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Hospital Necker - Enfants Malades, Paris.
| | | | - Benedetta Ruzzenente
- Laboratory for Genetics of Mitochondrial Disorders, UMR 1163, Université de Paris, Institut Imagine, Paris
| | - Zahra Assouline
- Federation of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Hospital Necker - Enfants Malades, Paris
| | - Alessandra Pennisi
- Federation of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Hospital Necker - Enfants Malades, Paris
| | - Clothilde Ormieres
- Federation of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Hospital Necker - Enfants Malades, Paris
| | - Claude Besmond
- Translational Genetics Laboratory, UMR U1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris
| | - Charles-Joris Roux
- Department of Pediatric Radiology, Hospital Necker Enfants Malades, Paris
| | - Nathalie Boddaert
- Department of Pediatric Radiology, Hospital Necker Enfants Malades, Paris
| | - Isabelle Desguerre
- Department of Pediatric Neurology, Hospital Necker-Enfants Malades, Paris
| | - David R Thorburn
- Murdoch Children's Research Institute and Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052
| | - Drago Bratkovic
- Metabolic Clinic, Women's and Children's Hospital, North Adelaide
| | - Arnold Munnich
- Federation of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Hospital Necker - Enfants Malades, Paris, France; Metabolic Clinic, Women's and Children's Hospital, North Adelaide, South Australia; Laboratory for Genetics of Mitochondrial Disorders, UMR 1163, Université de Paris, Institut Imagine, Paris
| | - Jean-Paul Bonnefont
- Federation of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Hospital Necker - Enfants Malades, Paris, France; Metabolic Clinic, Women's and Children's Hospital, North Adelaide, South Australia; Laboratory for Genetics of Mitochondrial Disorders, UMR 1163, Université de Paris, Institut Imagine, Paris
| | - Agnès Rötig
- Laboratory for Genetics of Mitochondrial Disorders, UMR 1163, Université de Paris, Institut Imagine, Paris
| | - Julie Steffann
- Federation of Medical Genetics and Reference Center for Mitochondrial Diseases (CARAMMEL), Hospital Necker - Enfants Malades, Paris, France; Metabolic Clinic, Women's and Children's Hospital, North Adelaide, South Australia; Laboratory for Genetics of Mitochondrial Disorders, UMR 1163, Université de Paris, Institut Imagine, Paris
| |
Collapse
|
28
|
Barrera-Conde M, Ausin K, Lachén-Montes M, Fernández-Irigoyen J, Galindo L, Cuenca-Royo A, Fernández-Avilés C, Pérez V, de la Torre R, Santamaría E, Robledo P. Cannabis Use Induces Distinctive Proteomic Alterations in Olfactory Neuroepithelial Cells of Schizophrenia Patients. J Pers Med 2021; 11:jpm11030160. [PMID: 33668817 PMCID: PMC7996288 DOI: 10.3390/jpm11030160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/19/2022] Open
Abstract
A close epidemiological link has been reported between cannabis use and schizophrenia (SCZ). However, biochemical markers in living humans related to the impact of cannabis in this disease are still missing. Olfactory neuroepithelium (ON) cells express neural features and offer a unique advantage to study biomarkers of psychiatric diseases. The aim of our study was to find exclusively deregulated proteins in ON cells of SCZ patients with and without a history of cannabis use. Thus, we compared the proteomic profiles of SCZ non-cannabis users (SCZ/nc) and SCZ cannabis users (SCZ/c) with control subjects non-cannabis users (C/nc) and control cannabis users (C/c). The results revealed that the main cascades affected in SCZ/nc were cell cycle, DNA replication, signal transduction and protein localization. Conversely, cannabis use in SCZ patients induced specific alterations in metabolism of RNA and metabolism of proteins. The levels of targeted proteins in each population were then correlated with cognitive performance and clinical scores. In SCZ/c, the expression levels of 2 proteins involved in the metabolism of RNA (MTREX and ZNF326) correlated with several cognitive markers and clinical signs. Moreover, use duration of cannabis negatively correlated with ZNF326 expression. These findings indicate that RNA-related proteins might be relevant to understand the influence of cannabis use on SCZ.
Collapse
Affiliation(s)
- Marta Barrera-Conde
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, 08003 Barcelona, Spain; (M.B.-C.); (A.C.-R.); (R.d.l.T.)
- Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain;
| | - Karina Ausin
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdisNA, Proteored-ISCIII, 31006 Pamplona, Spain; (K.A.); (M.L.-M.); (J.F.-I.); (E.S.)
| | - Mercedes Lachén-Montes
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdisNA, Proteored-ISCIII, 31006 Pamplona, Spain; (K.A.); (M.L.-M.); (J.F.-I.); (E.S.)
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdisNA, Proteored-ISCIII, 31006 Pamplona, Spain; (K.A.); (M.L.-M.); (J.F.-I.); (E.S.)
| | - Liliana Galindo
- Department of Psychiatry, University of Cambridge, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB2 1TN, UK;
- Neuropsychiatry and Addictions Institute (INAD) of Parc de Salut Mar, 08003 Barcelona and CIBER de Salud Mental, Spain;
| | - Aida Cuenca-Royo
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, 08003 Barcelona, Spain; (M.B.-C.); (A.C.-R.); (R.d.l.T.)
| | | | - Víctor Pérez
- Neuropsychiatry and Addictions Institute (INAD) of Parc de Salut Mar, 08003 Barcelona and CIBER de Salud Mental, Spain;
- Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, 08003 Barcelona, Spain; (M.B.-C.); (A.C.-R.); (R.d.l.T.)
- Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdisNA, Proteored-ISCIII, 31006 Pamplona, Spain; (K.A.); (M.L.-M.); (J.F.-I.); (E.S.)
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience, Neuroscience Research Program, IMIM-Hospital del Mar Research Institute, 08003 Barcelona, Spain; (M.B.-C.); (A.C.-R.); (R.d.l.T.)
- Department of Experimental and Health Sciences, University Pompeu Fabra, 08003 Barcelona, Spain;
- Correspondence: ; Tel.: +34-93-316-0455
| |
Collapse
|
29
|
Jin X, Zhang Z, Nie Z, Wang C, Meng F, Yi Q, Chen M, Sun J, Zou J, Jiang P, Guan MX. An animal model for mitochondrial tyrosyl-tRNA synthetase deficiency reveals links between oxidative phosphorylation and retinal function. J Biol Chem 2021; 296:100437. [PMID: 33610547 PMCID: PMC8010715 DOI: 10.1016/j.jbc.2021.100437] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria maintain a distinct pool of ribosomal machinery, including tRNAs and tRNAs activating enzymes, such as mitochondrial tyrosyl-tRNA synthetase (YARS2). Mutations in YARS2, which typically lead to the impairment of mitochondrial protein synthesis, have been linked to an array of human diseases including optic neuropathy. However, the lack of YARS2 mutation animal model makes us difficult to elucidate the pathophysiology underlying YARS2 deficiency. To explore this system, we generated YARS2 knockout (KO) HeLa cells and zebrafish using CRISPR/Cas9 technology. We observed the aberrant tRNATyr aminoacylation overall and reductions in the levels in mitochondrion- and nucleus-encoding subunits of oxidative phosphorylation system (OXPHOS), which were especially pronounced effects in the subunits of complex I and complex IV. These deficiencies manifested the decreased levels of intact supercomplexes overall. Immunoprecipitation assays showed that YARS2 bound to specific subunits of complex I and complex IV, suggesting the posttranslational stabilization of OXPHOS. Furthermore, YARS2 ablation caused defects in the stability and activities of OXPHOS complexes. These biochemical defects could be rescued by the overexpression of YARS2 cDNA in the YARS2KO cells. In zebrafish, the yars2KO larva conferred deficient COX activities in the retina, abnormal mitochondrial morphology, and numbers in the photoreceptor and retinal ganglion cells. The zebrafish further exhibited the retinal defects affecting both rods and cones. Vision defects in yars2KO zebrafish recapitulated the clinical phenotypes in the optic neuropathy patients carrying the YARS2 mutations. Our findings highlighted the critical role of YARS2 in the stability and activity of OXPHOS and its pathological consequence in vision impairments.
