1
|
Wilebski BJ, Alam A, Lambert RR, Douvoyiannis M. Congenital Dislocation of the Knee in the Delivery Room. AMERICAN JOURNAL OF CASE REPORTS 2024; 25:e943725. [PMID: 38741359 PMCID: PMC11106790 DOI: 10.12659/ajcr.943725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/27/2024] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Congenital dislocation of the knee (CDK) is rare and can cause significant distress in the delivery room to parents and to healthcare providers, especially if the latter are unaware of this condition. It may not be detected by prenatal ultrasound and can be either an isolated finding or associated with other anomalies such as developmental hip dysplasia and genetic syndromes such as Larsen syndrome. Because of the risk of development of contractures, immediate referral to a specialized provider is needed. Poor prognostic factors include an association with a genetic syndrome, limited knee flexion related to severe quadriceps retraction, and absence of anterior skin grooves. A satisfactory outcome can be anticipated in isolated cases with easy reducibility of the knee. CASE REPORT A term baby presented unexpectedly with left knee dislocation after delivery. The providers, unaware of the condition, immediately consulted the orthopedic service, who assisted in the diagnosis, and appropriate management was initiated. The baby had serial casting of the leg, which was applied for almost 3 months, with excellent results on the clinical examination. CONCLUSIONS CDK is a rare finding. The diagnosis is primarily clinical and radiographs are used to confirm and assess the degree of the dislocation. The degree of dislocation is important for management and prognosis. Interventions ranging from serial casting to surgery are required as soon as possible. As the CDK can be associated with genetic syndromes or other dysplasias such as developmental dysplasia of the hip and talipes equinovarus, further evaluation for these conditions is warranted.
Collapse
Affiliation(s)
| | - Ambereen Alam
- Department of Pediatrics, Altru Health System, Grand Forks, ND, USA
| | | | | |
Collapse
|
2
|
Liu W, Cao J, Shi X, Li Y, Qiao F, Wu Y. Genetic testing and diagnostic strategies of fetal skeletal dysplasia: a preliminary study in Wuhan, China. Orphanet J Rare Dis 2023; 18:336. [PMID: 37875969 PMCID: PMC10599061 DOI: 10.1186/s13023-023-02955-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Fetal skeletal dysplasia is a diverse group of degenerative diseases of bone and cartilage disorders that can lead to movement disorder and even death. This study aims to evaluate the diagnostic yield of sonographic examination and genetic testing for fetal skeletal dysplasia. METHODS From September 2015 to April 2021, the study investigated 24 cases with suspected short-limb fetuses, which were obtained from Tongji Hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology. To identify the causative gene, multiple approaches (including karyotype analysis, copy number variations and whole exome sequencing) were performed on these fetuses. And further segregation analysis of the candidate variant was performed in parents by using Sanger sequencing. RESULTS ① Out of 24 cases, likely pathogenic variants in FGFR3, FBN2, COL1A2, CUL7 and DYNC2H1 were detected in 6 cases; pathogenic variants in FGFR3, IMPAD1 and GORAB were identified in other 6 cases; and variants in WNT1, FBN1, OBSL1, COL1A1, DYNC2H1 and NEK1, known as Variant of Undetermined Significance, were found in 4 cases. There were no variants detected in the rest 8 cases by the whole exome sequencing. ② Of 24 cases, 12 (50%) were found to carry variants (pathogenic or likely pathogenic) in seven genes with 12 variants. Four fetuses (16.7%) had variants of uncertain significance. CONCLUSION Genetic testing combining with ultrasound scanning enhances the accurate diagnosis of fatal skeletal dysplasia in utero, and then provides appropriate genetic counseling.
Collapse
Affiliation(s)
- Wanlu Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030 China
| | - Jing Cao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030 China
| | - Xinwei Shi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030 China
| | - Yuqi Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030 China
| | - Fuyuan Qiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030 China
| | - Yuanyuan Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, 430030 China
| |
Collapse
|
3
|
Wilson B, Su Z, Kumar P, Dutta A. XRN2 suppresses aberrant entry of tRNA trailers into argonaute in humans and Arabidopsis. PLoS Genet 2023; 19:e1010755. [PMID: 37146074 PMCID: PMC10191329 DOI: 10.1371/journal.pgen.1010755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/17/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023] Open
Abstract
MicroRNAs (miRNAs) are a well-characterized class of small RNAs (sRNAs) that regulate gene expression post-transcriptionally. miRNAs function within a complex milieu of other sRNAs of similar size and abundance, with the best characterized being tRNA fragments or tRFs. The mechanism by which the RNA-induced silencing complex (RISC) selects for specific sRNAs over others is not entirely understood in human cells. Several highly expressed tRNA trailers (tRF-1s) are strikingly similar to microRNAs in length but are generally excluded from the microRNA effector pathway. This exclusion provides a paradigm for identifying mechanisms of RISC selectivity. Here, we show that 5' to 3' exoribonuclease XRN2 contributes to human RISC selectivity. Although highly abundant, tRF-1s are highly unstable and degraded by XRN2 which blocks tRF-1 accumulation in RISC. We also find that XRN mediated degradation of tRF-1s and subsequent exclusion from RISC is conserved in plants. Our findings reveal a conserved mechanism that prevents aberrant entry of a class of highly produced sRNAs into Ago2.
Collapse
Affiliation(s)
- Briana Wilson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Zhangli Su
- Department of Genetics, University of Alabama, Birmingham, Alabama, United States of America
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Department of Genetics, University of Alabama, Birmingham, Alabama, United States of America
| |
Collapse
|
4
|
Chen QW, Cai QQ, Yang Y, Dong S, Liu YY, Chen ZY, Kang CL, Qi B, Dong YW, Wu W, Zhuang LP, Shen YH, Meng ZQ, Wu XZ. LncRNA BC promotes lung adenocarcinoma progression by modulating IMPAD1 alternative splicing. Clin Transl Med 2023; 13:e1129. [PMID: 36650118 PMCID: PMC9845120 DOI: 10.1002/ctm2.1129] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The therapeutic value of targeted therapies in patients with lung cancer is reduced when tumours acquire secondary resistance after an initial period of successful treatment. However, the molecular events behind the resistance to targeted therapies in lung cancer remain largely unknown. AIMS To discover the important role and mechanism of lncRNA BC in promoting tumor metastasis and influencing clinical prognosis of LUAD. MATERIALS & METHODS Microarrays were used to screen a comprehensive set of lncRNAs with differential expression profiles in lung cancer cells. The functional role and mechanism of lncRNA were further investigated by gain- and loss-of-function assays. RNA pull-down, protein assays, and mass spectrometry were used to identify proteins that interacted with lncRNA. TaqMan PCR was used to measure lncRNA in lung adenocarcinoma and adjacent nontumor tissues from 428 patients. The clinical significance of lncRNA identified was statistically confirmed in this cohort of patients. RESULTS In this study, we show that the long non-coding RNA BC009639 (BC) is involved in acquired resistance to EGFR-targeted therapies. Among the 235 long non-coding RNAs that were differentially expressed in lung cancer cell lines, with different metastatic potentials, BC promoted growth, invasion, metastasis, and resistance to EGFR-tyrosine kinase inhibitors (EGFR-TKIs), both in vitro and in vivo. BC was highly expressed in 428 patients with lung adenocarcinoma (LUAD) and high BC expression correlated with reduced efficacy of EGFR-TKI therapy. To uncover the molecular mechanism of BC-mediated EGFR-TKI resistance in lung cancer, we screened and identified nucleolin and hnRNPK that interact with BC. BC formed the splicing complex with nucleolin and hnRNPK to facilitate the production of a non-protein-coding inositol monophosphatase domain containing 1 (IMPAD1) splice variant, instead of the protein-coding variant. The BC-mediated alternative splicing (AS) of IMPAD1 resulted in the induction of the epithelial-mesenchymal transition and resistance to EGFR-TKI in lung cancer. High BC expression correlated with clinical progress and poor survival among 402 patients with LUAD. DISSCUSSION Through alternative splicing, BC boosted the non-coding IMPAD1-203 transcript variant while suppressing the IMPAD1-201 variant. In order to control the processing of pre-mRNA, BC not only attracted RNA binding proteins (NCL, IGF2BP1) or splicing factors (hnRNPK), but also controlled the formation of the splicing-regulator complex by creating RNA-RNA-duplexes. CONCLUSION Our results reveal an important role for BC in mediating resistance to EGFR-targeted therapy in LUAD through IMPAD1 AS and in implication for the targeted therapy resistance.
Collapse
Affiliation(s)
- Qi Wen Chen
- Department of Integrative OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Qian Qian Cai
- Shanghai Key Laboratory of Molecular ImagingShanghai University of Medicine and Health SciencesShanghaiP. R. China
| | - Ying Yang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiP. R. China
| | - Shu Dong
- Department of Integrative OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Yuan Yuan Liu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiP. R. China
| | - Zhong Yi Chen
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiP. R. China
| | - Chun Lan Kang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiP. R. China
| | - Bing Qi
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiP. R. China
| | - Yi Wei Dong
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiP. R. China
| | - Wei Wu
- Department of PathologyShanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiP. R. China
| | - Li Ping Zhuang
- Department of Integrative OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Ye Hua Shen
- Department of Integrative OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Zhi Qiang Meng
- Department of Integrative OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Xing Zhong Wu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesFudan UniversityShanghaiP. R. China
| |
Collapse
|
5
|
Bajaj R, Rodriguez BL, Russell WK, Warner AN, Diao L, Wang J, Raso MG, Lu W, Khan K, Solis LS, Batra H, Tang X, Fradette JF, Kundu ST, Gibbons DL. Impad1 and Syt11 work in an epistatic pathway that regulates EMT-mediated vesicular trafficking to drive lung cancer invasion and metastasis. Cell Rep 2022; 40:111429. [PMID: 36170810 PMCID: PMC9665355 DOI: 10.1016/j.celrep.2022.111429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/10/2022] [Accepted: 09/08/2022] [Indexed: 12/02/2022] Open
Abstract
Lung cancer is a highly aggressive and metastatic disease responsible for approximately 25% of all cancer-related deaths in the United States. Using high-throughput in vitro and in vivo screens, we have previously established Impad1 as a driver of lung cancer invasion and metastasis. Here we elucidate that Impad1 is a direct target of the epithelial microRNAs (miRNAs) miR-200 and miR∼96 and is de-repressed during epithelial-to-mesenchymal transition (EMT); thus, we establish a mode of regulation of the protein. Impad1 modulates Golgi apparatus morphology and vesicular trafficking through its interaction with a trafficking protein, Syt11. These changes in Golgi apparatus dynamics alter the extracellular matrix and the tumor microenvironment (TME) to promote invasion and metastasis. Inhibiting Impad1 or Syt11 disrupts the cancer cell secretome, regulates the TME, and reverses the invasive or metastatic phenotype. This work identifies Impad1 as a regulator of EMT and secretome-mediated changes during lung cancer progression.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - B Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Amanda N Warner
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria G Raso
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Wei Lu
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Khaja Khan
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Luisa S Solis
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Harsh Batra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jared F Fradette
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Samrat T Kundu
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Identification of candidate enhancers controlling the transcriptome during the formation of interphalangeal joints. Sci Rep 2022; 12:12835. [PMID: 35896673 PMCID: PMC9329285 DOI: 10.1038/s41598-022-16951-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
The formation of the synovial joint begins with the visible emergence of a stripe of densely packed mesenchymal cells located between distal ends of the developing skeletal anlagen called the interzone. Recently the transcriptome of the early synovial joint was reported. Knowledge about enhancers would complement these data and lead to a better understanding of the control of gene transcription at the onset of joint development. Using ChIP-sequencing we have mapped the H3-signatures H3K27ac and H3K4me1 to locate regulatory elements specific for the interzone and adjacent phalange, respectively. This one-stage atlas of candidate enhancers (CEs) was used to map the association between these respective joint tissue specific CEs and biological processes. Subsequently, integrative analysis of transcriptomic data and CEs identified new putative regulatory elements of genes expressed in interzone (e.g., GDF5, BMP2 and DACT2) and phalange (e.g., MATN1, HAPLN1 and SNAI1). We also linked such CEs to genes known as crucial in synovial joint hypermobility and osteoarthritis, as well as phalange malformations. These analyses show that the CE atlas can serve as resource for identifying, and as starting point for experimentally validating, putative disease-causing genomic regulatory regions in patients with synovial joint dysfunctions and/or phalange disorders, and enhancer-controlled synovial joint and phalange formation.
