1
|
Nishio H, Niba ETE, Saito T, Okamoto K, Lee T, Takeshima Y, Awano H, Lai PS. Clinical and Genetic Profiles of 5q- and Non-5q-Spinal Muscular Atrophy Diseases in Pediatric Patients. Genes (Basel) 2024; 15:1294. [PMID: 39457418 PMCID: PMC11506990 DOI: 10.3390/genes15101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a genetic disease characterized by loss of motor neurons in the spinal cord and lower brainstem. The term "SMA" usually refers to the most common form, 5q-SMA, which is caused by biallelic mutations in SMN1 (located on chromosome 5q13). However, long before the discovery of SMN1, it was known that other forms of SMA existed. Therefore, SMA is currently divided into two groups: 5q-SMA and non-5q-SMA. This is a simple and practical classification, and therapeutic drugs have only been developed for 5q-SMA (nusinersen, onasemnogene abeparvovec, risdiplam) and not for non-5q-SMA disease. METHODS We conducted a non-systematic critical review to identify the characteristics of each SMA disease. RESULTS Many of the non-5q-SMA diseases have similar symptoms, making DNA analysis of patients essential for accurate diagnosis. Currently, genetic analysis technology using next-generation sequencers is rapidly advancing, opening up the possibility of elucidating the pathology and treating non-5q-SMA. CONCLUSION Based on accurate diagnosis and a deeper understanding of the pathology of each disease, treatments for non-5q-SMA diseases may be developed in the near future.
Collapse
Affiliation(s)
- Hisahide Nishio
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan;
| | - Tomoko Lee
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| | - Poh-San Lai
- Department of Pediatrics, National University of Singapore, 1E Lower Kent Ridge Road, Singapore 119228, Singapore;
| |
Collapse
|
2
|
Zhao X, Quintremil S, Rodriguez Castro ED, Cui H, Moraga D, Wang T, Vallee RB, Solmaz SR. Molecular mechanism for recognition of the cargo adapter Rab6 GTP by the dynein adapter BicD2. Life Sci Alliance 2024; 7:e202302430. [PMID: 38719748 PMCID: PMC11077774 DOI: 10.26508/lsa.202302430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Rab6 is a key modulator of protein secretion. The dynein adapter Bicaudal D2 (BicD2) recruits the motors cytoplasmic dynein and kinesin-1 to Rab6GTP-positive vesicles for transport; however, it is unknown how BicD2 recognizes Rab6. Here, we establish a structural model for recognition of Rab6GTP by BicD2, using structure prediction and mutagenesis. The binding site of BicD2 spans two regions of Rab6 that undergo structural changes upon the transition from the GDP- to GTP-bound state, and several hydrophobic interface residues are rearranged, explaining the increased affinity of the active GTP-bound state. Mutations of Rab6GTP that abolish binding to BicD2 also result in reduced co-migration of Rab6GTP/BicD2 in cells, validating our model. These mutations also severely diminished the motility of Rab6-positive vesicles in cells, highlighting the importance of the Rab6GTP/BicD2 interaction for overall motility of the multi-motor complex that contains both kinesin-1 and dynein. Our results provide insights into trafficking of secretory and Golgi-derived vesicles and will help devise therapies for diseases caused by BicD2 mutations, which selectively affect the affinity to Rab6 and other cargoes.
Collapse
Affiliation(s)
- Xiaoxin Zhao
- https://ror.org/008rmbt77 Department of Chemistry, Binghamton University, Binghamton, NY, USA
| | - Sebastian Quintremil
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | | | - Heying Cui
- https://ror.org/008rmbt77 Department of Chemistry, Binghamton University, Binghamton, NY, USA
| | - David Moraga
- https://ror.org/008rmbt77 Department of Chemistry, Binghamton University, Binghamton, NY, USA
| | - Tingyao Wang
- https://ror.org/008rmbt77 Department of Chemistry, Binghamton University, Binghamton, NY, USA
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Sozanne R Solmaz
- https://ror.org/008rmbt77 Department of Chemistry, Binghamton University, Binghamton, NY, USA
| |
Collapse
|
3
|
Xiong GJ, Sheng ZH. Presynaptic perspective: Axonal transport defects in neurodevelopmental disorders. J Cell Biol 2024; 223:e202401145. [PMID: 38568173 PMCID: PMC10988239 DOI: 10.1083/jcb.202401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Park JG, Jeon H, Hwang KY, Cha SS, Han RT, Cho H, Lee IG. Cargo specificity, regulation, and therapeutic potential of cytoplasmic dynein. Exp Mol Med 2024; 56:827-835. [PMID: 38556551 PMCID: PMC11059388 DOI: 10.1038/s12276-024-01200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 04/02/2024] Open
Abstract
Intracellular retrograde transport in eukaryotic cells relies exclusively on the molecular motor cytoplasmic dynein 1. Unlike its counterpart, kinesin, dynein has a single isoform, which raises questions about its cargo specificity and regulatory mechanisms. The precision of dynein-mediated cargo transport is governed by a multitude of factors, including temperature, phosphorylation, the microtubule track, and interactions with a family of activating adaptor proteins. Activating adaptors are of particular importance because they not only activate the unidirectional motility of the motor but also connect a diverse array of cargoes with the dynein motor. Therefore, it is unsurprising that dysregulation of the dynein-activating adaptor transport machinery can lead to diseases such as spinal muscular atrophy, lower extremity, and dominant. Here, we discuss dynein motor motility within cells and in in vitro, and we present several methodologies employed to track the motion of the motor. We highlight several newly identified activating adaptors and their roles in regulating dynein. Finally, we explore the potential therapeutic applications of manipulating dynein transport to address diseases linked to dynein malfunction.
Collapse
Affiliation(s)
- Jin-Gyeong Park
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Hanul Jeon
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Rafael T Han
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul, 02447, South Korea
| | - Hyesung Cho
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Department of Biological Chemistry, University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
5
|
Omer S, Li J, Yang CX, Harrison RE. Ninein promotes F-actin cup formation and inward phagosome movement during phagocytosis in macrophages. Mol Biol Cell 2024; 35:ar26. [PMID: 38117588 PMCID: PMC10916867 DOI: 10.1091/mbc.e23-06-0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023] Open
Abstract
Phagocytosis by macrophages is a highly polarized process to destroy large target cells. Binding to particles induces extensive cortical actin-generated forces that drive the formation of elaborate pseudopods around the target particle. Postinternalization, the resultant phagosome is driven toward the cell interior on microtubules (MTs) by cytoplasmic dynein. However, it is unclear whether dynein and cargo-adaptors contribute to the earlier steps of particle internalization and phagosome formation. Here we reveal that ninein, a MT minus-end-associated protein that localizes to the centrosome, is also present at the phagocytic cup in macrophages. Ninein depletion impairs particle internalization by delaying the early F-actin recruitment to sites of particle engagement and cup formation, with no impact on F-actin dynamics beyond this initial step. Ninein forms membrane-bound clusters on phagocytic cups that do not nucleate acentrosomal MTs but instead mediate the assembly of dynein-dynactin complex at active phagocytic membranes. Both ninein depletion and pharmacological inhibition of dynein activity reduced inward displacement of bound particles into macrophages. We found that ninein and dynein motor activity were required for timely retrograde movement of phagosomes and for phagolysosome formation. Taken together, these data show that ninein, alone and with dynein, play significant roles during phagocytosis.