Collapse
Affiliation(s)
- Xiaofen Jin
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Woman's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zengming Zhang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhipeng Nie
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenghui Wang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feilong Meng
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiuzi Yi
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengquan Chen
- Department of Lab Medicine, Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China
| | - Jiji Sun
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Zou
- Insitute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pingping Jiang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang Univesity, Hangzhou, Zhejiang, China.
| | - Min-Xin Guan
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Woman's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang Univesity, Hangzhou, Zhejiang, China; Division of Mitochondrial Biomedicine, Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China.
| |
Collapse
|
30
|
De Mario A, Gherardi G, Rizzuto R, Mammucari C. Skeletal muscle mitochondria in health and disease. Cell Calcium 2021; 94:102357. [PMID: 33550207 DOI: 10.1016/j.ceca.2021.102357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/28/2022]
Abstract
Mitochondrial activity warrants energy supply to oxidative myofibres to sustain endurance workload. The maintenance of mitochondrial homeostasis is ensured by the control of fission and fusion processes and by the mitophagic removal of aberrant organelles. Many diseases are due to or characterized by dysfunctional mitochondria, and altered mitochondrial dynamics or turnover trigger myopathy per se. In this review, we will tackle the role of mitochondrial dynamics, turnover and metabolism in skeletal muscle, both in health and disease.
Collapse
Affiliation(s)
- Agnese De Mario
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | |
Collapse
|
31
|
Moll SA, Platenburg MGJP, Platteel ACM, Vorselaars ADM, Janssen Bonàs M, Roodenburg-Benschop C, Meek B, van Moorsel CHM, Grutters JC. Prevalence of Novel Myositis Autoantibodies in a Large Cohort of Patients with Interstitial Lung Disease. J Clin Med 2020; 9:E2944. [PMID: 32933078 PMCID: PMC7563342 DOI: 10.3390/jcm9092944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Connective tissue diseases (CTDs) are an important secondary cause of interstitial lung disease (ILD). If a CTD is suspected, clinicians are recommended to perform autoantibody testing, including for myositis autoantibodies. In this study, the prevalence and clinical associations of novel myositis autoantibodies in ILD are presented. A total of 1194 patients with ILD and 116 healthy subjects were tested for antibodies specific for Ks, Ha, Zoα, and cN1A with a line-blot assay on serum available at the time of diagnosis. Autoantibodies were demonstrated in 63 (5.3%) patients and one (0.9%) healthy control (p = 0.035). Autoantibodies were found more frequently in females (p = 0.042) and patients without a histological and/or radiological usual interstitial pneumonia (UIP; p = 0.010) and a trend towards CTD-ILDs (8.4%) was seen compared with other ILDs (4.9%; p = 0.090). The prevalence of antibodies specific for Ks, Ha, Zoα, and cN1A was, respectively, 1.3%, 2.0%, 1.4%, and 0.9% in ILD. Anti-Ha and Anti-Ks were observed in males with unclassifiable idiopathic interstitial pneumonia (unclassifiable IIP), hypersensitivity pneumonitis (HP), and various CTD-ILDs, whereas anti-cN1A was seen in females with antisynthetase syndrome (ASS), HP, and idiopathic pulmonary fibrosis (IPF). Anti-Zoα was associated with CTD-ILD (OR 2.5; 95%CI 1.11-5.61; p = 0.027). In conclusion, a relatively high prevalence of previously unknown myositis autoantibodies was found in a large cohort of various ILDs. Our results contribute to the awareness that circulating autoantibodies can be found in ILDs with or without established CTD. Whether these antibodies have to be added to the standard set of autoantibodies analysed in conventional myositis blot assays for diagnostic purposes in clinical ILD care requires further study.
Collapse
Affiliation(s)
- Sofia A. Moll
- ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Post box 2500, 3435 CM Nieuwegein, The Netherlands; (M.G.J.P.P.); (A.D.M.V.); (M.J.B.); (C.R.-B.); (C.H.M.v.M.); (J.C.G.)
| | - Mark G. J. P. Platenburg
- ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Post box 2500, 3435 CM Nieuwegein, The Netherlands; (M.G.J.P.P.); (A.D.M.V.); (M.J.B.); (C.R.-B.); (C.H.M.v.M.); (J.C.G.)
| | - Anouk C. M. Platteel
- Department of Medical Microbiology and Immunology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (A.C.M.P.); (B.M.)
| | - Adriane D. M. Vorselaars
- ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Post box 2500, 3435 CM Nieuwegein, The Netherlands; (M.G.J.P.P.); (A.D.M.V.); (M.J.B.); (C.R.-B.); (C.H.M.v.M.); (J.C.G.)
| | - Montse Janssen Bonàs
- ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Post box 2500, 3435 CM Nieuwegein, The Netherlands; (M.G.J.P.P.); (A.D.M.V.); (M.J.B.); (C.R.-B.); (C.H.M.v.M.); (J.C.G.)
| | - Claudia Roodenburg-Benschop
- ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Post box 2500, 3435 CM Nieuwegein, The Netherlands; (M.G.J.P.P.); (A.D.M.V.); (M.J.B.); (C.R.-B.); (C.H.M.v.M.); (J.C.G.)
| | - Bob Meek
- Department of Medical Microbiology and Immunology, St. Antonius Hospital, 3435 CM Nieuwegein, The Netherlands; (A.C.M.P.); (B.M.)
| | - Coline H. M. van Moorsel
- ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Post box 2500, 3435 CM Nieuwegein, The Netherlands; (M.G.J.P.P.); (A.D.M.V.); (M.J.B.); (C.R.-B.); (C.H.M.v.M.); (J.C.G.)
| | - Jan C. Grutters
- ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Post box 2500, 3435 CM Nieuwegein, The Netherlands; (M.G.J.P.P.); (A.D.M.V.); (M.J.B.); (C.R.-B.); (C.H.M.v.M.); (J.C.G.)