Collapse
|
7
|
Del Giudice S, De Luca V, Parizadeh S, Russo D, Luini A, Di Martino R. Endogenous and Exogenous Regulatory Signaling in the Secretory Pathway: Role of Golgi Signaling Molecules in Cancer. Front Cell Dev Biol 2022; 10:833663. [PMID: 35399533 PMCID: PMC8984190 DOI: 10.3389/fcell.2022.833663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
Abstract
The biosynthetic transport route that constitutes the secretory pathway plays a fundamental role in the cell, providing to the synthesis and transport of around one third of human proteins and most lipids. Signaling molecules within autoregulatory circuits on the intracellular membranes of the secretory pathway regulate these processes, especially at the level of the Golgi complex. Indeed, cancer cells can hijack several of these signaling molecules, and therefore also the underlying regulated processes, to bolster their growth or gain more aggressive phenotypes. Here, we review the most important autoregulatory circuits acting on the Golgi, emphasizing the role of specific signaling molecules in cancer. In fact, we propose to draw awareness to highlight the Golgi-localized regulatory systems as potential targets in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Alberto Luini
- *Correspondence: Alberto Luini, ; Rosaria Di Martino,
| | | |
Collapse
|
8
|
Venkatapuram VS, Aggarwal S, Kulkarni AD, Vineeth VS, Bhikaji Dalal A, Bhat V, Kiran L, Patil SJ. Fetal presentation of chondrodysplasia with joint dislocations, GPAPP type, caused by novel biallelic IMPAD1 variants. Am J Med Genet A 2022; 188:1287-1292. [PMID: 34989141 DOI: 10.1002/ajmg.a.62622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/29/2021] [Accepted: 12/11/2021] [Indexed: 11/08/2022]
Abstract
Biallelic IMPAD1 pathogenic variants leads to deficiency of GPAPP (Golgi 3-prime phosphoadenosine 5-prime phosphate 3-prime phosphatase) protein and clinically causes chondrodysplasia, which is characterized by short stature with short limbs, craniofacial malformations, cleft palate, hand and foot anomalies, and various radiographic skeletal manifestations. Here we describe prenatal presentation of GPAPP deficiency caused by novel biallelic pathogenic variants, 2 base pair duplication in exon 2 of IMAPD1 gene in a patient of Asian-Indian origin. Further we report on diagnostic clues of prenatal presentation of GPAPP deficiency through ultrasonography, fetal MRI, and postmortem findings. We also provide evidence of pathophysiology of underlying GPAPP deficiency in the form of disorganization and dysplastic chondrocytes and reduced sulfation of glycoproteins through histopathology of cartilage similar to that described in mice IMPAD1 homozygous mutant model.
Collapse
Affiliation(s)
- Vijaya Sree Venkatapuram
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India.,Division of Diagnostics, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, India
| | - Shagun Aggarwal
- Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India.,Division of Diagnostics, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, India
| | | | | | - Ashwin Bhikaji Dalal
- Division of Diagnostics, Centre for DNA Fingerprinting & Diagnostics, Hyderabad, India
| | - Venkatraman Bhat
- Department of Radiology, Mazumdar Shaw Medical Center, Narayana Hrudayalaya Hospitals, Bangalore, India
| | - Lavanya Kiran
- Department of Obstetrics and Gynecology, Mazumdar Shaw Medical Center, Narayana Hrudayalaya Hospitals, Bangalore, India
| | - Siddaramappa Jagdish Patil
- Division of Medical Genetics, Mazumdar Shaw Medical Center, Narayana Hrudayalaya Hospitals, Bangalore, India
| |
Collapse
|
9
|
Hellicar J, Stevenson NL, Stephens DJ, Lowe M. Supply chain logistics - the role of the Golgi complex in extracellular matrix production and maintenance. J Cell Sci 2022; 135:273996. [PMID: 35023559 PMCID: PMC8767278 DOI: 10.1242/jcs.258879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The biomechanical and biochemical properties of connective tissues are determined by the composition and quality of their extracellular matrix. This, in turn, is highly dependent on the function and organisation of the secretory pathway. The Golgi complex plays a vital role in directing matrix output by co-ordinating the post-translational modification and proteolytic processing of matrix components prior to their secretion. These modifications have broad impacts on the secretion and subsequent assembly of matrix components, as well as their function in the extracellular environment. In this Review, we highlight the role of the Golgi in the formation of an adaptable, healthy matrix, with a focus on proteoglycan and procollagen secretion as example cargoes. We then discuss the impact of Golgi dysfunction on connective tissue in the context of human disease and ageing.
Collapse
Affiliation(s)
- John Hellicar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673
| | - Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, Faculty of Life Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
10
|
Eisele BS, Wu AJ, Luka Z, Hale AT, York JD. Bisphosphate nucleotidase 2 (BPNT2), a molecular target of lithium, regulates chondroitin sulfation patterns in the cerebral cortex and hippocampus. Adv Biol Regul 2022; 83:100858. [PMID: 34920982 PMCID: PMC8858884 DOI: 10.1016/j.jbior.2021.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
Bisphosphate nucleotidase 2 (BPNT2) is a member of a family of phosphatases that are directly inhibited by lithium, the first-line medication for bipolar disorder. BPNT2 is localized to the Golgi, where it metabolizes the by-products of glycosaminoglycan sulfation reactions. BPNT2-knockout mice exhibit impairments in total-body chondroitin-4-sulfation which lead to abnormal skeletal development (chondrodysplasia). These mice die in the perinatal period, which has previously prevented the investigation of BPNT2 in the adult nervous system. Previous work has demonstrated the importance of chondroitin sulfation in the brain, as chondroitin-4-sulfate is a major component of perineuronal nets (PNNs), a specialized neuronal extracellular matrix which mediates synaptic plasticity and regulates certain behaviors. We hypothesized that the loss of BPNT2 in the nervous system would decrease chondroitin-4-sulfation and PNNs in the brain, which would coincide with behavioral abnormalities. We used Cre-lox breeding to knockout Bpnt2 specifically in the nervous system using Bpnt2 floxed (fl/fl) animals and a Nestin-driven Cre recombinase. These mice are viable into adulthood, and do not display gross physical abnormalities. We identified decreases in total glycosaminoglycan sulfation across selected brain regions, and specifically show decreases in chondroitin-4-sulfation which correspond with increases in chondroitin-6-sulfation. Interestingly, these changes were not correlated with gross alterations in PNNs. We also subjected these mice to a selection of neurobehavioral assessments and did not identify significant behavioral abnormalities. In summary, this work demonstrates that BPNT2, a known target of lithium, is important for glycosaminoglycan sulfation in the brain, suggesting that lithium-mediated inhibition of BPNT2 in the nervous system warrants further investigation.
Collapse
Affiliation(s)
- Brynna S Eisele
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Alice J Wu
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Andrew T Hale
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - John D York
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
11
|
Eisele BS, Luka Z, Wu AJ, Yang F, Hale AT, York JD. Sulfation of glycosaminoglycans depends on the catalytic activity of lithium-inhibited phosphatase BPNT2 in vitro. J Biol Chem 2021; 297:101293. [PMID: 34634304 PMCID: PMC8551643 DOI: 10.1016/j.jbc.2021.101293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
Golgi-resident bisphosphate nucleotidase 2 (BPNT2) is a member of a family of magnesium-dependent, lithium-inhibited phosphatases that share a three-dimensional structural motif that directly coordinates metal binding to effect phosphate hydrolysis. BPNT2 catalyzes the breakdown of 3'-phosphoadenosine-5'-phosphate, a by-product of glycosaminoglycan (GAG) sulfation. KO of BPNT2 in mice leads to skeletal abnormalities because of impaired GAG sulfation, especially chondroitin-4-sulfation, which is critical for proper extracellular matrix development. Mutations in BPNT2 have also been found to underlie a chondrodysplastic disorder in humans. The precise mechanism by which the loss of BPNT2 impairs sulfation remains unclear. Here, we used mouse embryonic fibroblasts (MEFs) to test the hypothesis that the catalytic activity of BPNT2 is required for GAG sulfation in vitro. We show that a catalytic-dead Bpnt2 construct (D108A) does not rescue impairments in intracellular or secreted sulfated GAGs, including decreased chondroitin-4-sulfate, present in Bpnt2-KO MEFs. We also demonstrate that missense mutations in Bpnt2 adjacent to the catalytic site, which are known to cause chondrodysplasia in humans, recapitulate defects in overall GAG sulfation and chondroitin-4-sulfation in MEF cultures. We further show that treatment of MEFs with lithium (a common psychotropic medication) inhibits GAG sulfation and that this effect depends on the presence of BPNT2. Taken together, this work demonstrates that the catalytic activity of an enzyme potently inhibited by lithium can modulate GAG sulfation and therefore extracellular matrix composition, revealing new insights into lithium pharmacology.
Collapse
Affiliation(s)
- Brynna S Eisele
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Alice J Wu
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Fei Yang
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Andrew T Hale
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - John D York
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
12
|
Haouari W, Dubail J, Poüs C, Cormier-Daire V, Bruneel A. Inherited Proteoglycan Biosynthesis Defects-Current Laboratory Tools and Bikunin as a Promising Blood Biomarker. Genes (Basel) 2021; 12:genes12111654. [PMID: 34828260 PMCID: PMC8625474 DOI: 10.3390/genes12111654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 12/15/2022] Open
Abstract
Proteoglycans consist of proteins linked to sulfated glycosaminoglycan chains. They constitute a family of macromolecules mainly involved in the architecture of organs and tissues as major components of extracellular matrices. Some proteoglycans also act as signaling molecules involved in inflammatory response as well as cell proliferation, adhesion, and differentiation. Inborn errors of proteoglycan metabolism are a group of orphan diseases with severe and irreversible skeletal abnormalities associated with multiorgan impairments. Identifying the gene variants that cause these pathologies proves to be difficult because of unspecific clinical symptoms, hardly accessible functional laboratory tests, and a lack of convenient blood biomarkers. In this review, we summarize the molecular pathways of proteoglycan biosynthesis, the associated inherited syndromes, and the related biochemical screening techniques, and we focus especially on a circulating proteoglycan called bikunin and on its potential as a new biomarker of these diseases.