Collapse
Affiliation(s)
- Safia Omer
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4
| | - Jiahao Li
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, Ontario M1C 1A4
| | - Claire X. Yang
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4
| | - Rene E. Harrison
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4
- Department of Cell & Systems Biology, University of Toronto Scarborough, Toronto, Ontario M1C 1A4
| |
Collapse
|
6
|
Wei H, Yuan Y, Zhu C, Ma M, Yang F, Lu Z, Wang C, Deng H, Zhao J, Tian R, Zhu W, Shen Y, Yu X, Xu Q. DNA Hyper-methylation Associated With Schizophrenia May Lead to Increased Levels of Autoantibodies. SCHIZOPHRENIA BULLETIN OPEN 2024; 5:sgac047. [PMID: 39144109 PMCID: PMC11207751 DOI: 10.1093/schizbullopen/sgac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Background and Hypothesis Environmental stressors may influence immune surveillance in B lymphocytes and stimulate autoimmune responses via epigenetic DNA methylation modifications in schizophrenia (SCZ). Study Design A total of 2722, Chinese Han origin subjects were recruited in this study (2005-2011), which included a discovery follow-up cohort with 40 remitters of SCZ (RSCZ), 40 nonremitters of SCZ (NRSCZ), and 40 controls (CTL), and a replication follow-up cohort (64 RSCZ, 16 NRSCZ, and 84 CTL), as well as a case-control validation cohort (1230 SCZ and 1208 CTL). Genomic DNA methylation, target gene mRNA transcripts, and plasma autoantibody levels were measured across cohorts. Study Results We found extensive differences in global DNA methylation profiles between RSCZ and NRSCZ groups, wherein differential methylation sites (DMS) were enriched with immune cell maturation and activation in the RSCZ group. Out of 2722 participants, the foremost DMS cg14341177 was hyper-methylated in the SCZ group and it inhibited the alternative splicing of its target gene BICD2 and may have increased its autoantigen exposure, leading to an increase in plasma anti-BICD2 IgG antibody levels. The levels of cg14341177 methylation and anti-BICD2 IgG decreased significantly in RSCZ endpoint samples but not in NRSCZ endpoint samples. There are strong positive correlations between cg14341177 methylation, anti-BICD2 IgG, and positive and negative syndrome scale (PANSS) scores in the RSCZ groups, but not in the NRSCZ groups. Conclusions These data suggest that abnormal DNA methylation could affect autoreactive responses in SCZ, and that cg14341177 methylation and anti-BICD2 IgG levels may potentially serve as useful biomarkers.
Collapse
Affiliation(s)
- Hui Wei
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yanbo Yuan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Caiyun Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Mingjie Ma
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Fude Yang
- Beijing Hui-Long-Guan Hospital, Beijing, China
| | - Zheng Lu
- Shanghai Mental Health Center, Shanghai, China
| | | | - Hong Deng
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jingping Zhao
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Runhui Tian
- Mental Health Center, The First Bethune Hospital of Jilin University, Changchun, Jilin, China
| | - Wanwan Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Shen
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Cho J, Kim H, Lee S, Yoon JG, Kim H, Kim M, Jang S, Kim W, Kim SY, Chae JH. Expanding association between BICD2 variants and brain malformations and associated lissencephaly. Clin Exp Pediatr 2024; 67:54-56. [PMID: 38129099 PMCID: PMC10764667 DOI: 10.3345/cep.2023.01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Affiliation(s)
- Jaeso Cho
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
| | - Haeryung Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Seoungbok Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jihoon G Yoon
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
| | - HyeJin Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Minhye Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Seoyun Jang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Woojoong Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Theuriet J, Fernandez-Eulate G, Latour P, Stojkovic T, Masingue M, Vidoni L, Bernard E, Jacquier A, Schaeffer L, Salort-Campana E, Chanson JB, Pakleza AN, Kaminsky AL, Svahn J, Manel V, Bouhour F, Pegat A. Genetic characterization of non-5q proximal spinal muscular atrophy in a French cohort: the place of whole exome sequencing. Eur J Hum Genet 2024; 32:37-43. [PMID: 37337091 PMCID: PMC10772122 DOI: 10.1038/s41431-023-01407-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is defined by a degeneration of the anterior horn cells resulting in muscle weakness predominantly in the proximal lower limbs. While most patients carry a biallelic deletion in the SMN1 gene (localized in chromosome 5q), little is known regarding patients without SMN1-mutation, and a genetic diagnosis is not always possible. Here, we report a cohort of 24 French patients with non-5q proximal SMA from five neuromuscular centers who all, except two, had next-generation sequencing (NGS) gene panel, followed by whole exome sequencing (WES) if gene panel showed a negative result. The two remaining patients benefited directly from WES or whole genome sequencing (WGS). A total of ten patients with causative variants were identified, nine of whom were index cases (9/23 families = 39%). Eight variants were identified by gene panel: five variants in DYNC1H1, and three in BICD2. Compound heterozygous causative variants in ASAH1 were identified directly by WES, and one variant in DYNC1H1 was identified directly by WGS. No causative variant was found using WES in patients with a previous panel with negative results (14 cases). We thus recommend using primarily NGS panels in patients with non-5q-SMA and using WES, especially when several members of the same family are affected and/or when trio analyses are possible, or WGS as second-line testing if available.
Collapse
Affiliation(s)
- Julian Theuriet
- Hôpital Neurologique Pierre Wertheimer, Service d'électroneuromyographie et de Pathologies Neuromusculaires, Hospices Civils de Lyon, Groupement Est, Bron, France.