- Division Heart & Lungs, University Medical Centre Utrecht, 3435 CM Utrecht, The Netherlands
| |
Collapse
|
32
|
Rudler DL, Hughes LA, Viola HM, Hool LC, Rackham O, Filipovska A. Fidelity and coordination of mitochondrial protein synthesis in health and disease. J Physiol 2020; 599:3449-3462. [PMID: 32710561 DOI: 10.1113/jp280359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
The evolutionary acquisition of mitochondria has given rise to the diversity of eukaryotic life. Mitochondria have retained their ancestral α-proteobacterial traits through the maintenance of double membranes and their own circular genome. Their genome varies in size from very large in plants to the smallest in animals and their parasites. The mitochondrial genome encodes essential genes for protein synthesis and has to coordinate its expression with the nuclear genome from which it sources most of the proteins required for mitochondrial biogenesis and function. The mitochondrial protein synthesis machinery is unique because it is encoded by both the nuclear and mitochondrial genomes thereby requiring tight regulation to produce the respiratory complexes that drive oxidative phosphorylation for energy production. The fidelity and coordination of mitochondrial protein synthesis are essential for ATP production. Here we compare and contrast the mitochondrial translation mechanisms in mammals and fungi to bacteria and reveal that their diverse regulation can have unusual impacts on the health and disease of these organisms. We highlight that in mammals the rate of protein synthesis is more important than the fidelity of translation, enabling coordinated biogenesis of the mitochondrial respiratory chain with respiratory chain proteins synthesised by cytoplasmic ribosomes. Changes in mitochondrial protein fidelity can trigger the activation of the diverse cellular signalling networks in fungi and mammals to combat dysfunction in energy conservation. The physiological consequences of altered fidelity of protein synthesis can range from liver regeneration to the onset and development of cardiomyopathy.
Collapse
Affiliation(s)
- Danielle L Rudler
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Laetitia A Hughes
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia
| | - Helena M Viola
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Nedlands, Western Australia, 6009, Australia
| | - Livia C Hool
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Nedlands, Western Australia, 6009, Australia.,Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia, 6102, Australia.,Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, 6102, Australia.,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia.,Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia.,School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
33
|
La Morgia C, Maresca A, Caporali L, Valentino ML, Carelli V. Mitochondrial diseases in adults. J Intern Med 2020; 287:592-608. [PMID: 32463135 DOI: 10.1111/joim.13064] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/07/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial medicine is a field that expanded exponentially in the last 30 years. Individually rare, mitochondrial diseases as a whole are probably the most frequent genetic disorder in adults. The complexity of their genotype-phenotype correlation, in terms of penetrance and clinical expressivity, natural history and diagnostic algorithm derives from the dual genetic determination. In fact, in addition to the about 1.500 genes encoding mitochondrial proteins that reside in the nuclear genome (nDNA), we have the 13 proteins encoded by the mitochondrial genome (mtDNA), for which 22 specific tRNAs and 2 rRNAs are also needed. Thus, besides Mendelian genetics, we need to consider all peculiarities of how mtDNA is inherited, maintained and expressed to fully understand the pathogenic mechanisms of these disorders. Yet, from the initial restriction to the narrow field of oxidative phosphorylation dysfunction, the landscape of mitochondrial functions impinging on cellular homeostasis, driving life and death, is impressively enlarged. Finally, from the clinical standpoint, starting from the neuromuscular field, where brain and skeletal muscle were the primary targets of mitochondrial dysfunction as energy-dependent tissues, after three decades virtually any subspecialty of medicine is now involved. We will summarize the key clinical pictures and pathogenic mechanisms of mitochondrial diseases in adults.
Collapse
Affiliation(s)
- C La Morgia
- From the, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - A Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - L Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - M L Valentino
- From the, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - V Carelli
- From the, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| |
Collapse
|
34
|
Gurtner C, Hug P, Kleiter M, Köhler K, Dietschi E, Jagannathan V, Leeb T. YARS2 Missense Variant in Belgian Shepherd Dogs with Cardiomyopathy and Juvenile Mortality. Genes (Basel) 2020; 11:genes11030313. [PMID: 32183361 PMCID: PMC7140874 DOI: 10.3390/genes11030313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 01/03/2023] Open
Abstract
Dog puppy loss by the age of six to eight weeks after normal development is relatively uncommon. Necropsy findings in two spontaneously deceased Belgian Shepherd puppies indicated an abnormal accumulation of material in several organs. A third deceased puppy exhibited mild signs of an inflammation in the central nervous system and an enteritis. The puppies were closely related, raising the suspicion of a genetic cause. Pedigree analysis suggested a monogenic autosomal recessive inheritance. Combined linkage and homozygosity mapping assigned the most likely position of a potential genetic defect to 13 genome segments totaling 82 Mb. The genome of an affected puppy was sequenced and compared to 645 control genomes. Three private protein changing variants were found in the linked and homozygous regions. Targeted genotyping in 96 Belgian Shepherd dogs excluded two of these variants. The remaining variant, YARS2:1054G>A or p.Glu352Lys, was perfectly associated with the phenotype in a cohort of 474 Belgian Shepherd dogs. YARS2 encodes the mitochondrial tyrosyl-tRNA synthetase 2 and the predicted amino acid change replaces a negatively charged and evolutionary conserved glutamate at the surface of the tRNA binding domain of YARS2 with a positively charged lysine. Human patients with loss-of-function variants in YARS2 suffer from myopathy, lactic acidosis, and sideroblastic anemia 2, a disease with clinical similarities to the phenotype of the studied dogs. The carrier frequency was 27.2% in the tested Belgian Shepherd dogs. Our data suggest YARS2:1054G>A as the candidate causative variant for the observed juvenile mortality.
Collapse
Affiliation(s)
- Corinne Gurtner
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland;
| | - Petra Hug
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (P.H.); (E.D.); (V.J.)
| | - Miriam Kleiter
- Department/Hospital for Companion Animals and Horses, University Clinic for Small Animals, Internal Medicine Small Animals, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Kernt Köhler
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, 35392 Giessen, Germany;
| | - Elisabeth Dietschi
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (P.H.); (E.D.); (V.J.)
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (P.H.); (E.D.); (V.J.)
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (P.H.); (E.D.); (V.J.)
- Correspondence: ; Tel.: +41-31-631-23-26
| |
Collapse
|
35
|
Mitochondrial aminoacyl-tRNA synthetases. Enzymes 2020. [PMID: 33837704 DOI: 10.1016/bs.enz.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
In all eukaryotic cells, protein synthesis occurs not only in the cytosol, but also in the mitochondria. Translation of mitochondrial genes requires a set of aminoacyl-tRNA synthetases, many of which are often specialized for organellar function. These enzymes have evolved unique mechanisms for tRNA recognition and for ensuring fidelity of translation. Mutations of human mitochondrial synthetases are associated with a wide range of pathogenic phenotypes, both highlighting the importance of their role in maintaining the cellular "powerhouse" and suggesting additional cellular roles.