Collapse
Affiliation(s)
- Walid Haouari
- INSERM UMR1193, Paris-Saclay University, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92220 Châtenay-Malabry, France; (W.H.); (C.P.)
| | - Johanne Dubail
- INSERM UMR1163, French Reference Center for Skeletal Dysplasia, Imagine Institute, Paris University, 24 Boulevard du Montparnasse, 75015 Paris, France; (J.D.); (V.C.-D.)
- AP-HP, Necker Enfants Malades Hospital, 149 rue de Sèvres, 75015 Paris, France
| | - Christian Poüs
- INSERM UMR1193, Paris-Saclay University, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92220 Châtenay-Malabry, France; (W.H.); (C.P.)
| | - Valérie Cormier-Daire
- INSERM UMR1163, French Reference Center for Skeletal Dysplasia, Imagine Institute, Paris University, 24 Boulevard du Montparnasse, 75015 Paris, France; (J.D.); (V.C.-D.)
- AP-HP, Necker Enfants Malades Hospital, 149 rue de Sèvres, 75015 Paris, France
| | - Arnaud Bruneel
- INSERM UMR1193, Paris-Saclay University, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92220 Châtenay-Malabry, France; (W.H.); (C.P.)
- AP-HP, Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, 46 rue Henri Huchard, 75018 Paris, France
- Correspondence:
| |
Collapse
|
13
|
Thomas MM, Ashaat EA, Otaify GA, Ismail S, Essawi ML, Abdel-Hamid MS, Hassan HA, Alsaiedi SA, Aglan M, El Ruby MO, Temtamy S. First Report of Two Egyptian Patients with Desbuquois Dysplasia due to Homozygous CANT1 Mutations. Mol Syndromol 2021; 12:279-288. [PMID: 34602954 DOI: 10.1159/000516607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/17/2021] [Indexed: 02/02/2023] Open
Abstract
Desbuquois dysplasia type 1 (DBQD1) is a very rare skeletal dysplasia characterized by growth retardation, short stature, distinct hand features, and a characteristic radiological monkey wrench appearance at the proximal femur. We report on 2unrelated Egyptian patients having the characteristic features of DBQD1 with different expressivity. Patient 1 presented at the age of 45 days with respiratory distress, short limbs, faltering growth, and distinctive facies while patient 2 presented at 5 years of age with short stature and hypospadias. The 2 patients shared radiological features suggestive of DBQD1. Whole-exome sequencing revealed a homozygous frameshift mutation in the CANT1 gene (NM_001159772.1:c.277_278delCT; p.Leu93ValfsTer89) in patient 1 and a homozygous missense mutation (NM_138793.4:c.898C>T; p.Arg300Cys) in patient 2. Phenotypic variability and variable expressivity of DBQD was evident in our patients. Hypoplastic scrotum and hypospadias were additional unreported associated findings, thus expanding the phenotypic spectrum of the disorder. We reviewed the main features of skeletal dysplasias exhibiting similar radiological manifestations for differential diagnosis. We suggest that the variable severity in both patients could be due to the nature of the CANT1 gene mutations which necessitates the molecular study of more cases for phenotype-genotype correlations.
Collapse
Affiliation(s)
- Manal M Thomas
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Engy A Ashaat
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Ghada A Otaify
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Samira Ismail
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Mona L Essawi
- Human Genetics and Genome Research Division, Medical Molecular Genetics Department, National Research Centre, Cairo, Egypt
| | - Mohamed S Abdel-Hamid
- Human Genetics and Genome Research Division, Medical Molecular Genetics Department, National Research Centre, Cairo, Egypt
| | - Heba A Hassan
- Human Genetics and Genome Research Division, Medical Molecular Genetics Department, National Research Centre, Cairo, Egypt
| | | | - Mona Aglan
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Mona O El Ruby
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Samia Temtamy
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
14
|
Mizumoto S, Yamada S. Congenital Disorders of Deficiency in Glycosaminoglycan Biosynthesis. Front Genet 2021; 12:717535. [PMID: 34539746 PMCID: PMC8446454 DOI: 10.3389/fgene.2021.717535] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/04/2022] Open
Abstract
Glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, and heparan sulfate are covalently attached to specific core proteins to form proteoglycans, which are distributed at the cell surface as well as in the extracellular matrix. Proteoglycans and GAGs have been demonstrated to exhibit a variety of physiological functions such as construction of the extracellular matrix, tissue development, and cell signaling through interactions with extracellular matrix components, morphogens, cytokines, and growth factors. Not only connective tissue disorders including skeletal dysplasia, chondrodysplasia, multiple exostoses, and Ehlers-Danlos syndrome, but also heart and kidney defects, immune deficiencies, and neurological abnormalities have been shown to be caused by defects in GAGs as well as core proteins of proteoglycans. These findings indicate that GAGs and proteoglycans are essential for human development in major organs. The glycobiological aspects of congenital disorders caused by defects in GAG-biosynthetic enzymes including specific glysocyltransferases, epimerases, and sulfotransferases, in addition to core proteins of proteoglycans will be comprehensively discussed based on the literature to date.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
15
|
Dubail J, Cormier-Daire V. Chondrodysplasias With Multiple Dislocations Caused by Defects in Glycosaminoglycan Synthesis. Front Genet 2021; 12:642097. [PMID: 34220933 PMCID: PMC8242584 DOI: 10.3389/fgene.2021.642097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Chondrodysplasias with multiple dislocations form a group of severe disorders characterized by joint laxity and multiple dislocations, severe short stature of pre- and post-natal onset, hand anomalies, and/or vertebral anomalies. The majority of chondrodysplasias with multiple dislocations have been associated with mutations in genes encoding glycosyltransferases, sulfotransferases, and transporters implicated in the synthesis or sulfation of glycosaminoglycans, long and unbranched polysaccharides composed of repeated disaccharide bond to protein core of proteoglycan. Glycosaminoglycan biosynthesis is a tightly regulated process that occurs mainly in the Golgi and that requires the coordinated action of numerous enzymes and transporters as well as an adequate Golgi environment. Any disturbances of this chain of reactions will lead to the incapacity of a cell to construct correct glycanic chains. This review focuses on genetic and glycobiological studies of chondrodysplasias with multiple dislocations associated with glycosaminoglycan biosynthesis defects and related animal models. Strong comprehension of the molecular mechanisms leading to those disorders, mostly through extensive phenotypic analyses of in vitro and/or in vivo models, is essential for the development of novel biomarkers for clinical screenings and innovative therapeutics for these diseases.
Collapse
Affiliation(s)
- Johanne Dubail
- Université de Paris, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Valérie Cormier-Daire
- Université de Paris, INSERM UMR 1163, Institut Imagine, Paris, France.,Service de Génétique Clinique, Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
16
|
Yeoh M, Athalye-Jape G. Congenital knee dislocation: a rare and unexpected finding. BMJ Case Rep 2021; 14:14/1/e234881. [PMID: 33495194 PMCID: PMC7839889 DOI: 10.1136/bcr-2020-234881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Congenital knee dislocation is a rare condition of unknown aetiology. It could be associated with syndromes or may occur as an isolated entity. The severity of the deformity determines the method of treatment. Treatment options range from conservative casting to surgical correction. The case presented is of a newborn with an isolated grade II dislocation treated with serial casting. On follow-up at 2 years, the patient had a good outcome, with full range of motion and independent mobility.
Collapse
Affiliation(s)
- Melanie Yeoh
- Department of Neonatology, King Edward Memorial Hospital, Subiaco, Western Australia, Australia
| | - Gayatri Athalye-Jape
- Department of Neonatology, King Edward Memorial Hospital, Subiaco, Western Australia, Australia
| |
Collapse
|
17
|
Reynolds K, Zhang S, Sun B, Garland M, Ji Y, Zhou CJ. Genetics and signaling mechanisms of orofacial clefts. Birth Defects Res 2020; 112:1588-1634. [PMID: 32666711 PMCID: PMC7883771 DOI: 10.1002/bdr2.1754] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Craniofacial development involves several complex tissue movements including several fusion processes to form the frontonasal and maxillary structures, including the upper lip and palate. Each of these movements are controlled by many different factors that are tightly regulated by several integral morphogenetic signaling pathways. Subject to both genetic and environmental influences, interruption at nearly any stage can disrupt lip, nasal, or palate fusion and result in a cleft. Here, we discuss many of the genetic risk factors that may contribute to the presentation of orofacial clefts in patients, and several of the key signaling pathways and underlying cellular mechanisms that control lip and palate formation, as identified primarily through investigating equivalent processes in animal models, are examined.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Michael Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| |
Collapse
|
18
|
Bajaj R, Kundu ST, Grzeskowiak CL, Fradette JJ, Scott KL, Creighton CJ, Gibbons DL. IMPAD1 and KDELR2 drive invasion and metastasis by enhancing Golgi-mediated secretion. Oncogene 2020; 39:5979-5994. [PMID: 32753652 PMCID: PMC7539228 DOI: 10.1038/s41388-020-01410-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/14/2020] [Accepted: 07/23/2020] [Indexed: 01/12/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the deadliest form of cancer worldwide, due in part to its proclivity to metastasize. Identifying novel drivers of invasion and metastasis holds therapeutic potential for the disease. We conducted a gain-of-function invasion screen, which identified two separate hits, IMPAD1 and KDELR2, as robust, independent drivers of lung cancer invasion and metastasis. Given that IMPAD1 and KDELR2 are known to be localized to the ER-Golgi pathway, we studied their common mechanism of driving in vitro invasion and in vivo metastasis and demonstrated that they enhance Golgi-mediated function and secretion. Therapeutically inhibiting matrix metalloproteases (MMPs) suppressed both IMPAD1- and KDELR2-mediated invasion. The hits from this unbiased screen and the mechanistic validation highlight Golgi function as one of the key cellular features altered during invasion and metastasis.