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, Lyon, France.
| | - Gorka Fernandez-Eulate
- Nord/Est/Ile-De-France Neuromuscular Reference Center, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Philippe Latour
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, Lyon, France
- Unité Fonctionnelle de Neurogénétique Moléculaire, Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Tanya Stojkovic
- Nord/Est/Ile-De-France Neuromuscular Reference Center, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Marion Masingue
- Nord/Est/Ile-De-France Neuromuscular Reference Center, Institut de Myologie, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Léo Vidoni
- Unité Fonctionnelle de Neurogénétique Moléculaire, Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Emilien Bernard
- Hôpital Neurologique Pierre Wertheimer, Service d'électroneuromyographie et de Pathologies Neuromusculaires, Hospices Civils de Lyon, Groupement Est, Bron, France
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, Lyon, France
- Hôpital Neurologique Pierre-Wertheimer, Service de Neurologie, Troubles du Mouvement et Pathologies Neuromusculaires, Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Arnaud Jacquier
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, Lyon, France
- Centre de Biotechnologie Cellulaire, CBC Biotec, Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Laurent Schaeffer
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, Lyon, France
- Centre de Biotechnologie Cellulaire, CBC Biotec, Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Emmanuelle Salort-Campana
- Hôpital de la Timone, Maladies Neuromusculaires et SMA, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Jean-Baptiste Chanson
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France, Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Aleksandra Nadaj Pakleza
- Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile-de-France, Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anne-Laure Kaminsky
- Service de Neurologie, Centre Référent des Maladies Neuromusculaires Rares, CHU de Saint Etienne, Saint-Etienne, France
| | - Juliette Svahn
- Hôpital Neurologique Pierre Wertheimer, Service d'électroneuromyographie et de Pathologies Neuromusculaires, Hospices Civils de Lyon, Groupement Est, Bron, France
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, Lyon, France
- Hôpital Neurologique Pierre-Wertheimer, Service de Neurologie, Troubles du Mouvement et Pathologies Neuromusculaires, Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Véronique Manel
- Hôpital Neurologique Pierre Wertheimer, Service d'électroneuromyographie et de Pathologies Neuromusculaires, Hospices Civils de Lyon, Groupement Est, Bron, France
- Hôpital Femme Mère Enfant, Service de Neuropédiatrie, Hospices Civils de Lyon, Groupement Est, Bron, France
| | - Françoise Bouhour
- Hôpital Neurologique Pierre Wertheimer, Service d'électroneuromyographie et de Pathologies Neuromusculaires, Hospices Civils de Lyon, Groupement Est, Bron, France
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, Lyon, France
| | - Antoine Pegat
- Hôpital Neurologique Pierre Wertheimer, Service d'électroneuromyographie et de Pathologies Neuromusculaires, Hospices Civils de Lyon, Groupement Est, Bron, France
- Pathophysiology and Genetics of Neuron and Muscle, CNRS UMR 5261, INSERM U1315, Université Lyon1, Faculté de Médecine Lyon Est, Lyon, France
| |
Collapse
|
9
|
Marie-Hardy L, Courtin T, Pascal-Moussellard H, Zakine S, Brice A. The Whole-Exome Sequencing of a Cohort of 19 Families with Adolescent Idiopathic Scoliosis (AIS): Candidate Pathways. Genes (Basel) 2023; 14:2094. [PMID: 38003035 PMCID: PMC10671325 DOI: 10.3390/genes14112094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
A significant genetic involvement has been known for decades to exist in adolescent idiopathic scoliosis (AIS), a spine deformity affecting 1-3% of the world population. However, though biomechanical and endocrinological theories have emerged, no clear pathophysiological explanation has been found. Data from the whole-exome sequencing performed on 113 individuals in 19 multi-generational families with AIS have been filtered and analyzed via interaction pathways and functional category analysis (Varaft, Bingo and Panther). The subsequent list of 2566 variants has been compared to the variants already described in the literature, with an 18% match rate. The familial analysis in two families reveals mutations in the BICD2 gene, supporting the involvement of the muscular system in AIS etiology. The cellular component analysis revealed significant enrichment in myosin-related and neuronal activity-related categories. All together, these results reinforce the suspected role of the neuronal and muscular systems, highlighting the calmodulin pathway and suggesting a role of DNA-binding activities in AIS physiopathology.
Collapse
Affiliation(s)
- Laura Marie-Hardy
- Brain Institute of Paris, 43-87 bd de l’Hôpital, 75013 Paris, France
| | - Thomas Courtin
- Brain Institute of Paris, 43-87 bd de l’Hôpital, 75013 Paris, France
| | | | - Serge Zakine
- Clinique Maussins Nollet, Ramsay Génerale de Santé, 67 Rue de Romainville, 75019 Paris, France;
| | - Alexis Brice
- Brain Institute of Paris, 43-87 bd de l’Hôpital, 75013 Paris, France
| |
Collapse
|
10
|
Gibson JM, Zhao X, Ali MY, Solmaz SR, Wang C. A Structural Model for the Core Nup358-BicD2 Interface. Biomolecules 2023; 13:1445. [PMID: 37892127 PMCID: PMC10604712 DOI: 10.3390/biom13101445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Dynein motors facilitate the majority of minus-end-directed transport events on microtubules. The dynein adaptor Bicaudal D2 (BicD2) recruits the dynein machinery to several cellular cargo for transport, including Nup358, which facilitates a nuclear positioning pathway that is essential for the differentiation of distinct brain progenitor cells. Previously, we showed that Nup358 forms a "cargo recognition α-helix" upon binding to BicD2; however, the specifics of the BicD2-Nup358 interface are still not well understood. Here, we used AlphaFold2, complemented by two additional docking programs (HADDOCK and ClusPro) as well as mutagenesis, to show that the Nup358 cargo-recognition α-helix binds to BicD2 between residues 747 and 774 in an anti-parallel manner, forming a helical bundle. We identified two intermolecular salt bridges that are important to stabilize the interface. In addition, we uncovered a secondary interface mediated by an intrinsically disordered region of Nup358 that is directly N-terminal to the cargo-recognition α-helix and binds to BicD2 between residues 774 and 800. This is the same BicD2 domain that binds to the competing cargo adapter Rab6, which is important for the transport of Golgi-derived and secretory vesicles. Our results establish a structural basis for cargo recognition and selection by the dynein adapter BicD2, which facilitates transport pathways that are important for brain development.