Collapse
|
36
|
Thompson K, Collier JJ, Glasgow RIC, Robertson FM, Pyle A, Blakely EL, Alston CL, Oláhová M, McFarland R, Taylor RW. Recent advances in understanding the molecular genetic basis of mitochondrial disease. J Inherit Metab Dis 2020; 43:36-50. [PMID: 31021000 PMCID: PMC7041634 DOI: 10.1002/jimd.12104] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial disease is hugely diverse with respect to associated clinical presentations and underlying genetic causes, with pathogenic variants in over 300 disease genes currently described. Approximately half of these have been discovered in the last decade due to the increasingly widespread application of next generation sequencing technologies, in particular unbiased, whole exome-and latterly, whole genome sequencing. These technologies allow more genetic data to be collected from patients with mitochondrial disorders, continually improving the diagnostic success rate in a clinical setting. Despite these significant advances, some patients still remain without a definitive genetic diagnosis. Large datasets containing many variants of unknown significance have become a major challenge with next generation sequencing strategies and these require significant functional validation to confirm pathogenicity. This interface between diagnostics and research is critical in continuing to expand the list of known pathogenic variants and concomitantly enhance our knowledge of mitochondrial biology. The increasing use of whole exome sequencing, whole genome sequencing and other "omics" techniques such as transcriptomics and proteomics will generate even more data and allow further interrogation and validation of genetic causes, including those outside of coding regions. This will improve diagnostic yields still further and emphasizes the integral role that functional assessment of variant causality plays in this process-the overarching focus of this review.
Collapse
Affiliation(s)
- Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Jack J. Collier
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Ruth I. C. Glasgow
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Fiona M. Robertson
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Institute of Genetic MedicineNewcastle UniversityNewcastle upon TyneUK
| | - Emma L. Blakely
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Mitochondrial Diagnostic LaboratoryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Charlotte L. Alston
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Mitochondrial Diagnostic LaboratoryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Mitochondrial Diagnostic LaboratoryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| |
Collapse
|
37
|
Daniels EG, Alders M, Lezzerini M, McDonald A, Peters M, Kuijpers TW, Lakeman P, Houtkooper RH, MacInnes AW. A uniparental isodisomy event introducing homozygous pathogenic variants drives a multisystem metabolic disorder. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004457. [PMID: 31653659 PMCID: PMC6913148 DOI: 10.1101/mcs.a004457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/07/2019] [Indexed: 01/08/2023] Open
Abstract
Uniparental isodisomy (UPiD) is a rare genetic event that occurs when two identical copies of a single chromosome are inherited from one parent. Here we report a patient with a severe, multisystem metabolic disorder who inherited two copies of Chromosome 12 from her father. He was a heterozygous carrier of a variant in the muscle-specific enzyme 6-phosphofructokinase (PFKM) gene and of a truncating variant in the pseudouridine synthase 1 (PUS1) gene (both on Chromosome 12), resulting in a homozygous state of these mutations in his daughter. The PFKM gene functions in glycolysis and is linked to Tarui syndrome. The PUS1 gene functions in mitochondrial tRNA processing and is linked to myopathy, lactic acidosis, and sideroblastic anemia (MLASA). Analysis of human dermal fibroblasts, which do not express PFKM, revealed a loss of PUS1 mRNA and PUS1 protein only in the patient cells compared to healthy controls. The patient cells also revealed a reduction of the mitochondrial-encoded protein MTCO1, whereas levels of the nuclear-encoded SDHA remained unchanged, suggesting a specific impairment of mitochondrial translation. Further destabilization of these cells is suggested by the altered levels of BAX, BCL-2, and TP53 proteins, alterations that become augmented upon exposure of the cells to DNA damage. The results illustrate the efficacy of UPiD events to reveal rare pathogenic variants in human disease and demonstrate how these events can lead to cellular destabilization.
Collapse
Affiliation(s)
- Eileen G Daniels
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Marielle Alders
- Department of Clinical Genetics, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Marco Lezzerini
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Andrew McDonald
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Marjolein Peters
- Department of Pediatric Hematology, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Taco W Kuijpers
- Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Phillis Lakeman
- Department of Clinical Genetics, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Riekelt H Houtkooper
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Alyson W MacInnes
- Laboratory of Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Immunology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| |
Collapse
|
38
|
Agnew T, Goldsworthy M, Aguilar C, Morgan A, Simon M, Hilton H, Esapa C, Wu Y, Cater H, Bentley L, Scudamore C, Poulton J, Morten KJ, Thompson K, He L, Brown SDM, Taylor RW, Bowl MR, Cox RD. A Wars2 Mutant Mouse Model Displays OXPHOS Deficiencies and Activation of Tissue-Specific Stress Response Pathways. Cell Rep 2019; 25:3315-3328.e6. [PMID: 30566859 PMCID: PMC6315286 DOI: 10.1016/j.celrep.2018.11.080] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/06/2018] [Accepted: 11/21/2018] [Indexed: 01/02/2023] Open
Abstract
Mutations in genes essential for mitochondrial function have pleiotropic effects. The mechanisms underlying these traits yield insights into metabolic homeostasis and potential therapies. Here we report the characterization of a mouse model harboring a mutation in the tryptophanyl-tRNA synthetase 2 (Wars2) gene, encoding the mitochondrial-localized WARS2 protein. This hypomorphic allele causes progressive tissue-specific pathologies, including hearing loss, reduced adiposity, adipose tissue dysfunction, and hypertrophic cardiomyopathy. We demonstrate the tissue heterogeneity arises as a result of variable activation of the integrated stress response (ISR) pathway and the ability of certain tissues to respond to impaired mitochondrial translation. Many of the systemic metabolic effects are likely mediated through elevated fibroblast growth factor 21 (FGF21) following activation of the ISR in certain tissues. These findings demonstrate the potential pleiotropy associated with Wars2 mutations in patients. A hypomorphic point mutation in the Wars2 gene was identified Mutant mice exhibit progressive tissue-specific pathologies Variable activation of stress response pathways Demonstrating pleiotropic effects
Collapse
Affiliation(s)
- Thomas Agnew
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Michelle Goldsworthy
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Carlos Aguilar
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Anna Morgan
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Michelle Simon
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Helen Hilton
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Chris Esapa
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Yixing Wu
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Heather Cater
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Liz Bentley
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Cheryl Scudamore
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3 The Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Karl J Morten
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3 The Women's Centre, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK
| | - Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Langping He
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Steve D M Brown
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Michael R Bowl
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire OX11 0RD, UK.
| | - Roger D Cox
- MRC Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire OX11 0RD, UK.