Collapse
Affiliation(s)
- Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Samrat T Kundu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| | - Caitlin L Grzeskowiak
- Department of Molecular and Human Genetics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jared J Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Kenneth L Scott
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chad J Creighton
- Department of Medicine, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Suter AA, Santos-Simarro F, Toerring PM, Abad Perez A, Ramos-Mejia R, Heath KE, Huckstadt V, Parrón-Pajares M, Mensah MA, Hülsemann W, Holtgrewe M, Mundlos S, Kornak U, Bartsch O, Ehmke N. Variable pulmonary manifestations in Chitayat syndrome: Six additional affected individuals. Am J Med Genet A 2020; 182:2068-2076. [PMID: 32592542 DOI: 10.1002/ajmg.a.61735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/07/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022]
Abstract
Hand hyperphalangism leading to shortened index fingers with ulnar deviation, hallux valgus, mild facial dysmorphism and respiratory compromise requiring assisted ventilation are the key features of Chitayat syndrome. This condition results from the recurrent heterozygous missense variant NM_006494.2:c.266A>G; p.(Tyr89Cys) in ERF on chromosome 19q13.2, encoding the ETS2 repressor factor (ERF) protein. The pathomechanism of Chitayat syndrome is unknown. To date, seven individuals with Chitayat syndrome and the recurrent pathogenic ERF variant have been reported in the literature. Here, we describe six additional individuals, among them only one presenting with a history of assisted ventilation, and the remaining presenting with variable pulmonary phenotypes, including one individual without any obvious pulmonary manifestations. Our findings widen the phenotype spectrum caused by the recurrent pathogenic variant in ERF, underline Chitayat syndrome as a cause of isolated skeletal malformations and therefore contribute to the improvement of diagnostic strategies in individuals with hand hyperphalangism.
Collapse
Affiliation(s)
- Aude-Annick Suter
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Fernando Santos-Simarro
- Institute of Medical and Molecular Genetics (INGEMM) and Skeletal dysplasia multidisciplinary Unit (UMDE), Hospital Universitario La Paz and CIBERER, ISCIII, Madrid, Spain
| | | | - Angela Abad Perez
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rosario Ramos-Mejia
- Department of Growth and Development, Garrahan Hospital, Buenos Aires, Argentina
| | - Karen E Heath
- Institute of Medical and Molecular Genetics (INGEMM) and Skeletal dysplasia multidisciplinary Unit (UMDE), Hospital Universitario La Paz and CIBERER, ISCIII, Madrid, Spain
| | | | - Manuel Parrón-Pajares
- Department of Radiology and Skeletal dysplasia multidisciplinary Unit (UMDE), Hospital Universitario la Paz, Madrid, Spain
| | - Martin Atta Mensah
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | | | - Manuel Holtgrewe
- Core Unit Bioinformatics - CUBI, Berlin Institute of Health (BIH), Berlin, Germany
| | - Stefan Mundlos
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany.,RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Oliver Bartsch
- Institute of Human Genetics, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nadja Ehmke
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany.,RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
20
|
IMPAD1 functions as mitochondrial electron transport inhibitor that prevents ROS production and promotes lung cancer metastasis through the AMPK-Notch1-HEY1 pathway. Cancer Lett 2020; 485:27-37. [PMID: 32417395 DOI: 10.1016/j.canlet.2020.04.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/08/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
Abstract
The tumor microenvironment (TME) and metabolic reprogramming have been implicated in cancer development and progression. However, the link between TME, metabolism, and cancer progression in lung cancer is unclear. In the present study, we identified IMPAD1 from the conditioned medium of highly invasive CL1-5. High expression of IMPAD1 was associated with a poorer clinical phenotype in lung cancer patients, with reduced survival and increased lymph node metastasis. Knockdown of IMPAD1 significantly inhibited migration/invasion abilities and metastasis in vitro and in vivo. Upregulation of IMPAD1 and subsequent accumulation of AMP in cells increased the pAMPK, leading to Notch1 and HEY1 upregulation. As AMP is an ADORA1 agonist, treatment with ADORA1 inhibitor reduced the expression of pAMPK and HEY1 expression in IMPAD1-overexpressing cells. IMPAD1 caused mitochondria dysfunction by inhibiting mitochondrial Complex I activity, which reduced mitochondrial ROS levels and activated the AMPK-HEY1 pathway. Collectively this study supports the multipotent role of IMPAD1 in promotion of lung cancer metastasis by simultaneously increasing AMP levels, inhibition of Complex I activity to decrease ROS levels, thereby activating AMPK-Notch1-HEY1 signaling, and providing an alternative metabolic pathway in energy stress conditions.
Collapse
|
21
|
Hale AT, Brown RE, Luka Z, Hudson BH, Matta P, Williams CS, York JD. Modulation of sulfur assimilation metabolic toxicity overcomes anemia and hemochromatosis in mice. Adv Biol Regul 2020; 76:100694. [PMID: 32019729 PMCID: PMC7230019 DOI: 10.1016/j.jbior.2020.100694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
Sulfur assimilation is an essential metabolic pathway that regulates sulfation, amino acid metabolism, nucleotide hydrolysis, and organismal homeostasis. We recently reported that mice lacking bisphosphate 3'-nucleotidase (BPNT1), a key regulator of sulfur assimilation, develop iron-deficiency anemia (IDA) and anasarca. Here we demonstrate two approaches that successfully reduce metabolic toxicity caused by loss of BPNT1: 1) dietary methionine restriction and 2) overproduction of a key transcriptional regulator hypoxia inducible factor 2α (Hif-2a). Reduction of methionine in the diet reverses IDA in mice lacking BPNT1, through a mechanism of downregulation of sulfur assimilation metabolic toxicity. Gaining Hif-2a acts through a different mechanism by restoring iron homeostatic gene expression in BPNT1 deficient mouse intestinal organoids. Finally, as loss of BPNT1 impairs expression of known genetic modifiers of iron-overload, we demonstrate that intestinal-epithelium specific loss of BPNT1 attenuates hepatic iron accumulation in mice with homozygous C282Y mutations in homeostatic iron regulator (HFEC282Y), the most common cause of hemochromatosis in humans. Overall, our study uncovers genetic and dietary strategies to overcome anemia caused by defects in sulfur assimilation and identifies BPNT1 as a potential target for the treatment of hemochromatosis.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Rachel E Brown
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Benjamin H Hudson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Pranathi Matta
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Christopher S Williams
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - John D York
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
22
|
Paganini C, Gramegna Tota C, Superti-Furga A, Rossi A. Skeletal Dysplasias Caused by Sulfation Defects. Int J Mol Sci 2020; 21:ijms21082710. [PMID: 32295296 PMCID: PMC7216085 DOI: 10.3390/ijms21082710] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/18/2022] Open
Abstract
Proteoglycans (PGs) are macromolecules present on the cell surface and in the extracellular matrix that confer specific mechanical, biochemical, and physical properties to tissues. Sulfate groups present on glycosaminoglycans, linear polysaccharide chains attached to PG core proteins, are fundamental for correct PG functions. Indeed, through the negative charge of sulfate groups, PGs interact with extracellular matrix molecules and bind growth factors regulating tissue structure and cell behavior. The maintenance of correct sulfate metabolism is important in tissue development and function, particularly in cartilage where PGs are fundamental and abundant components of the extracellular matrix. In chondrocytes, the main sulfate source is the extracellular space, then sulfate is taken up and activated in the cytosol to the universal sulfate donor to be used in sulfotransferase reactions. Alteration in each step of sulfate metabolism can affect macromolecular sulfation, leading to the onset of diseases that affect mainly cartilage and bone. This review presents a panoramic view of skeletal dysplasias caused by mutations in genes encoding for transporters or enzymes involved in macromolecular sulfation. Future research in this field will contribute to the understanding of the disease pathogenesis, allowing the development of targeted therapies aimed at alleviating, preventing, or modifying the disease progression.
Collapse
Affiliation(s)
- Chiara Paganini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy; (C.P.); (C.G.T.)
| | - Chiara Gramegna Tota
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy; (C.P.); (C.G.T.)
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Antonio Rossi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy; (C.P.); (C.G.T.)
- Correspondence:
| |
Collapse
|
23
|
Mizumoto S, Janecke AR, Sadeghpour A, Povysil G, McDonald MT, Unger S, Greber‐Platzer S, Deak KL, Katsanis N, Superti‐Furga A, Sugahara K, Davis EE, Yamada S, Vodopiutz J. CSGALNACT1-congenital disorder of glycosylation: A mild skeletal dysplasia with advanced bone age. Hum Mutat 2020; 41:655-667. [PMID: 31705726 PMCID: PMC7027858 DOI: 10.1002/humu.23952] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023]
Abstract
Congenital disorders of glycosylation (CDGs) comprise a large number of inherited metabolic defects that affect the biosynthesis and attachment of glycans. CDGs manifest as a broad spectrum of disease, most often including neurodevelopmental and skeletal abnormalities and skin laxity. Two patients with biallelic CSGALNACT1 variants and a mild skeletal dysplasia have been described previously. We investigated two unrelated patients presenting with short stature with advanced bone age, facial dysmorphism, and mild language delay, in whom trio-exome sequencing identified novel biallelic CSGALNACT1 variants: compound heterozygosity for c.1294G>T (p.Asp432Tyr) and the deletion of exon 4 that includes the start codon in one patient, and homozygosity for c.791A>G (p.Asn264Ser) in the other patient. CSGALNACT1 encodes CSGalNAcT-1, a key enzyme in the biosynthesis of sulfated glycosaminoglycans chondroitin and dermatan sulfate. Biochemical studies demonstrated significantly reduced CSGalNAcT-1 activity of the novel missense variants, as reported previously for the p.Pro384Arg variant. Altered levels of chondroitin, dermatan, and heparan sulfate moieties were observed in patients' fibroblasts compared to controls. Our data indicate that biallelic loss-of-function mutations in CSGALNACT1 disturb glycosaminoglycan synthesis and cause a mild skeletal dysplasia with advanced bone age, CSGALNACT1-CDG.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of PharmacyMeijo UniversityNagoyaJapan
- Department of Women's and Children's Health, Clinical Genetics Group, Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Andreas R. Janecke
- Department of Pediatrics IMedical University of InnsbruckInnsbruckAustria
- Division of Human GeneticsMedical University of InnsbruckInnsbruckAustria
| | - Azita Sadeghpour
- Center for Human Disease ModelingDuke University Medical CenterDurhamNorth Carolina
| | - Gundula Povysil
- Institute of BioinformaticsJohannes Kepler UniversityLinzAustria
| | - Marie T. McDonald
- Department of Pediatrics, Division of Medical GeneticsDuke University Medical CenterDurhamNorth Carolina
| | - Sheila Unger
- Department of Medical Genetics, Centre Hospitalier Universitaire VaudoisUniversity of LausanneLausanneSwitzerland
| | - Susanne Greber‐Platzer
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for PediatricsMedical University of ViennaViennaAustria
| | - Kristen L. Deak
- Department of PathologyDuke University Medical CenterDurhamNorth Carolina
| | - Nicholas Katsanis
- Center for Human Disease ModelingDuke University Medical CenterDurhamNorth Carolina
- Advanced Center for Translational and Genetic Medicine (ACT‐GeM), Stanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinois
- Department of Pediatrics, Feinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Andrea Superti‐Furga
- Department of Pediatrics, Centre Hospitalier Universitaire VaudoisUniversity of LausanneLausanneSwitzerland
| | - Kazuyuki Sugahara
- Department of Pathobiochemistry, Faculty of PharmacyMeijo UniversityNagoyaJapan
| | - Erica E. Davis
- Center for Human Disease ModelingDuke University Medical CenterDurhamNorth Carolina
- Advanced Center for Translational and Genetic Medicine (ACT‐GeM), Stanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinois
- Department of Pediatrics, Feinberg School of MedicineNorthwestern UniversityChicagoIllinois
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of PharmacyMeijo UniversityNagoyaJapan
| | - Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for PediatricsMedical University of ViennaViennaAustria
| |
Collapse
|
24
|
Boschann F, Stuurman KE, de Bruin C, van Slegtenhorst M, van Duyvenvoorde HA, Kant SG, Ehmke N. TGDS pathogenic variants cause Catel-Manzke syndrome without hyperphalangy. Am J Med Genet A 2019; 182:431-436. [PMID: 31769200 DOI: 10.1002/ajmg.a.61419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/07/2019] [Accepted: 11/13/2019] [Indexed: 11/11/2022]
Abstract
Catel-Manzke syndrome, also known as micrognathia-digital-syndrome, is a rare autosomal recessive disorder characterized by the combination of the two cardinal features Pierre-Robin sequence and bilateral hyperphalangy leading to ulnar clinodactyly (ulnar curvature of the phalanges) and radial deviation (radial angulation at the metacarpophalangeal joint) of the index fingers. Individuals without one of these major hallmarks or with additional hand malformations have been described as atypical or Catel-Manzke-like syndrome. Biallelic TGDS pathogenic variants have thus far been detected in eight individuals with typical Catel-Manzke syndrome and in one fetus with additional features. Here we report on two individuals with TGDS pathogenic variants who presented with mild radial deviation and ulnar clinodactyly of the index fingers but without radiologic signs of hyperphalangy. Furthermore, both individuals have disproportionate short stature, a feature that has not yet been associated with Catel-Manzke syndrome. Our data broaden the phenotypic spectrum of TGDS-associated Catel-Manzke syndrome and expand the indication for diagnostic testing.