Collapse
Affiliation(s)
- James M. Gibson
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Xiaoxin Zhao
- Department of Chemistry, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, USA;
| | - M. Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA;
| | - Sozanne R. Solmaz
- Department of Chemistry, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, USA;
| | - Chunyu Wang
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| |
Collapse
|
11
|
Saadi SM, Cali E, Khalid LB, Yousaf H, Zafar G, Khan HN, Sher M, Vona B, Abdullah U, Malik NA, Klar J, Efthymiou S, Dahl N, Houlden H, Toft M, Baig SM, Fatima A, Iqbal Z. Genetic Investigation of Consanguineous Pakistani Families Segregating Rare Spinocerebellar Disorders. Genes (Basel) 2023; 14:1404. [PMID: 37510308 PMCID: PMC10379343 DOI: 10.3390/genes14071404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Spinocerebellar disorders are a vast group of rare neurogenetic conditions, generally characterized by overlapping clinical symptoms including progressive cerebellar ataxia, spastic paraparesis, cognitive deficiencies, skeletal/muscular and ocular abnormalities. The objective of the present study is to identify the underlying genetic causes of the rare spinocerebellar disorders in the Pakistani population. Herein, nine consanguineous families presenting different spinocerebellar phenotypes have been investigated using whole exome sequencing. Sanger sequencing was performed for segregation analysis in all the available individuals of each family. The molecular analysis of these families identified six novel pathogenic/likely pathogenic variants; ZFYVE26: c.1093del, SACS: c.1201C>T, BICD2: c.2156A>T, ALS2: c.2171-3T>G, ALS2: c.3145T>A, and B4GALNT1: c.334_335dup, and three already reported pathogenic variants; FA2H: c.159_176del, APTX: c.689T>G, and SETX: c.5308_5311del. The clinical features of all patients in each family are concurrent with the already reported cases. Hence, the current study expands the mutation spectrum of rare spinocerebellar disorders and implies the usefulness of next-generation sequencing in combination with clinical investigation for better diagnosis of these overlapping phenotypes.
Collapse
Affiliation(s)
- Saadia Maryam Saadi
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Elisa Cali
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Lubaba Bintee Khalid
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Hammad Yousaf
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Ghazala Zafar
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Haq Nawaz Khan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Muhammad Sher
- Department of Allied Health Sciences, Iqra National University Swat Campus, Swat 19200, Pakistan
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology (UIBB), Pir Mehr Ali Shah Arid Agriculture University Rawalpindi (PMAS-AAUR), Rawalpindi 46300, Pakistan
| | - Naveed Altaf Malik
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, P.O. Box 815, 751 08 Uppsala, Sweden
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, P.O. Box 815, 751 08 Uppsala, Sweden
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mathias Toft
- Institute of Clinical Medicine, University of Oslo, P.O. Box 1171, N-0318 Oslo, Norway
- Department of Neurology, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Ambrin Fatima
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Zafar Iqbal
- Department of Neurology, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
| |
Collapse
|
12
|
Hirsch Y, Chung WK, Novoselov S, Weimer LH, Rossor A, LeDuc CA, McPartland AJ, Cabrera E, Ekstein J, Scher S, Nelson RF, Schiavo G, Henderson LB, Booth KTA. Biallelic Loss-of-Function Variants in BICD1 Are Associated with Peripheral Neuropathy and Hearing Loss. Int J Mol Sci 2023; 24:8897. [PMID: 37240244 PMCID: PMC10219021 DOI: 10.3390/ijms24108897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Hearing loss and peripheral neuropathy are two clinical entities that are genetically and phenotypically heterogeneous and sometimes co-occurring. Using exome sequencing and targeted segregation analysis, we investigated the genetic etiology of peripheral neuropathy and hearing loss in a large Ashkenazi Jewish family. Moreover, we assessed the production of the candidate protein via western blotting of lysates from fibroblasts from an affected individual and an unaffected control. Pathogenic variants in known disease genes associated with hearing loss and peripheral neuropathy were excluded. A homozygous frameshift variant in the BICD1 gene, c.1683dup (p.(Arg562Thrfs*18)), was identified in the proband and segregated with hearing loss and peripheral neuropathy in the family. The BIDC1 RNA analysis from patient fibroblasts showed a modest reduction in gene transcripts compared to the controls. In contrast, protein could not be detected in fibroblasts from a homozygous c.1683dup individual, whereas BICD1 was detected in an unaffected individual. Our findings indicate that bi-allelic loss-of-function variants in BICD1 are associated with hearing loss and peripheral neuropathy. Definitive evidence that bi-allelic loss-of-function variants in BICD1 cause peripheral neuropathy and hearing loss will require the identification of other families and individuals with similar variants with the same phenotype.
Collapse
Affiliation(s)
- Yoel Hirsch
- Dor Yeshorim, Committee for Prevention Jewish Genetic Diseases, Brooklyn, NY 11211, USA
| | - Wendy K. Chung
- Departments of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sergey Novoselov
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Louis H. Weimer
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexander Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Charles A. LeDuc
- Departments of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Amanda J. McPartland
- Departments of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ernesto Cabrera
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Josef Ekstein
- Dor Yeshorim, Committee for Prevention Jewish Genetic Diseases, Brooklyn, NY 11211, USA
| | - Sholem Scher
- Dor Yeshorim, Committee for Prevention Jewish Genetic Diseases, Brooklyn, NY 11211, USA
| | - Rick F. Nelson
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | | | - Kevin T. A. Booth
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Medical and Molecular Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Unger A, Roos A, Gangfuß A, Hentschel A, Gläser D, Krause K, Doering K, Schara-Schmidt U, Hoffjan S, Vorgerd M, Güttsches AK. Microscopic and Biochemical Hallmarks of BICD2-Associated Muscle Pathology toward the Evaluation of Novel Variants. Int J Mol Sci 2023; 24:ijms24076808. [PMID: 37047781 PMCID: PMC10095373 DOI: 10.3390/ijms24076808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
BICD2 variants have been linked to neurodegenerative disorders like spinal muscular atrophy with lower extremity predominance (SMALED2) or hereditary spastic paraplegia (HSP). Recently, mutations in BICD2 were implicated in myopathies. Here, we present one patient with a known and six patients with novel BICD2 missense variants, further characterizing the molecular landscape of this heterogenous neurological disorder. A total of seven patients were genotyped and phenotyped. Skeletal muscle biopsies were analyzed by histology, electron microscopy, and protein profiling to define pathological hallmarks and pathogenicity markers with consecutive validation using fluorescence microscopy. Clinical and MRI-features revealed a typical pattern of distal paresis of the lower extremities as characteristic features of a BICD2-associated disorder. Histological evaluation showed myopathic features of varying severity including fiber size variation, lipofibromatosis, and fiber splittings. Proteomic analysis with subsequent fluorescence analysis revealed an altered abundance and localization of thrombospondin-4 and biglycan. Our combined clinical, histopathological, and proteomic approaches provide new insights into the pathophysiology of BICD2-associated disorders, confirming a primary muscle cell vulnerability. In this context, biglycan and thrombospondin-4 have been identified, may serve as tissue pathogenicity markers, and might be linked to perturbed protein secretion based on an impaired vesicular transportation.