| |
Collapse
|
39
|
Daher R, Mansouri A, Martelli A, Bayart S, Manceau H, Callebaut I, Moulouel B, Gouya L, Puy H, Kannengiesser C, Karim Z. GLRX5 mutations impair heme biosynthetic enzymes ALA synthase 2 and ferrochelatase in Human congenital sideroblastic anemia. Mol Genet Metab 2019; 128:342-351. [PMID: 30660387 DOI: 10.1016/j.ymgme.2018.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 01/20/2023]
Abstract
Non-syndromic microcytic congenital sideroblastic anemia (cSA) is predominantly caused by defective genes encoding for either ALAS2, the first enzyme of heme biosynthesis pathway or SLC25A38, the mitochondrial importer of glycine, an ALAS2 substrate. Herein we explored a new case of cSA with two mutations in GLRX5, a gene for which only two patients have been reported so far. The patient was a young female with biallelic compound heterozygous mutations in GLRX5 (p.Cys67Tyr and p.Met128Lys). Three-D structure analysis confirmed the involvement of Cys67 in the coordination of the [2Fe2S] cluster and suggested a potential role of Met128 in partner interactions. The protein-level of ferrochelatase, the terminal-enzyme of heme process, was increased both in patient-derived lymphoblastoid and CD34+ cells, however, its activity was drastically decreased. The activity of ALAS2 was found altered and possibly related to a defect in the biogenesis of its co-substrate, the succinyl-CoA. Thus, the patient exhibits both a very low ferrochelatase activity without any accumulation of porphyrins precursors in contrast to what is reported in erythropoietic protoporphyria with solely impaired ferrochelatase activity. A significant oxidative stress was evidenced by decreased reduced glutathione and aconitase activity, and increased MnSOD protein expression. This oxidative stress depleted and damaged mtDNA, decreased complex I and IV activities and depleted ATP content. Collectively, our study demonstrates the key role of GLRX5 in modulating ALAS2 and ferrochelatase activities and in maintaining mitochondrial function.
Collapse
Affiliation(s)
- Raêd Daher
- INSERM U1149, Centre de Recherche sur l'inflammation (CRI), Paris, France; Université Paris Diderot, site Bichat, Sorbonne Paris cité, DHU UNITY, Paris, France; Laboratory of excellence GR-Ex, Paris, France; AP-HP, Centre Français des Porphyries (CFP), Hôpital Louis Mourier, Colombes, France; AP-HP, Département de Génétique, Hôpital Bichât, Paris, France
| | - Abdellah Mansouri
- INSERM U1149, Centre de Recherche sur l'inflammation (CRI), Paris, France; Université Paris Diderot, site Bichat, Sorbonne Paris cité, DHU UNITY, Paris, France
| | - Alain Martelli
- Department of Translational Medicine and Neurogenetics, Illkirch, France
| | - Sophie Bayart
- Department of Pediatric Hematology, Hôpital Sud, CHU, Rennes, France
| | - Hana Manceau
- INSERM U1149, Centre de Recherche sur l'inflammation (CRI), Paris, France; Université Paris Diderot, site Bichat, Sorbonne Paris cité, DHU UNITY, Paris, France; Laboratory of excellence GR-Ex, Paris, France
| | - Isabelle Callebaut
- CNRS UMR7590, Sorbonne Universités, Université Pierre et Marie Curie-Paris6-MNHN-IRD-IUC, Paris, France
| | - Boualem Moulouel
- AP-HP, Centre Français des Porphyries (CFP), Hôpital Louis Mourier, Colombes, France
| | - Laurent Gouya
- INSERM U1149, Centre de Recherche sur l'inflammation (CRI), Paris, France; Université Paris Diderot, site Bichat, Sorbonne Paris cité, DHU UNITY, Paris, France; Laboratory of excellence GR-Ex, Paris, France; AP-HP, Centre Français des Porphyries (CFP), Hôpital Louis Mourier, Colombes, France
| | - Hervé Puy
- INSERM U1149, Centre de Recherche sur l'inflammation (CRI), Paris, France; Université Paris Diderot, site Bichat, Sorbonne Paris cité, DHU UNITY, Paris, France; Laboratory of excellence GR-Ex, Paris, France; AP-HP, Centre Français des Porphyries (CFP), Hôpital Louis Mourier, Colombes, France.
| | - Caroline Kannengiesser
- INSERM U1149, Centre de Recherche sur l'inflammation (CRI), Paris, France; Université Paris Diderot, site Bichat, Sorbonne Paris cité, DHU UNITY, Paris, France; Laboratory of excellence GR-Ex, Paris, France; AP-HP, Département de Génétique, Hôpital Bichât, Paris, France
| | - Zoubida Karim
- INSERM U1149, Centre de Recherche sur l'inflammation (CRI), Paris, France; Université Paris Diderot, site Bichat, Sorbonne Paris cité, DHU UNITY, Paris, France; Laboratory of excellence GR-Ex, Paris, France.
| |
Collapse
|
40
|
Pillai NR, AlDhaheri NS, Ghosh R, Lim J, Streff H, Nayak A, Graham BH, Hanchard NA, Elsea SH, Scaglia F. Biallelic variants in
COX4I1
associated with a novel phenotype resembling Leigh syndrome with developmental regression, intellectual disability, and seizures. Am J Med Genet A 2019; 179:2138-2143. [DOI: 10.1002/ajmg.a.61288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Nishitha R. Pillai
- Department of Molecular and Human GeneticsBaylor College of Medicine Houston Texas
- Texas Children's Hospital Houston Texas
| | - Noura S. AlDhaheri
- Department of Molecular and Human GeneticsBaylor College of Medicine Houston Texas
- Texas Children's Hospital Houston Texas
- Department of PediatricsCollege of Medicine and Health Sciences, United Arab Emirates University Al Ain UAE
| | - Rajarshi Ghosh
- Department of Molecular and Human GeneticsBaylor College of Medicine Houston Texas
| | - Jaehyung Lim
- Texas Children's Hospital Houston Texas
- Department of NeurologyBaylor College of Medicine Houston Texas
| | - Haley Streff
- Department of Molecular and Human GeneticsBaylor College of Medicine Houston Texas
- Texas Children's Hospital Houston Texas
| | - Anuranjita Nayak
- Texas Children's Hospital Houston Texas
- Department of NeurologyBaylor College of Medicine Houston Texas
| | - Brett H. Graham
- Department of Medical and Molecular GeneticsIndiana University School of Medicine Indianapolis Indiana
| | - Neil A. Hanchard
- Department of Molecular and Human GeneticsBaylor College of Medicine Houston Texas
- Texas Children's Hospital Houston Texas
| | - Sarah H. Elsea
- Department of Molecular and Human GeneticsBaylor College of Medicine Houston Texas
| | - Fernando Scaglia
- Department of Molecular and Human GeneticsBaylor College of Medicine Houston Texas
- Texas Children's Hospital Houston Texas
- Joint BCM‐CUHK Center of Medical GeneticsPrince of Wales Hospital ShaTin Hong Kong SAR
| |
Collapse
|
41
|
Florentz C, Giegé R. History of tRNA research in strasbourg. IUBMB Life 2019; 71:1066-1087. [PMID: 31185141 DOI: 10.1002/iub.2079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
The tRNA molecules, in addition to translating the genetic code into protein and defining the second genetic code via their aminoacylation by aminoacyl-tRNA synthetases, act in many other cellular functions and dysfunctions. This article, illustrated by personal souvenirs, covers the history of ~60 years tRNA research in Strasbourg. Typical examples point up how the work in Strasbourg was a two-way street, influenced by and at the same time influencing investigators outside of France. All along, research in Strasbourg has nurtured the structural and functional diversity of tRNA. It produced massive sequence and crystallographic data on tRNA and its partners, thereby leading to a deeper physicochemical understanding of tRNA architecture, dynamics, and identity. Moreover, it emphasized the role of nucleoside modifications and in the last two decades, highlighted tRNA idiosyncrasies in plants and organelles, together with cellular and health-focused aspects. The tRNA field benefited from a rich local academic heritage and a strong support by both university and CNRS. Its broad interlinks to the worldwide community of tRNA researchers opens to an exciting future. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1066-1087, 2019.