Collapse
Affiliation(s)
- Felix Boschann
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kyra E Stuurman
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christiaan de Bruin
- Department of Pediatric Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Sarina G Kant
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nadja Ehmke
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
25
|
Paganini C, Costantini R, Superti-Furga A, Rossi A. Bone and connective tissue disorders caused by defects in glycosaminoglycan biosynthesis: a panoramic view. FEBS J 2019; 286:3008-3032. [PMID: 31286677 DOI: 10.1111/febs.14984] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/22/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Glycosaminoglycans (GAGs) are a heterogeneous family of linear polysaccharides that constitute the carbohydrate moiety covalently attached to the protein core of proteoglycans, macromolecules present on the cell surface and in the extracellular matrix. Several genetic disorders of bone and connective tissue are caused by mutations in genes encoding for glycosyltransferases, sulfotransferases and transporters that are responsible for the synthesis of sulfated GAGs. Phenotypically, these disorders all reflect alterations in crucial biological functions of GAGs in the development, growth and homoeostasis of cartilage and bone. To date, up to 27 different skeletal phenotypes have been linked to mutations in 23 genes encoding for proteins involved in GAG biosynthesis. This review focuses on recent genetic, molecular and biochemical studies of bone and connective tissue disorders caused by GAG synthesis defects. These insights and future research in the field will provide a deeper understanding of the molecular pathogenesis of these disorders and will pave the way for developing common therapeutic strategies that might be targeted to a range of individual phenotypes.
Collapse
Affiliation(s)
- Chiara Paganini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| | - Rossella Costantini
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| | - Andrea Superti-Furga
- Division of Genetic Medicine, Lausanne University Hospital, University of Lausanne, Switzerland
| | - Antonio Rossi
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Italy
| |
Collapse
|
26
|
Abstract
Sulfur is present in the amino acids cysteine and methionine and in a large range of essential coenzymes and cofactors and is therefore essential for all organisms. It is also a constituent of sulfate esters in proteins, carbohydrates, and numerous cellular metabolites. The sulfation and desulfation reactions modifying a variety of different substrates are commonly known as sulfation pathways. Although relatively little is known about the function of most sulfated metabolites, the synthesis of activated sulfate used in sulfation pathways is essential in both animal and plant kingdoms. In humans, mutations in the genes encoding the sulfation pathway enzymes underlie a number of developmental aberrations, and in flies and worms, their loss-of-function is fatal. In plants, a lower capacity for synthesizing activated sulfate for sulfation reactions results in dwarfism, and a complete loss of activated sulfate synthesis is also lethal. Here, we review the similarities and differences in sulfation pathways and associated processes in animals and plants, and we point out how they diverge from bacteria and yeast. We highlight the open questions concerning localization, regulation, and importance of sulfation pathways in both kingdoms and the ways in which findings from these "red" and "green" experimental systems may help reciprocally address questions specific to each of the systems.
Collapse
Affiliation(s)
- Süleyman Günal
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany
| | - Rebecca Hardman
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Stanislav Kopriva
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne 50674, Germany.
| | - Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TH, United Kingdom.
| |
Collapse
|
27
|
Testing the Cre-mediated genetic switch for the generation of conditional knock-in mice. PLoS One 2019; 14:e0213660. [PMID: 30865697 PMCID: PMC6415906 DOI: 10.1371/journal.pone.0213660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
The Cre-mediated genetic switch combines the ability of Cre recombinase to stably invert or excise a DNA fragment depending upon the orientation of flanking mutant loxP sites. In this work, we have tested this strategy in vivo with the aim to generate two conditional knock-in mice for missense mutations in the Impad1 and Clcn7 genes causing two different skeletal dysplasias. Targeting constructs were generated in which the Impad1 exon 2 and an inverted exon 2* and the Clcn7 exon 7 and an inverted exon 7* containing the point mutations were flanked by mutant loxP sites in a head-to-head orientation. When the Cre recombinase is present, the DNA flanked by the mutant loxP sites is expected to be stably inverted leading to the activation of the mutated exon. The targeting vectors were used to generate heterozygous floxed mice in which inversion of the wild-type with the mutant exon has not occurred yet. To generate knock-in mice, floxed animals were mated to a global Cre-deleter mouse strain for stable inversion and activation of the mutation. Unexpectedly the phenotype of homozygous Impad1 knock-in animals overlaps with the lethal phenotype described previously in Impad1 knock-out mice. Similarly, the phenotype of homozygous Clcn7 floxed mice overlaps with Clcn7 knock-out mice. Expression studies by qPCR and RT-PCR demonstrated that mutant mRNA underwent abnormal splicing leading to the synthesis of non-functional proteins. Thus, the skeletal phenotypes in both murine strains were not caused by the missense mutations, but by aberrant splicing. Our data demonstrate that the Cre mediated genetic switch strategy should be considered cautiously for the generation of conditional knock-in mice.
Collapse
|
28
|
Aworunse OS, Adeniji O, Oyesola OL, Isewon I, Oyelade J, Obembe OO. Genomic Interventions in Medicine. Bioinform Biol Insights 2018; 12:1177932218816100. [PMID: 30546257 PMCID: PMC6287307 DOI: 10.1177/1177932218816100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 12/31/2022] Open
Abstract
Lately, the term "genomics" has become ubiquitous in many scientific articles. It is a rapidly growing aspect of the biomedical sciences that studies the genome. The human genome contains a torrent of information that gives clues about human origin, evolution, biological function, and diseases. In a bid to demystify the workings of the genome, the Human Genome Project (HGP) was initiated in 1990, with the chief goal of sequencing the approximately 3 billion nucleotide base pairs of the human DNA. Since its completion in 2003, the HGP has opened new avenues for the application of genomics in clinical practice. This review attempts to overview some milestone discoveries that paved way for the initiation of the HGP, remarkable revelations from the HGP, and how genomics is influencing a paradigm shift in routine clinical practice. It further highlights the challenges facing the implementation of genomic medicine, particularly in Africa. Possible solutions are also discussed.
Collapse
Affiliation(s)
| | | | - Olusola L Oyesola
- Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Itunuoluwa Isewon
- Department of Computer & Information Sciences, Covenant University, Ota, Nigeria
| | - Jelili Oyelade
- Department of Computer & Information Sciences, Covenant University, Ota, Nigeria
| | - Olawole O Obembe
- Department of Biological Sciences, Covenant University, Ota, Nigeria
| |
Collapse
|
29
|
Glycerophosphatidylcholine PC(36:1) absence and 3'-phosphoadenylate (pAp) accumulation are hallmarks of the human glioma metabolome. Sci Rep 2018; 8:14783. [PMID: 30283018 PMCID: PMC6170378 DOI: 10.1038/s41598-018-32847-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022] Open
Abstract
Glioma is the most prevalent malignant brain tumor. A comprehensive analysis of the glioma metabolome is still lacking. This study aims to explore new special metabolites in glioma tissues. A non-targeted human glioma metabolomics was performed by UPLC-Q-TOF/MS. The gene expressions of 18 enzymes associated with 3’-phosphoadenylate (pAp) metabolism was examined by qRT-PCR. Those enzymes cover the primary metabolic pathway of pAp. We identified 15 new metabolites (13 lipids and 2 nucleotides) that were significantly different between the glioma and control tissues. Glycerophosphatidylcholine [PC(36:1)] content was high and pAp content was significantly low in the control brain (p < 0.01). In glioma tissues, PC(36:1) was not detected and pAp content was significantly increased. The gene expressions of 3′-nucleotidases (Inositol monophosphatase (IMPAD-1) and 3′(2′),5′-bisphosphate nucleotidase 1(BPNT-1)) were dramatically down-regulated. Meanwhile, the gene expression of 8 sulfotransferases (SULT), 2 phosphoadenosine phosphosulfate synthases (PAPSS-1 and PAPSS-2) and L-aminoadipate-semialdehyde dehydrogenase-phosphopante-theinyl transferase (AASDHPPT) were up-regulated. PC(36:1) absence and pAp accumulation are the most noticeable metabolic aberration in glioma. The dramatic down-regulation of IMPAD-1 and BPNT-1 are the primary cause for pAp dramatic accumulation. Our findings suggest that differential metabolites discovered in glioma could be used as potentially novel therapeutic targets or diagnostic biomarkers and that abnormal metabolism of lipids and nucleotides play roles in the pathogenesis of glioma.