Collapse
Affiliation(s)
- Andreas Unger
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Disease (IfGH), University Hospital Münster, 48149 Münster, Germany
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Andreas Roos
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Andrea Gangfuß
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany
| | - Dieter Gläser
- Genetikum, Center for Human Genetics, 89231 Neu-Ulm, Germany
| | - Karsten Krause
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| | - Kristina Doering
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany
| | - Sabine Hoffjan
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| | - Anne-Katrin Güttsches
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr University Bochum, 44789 Bochum, Germany
| |
Collapse
|
14
|
Yi J, Zhao X, Noell CR, Helmer P, Solmaz SR, Vallee RB. Role of Nesprin-2 and RanBP2 in BICD2-associated brain developmental disorders. PLoS Genet 2023; 19:e1010642. [PMID: 36930595 PMCID: PMC10022797 DOI: 10.1371/journal.pgen.1010642] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/28/2023] [Indexed: 03/18/2023] Open
Abstract
Bicaudal D2 (BICD2) is responsible for recruiting cytoplasmic dynein to diverse forms of subcellular cargo for their intracellular transport. Mutations in the human BICD2 gene have been found to cause an autosomal dominant form of spinal muscular atrophy (SMA-LED2), and brain developmental defects. Whether and how the latter mutations are related to roles we and others have identified for BICD2 in brain development remains little understood. BICD2 interacts with the nucleoporin RanBP2 to recruit dynein to the nuclear envelope (NE) of Radial Glial Progenitor cells (RGPs) to mediate their well-known but mysterious cell-cycle-regulated interkinetic nuclear migration (INM) behavior, and their subsequent differentiation to form cortical neurons. We more recently found that BICD2 also mediates NE dynein recruitment in migrating post-mitotic neurons, though via a different interactor, Nesprin-2. Here, we report that Nesprin-2 and RanBP2 compete for BICD2-binding in vitro. To test the physiological implications of this behavior, we examined the effects of known BICD2 mutations using in vitro biochemical and in vivo electroporation-mediated brain developmental assays. We find a clear relationship between the ability of BICD2 to bind RanBP2 vs. Nesprin-2 in controlling of nuclear migration and neuronal migration behavior. We propose that mutually exclusive RanBP2-BICD2 vs. Nesprin-2-BICD2 interactions at the NE play successive, critical roles in INM behavior in RGPs and in post-mitotic neuronal migration and errors in these processes contribute to specific human brain malformations.
Collapse
Affiliation(s)
- Julie Yi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Xiaoxin Zhao
- Department of Chemistry, Binghamton University, Binghamton, New York, New York, United States of America
| | - Crystal R. Noell
- Department of Chemistry, Binghamton University, Binghamton, New York, New York, United States of America
| | - Paige Helmer
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| | - Sozanne R. Solmaz
- Department of Chemistry, Binghamton University, Binghamton, New York, New York, United States of America
| | - Richard B. Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
15
|
Mathur S, Gawas C, Ahmad IZ, Wani M, Tabassum H. Neurodegenerative disorders: Assessing the impact of natural vs drug-induced treatment options. Aging Med (Milton) 2023; 6:82-97. [PMID: 36911087 PMCID: PMC10000287 DOI: 10.1002/agm2.12243] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/29/2023] [Indexed: 02/24/2023] Open
Abstract
Neurodegenerative illnesses refer to the gradual, cumulative loss of neural activity. Neurological conditions are considered to be the second leading cause of mortality in the modern world and the two most prevalent ones are Parkinson's disease and Alzheimer's disease. The negative side effects of pharmaceutical use are a major global concern, despite the availability of many different treatments for therapy. We concentrated on different types of neurological problems and their influence on targets, in vitro, in vivo, and in silico methods toward neurological disorders, as well as the molecular approaches influencing the same, in the first half of the review. The bulk of the second half of the review focuses on the many categories of treatment possibilities, including natural and artificial. Nevertheless, herbal treatment solutions are piquing scholarly attention due to their anti-oxidative properties and accessibility. However, more quality investigations and innovations are undoubtedly needed to back up these conclusions.
Collapse
Affiliation(s)
- Sakshi Mathur
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Chaitali Gawas
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | | | - Minal Wani
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| | - Heena Tabassum
- Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil VidyapeethPuneMaharashtraIndia
| |
Collapse
|
16
|
Higuchi Y, Takashima H. Clinical genetics of Charcot-Marie-Tooth disease. J Hum Genet 2023; 68:199-214. [PMID: 35304567 DOI: 10.1038/s10038-022-01031-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 02/08/2023]
Abstract
Recent research in the field of inherited peripheral neuropathies (IPNs) such as Charcot-Marie-Tooth (CMT) disease has helped identify the causative genes provided better understanding of the pathogenesis, and unraveled potential novel therapeutic targets. Several reports have described the epidemiology, clinical characteristics, molecular pathogenesis, and novel causative genes for CMT/IPNs in Japan. Based on the functions of the causative genes identified so far, the following molecular and cellular mechanisms are believed to be involved in the causation of CMTs/IPNs: myelin assembly, cytoskeletal structure, myelin-specific transcription factor, nuclear related, endosomal sorting and cell signaling, proteasome and protein aggregation, mitochondria-related, motor proteins and axonal transport, tRNA synthetases and RNA metabolism, and ion channel-related mechanisms. In this article, we review the epidemiology, genetic diagnosis, and clinicogenetic characteristics of CMT in Japan. In addition, we discuss the newly identified novel causative genes for CMT/IPNs in Japan, namely MME and COA7. Identification of the new causes of CMT will facilitate in-depth characterization of the underlying molecular mechanisms of CMT, leading to the establishment of therapeutic approaches such as drug development and gene therapy.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan.
| |
Collapse
|
17
|
Luo K, Zheng C, Luo R, Cao X, Sun H, Ma H, Huang J, Yang X, Wu X, Li X. Identification and functional characterization of BICD2 as a candidate disease gene in an consanguineous family with dilated cardiomyopathy. BMC Med Genomics 2022; 15:189. [PMID: 36068540 PMCID: PMC9446846 DOI: 10.1186/s12920-022-01349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
Background Familial dilated cardiomyopathy (DCM) is a genetic cardiomyopathy that is associated with reduced left ventricle function or systolic function. Fifty-one DCM-causative genes have been reported, most of which are inherited in an autosomal dominant manner. However, recessive DCM-causative gene is rarely observed. Methods Whole-exome sequencing (WES) was performed in a consanguineous family with DCM to identify candidate variants. Sanger sequencing was utilized to confirm the variant. We then checked the DCM candidate gene in 210 sporadic DCM cases. We next explored BICD2 function in both embryonic and adult bicd2-knockout zebrafish models. In vivo cardiac function of bicd2-knockout fish was detected by echocardiography and RNA-seq. Results We identified an autosomal recessive and evolutionarily conserved missense variant, NM_001003800.1:c.2429G > A, in BICD2, which segregated with the disease phenotype in a consanguineous family with DCM. Furthermore, we confirmed the presence of BICD2 variants in 3 sporadic cases. Knockout of bicd2 resulted in partial embryonic lethality in homozygotes, suggesting a vital role for bicd2 in embryogenesis. Heart dilation and decreased ejection fraction, cardiac output and stroke volume were observed in bicd2-knockout zebrafish, suggesting a phenotype similar to human DCM. Furthermore, RNA-seq confirmed a larger transcriptome shift in in bicd2 homozygotes than in heterozygotes. Gene set enrichment analysis of bicd2-deficient fish showed the enrichment of altered gene expression in cardiac pathways and mitochondrial energy metabolism. Conclusions Our study first shows that BICD2 is a novel candidate gene associated with familial DCM, and our findings will facilitate further insights into the molecular pathological mechanisms of DCM. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01349-y.