Collapse
Affiliation(s)
- Catherine Florentz
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France.,Direction de la Recherche et de la Valorisation, Université de Strasbourg, F-67084, 4 rue Blaise Pascal, Strasbourg, France
| | - Richard Giegé
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France
| |
Collapse
|
42
|
Allain JS, Belhomme N, Henriot B, Haas M, Le Gall-Godard M, Pastoret C, Jego P. [A microcytic sideroblastic anemia successfully treated with B6 vitamin]. Rev Med Interne 2019; 40:462-465. [PMID: 31133329 DOI: 10.1016/j.revmed.2019.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/12/2019] [Accepted: 05/08/2019] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Sideroblastic anemia is a rare cause of microcytic anemia, which is characterized by ring sideroblasts on bone marrow aspirate. This anemia can be congenital or acquired. CASE REPORT We report the case of an alcoholic 49-year-old man who presented with a severe microcytic sideroblastic anemia related to pyridoxine (B6 vitamin) deficiency. Acid folic deficiency was associated. The blood count normalized within one month after vitamin supplementation. CONCLUSION Pyridoxine deficiency must be sought in sideroblastic anemia in patients at risk.
Collapse
Affiliation(s)
- J-S Allain
- Service de médecine interne et immunologie clinique, université de Rennes 1, CHU de Rennes, 35000 Rennes, France; Pôle médecine, cardiovasculaire et métabolisme, centre hospitalier de Saint-Malo, 35400 Saint-Malo, France.
| | - N Belhomme
- Service de médecine interne et immunologie clinique, université de Rennes 1, CHU de Rennes, 35000 Rennes, France
| | - B Henriot
- Service de médecine interne et immunologie clinique, université de Rennes 1, CHU de Rennes, 35000 Rennes, France; Service de médecine interne et immunologie clinique, centre hospitalier René-Pleven, CHU de Rennes, 22100 Dinan, France
| | - M Haas
- Laboratoire d'hématologie, université de Rennes 1, CHU de Rennes, 35000 Rennes, France
| | - M Le Gall-Godard
- Laboratoire d'hématologie, université de Rennes 1, CHU de Rennes, 35000 Rennes, France
| | - C Pastoret
- Laboratoire d'hématologie, Inserm, UMR U1236, université de Rennes 1, CHU de Rennes, 35000 Rennes, France
| | - P Jego
- Service de médecine interne et immunologie clinique, université de Rennes 1, CHU de Rennes, 35000 Rennes, France
| |
Collapse
|
43
|
Srivastava S, Butala A, Mahida S, Richter J, Mu W, Poretti A, Vernon H, VanGerpen J, Atwal PS, Middlebrooks EH, Zee DS, Naidu S. Expansion of the clinical spectrum associated with AARS2-related disorders. Am J Med Genet A 2019; 179:1556-1564. [PMID: 31099476 DOI: 10.1002/ajmg.a.61188] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022]
Abstract
Biallelic pathogenic variants in AARS2, a gene encoding the mitochondrial alanyl-tRNA synthetase, result in a spectrum of findings ranging from infantile cardiomyopathy to adult-onset progressive leukoencephalopathy. In this article, we present three unrelated individuals with novel compound heterozygous pathogenic AARS2 variants underlying diverse clinical presentations. Patient 1 is a 51-year-old man with adult-onset progressive cognitive, psychiatric, and motor decline and leukodystrophy. Patient 2 is a 34-year-old man with childhood-onset progressive tremor followed by the development of polyneuropathy, ataxia, and mild cognitive and psychiatric decline without leukodystrophy on imaging. Patient 3 is a 57-year-old woman with childhood-onset tremor and nystagmus which preceded dystonia, chorea, ataxia, depression, and cognitive decline marked by cerebellar atrophy and white matter disease. These cases expand the clinical heterogeneity of AARS2-related disorders, given that the first and third case represent some of the oldest known survivors of this disease, the second is adult-onset AARS2-related neurological decline without leukodystrophy, and the third is biallelic AARS2-related disorder involving a partial gene deletion.
Collapse
Affiliation(s)
| | - Ankur Butala
- Department of Neurology, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Sonal Mahida
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - John Richter
- Department of Neurology, Mayo Clinic, Jacksonville, Florida
| | - Weiyi Mu
- Institute of Genetic Medicine, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Andrea Poretti
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland.,Department of Neurology and Pediatrics, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Hilary Vernon
- Institute of Genetic Medicine, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Jay VanGerpen
- Department of Neurology, Mayo Clinic, Jacksonville, Florida
| | | | - Erik H Middlebrooks
- Department of Radiology and Neurosurgery, Mayo Clinic, Jacksonville, Florida
| | - David S Zee
- Department of Neurology, The Johns Hopkins Hospital, Baltimore, Maryland.,Department of Ophthalmology, Otolaryngology, Head and Neck Surgery and Neuroscience, The Johns Hopkins Hospital, Baltimore, Maryland
| | - SakkuBai Naidu
- Department of Neurogenetics, Hugo W. Moser Research Institute at Kennedy Krieger Institute, Baltimore, Maryland.,Department of Neurology and Pediatrics, The Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
44
|
González-Serrano LE, Chihade JW, Sissler M. When a common biological role does not imply common disease outcomes: Disparate pathology linked to human mitochondrial aminoacyl-tRNA synthetases. J Biol Chem 2019; 294:5309-5320. [PMID: 30647134 PMCID: PMC6462531 DOI: 10.1074/jbc.rev118.002953] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) are essential components of the mitochondrial translation machinery. The correlation of mitochondrial disorders with mutations in these enzymes has raised the interest of the scientific community over the past several years. Most surprising has been the wide-ranging presentation of clinical manifestations in patients with mt-aaRS mutations, despite the enzymes' common biochemical role. Even among cases where a common physiological system is affected, phenotypes, severity, and age of onset varies depending on which mt-aaRS is mutated. Here, we review work done thus far and propose a categorization of diseases based on tissue specificity that highlights emerging patterns. We further discuss multiple in vitro and in cellulo efforts to characterize the behavior of WT and mutant mt-aaRSs that have shaped hypotheses about the molecular causes of these pathologies. Much remains to do in order to complete our understanding of these proteins. We expect that futher work is likely to result in the discovery of new roles for the mt-aaRSs in addition to their fundamental function in mitochondrial translation, informing the development of treatment strategies and diagnoses.