Collapse
|
30
|
Mizumoto S. Defects in Biosynthesis of Glycosaminoglycans Cause Hereditary Bone, Skin, Heart, Immune, and Neurological Disorders. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1812.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University
| |
Collapse
|
31
|
Abstract
Regulation of iron homeostasis is perturbed in numerous pathologic states. Thus, identifications of mechanisms responsible for iron metabolism have broad implications for disease modification. Here, we link the sulfur assimilation pathway to iron-deficiency anemia. Deletion of bisphosphate 3′-nucleotidase (Bpnt1), a key component of the sulfur assimilation pathway, leads to accumulation of phosphoadenosine phosphate (PAP), causing iron deficiency anemia in part due to inhibition of hypoxia-inducible factor 2-α. Reduction of PAP through introduction of a hypomorphic mutation in 3′-phosphoadenosine 5-phosphosulfate synthase 2 gene (Papss2, the enzyme responsible for PAP production) rescues the iron deficiency phenotype. Sulfur assimilation is an evolutionarily conserved pathway that plays an essential role in cellular and metabolic processes, including sulfation, amino acid biosynthesis, and organismal development. We report that loss of a key enzymatic component of the pathway, bisphosphate 3′-nucleotidase (Bpnt1), in mice, both whole animal and intestine-specific, leads to iron-deficiency anemia. Analysis of mutant enterocytes demonstrates that modulation of their substrate 3′-phosphoadenosine 5′-phosphate (PAP) influences levels of key iron homeostasis factors involved in dietary iron reduction, import and transport, that in part mimic those reported for the loss of hypoxic-induced transcription factor, HIF-2α. Our studies define a genetic basis for iron-deficiency anemia, a molecular approach for rescuing loss of nucleotidase function, and an unanticipated link between nucleotide hydrolysis in the sulfur assimilation pathway and iron homeostasis.
Collapse
|
32
|
Falardeau F, Camurri MV, Campeau PM. Genomic approaches to diagnose rare bone disorders. Bone 2017; 102:5-14. [PMID: 27474525 DOI: 10.1016/j.bone.2016.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/24/2016] [Indexed: 02/01/2023]
Abstract
Skeletal dysplasias are Mendelian disorders with a prevalence of approximatively 1 in every 5000 individuals and can usually be diagnosed based on clinical and radiological findings. However, given that some diseases can be caused by several different genes, and that some genes can cause a variety of different phenotypes, achieving a molecular diagnosis can be challenging. We review here different approaches, from single gene sequencing to genomic approaches using next-generation sequencing, to reach a molecular diagnosis for skeletal dysplasias. We will further describe the overall advantages and limitations of first, second and third-generation sequencing, including single gene sequencing, whole-exome and genome sequencing (WES and WGS), multiple gene panel sequencing and single molecule sequencing. We also provide a brief overview of potential future applications of emerging technologies.
Collapse
Affiliation(s)
- Félix Falardeau
- CHU Sainte-Justine Research Center, Montreal, Canada; Division of Molecular and Cellular Biology, Department of Biology, University of Sherbrooke, Sherbrooke, Canada
| | | | - Philippe M Campeau
- CHU Sainte-Justine Research Center, Montreal, Canada; Division of Medical Genetics, Department of Pediatrics, University of Montreal, Montreal, Canada.
| |
Collapse
|
33
|
Muys J, Blaumeiser B, Jacquemyn Y, Janssens K. Prenatal homozygosity mapping detects a novel mutation in CHST3 in a fetus with skeletal dysplasia and joint dislocations. Clin Case Rep 2017; 5:440-445. [PMID: 28396765 PMCID: PMC5378824 DOI: 10.1002/ccr3.800] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 11/11/2016] [Accepted: 12/02/2016] [Indexed: 02/02/2023] Open
Abstract
In selected cases, homozygosity mapping followed by direct sequencing of one or a few carefully selected candidate genes in a prenatal setting can be beneficial to obtain diagnosis in consanguineous families.
Collapse
Affiliation(s)
- Joke Muys
- University Hospital Antwerp Edegem Belgium
| | | | | | | |
Collapse
|
34
|
Guo L, Elcioglu NH, Iida A, Demirkol YK, Aras S, Matsumoto N, Nishimura G, Miyake N, Ikegawa S. Novel and recurrent XYLT1 mutations in two Turkish families with Desbuquois dysplasia, type 2. J Hum Genet 2017; 62:447-451. [PMID: 27881841 DOI: 10.1038/jhg.2016.143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 09/30/2016] [Accepted: 10/14/2016] [Indexed: 02/03/2023]
Abstract
Desbuquois dysplasia (DBQD) is an autosomal recessive skeletal disorder characterized by growth retardation, joint laxity, short extremities, and progressive scoliosis. DBQD is classified into two types based on the presence (DBQD1) or absence (DBQD2) of characteristic hand abnormalities. CANT1 mutations have been reported in both DBQD1 and DBQD2. Recently, mutations in the gene encoding xylosyltransferase 1 (XYLT1) were identified in several families with DBQD2. In this study, we performed whole-exome sequencing in two Turkish families with DBQD2. We found a novel and a recurrent XYLT1 mutation in each family. The patients were homozygous for the mutations. Our results further support that XYLT1 is responsible for a major subset of DBQD2.
Collapse
Affiliation(s)
- Long Guo
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Nursel H Elcioglu
- Department of Pediatric Genetics, Marmara University Medical School, Istanbul, Turkey
| | - Aritoshi Iida
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| | - Yasemin K Demirkol
- Department of Pediatric Genetics, Marmara University Medical School, Istanbul, Turkey
| | - Seda Aras
- Department of Pediatric Genetics, Marmara University Medical School, Istanbul, Turkey
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Gen Nishimura
- Department of Pediatric Imaging, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, Japan
| |
Collapse
|
35
|
Ranza E, Huber C, Levin N, Baujat G, Bole-Feysot C, Nitschke P, Masson C, Alanay Y, Al-Gazali L, Bitoun P, Boute O, Campeau P, Coubes C, McEntagart M, Elcioglu N, Faivre L, Gezdirici A, Johnson D, Mihci E, Nur BG, Perrin L, Quelin C, Terhal P, Tuysuz B, Cormier-Daire V. Chondrodysplasia with multiple dislocations: comprehensive study of a series of 30 cases. Clin Genet 2017; 91:868-880. [PMID: 28229453 DOI: 10.1111/cge.12885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/05/2016] [Accepted: 10/08/2016] [Indexed: 11/28/2022]
Abstract
The group of chondrodysplasia with multiple dislocations includes several entities, characterized by short stature, dislocation of large joints, hand and/or vertebral anomalies. Other features, such as epiphyseal or metaphyseal changes, cleft palate, intellectual disability are also often part of the phenotype. In addition, several conditions with overlapping features are related to this group and broaden the spectrum. The majority of these disorders have been linked to pathogenic variants in genes encoding proteins implicated in the synthesis or sulfation of proteoglycans (PG). In a series of 30 patients with multiple dislocations, we have performed exome sequencing and subsequent targeted analysis of 15 genes, implicated in chondrodysplasia with multiple dislocations, and related conditions. We have identified causative pathogenic variants in 60% of patients (18/30); when a clinical diagnosis was suspected, this was molecularly confirmed in 53% of cases. Forty percent of patients remain without molecular etiology. Pathogenic variants in genes implicated in PG synthesis are of major importance in chondrodysplasia with multiple dislocations and related conditions. The combination of hand features, growth failure severity, radiological aspects of long bones and of vertebrae allowed discrimination among the different conditions. We propose key diagnostic clues to the clinician.
Collapse
Affiliation(s)
- E Ranza
- Department of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades (AP-HP), Paris, France.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - C Huber
- Department of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades (AP-HP), Paris, France
| | - N Levin
- Department of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades (AP-HP), Paris, France
| | - G Baujat
- Department of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades (AP-HP), Paris, France
| | - C Bole-Feysot
- Plateforme de génomique, Fondation IMAGINE, Paris, France
| | - P Nitschke
- Plateforme de Bioinformatique, Université Paris Descartes, Paris, France
| | - C Masson
- Plateforme de Bioinformatique, Université Paris Descartes, Paris, France
| | - Y Alanay
- School of Medicine, Department of Pediatrics, Pediatric Genetics Unit, Acibadem University, Istanbul, Turkey
| | - L Al-Gazali
- Department of Pediatrics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - P Bitoun
- Génétique Médicale, Hôpital Jean Verdier, Bondy, France
| | - O Boute
- Génétique Clinique, Hôpital Jeanne de Flandre, Lille, France
| | - P Campeau
- Division of Medical genetics, Department of Pediatrics, CHU Sainte Justine and University of Montreal, Montreal, Quebec, Canada
| | - C Coubes
- Département de Génétique Médicale, Hôpital Arnaud de Villeneuve, Montpellier, France
| | - M McEntagart
- Medical Genetics, St George's Healthcare NHS Trust, London, UK
| | - N Elcioglu
- Department of Pediatric Genetics, Marmara University Medical School, Istanbul, Turkey
| | - L Faivre
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs et FHU TRANSLAD, CHU de Dijon et Université de Bourgogne, Dijon, France
| | - A Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - D Johnson
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, UK
| | - E Mihci
- Akdeniz University School of Medicine, Division of Pediatric Genetics, Antalya, Turkey
| | - B G Nur
- Akdeniz University School of Medicine, Division of Pediatric Genetics, Antalya, Turkey
| | - L Perrin
- Unité de Génétique Clinique, Hopital Robert Debré, Paris, France
| | - C Quelin
- Génétique Médicale, Hôpital Sud, Rennes, France
| | - P Terhal
- University Medical Center, Wilhelmina Childrens Hospital, Utrecht, the Netherlands
| | - B Tuysuz
- Cerrahpasa Medical Faculty, Department of Pediatric Genetics, Istanbul University, Istanbul, Turkey
| | - V Cormier-Daire
- Department of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Hôpital Necker Enfants Malades (AP-HP), Paris, France
| |
Collapse
|
36
|
Silveira C, Leal GF, Cavalcanti DP. Desbuquois dysplasia type II in a patient with a homozygous mutation in XYLT1 and new unusual findings. Am J Med Genet A 2016; 170:3043-3047. [PMID: 27481334 DOI: 10.1002/ajmg.a.37858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/01/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Cynthia Silveira
- Skeletal Dysplasia Group, Department of Medical Genetic, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriela F Leal
- Professor Fernando Figueira Integral Medicine Institute (IMIP), Recife, Pernambuco, Brazil
| | - Denise P Cavalcanti
- Skeletal Dysplasia Group, Department of Medical Genetic, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
37
|
Vodopiutz J, Mizumoto S, Lausch E, Rossi A, Unger S, Janocha N, Costantini R, Seidl R, Greber-Platzer S, Yamada S, Müller T, Jilma B, Ganger R, Superti-Furga A, Ikegawa S, Sugahara K, Janecke AR. Chondroitin SulfateN-acetylgalactosaminyltransferase-1 (CSGalNAcT-1) Deficiency Results in a Mild Skeletal Dysplasia and Joint Laxity. Hum Mutat 2016; 38:34-38. [DOI: 10.1002/humu.23070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/29/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Julia Vodopiutz
- Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Vienna Austria
| | - Shuji Mizumoto
- Department of Pathobiochemistry; Faculty of Pharmacy; Meijo University; Tempaku ku; Nagoya Aichi Japan
| | - Ekkehart Lausch
- Department of Pediatrics; Medical Center, Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Antonio Rossi
- Department of Molecular Medicine; Unit of Biochemistry; University of Pavia; Pavia Italy
| | - Sheila Unger
- Department of Medical Genetics; Centre Hospitalier Universitaire Vaudois; University of Lausanne; Lausanne Switzerland
| | - Nikolaus Janocha
- Department of Pediatrics; Medical Center, Faculty of Medicine; University of Freiburg; Freiburg Germany