Collapse
Affiliation(s)
- Kai Luo
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, People's Republic of China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, People's Republic of China
| | - Chenqing Zheng
- Shenzhen Aone Medical Laboratory Co., Ltd., Shenzhen, People's Republic of China
| | - Rong Luo
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu, People's Republic of China
| | - Xin Cao
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Huajun Sun
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, People's Republic of China.,Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, People's Republic of China
| | - Huihui Ma
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, People's Republic of China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, People's Republic of China
| | - Jichang Huang
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu, People's Republic of China
| | - Xu Yang
- Shenzhen Aone Medical Laboratory Co., Ltd., Shenzhen, People's Republic of China
| | - Xiushan Wu
- The Center for Heart Development, Hunan Normal University, Changsha, People's Republic of China. .,Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, People's Republic of China.
| | - Xiaoping Li
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, People's Republic of China. .,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
18
|
Yamamoto K, Ohashi K, Fujimoto M, Ieda D, Nakamura Y, Hattori A, Kaname T, Ieda K, Nishino I, Saitoh S. Long-term follow-up of a patient with autosomal dominant lower extremity-predominant spinal muscular atrophy-2 due to a BICD2 variant. Brain Dev 2022; 44:578-582. [PMID: 35527075 DOI: 10.1016/j.braindev.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/03/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Bicaudal D homolog 2 (BICD2) is a causative gene of autosomal-dominant lower extremity-predominant spinal muscular atrophy-2 (SMA-LED2). The severity of SMA-LED2 varies widely, ranging from cases in which patients are able to walk to cases in which severe joint contractures lead to respiratory failure. In this study, we report the long-term course of a case of SMA-LED2 in comparison with previous reports. CASE REPORT The patient was a 19-year-old woman. She had knee and hip dislocations with contractures, femoral fracture, and talipes calcaneovalgus since birth, and was diagnosed with arthrogryposis multiplex congenita. Intense respiratory support was not needed during the neonatal period. She had aspiration pneumonia repeatedly, necessitating NICU admission until 8 months of age. She achieved head control at 9 months of age and was able to sit at 2 years of age; however, she could not walk. Tube feeding was required until 3 years of age. At present, she can eat orally, move around with a wheelchair, and write words by herself. She needs non-invasive positive pressure ventilation during sleep because of a restrictive respiratory disorder during adolescence. Exome analysis identified a de novo heterozygous missense variant (c.2320G>A; p.Glu774Lys) in BICD2. CONCLUSION Patients with SMA-LED2 may have a relatively better prognosis in terms of social activities in comparison with the dysfunction in the neonatal period. Moreover, it is important to periodically evaluate respiratory function in patients with SMA-LED2 because respiratory dysfunction may occur during adolescence.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Pediatrics, Gifu Prefectural Tajimi Hospital, Gifu, Japan
| | - Kei Ohashi
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanori Fujimoto
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Daisuke Ieda
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuji Nakamura
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ayako Hattori
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kuniko Ieda
- Department of Pediatrics, Tosei General Hospital, Aichi, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
19
|
Caglayan AO, Tuysuz B, Gül E, Alkaya DU, Yalcinkaya C, Gleeson JG, Bilguvar K, Gunel M. Biallelic BICD2 variant is a novel candidate for Cohen-like syndrome. J Hum Genet 2022; 67:553-556. [PMID: 35338243 PMCID: PMC9420744 DOI: 10.1038/s10038-022-01032-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/19/2022] [Accepted: 03/07/2022] [Indexed: 11/21/2022]
Abstract
Heterozygous mutations in Bicaudal D2 Drosophila homolog 2 (BICD2) gene, encodes a vesicle transport protein involved in dynein-mediated movement along microtubules, are responsible for an exceedingly rare autosomal dominant spinal muscular atrophy type 2A which starts in the childhood and predominantly effects lower extremities. Recently, a more severe form, type 2B, has also been described. Here, we present a patient born to a consanguineous union and who suffered from intellectual disability, speech delay, epilepsy, happy facial expression, truncal obesity with tappering fingers, and joint hypermobility. Whole-exome sequencing analysis revealed a rare, homozygous missense mutation (c.731T>C; p.Leu244Pro) in BICD2 gene. This finding presents the first report in the literature for homozygous BICD2 mutations and its association with a Cohen-Like syndrome. Patients presenting with Cohen-Like phenotypes should be further interrogated for mutations in BICD2.
Collapse
Affiliation(s)
- Ahmet Okay Caglayan
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT, 06520-8082, USA.
| | - Beyhan Tuysuz
- Department of Pediatrics, Division of Pediatric Genetics, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Ece Gül
- Department of Pediatrics, Division of Pediatric Genetics, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Dilek Uludag Alkaya
- Department of Pediatrics, Division of Pediatric Genetics, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Cengiz Yalcinkaya
- Department of Neurology, Cerrahpasa Medical School, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Joseph G Gleeson
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, 92025, USA
| | - Kaya Bilguvar
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT, 06520-8082, USA
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Murat Gunel
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT, 06520-8082, USA
| |
Collapse
|
20
|
Oliwa A, Joseph S, Millar E, Horrocks I, Penman D, Baptista J, Cullup T, Constantinou P, Heuchan AM, Hamilton R, Longman C. Cataract, abnormal electroretinogram and visual evoked potentials in a child with SMA-LED2 - extending the phenotype. J Neuromuscul Dis 2022; 9:803-808. [PMID: 36057830 DOI: 10.3233/jnd-220818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This case report describes a girl who presented antenatal arthrogryposis and postnatal hypotonia, generalized and respiratory weakness, joint deformities particularly affecting the lower limbs and poor swallow. By 5 months, cataracts, abnormal electroretinograms, visual evoked potentials and global developmental impairments were recognized. No causative variants were identified on targeted gene panels. After her unexpected death at 11 months, gene-agnostic trio whole exome sequencing revealed a likely pathogenic de novo BICD2 missense variant, NM_001003800.1, c.593T>C, p.(Leu198Pro), confirming the diagnosis of spinal muscular atrophy lower extremity predominant type 2 (SMA-LED2). We propose that cataracts and abnormal electroretinograms are novel features of SMA-LED2.