Collapse
Affiliation(s)
- Ligia Elena González-Serrano
- From the Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France and
| | - Joseph W Chihade
- the Department of Chemistry, Carleton College, Northfield, Minnesota 55057
| | - Marie Sissler
- From the Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, F-67000 Strasbourg, France and
| |
Collapse
|
45
|
Tesarova M, Vondrackova A, Stufkova H, Veprekova L, Stranecky V, Berankova K, Hansikova H, Magner M, Galoova N, Honzik T, Vodickova E, Stary J, Zeman J. Sideroblastic anemia associated with multisystem mitochondrial disorders. Pediatr Blood Cancer 2019; 66:e27591. [PMID: 30588737 DOI: 10.1002/pbc.27591] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/18/2018] [Accepted: 11/29/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Sideroblastic anemia represents a heterogeneous group of inherited or acquired diseases with disrupted erythroblast iron utilization, ineffective erythropoiesis, and variable systemic iron overload. In a cohort of 421 patients with multisystem mitochondrial diseases, refractory anemia was found in 8 children. RESULTS Five children had sideroblastic anemia with increased numbers of ring sideroblasts >15%. Two of the children had a fatal course of MLASA1 syndrome (mitochondrial myopathy, lactic acidosis, and sideroblastic anemia [SA]) due to a homozygous, 6-kb deletion in the PUS1 gene, part of the six-member family of pseudouridine synthases (pseudouridylases). Large homozygous deletions represent a novel cause of presumed PUS1-loss-of-function phenotype. The other three children with SA had Pearson syndrome (PS) due to mtDNA deletions of 4 to 8 kb; two of these children showed early onset of PS and died due to repeated sepsis; the other child had later onset of PS and survived as the hematological parameters normalized and the disease transitioned to Kearns-Sayre syndrome. In addition, anemia without ring sideroblasts was found in three other patients with mitochondrial disorders, including two children with later onset of PS and one child with failure to thrive, microcephaly, developmental delay, hypertrophic cardiomyopathy, and renal tubular acidosis due to the heterozygous mutations c.610A>G (p.Asn204Asp) and c.674C>T (p.Pro225Leu) in the COX10 gene encoding the cytochrome c oxidase assembly factor. CONCLUSIONS Sideroblastic anemia was found in fewer than 1.2% of patients with multisystem mitochondrial disease, and it was usually associated with an unfavorable prognosis.
Collapse
Affiliation(s)
- Marketa Tesarova
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Alzbeta Vondrackova
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Hana Stufkova
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Lenka Veprekova
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Viktor Stranecky
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Kamila Berankova
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Hana Hansikova
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Magner
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Natalia Galoova
- Department of Paediatric Oncology and Haematology, Children's University Hospital, Kosice, Slovakia
| | - Tomas Honzik
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Elena Vodickova
- Department of Haematology, Motol University Hospital, Prague, Czech Republic
| | - Jan Stary
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jiri Zeman
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
46
|
Kuo ME, Theil AF, Kievit A, Malicdan MC, Introne WJ, Christian T, Verheijen FW, Smith DEC, Mendes MI, Hussaarts-Odijk L, van der Meijden E, van Slegtenhorst M, Wilke M, Vermeulen W, Raams A, Groden C, Shimada S, Meyer-Schuman R, Hou YM, Gahl WA, Antonellis A, Salomons GS, Mancini GMS. Cysteinyl-tRNA Synthetase Mutations Cause a Multi-System, Recessive Disease That Includes Microcephaly, Developmental Delay, and Brittle Hair and Nails. Am J Hum Genet 2019; 104:520-529. [PMID: 30824121 DOI: 10.1016/j.ajhg.2019.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes responsible for charging tRNA molecules with cognate amino acids. Consistent with the essential function and ubiquitous expression of ARSs, mutations in 32 of the 37 ARS-encoding loci cause severe, early-onset recessive phenotypes. Previous genetic and functional data suggest a loss-of-function mechanism; however, our understanding of the allelic and locus heterogeneity of ARS-related disease is incomplete. Cysteinyl-tRNA synthetase (CARS) encodes the enzyme that charges tRNACys with cysteine in the cytoplasm. To date, CARS variants have not been implicated in any human disease phenotype. Here, we report on four subjects from three families with complex syndromes that include microcephaly, developmental delay, and brittle hair and nails. Each affected person carries bi-allelic CARS variants: one individual is compound heterozygous for c.1138C>T (p.Gln380∗) and c.1022G>A (p.Arg341His), two related individuals are compound heterozygous for c.1076C>T (p.Ser359Leu) and c.1199T>A (p.Leu400Gln), and one individual is homozygous for c.2061dup (p.Ser688Glnfs∗2). Measurement of protein abundance, yeast complementation assays, and assessments of tRNA charging indicate that each CARS variant causes a loss-of-function effect. Compared to subjects with previously reported ARS-related diseases, individuals with bi-allelic CARS variants are unique in presenting with a brittle-hair-and-nail phenotype, which most likely reflects the high cysteine content in human keratins. In sum, our efforts implicate CARS variants in human inherited disease, expand the locus and clinical heterogeneity of ARS-related clinical phenotypes, and further support impaired tRNA charging as the primary mechanism of recessive ARS-related disease.
Collapse
Affiliation(s)
- Molly E Kuo
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Arjan F Theil
- Department of Molecular Genetics, Oncode Institute, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 CN Rotterdam, the Netherlands
| | - Anneke Kievit
- Department of Clinical Genetics, Erasmus Medical Center, University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - May Christine Malicdan
- Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wendy J Introne
- Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas Christian
- Department of Biochemistry and Molecular Biochemistry, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Frans W Verheijen
- Department of Clinical Genetics, Erasmus Medical Center, University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Desiree E C Smith
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Center and Amsterdam Gastroenterology and Metabolism, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HZ Amsterdam, the Netherlands
| | - Marisa I Mendes
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Center and Amsterdam Gastroenterology and Metabolism, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HZ Amsterdam, the Netherlands
| | - Lidia Hussaarts-Odijk
- Department of Clinical Genetics, Erasmus Medical Center, University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Eric van der Meijden
- Department of Clinical Genetics, Erasmus Medical Center, University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus Medical Center, University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus Medical Center, University Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 CN Rotterdam, the Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus Medical Center, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 CN Rotterdam, the Netherlands
| | - Catherine Groden
- Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shino Shimada
- Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca Meyer-Schuman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ya Ming Hou
- Department of Biochemistry and Molecular Biochemistry, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - William A Gahl
- Undiagnosed Diseases Program and Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony Antonellis
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Center and Amsterdam Gastroenterology and Metabolism, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, 1081 HZ Amsterdam, the Netherlands; Genetic Metabolic Diseases, Amsterdam University Medical Center, University of Amsterdam, 1081 HZ Amsterdam, the Netherlands.