| | - Rossella Costantini
- Department of Molecular Medicine; Unit of Biochemistry; University of Pavia; Pavia Italy
| | - Rainer Seidl
- Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Vienna Austria
| | - Susanne Greber-Platzer
- Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Vienna Austria
| | - Shuhei Yamada
- Department of Pathobiochemistry; Faculty of Pharmacy; Meijo University; Tempaku ku; Nagoya Aichi Japan
| | - Thomas Müller
- Department of Pediatrics I; Medical University of Innsbruck; Innsbruck Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology; Medical University of Vienna; Vienna Austria
| | - Rudolf Ganger
- Paediatric Department; Orthopaedic Hospital of Speising; Vienna Austria
| | - Andrea Superti-Furga
- Department of Pediatrics; Centre Hospitalier Universitaire Vaudois; University of Lausanne; Lausanne Switzerland
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases; Center for Integrative Medical Sciences; RIKEN; Tokyo Japan
| | - Kazuyuki Sugahara
- Department of Pathobiochemistry; Faculty of Pharmacy; Meijo University; Tempaku ku; Nagoya Aichi Japan
| | - Andreas R. Janecke
- Department of Pediatrics I; Medical University of Innsbruck; Innsbruck Austria
- Division of Human Genetics; Medical University of Innsbruck; Innsbruck Austria
| |
Collapse
|
38
|
Jamsheer A, Olech EM, Kozłowski K, Niedziela M, Sowińska-Seidler A, Obara-Moszyńska M, Latos-Bieleńska A, Karczewski M, Zemojtel T. Exome sequencing reveals two novel compound heterozygous XYLT1 mutations in a Polish patient with Desbuquois dysplasia type 2 and growth hormone deficiency. J Hum Genet 2016; 61:577-83. [PMID: 27030147 DOI: 10.1038/jhg.2016.30] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/27/2016] [Accepted: 03/08/2016] [Indexed: 01/09/2023]
Abstract
Desbuquois dysplasia type 2 (DBQD2) is a rare recessively inherited skeletal genetic disorder characterized by severe prenatal and postnatal growth retardation, generalized joint laxity with dislocation of large joints and facial dysmorphism. The condition was recently described to result from autosomal recessive mutations in XYLT1, encoding the enzyme xylosyltransferase-1. In this paper, we report on a Polish patient with DBQD2 who presented with severe short stature of prenatal onset, joint laxity, psychomotor retardation and multiple radiological abnormalities including short metacarpals, advanced bone age and exaggerated trochanters. Endocrinological examinations revealed that sleep-induced growth hormone (GH) release and GH peak in clonidine- and glucagon-induced provocative tests as well as insulin-like growth factor 1 (IGF-1) and IGF-binding protein-3 levels were all markedly decreased, confirming deficiency of GH secretion. Bone age, unlikely to GH deficiency, was significantly advanced. To establish the diagnosis at a molecular level, we performed whole-exome sequencing and bioinformatic analysis in the index patient, which revealed compound heterozygous XYLT1 mutations: c.595C>T(p.Gln199*) and c.1651C>T(p.Arg551Cys), both of which are novel. Sanger sequencing showed that the former mutation was inherited from the healthy mother, whereas the latter one most probably occurred de novo. Our study describes the first case of DBQD2 resulting from compound heterozygous XYLT1 mutation, expands the mutational spectrum of the disease and provides evidence that the severe growth retardation and microsomia observed in DBQD2 patients may result not only from the skeletal dysplasia itself but also from GH and IGF-1 deficiency.
Collapse
Affiliation(s)
- Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- NZOZ Center for Medical Genetics GENESIS, Poznan, Poland
| | - Ewelina M Olech
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Kazimierz Kozłowski
- Department of Medical Imaging, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Marek Niedziela
- Department of Pediatric Endocrinology and Rheumatology, Poznan University of Medical Sciences, Poznan, Poland
- Karol Jonscher's Clinical Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Sowińska-Seidler
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Monika Obara-Moszyńska
- Department of Pediatric Endocrinology and Rheumatology, Poznan University of Medical Sciences, Poznan, Poland
- Karol Jonscher's Clinical Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Latos-Bieleńska
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- NZOZ Center for Medical Genetics GENESIS, Poznan, Poland
| | - Marek Karczewski
- Department of Transplantology, General, Vascular and Plastic Surgery Clinical Hospital of Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Zemojtel
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Labor Berlin-Charité Vivantes GmbH, Humangenetik, Berlin, Germany
| |
Collapse
|
39
|
Urbinati I, Stafuzza NB, Oliveira MT, Chud TCS, Higa RH, Regitano LCDA, de Alencar MM, Buzanskas ME, Munari DP. Selection signatures in Canchim beef cattle. J Anim Sci Biotechnol 2016; 7:29. [PMID: 27158491 PMCID: PMC4858954 DOI: 10.1186/s40104-016-0089-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/24/2016] [Indexed: 11/10/2022] Open
Abstract
Background Recent technological advances in genomics have allowed the genotyping of cattle through single nucleotide polymorphism (SNP) panels. High-density SNP panels possess greater genome coverage and are useful for the identification of conserved regions of the genome due to selection, known as selection signatures (SS). The SS are detectable by different methods, such as the extended haplotype homozygosity (EHH); and the integrated haplotype score (iHS), which is derived from the EHH. The aim of this study was to identify SS regions in Canchim cattle (composite breed), genotyped with high-density SNP panel. Results A total of 687,655 SNP markers and 396 samples remained for SS analysis after the genotype quality control. The iHS statistic for each marker was transformed into piHS for better interpretation of the results. Chromosomes BTA5 and BTA14 showed piHS > 5, with 39 and nine statistically significant SNPs (P < 0.00001), respectively. For the candidate selection regions, iHS values were computed across the genome and averaged within non-overlapping windows of 500 Kb. We have identified genes that play an important role in metabolism, melanin biosynthesis (pigmentation), and embryonic and bone development. Conclusions The observation of SS indicates that the selection processes performed in Canchim, as well as in the founder breeds (i.e. Charolais), are maintaining specific genomic regions, particularly on BTA5 and BTA14. These selection signatures regions could be associated with Canchim characterization. Electronic supplementary material The online version of this article (doi:10.1186/s40104-016-0089-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ismael Urbinati
- Departamento de Ciências Exatas, - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo 14884-900 Brazil
| | - Nedenia Bonvino Stafuzza
- Departamento de Ciências Exatas, - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo 14884-900 Brazil
| | - Marcos Túlio Oliveira
- Departamento de Tecnologia, UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo 14884-900 Brazil
| | - Tatiane Cristina Seleguim Chud
- Departamento de Ciências Exatas, - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo 14884-900 Brazil
| | | | | | | | - Marcos Eli Buzanskas
- Departamento de Ciências Exatas, - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo 14884-900 Brazil
| | - Danísio Prado Munari
- Departamento de Ciências Exatas, - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo 14884-900 Brazil
| |
Collapse
|
40
|
Sasarman F, Maftei C, Campeau PM, Brunel-Guitton C, Mitchell GA, Allard P. Biosynthesis of glycosaminoglycans: associated disorders and biochemical tests. J Inherit Metab Dis 2016; 39:173-88. [PMID: 26689402 DOI: 10.1007/s10545-015-9903-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022]
Abstract
Glycosaminoglycans (GAG) are long, unbranched heteropolymers with repeating disaccharide units that make up the carbohydrate moiety of proteoglycans. Six distinct classes of GAGs are recognized. Their synthesis follows one of three biosynthetic pathways, depending on the type of oligosaccharide linker they contain. Chondroitin sulfate, dermatan sulfate, heparan sulfate, and heparin sulfate contain a common tetrasaccharide linker that is O-linked to specific serine residues in core proteins. Keratan sulfate can contain three different linkers, either N-linked to asparagine or O-linked to serine/threonine residues in core proteins. Finally, hyaluronic acid does not contain a linker and is not covalently attached to a core protein. Most inborn errors of GAG biosynthesis are reported in small numbers of patients. To date, in 20 diseases, convincing evidence for pathogenicity has been presented for mutations in a total of 16 genes encoding glycosyltransferases, sulfotransferases, epimerases or transporters. GAG synthesis defects should be suspected in patients with a combination of characteristic clinical features in more than one connective tissue compartment: bone and cartilage (short long bones with or without scoliosis), ligaments (joint laxity/dislocations), and subepithelial (skin, sclerae). Some produce distinct clinical syndromes. The commonest laboratory tests used for this group of diseases are analysis of GAGs, enzyme assays, and molecular testing. In principle, GAG analysis has potential as a general first-line diagnostic test for GAG biosynthesis disorders.
Collapse
Affiliation(s)
- Florin Sasarman
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Catalina Maftei
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Philippe M Campeau
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Catherine Brunel-Guitton
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Grant A Mitchell
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Pierre Allard
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
| |
Collapse
|
41
|
Exome sequencing in a patient with Catel–Manzke-like syndrome excludes the involvement of the known genes and reveals a possible candidate. Eur J Med Genet 2015; 58:597-602. [DOI: 10.1016/j.ejmg.2015.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 09/12/2015] [Accepted: 09/21/2015] [Indexed: 11/21/2022]
|
42
|
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev 2015; 36:526-63. [PMID: 26213785 PMCID: PMC4591525 DOI: 10.1210/er.2015-1036] [Citation(s) in RCA: 285] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jan Idkowiak
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul A Foster
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
43
|
Bilateral absence of the ulna in 4q terminal deletion syndrome: evidence for a critical region. Clin Dysmorphol 2015; 24:122-4. [PMID: 25719425 DOI: 10.1097/mcd.0000000000000078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Ehmke N, Caliebe A, Koenig R, Kant SG, Stark Z, Cormier-Daire V, Wieczorek D, Gillessen-Kaesbach G, Hoff K, Kawalia A, Thiele H, Altmüller J, Fischer-Zirnsak B, Knaus A, Zhu N, Heinrich V, Huber C, Harabula I, Spielmann M, Horn D, Kornak U, Hecht J, Krawitz PM, Nürnberg P, Siebert R, Manzke H, Mundlos S. Homozygous and compound-heterozygous mutations in TGDS cause Catel-Manzke syndrome. Am J Hum Genet 2014; 95:763-70. [PMID: 25480037 PMCID: PMC4259972 DOI: 10.1016/j.ajhg.2014.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/10/2014] [Indexed: 12/30/2022] Open
Abstract
Catel-Manzke syndrome is characterized by Pierre Robin sequence and a unique form of bilateral hyperphalangy causing a clinodactyly of the index finger. We describe the identification of homozygous and compound heterozygous mutations in TGDS in seven unrelated individuals with typical Catel-Manzke syndrome by exome sequencing. Six different TGDS mutations were detected: c.892A>G (p.Asn298Asp), c.270_271del (p.Lys91Asnfs(∗)22), c.298G>T (p.Ala100Ser), c.294T>G (p.Phe98Leu), c.269A>G (p.Glu90Gly), and c.700T>C (p.Tyr234His), all predicted to be disease causing. By using haplotype reconstruction we showed that the mutation c.298G>T is probably a founder mutation. Due to the spectrum of the amino acid changes, we suggest that loss of function in TGDS is the underlying mechanism of Catel-Manzke syndrome. TGDS (dTDP-D-glucose 4,6-dehydrogenase) is a conserved protein belonging to the SDR family and probably plays a role in nucleotide sugar metabolism.