Collapse
Affiliation(s)
- Agata Oliwa
- Undergraduate Medical School, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shuko Joseph
- Fraser of Allander Neurosciences Unit, Royal Hospital for Children, Glasgow, UK
| | - Eoghan Millar
- Department of Ophthalmology, Royal Hospital for Children, Glasgow, UK
| | - Iain Horrocks
- Fraser of Allander Neurosciences Unit, Royal Hospital for Children, Glasgow, UK
| | - Dawn Penman
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Julia Baptista
- Peninsula Medical School, Faculty of Heath, University of Plymouth, Plymouth, UK
| | - Thomas Cullup
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Panayiotis Constantinou
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Ruth Hamilton
- Department of Clinical Physics and Bioengineering, Royal Hospital for Children, NHS Greater Glasgow & Clyde, Glasgow, UK
| | - Cheryl Longman
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
21
|
A homozygous loss-of-function variant in BICD2 is associated with lissencephaly and cerebellar hypoplasia. J Hum Genet 2022; 67:669-673. [PMID: 35896821 PMCID: PMC9592554 DOI: 10.1038/s10038-022-01060-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022]
Abstract
Developmental brain malformations are rare but are increasingly reported features of BICD2-related disorders. Here, we report a 2-year old boy with microcephaly, profound delay and partial seizures. His brain MRI showed lissencephaly, hypogenesis of corpus callosum, dysplastic hipocampus and cerebellar hypoplasia. Whole-exome sequencing identified a novel homozygous likely pathogenic variant in the BICD2 gene, c.229 C > T p.(Gln77Ter). This is the first report of lissencephaly and cerebellar hypoplasia seen in a patient with homozygous loss-of-function variant in BICD2 that recapitulated the animal model. Our report supports that BICD2 should be considered in the differential diagnosis for patients with lissencephaly and cerebellar hypoplasia Additional clinical features of BICD2 are likely to emerge with the identification of additional patients.
Collapse
|
22
|
Aziz I, Davis M, Liang C. Late adult-onset spinal muscular atrophy with lower extremity predominance (SMALED). BMJ Case Rep 2022; 15:e248297. [PMID: 35354563 PMCID: PMC8968532 DOI: 10.1136/bcr-2021-248297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 11/04/2022] Open
Abstract
An elderly man in his early 80s presented with a 6-month history of worsening lower limb weakness on a background of a longer-standing waddling gait. Examination revealed bilateral scapular winging, and weakness in his proximal and distal lower limbs. Electromyography showed widespread chronic partial denervation changes, while sensory and motor nerve conduction parameters were preserved. After little progression over the course of 18 months, motor neuron disease was deemed less likely. Genetic testing revealed BICD2-related spinal muscular atrophy with lower extremity dominance (SMALED2), a disease that is usually of earlier onset. He is the oldest patient in the literature to be diagnosed with SMALED2 while maintaining ambulation, suggesting the milder spectrum of BICD2-related disease.
Collapse
Affiliation(s)
- Iqra Aziz
- Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Mark Davis
- Diagnostic Genomics, PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
| | - Christina Liang
- Department of Neurology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Gibson JM, Cui H, Ali MY, Zhao X, Debler EW, Zhao J, Trybus KM, Solmaz SR, Wang C. Coil-to-α-helix transition at the Nup358-BicD2 interface activates BicD2 for dynein recruitment. eLife 2022; 11:74714. [PMID: 35229716 PMCID: PMC8956292 DOI: 10.7554/elife.74714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Nup358, a protein of the nuclear pore complex, facilitates a nuclear positioning pathway that is essential for many biological processes, including neuromuscular and brain development. Nup358 interacts with the dynein adaptor Bicaudal D2 (BicD2), which in turn recruits the dynein machinery to position the nucleus. However, the molecular mechanisms of the Nup358/BicD2 interaction and the activation of transport remain poorly understood. Here for the first time, we show that a minimal Nup358 domain activates dynein/dynactin/BicD2 for processive motility on microtubules. Using nuclear magnetic resonance titration and chemical exchange saturation transfer, mutagenesis, and circular dichroism spectroscopy, a Nup358 α-helix encompassing residues 2162–2184 was identified, which transitioned from a random coil to an α-helical conformation upon BicD2 binding and formed the core of the Nup358-BicD2 interface. Mutations in this region of Nup358 decreased the Nup358/BicD2 interaction, resulting in decreased dynein recruitment and impaired motility. BicD2 thus recognizes Nup358 through a ‘cargo recognition α-helix,’ a structural feature that may stabilize BicD2 in its activated state and promote processive dynein motility.
Collapse
Affiliation(s)
- James M Gibson
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
| | - Heying Cui
- Department of Chemistry, Binghamton University, Binghamton, United States
| | - M Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
| | - Xioaxin Zhao
- Department of Biological Sciences, Binghamton University, Binghamton, United States
| | - Erik W Debler
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, United States
| | - Jing Zhao
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
| | - Sozanne R Solmaz
- Department of Chemistry, Binghamton University, Binghamton, United States
| | - Chunyu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
| |
Collapse
|
24
|
Neurogenic arthrogryposis and the power of phenotyping. Neuromuscul Disord 2021; 31:1062-1069. [PMID: 34736627 DOI: 10.1016/j.nmd.2021.07.399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/23/2022]
Abstract
In this article we review the commonest cause of neurogenic arthrogryposis, termed Spinal Muscular Atrophy Lower Extremity Dominant (SMALED), due to variants in DYNC1H1 and BICD2. We discuss the characteristic clinical and radiological phenotype of this disorder and how this has facilitated the identification of the genetic cause of SMALED2. We also review the similarities and differences between the human SMALED phenotype and mouse models and how this has informed our understanding of the potential mechanisms governing motor neuron loss in these disorders.
Collapse
|
25
|
McCray BA, Scherer SS. Axonal Charcot-Marie-Tooth Disease: from Common Pathogenic Mechanisms to Emerging Treatment Opportunities. Neurotherapeutics 2021; 18:2269-2285. [PMID: 34606075 PMCID: PMC8804038 DOI: 10.1007/s13311-021-01099-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/12/2023] Open
Abstract
Inherited peripheral neuropathies are a genetically and phenotypically diverse group of disorders that lead to degeneration of peripheral neurons with resulting sensory and motor dysfunction. Genetic neuropathies that primarily cause axonal degeneration, as opposed to demyelination, are most often classified as Charcot-Marie-Tooth disease type 2 (CMT2) and are the focus of this review. Gene identification efforts over the past three decades have dramatically expanded the genetic landscape of CMT and revealed several common pathological mechanisms among various forms of the disease. In some cases, identification of the precise genetic defect and/or the downstream pathological consequences of disease mutations have yielded promising therapeutic opportunities. In this review, we discuss evidence for pathogenic overlap among multiple forms of inherited neuropathy, highlighting genetic defects in axonal transport, mitochondrial dynamics, organelle-organelle contacts, and local axonal protein translation as recurrent pathological processes in inherited axonal neuropathies. We also discuss how these insights have informed emerging treatment strategies, including specific approaches for single forms of neuropathy, as well as more general approaches that have the potential to treat multiple types of neuropathy. Such therapeutic opportunities, made possible by improved understanding of molecular and cellular pathogenesis and advances in gene therapy technologies, herald a new and exciting phase in inherited peripheral neuropathy.