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus Medical Center, University Medical Center, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
47
|
Fujiwara T, Harigae H. Molecular pathophysiology and genetic mutations in congenital sideroblastic anemia. Free Radic Biol Med 2019; 133:179-185. [PMID: 30098397 DOI: 10.1016/j.freeradbiomed.2018.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 01/19/2023]
Abstract
Sideroblastic anemia is a heterogeneous congenital and acquired disorder characterized by anemia and the presence of ring sideroblasts in the bone marrow. Congenital sideroblastic anemia (CSA) is a rare disease caused by mutations in genes involved in the heme biosynthesis, iron-sulfur [Fe-S] cluster biosynthesis, and mitochondrial protein synthesis. The most prevalent form of CSA is X-linked sideroblastic anemia, caused by mutations in the erythroid-specific δ-aminolevulinate synthase (ALAS2), which is the first enzyme of the heme biosynthesis pathway in erythroid cells. To date, a remarkable number of genetically undefined CSA cases remain, but a recent application of the next-generation sequencing technology has recognized novel causative genes for CSA. However, in most instances, the detailed molecular mechanisms of how defects of each gene result in the abnormal mitochondrial iron accumulation remain unclear. This review aims to cover the current understanding of the molecular pathophysiology of CSA.
Collapse
Affiliation(s)
- Tohru Fujiwara
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
48
|
Altered splicing and cytoplasmic levels of tRNA synthetases in SF3B1-mutant myelodysplastic syndromes as a therapeutic vulnerability. Sci Rep 2019; 9:2678. [PMID: 30804405 PMCID: PMC6390101 DOI: 10.1038/s41598-019-39591-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/24/2019] [Indexed: 12/19/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are haematopoietic malignancies that are characterised by a heterogeneous clinical course. In recent years, sequencing efforts have uncovered recurrent somatic mutations within RNA splicing factors, including SF3B1, SRSF2, U2AF1 and ZRSR2. The most frequently mutated gene is SF3B1, mutated in 17% of MDS patients. While SF3B1 mutations and their effects on splicing have been well characterised, much remains to be explored about their more far-reaching effects on cellular homeostasis. Given that mRNA splicing and nuclear export are coordinated processes, we hypothesised that SF3B1 mutation might also affect export of certain mRNAs and that this may represent a targetable pathway for the treatment of SF3B1-mutant MDS. We used CRISPR/Cas9-genome editing to create isogenic cellular models. Comprehensive transcriptome and proteome profiling of these cells identified alterations in the splicing and export of components of the translational machinery, primarily tRNA synthetases, in response to the SF3B1 K700E mutation. While steady-state protein synthesis was unaffected, SF3B1 mutant cells were more sensitive to the clinically-relevant purine analogue, 8-azaguanine. In this study, we also demonstrated that 8-azaguanine affects splicing. Our results suggest that the simultaneous targeting of RNA metabolism and splicing by 8-azaguanine represents a therapeutic opportunity for SF3B1-mutant myelodysplastic syndromes.
Collapse
|
49
|
Williams KB, Brigatti KW, Puffenberger EG, Gonzaga-Jauregui C, Griffin LB, Martinez ED, Wenger OK, Yoder MA, Kandula VVR, Fox MD, Demczko MM, Poskitt L, Furuya KN, Reid JG, Overton JD, Baras A, Miles L, Radhakrishnan K, Carson VJ, Antonellis A, Jinks RN, Strauss KA. Homozygosity for a mutation affecting the catalytic domain of tyrosyl-tRNA synthetase (YARS) causes multisystem disease. Hum Mol Genet 2019; 28:525-538. [PMID: 30304524 PMCID: PMC6360277 DOI: 10.1093/hmg/ddy344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/20/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are critical for protein translation. Pathogenic variants of ARSs have been previously associated with peripheral neuropathy and multisystem disease in heterozygotes and homozygotes, respectively. We report seven related children homozygous for a novel mutation in tyrosyl-tRNA synthetase (YARS, c.499C > A, p.Pro167Thr) identified by whole exome sequencing. This variant lies within a highly conserved interface required for protein homodimerization, an essential step in YARS catalytic function. Affected children expressed a more severe phenotype than previously reported, including poor growth, developmental delay, brain dysmyelination, sensorineural hearing loss, nystagmus, progressive cholestatic liver disease, pancreatic insufficiency, hypoglycemia, anemia, intermittent proteinuria, recurrent bloodstream infections and chronic pulmonary disease. Related adults heterozygous for YARS p.Pro167Thr showed no evidence of peripheral neuropathy on electromyography, in contrast to previous reports for other YARS variants. Analysis of YARS p.Pro167Thr in yeast complementation assays revealed a loss-of-function, hypomorphic allele that significantly impaired growth. Recombinant YARS p.Pro167Thr demonstrated normal subcellular localization, but greatly diminished ability to homodimerize in human embryonic kidney cells. This work adds to a rapidly growing body of research emphasizing the importance of ARSs in multisystem disease and significantly expands the allelic and clinical heterogeneity of YARS-associated human disease. A deeper understanding of the role of YARS in human disease may inspire innovative therapies and improve care of affected patients.
Collapse
Affiliation(s)
| | | | | | | | - Laurie B Griffin
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Erick D Martinez
- Department of Biology, Biological Foundations of Behavior Program, Franklin & Marshall College, Lancaster, PA, USA
| | - Olivia K Wenger
- New Leaf Center, Mount Eaton, OH, USA
- Department of Pediatrics, Akron Children’s Hospital, Akron, OH, USA
| | - Mark A Yoder
- Northeast Ohio Medical University, Rootstown, OH, USA
| | - Vinay V R Kandula
- Department of Medical Imaging, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Michael D Fox
- Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew M Demczko
- Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Laura Poskitt
- Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Katryn N Furuya
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
- Division of Pediatric Gastroenterology, Department of Pediatrics, Mayo Clinic, Rochester, MN, USA
- Division of Pediatric Gastroenterology, Department of Pediatrics, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Jeffrey G Reid
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - John D Overton
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Aris Baras
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Lili Miles
- Department of Pathology and Laboratory Medicine, Nemours Children's Hospital, Orlando FL, USA
| | - Kadakkal Radhakrishnan
- Department of Gastroenterology, Children's Hospital at Cleveland Clinic, Cleveland, OH USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | | | - Anthony Antonellis
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Robert N Jinks
- Department of Biology, Biological Foundations of Behavior Program, Franklin & Marshall College, Lancaster, PA, USA
| | | |
Collapse
|
50
|
Ducamp S, Fleming MD. The molecular genetics of sideroblastic anemia. Blood 2019; 133:59-69. [PMID: 30401706 PMCID: PMC6318428 DOI: 10.1182/blood-2018-08-815951] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/21/2018] [Indexed: 01/19/2023] Open
Abstract
The sideroblastic anemias (SAs) are a group of inherited and acquired bone marrow disorders defined by pathological iron accumulation in the mitochondria of erythroid precursors. Like most hematological diseases, the molecular genetic basis of the SAs has ridden the wave of technology advancement. Within the last 30 years, with the advent of positional cloning, the human genome project, solid-state genotyping technologies, and next-generation sequencing have evolved to the point where more than two-thirds of congenital SA cases, and an even greater proportion of cases of acquired clonal disease, can be attributed to mutations in a specific gene or genes. This review focuses on an analysis of the genetics of these diseases and how understanding these defects may contribute to the design and implementation of rational therapies.
Collapse
Affiliation(s)
- Sarah Ducamp
- Department of Pathology, Boston Children's Hospital, Boston, MA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, MA
| |
Collapse
|