Collapse
Affiliation(s)
- Nadja Ehmke
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| | - Almuth Caliebe
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Rainer Koenig
- Institute of Human Genetics, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Sarina G Kant
- Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Zornitza Stark
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Valérie Cormier-Daire
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne PARIS Cité, Imagine Institute, Hôpital Necker Enfants Males, 75015 Paris, France
| | - Dagmar Wieczorek
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, 45122 Essen, Germany
| | | | - Kirstin Hoff
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; Department of Congenital Heart Disease and Pediatric Cardiology, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Amit Kawalia
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany; Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany
| | - Björn Fischer-Zirnsak
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Alexej Knaus
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Na Zhu
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Verena Heinrich
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Celine Huber
- Department of Genetics, INSERM UMR 1163, Université Paris Descartes-Sorbonne PARIS Cité, Imagine Institute, Hôpital Necker Enfants Males, 75015 Paris, France
| | - Izabela Harabula
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Malte Spielmann
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Denise Horn
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Uwe Kornak
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Jochen Hecht
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Peter M Krawitz
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel & University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | | | - Stefan Mundlos
- Institute of Medical and Human Genetics, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
45
|
Lauing KL, Cortes M, Domowicz MS, Henry JG, Baria AT, Schwartz NB. Aggrecan is required for growth plate cytoarchitecture and differentiation. Dev Biol 2014; 396:224-36. [PMID: 25446537 DOI: 10.1016/j.ydbio.2014.10.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 10/10/2014] [Accepted: 10/12/2014] [Indexed: 01/28/2023]
Abstract
The proteoglycan aggrecan is a prominent component of the extracellular matrix in growth plate cartilage. A naturally occurring, recessive, perinatally lethal mutation in the aggrecan core protein gene, cmd(bc) (Acan(cmd-Bc)), that deletes the entire protein-coding sequence provided a model in which to characterize the phenotypic and morphologic effects of aggrecan deletion on skeletal development. We also generated a novel transgenic mouse, Tg(COL2A1-ACAN), that has the chick ACAN coding sequence driven by the mouse COL2A1 promoter to enable the production of cmd(bc)/cmd(bc); Tg(COL2A1-ACAN) rescue embryos. These were used to assess the impact of aggrecan on growth plate organization, chondrocyte survival and proliferation, and the expression of mRNAs encoding chondrocyte differentiation markers and growth factors. Homozygous mutant (cmd(bc)/cmd(bc)) embryos exhibited severe defects in all skeletal elements with deformed and shortened (50%) limb elements. Expression of aggrecan in rescue embryos reversed the skeletal defects to varying degrees with a 20% increase in limb element length and near-full reversal (80%) of size and diameter of the ribcage and vertebrae. Aggrecan-null growth plates were devoid of matrix and lacked chondrocyte organization and differentiation, while those of the rescue embryos exhibited matrix production concomitant with partial zonation of chondrocytes having proliferative and hypertrophic morphologies. Deformation of the trachea, likely the cause of the mutation's lethality, was reduced in the rescue embryos. Aggrecan-null embryos also had abnormal patterns of COL10A1, SOX9, IHH, PTCH1, and FGFR3 mRNA expression in the growth plate. Expression of chick aggrecan in the rescue embryos notably increased COLX expression, accompanied by the reappearance of a hypertrophic zone and IHH expression. Significantly, in transgenic rescue embryos, the cell death and decreased proliferation phenotypes exhibited by the mutants were reversed; both were restored to wild-type levels. These findings suggest that aggrecan has a major role in regulating the expression of key growth factors and signaling molecules during development of cartilaginous tissue and is essential for proper chondrocyte organization, morphology, and survival during embryonic limb development.
Collapse
Affiliation(s)
- Kristen L Lauing
- Department of Pediatrics, The University of Chicago, Chicago IL 60637, USA
| | - Mauricio Cortes
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Miriam S Domowicz
- Department of Pediatrics, The University of Chicago, Chicago IL 60637, USA
| | - Judith G Henry
- Department of Pediatrics, The University of Chicago, Chicago IL 60637, USA
| | - Alexis T Baria
- Department of Pediatrics, The University of Chicago, Chicago IL 60637, USA
| | - Nancy B Schwartz
- Department of Pediatrics, The University of Chicago, Chicago IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
46
|
Nampoothiri S, Yesodharan D, Sainulabdin G, Narayanan D, Padmanabhan L, Girisha KM, Cathey SS, De Paepe A, Malfait F, Syx D, Hennekam RC, Bonafe L, Unger S, Superti-Furga A. Eight years experience from a skeletal dysplasia referral center in a tertiary hospital in Southern India: A model for the diagnosis and treatment of rare diseases in a developing country. Am J Med Genet A 2014; 164A:2317-23. [DOI: 10.1002/ajmg.a.36668] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 06/03/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Sheela Nampoothiri
- Department of Pediatric Genetics; Amrita Institute of Medical Sciences and Research Center; Cochin Kerala India
| | - Dhanya Yesodharan
- Department of Pediatric Genetics; Amrita Institute of Medical Sciences and Research Center; Cochin Kerala India
| | - Gazel Sainulabdin
- Department of Pediatric Genetics; Amrita Institute of Medical Sciences and Research Center; Cochin Kerala India
| | - Dhanyalakshmi Narayanan
- Department of Pediatric Genetics; Amrita Institute of Medical Sciences and Research Center; Cochin Kerala India
| | - Laxmi Padmanabhan
- Department of Perinatology; Amrita Institute of Medical Sciences and Research Center; Cochin Kerala India
| | - Katta Mohan Girisha
- Department of Medical Genetics; Kasturba Medical College; Manipal University; Manipal India
| | - Sara S. Cathey
- Greenwood Genetic Center; North Charleston South Carolina, USA
| | - Anne De Paepe
- Center for Medical Genetics; Ghent University Hospital; Ghent Belgium
| | - Fransiska Malfait
- Center for Medical Genetics; Ghent University Hospital; Ghent Belgium
| | - Delfien Syx
- Center for Medical Genetics; Ghent University Hospital; Ghent Belgium
| | - Raoul C. Hennekam
- Department of Pediatrics; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - Luisa Bonafe
- Departments of Pediatrics and Genetics; University of Lausanne; Lausanne Switzerland
| | - Sheila Unger
- Departments of Pediatrics and Genetics; University of Lausanne; Lausanne Switzerland
| | - Andrea Superti-Furga
- Departments of Pediatrics and Genetics; University of Lausanne; Lausanne Switzerland
| |
Collapse
|
47
|
Mizumoto S, Yamada S, Sugahara K. Human genetic disorders and knockout mice deficient in glycosaminoglycan. BIOMED RESEARCH INTERNATIONAL 2014; 2014:495764. [PMID: 25126564 PMCID: PMC4122003 DOI: 10.1155/2014/495764] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/08/2014] [Indexed: 12/20/2022]
Abstract
Glycosaminoglycans (GAGs) are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.
Collapse
Affiliation(s)
- Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan
| | - Kazuyuki Sugahara
- Laboratory of Proteoglycan Signaling and Therapeutics, Frontier Research Center for Post-Genomic Science and Technology, Graduate School of Life Science, Hokkaido University, West-11, North-21, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
48
|
PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am J Hum Genet 2014; 95:96-107. [PMID: 24931394 DOI: 10.1016/j.ajhg.2014.05.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/16/2014] [Indexed: 12/30/2022] Open
Abstract
Human phosphoglucomutase 3 (PGM3) catalyzes the conversion of N-acetyl-glucosamine (GlcNAc)-6-phosphate into GlcNAc-1-phosphate during the synthesis of uridine diphosphate (UDP)-GlcNAc, a sugar nucleotide critical to multiple glycosylation pathways. We identified three unrelated children with recurrent infections, congenital leukopenia including neutropenia, B and T cell lymphopenia, and progression to bone marrow failure. Whole-exome sequencing demonstrated deleterious mutations in PGM3 in all three subjects, delineating their disease to be due to an unsuspected congenital disorder of glycosylation (CDG). Functional studies of the disease-associated PGM3 variants in E. coli cells demonstrated reduced PGM3 activity for all mutants tested. Two of the three children had skeletal anomalies resembling Desbuquois dysplasia: short stature, brachydactyly, dysmorphic facial features, and intellectual disability. However, these additional features were absent in the third child, showing the clinical variability of the disease. Two children received hematopoietic stem cell transplantation of cord blood and bone marrow from matched related donors; both had successful engraftment and correction of neutropenia and lymphopenia. We define PGM3-CDG as a treatable immunodeficiency, document the power of whole-exome sequencing in gene discoveries for rare disorders, and illustrate the utility of genomic analyses in studying combined and variable phenotypes.
Collapse
|
49
|
Expanding the clinical spectrum of B4GALT7 deficiency: homozygous p.R270C mutation with founder effect causes Larsen of Reunion Island syndrome. Eur J Hum Genet 2014; 23:49-53. [PMID: 24755949 DOI: 10.1038/ejhg.2014.60] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 11/09/2022] Open
Abstract
First described as a variant of Larsen syndrome in Reunion Island (LRS) in the southern Indian Ocean, 'Larsen of Reunion Island syndrome' is characterized by dwarfism, hyperlaxity, multiple dislocations and distinctive facial features. It overlaps with Desbuquois dysplasia, Larsen syndrome and spondyloepiphyseal dysplasia with dislocations ascribed to CANT1, FLNB and CHST3 mutations, respectively. We collected the samples of 22 LRS cases. After exclusion of CANT1, FLNB and CHST3 genes, an exome sequencing was performed in two affected second cousins and one unaffected sister. We identified a homozygous missense mutation in B4GALT7, NM_007255.2: c.808C>T p.(Arg270Cys) named p.R270C, in the two affected cases, not present in the unaffected sister. The same homozygous mutation was subsequently identified in the remaining 20 LRS cases. Our findings demonstrate that B4GALT7 is the causative gene for LRS. The identification of a unique homozygous mutation argues in favor of a founder effect. B4GALT7 encodes a galactosyltransferase, required for the initiation of glycoaminoglycan side chain synthesis of proteoglycans. This study expands the phenotypic spectrum of B4GALT7 mutations, initially described as responsible for the progeroid variant of Ehlers-Danlos syndrome. It further supports a common physiopathological basis involving proteoglycan synthesis in skeletal disorders with dislocations.
Collapse
|
50
|
Zabel B, Lausch E. Genetische Formen des Kleinwuchses und neue Behandlungskonzepte. Monatsschr Kinderheilkd 2014. [DOI: 10.1007/s00112-013-3046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|