Collapse
Affiliation(s)
- Brett A. McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Steven S. Scherer
- Department of Neurology, The University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
26
|
Tadepalle N, Rugarli EI. Lipid Droplets in the Pathogenesis of Hereditary Spastic Paraplegia. Front Mol Biosci 2021; 8:673977. [PMID: 34041268 PMCID: PMC8141572 DOI: 10.3389/fmolb.2021.673977] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are genetically heterogeneous conditions caused by the progressive dying back of the longest axons in the central nervous system, the corticospinal axons. A wealth of data in the last decade has unraveled disturbances of lipid droplet (LD) biogenesis, maturation, turnover and contact sites in cellular and animal models with perturbed expression and function of HSP proteins. As ubiquitous organelles that segregate neutral lipid into a phospholipid monolayer, LDs are at the cross-road of several processes including lipid metabolism and trafficking, energy homeostasis, and stress signaling cascades. However, their role in brain cells, especially in neurons remains enigmatic. Here, we review experimental findings linking LD abnormalities to defective function of proteins encoded by HSP genes, and discuss arising questions in the context of the pathogenesis of HSP.
Collapse
Affiliation(s)
- Nimesha Tadepalle
- Molecular and Cell Biology Laboratory, Salk Institute of Biological Sciences, La Jolla, CA, United States
| | - Elena I Rugarli
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Center for Molecular Medicine (CMMC),Cologne, Germany
| |
Collapse
|
27
|
Tumurkhuu M, Batbuyan U, Yuzawa S, Munkhsaikhan Y, Batmunkh G, Nishimura W. A novel BICD2 mutation of a patient with Spinal Muscular Atrophy Lower Extremity Predominant 2. Intractable Rare Dis Res 2021; 10:102-108. [PMID: 33996355 PMCID: PMC8122317 DOI: 10.5582/irdr.2021.01004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The bicaudal D homolog 2 (BICD2) gene encodes a protein required for the stable complex of dynein and dynactin, which functions as a motor protein working along the microtubule cytoskeleton. Both inherited and de novo variants of BICD2 are reported with autosomal dominant spinal muscular atrophy with lower extremity predominance (SMALED2). Here, we report a male patient with a novel mutation in the BICD2 gene caused by a heterozygous substitution of arginine with cysteine at residue 162 (Arg162Cys); inherited from his asymptomatic mother. The patient showed typical clinical symptoms of SMALED2, which was genetically confirmed by sequencing. The Arg162Cys mutant clusters with four previously reported variants (c.361C>G, p.Leu121Val; c.581A>G, p.Gln194Arg; c.320C>T, p.Ser107Leu; c.565A>T, p.Ile189Phe) in a region that binds to the dynein-dynactin complex (DDC). The BICD2 domain structures were predicted and the Arg162Cys mutation was localized in the N-terminus coiled-coil segment 1 (CC1) domain. Protein modeling of BICD2's CC1 domain predicted that the Arg162Cys missense variant disrupted interactions with dynein cytoplasmic 1 heavy chain 1 within the DDC. The mutant did this by either changing the electrostatic surface potential or making a broader hydrophobic unit with the neighboring residues. This hereditary case supports the complex and broad genotype-phenotype correlation of BICD2 mutations, which could be explained by incomplete penetrance or variable expressivity in the next generation.
Collapse
Affiliation(s)
- Munkhtuya Tumurkhuu
- Department of Molecular Biology, International University of Health and Welfare, School of Medicine, Narita, Chiba, Japan
- Department of Genetics and Molecular Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Mongolia
- Address correspondence to:Munkhtuya Tumurkhuu, Department of Molecular Biology, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba 286-8686, Japan. E-mail: , munkhtuya.tumurkhuu@ gmail.com
| | - Uranchimeg Batbuyan
- Department of Genetics and Molecular Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Mongolia
| | - Satoru Yuzawa
- Department of Biochemistry, International University of Health and Welfare, School of Medicine, Narita, Chiba, Japan
| | - Yanjinlkham Munkhsaikhan
- Department of Genetics and Molecular Biology, School of Bio-Medicine, Mongolian National University of Medical Sciences, Mongolia
| | - Ganbayar Batmunkh
- Laboratory of Medical Genetics, National Center of Maternal and Child Health, Mongolia
| | - Wataru Nishimura
- Department of Molecular Biology, International University of Health and Welfare, School of Medicine, Narita, Chiba, Japan
| |
Collapse
|
28
|
Vallee RB, Yi J, Quintremil S, Khobrekar N. Roles of the multivalent dynein adaptors BicD2 and RILP in neurons. Neurosci Lett 2021; 752:135796. [PMID: 33667600 DOI: 10.1016/j.neulet.2021.135796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 01/18/2023]
Abstract
Cytoplasmic dynein is responsible for all forms of retrograde transport in neurons and other cells. Work over several years has led to the identification of a class of coiled-coil domain containing "adaptor" proteins that are responsible for expanding dynein's range of cargo interactions, as well as regulating dynein motor behavior. This brief review focuses first on the BicD family of adaptor proteins, which clearly serve to expand the number of dynein cargo interactions. RILP, another adaptor protein, also interacts with multiple proteins. Surprisingly, this is to mediate a series of steps within a common pathway, higher eukaryotic autophagy. These distinct features have important implications for understanding the full range of dynein adaptor functions.
Collapse
Affiliation(s)
- Richard B Vallee
- Columbia University, Department of Pathology and Cell Biology, United States
| | - Julie Yi
- Columbia University, Department of Pathology and Cell Biology, United States
| | | | - Noopur Khobrekar
- Columbia University, Department of Pathology and Cell Biology, United States.
| |
Collapse
|
29
|
Marchionni E, Agolini E, Mastromoro G, Guadagnolo D, Coppola G, Roggini M, Riminucci M, Novelli A, Giancotti A, Corsi A, Pizzuti A. Fetal early motor neuron disruption and prenatal molecular diagnosis in a severe BICD2-opathy. Am J Med Genet A 2021; 185:1509-1514. [PMID: 33547725 DOI: 10.1002/ajmg.a.62111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022]
Abstract
BICD2 (BICD Cargo Adaptor 2, MIM*609797) mutations are associated with severe prenatal-onset forms of spinal muscular atrophy, lower extremity-predominant 2B (SMALED2B MIM 618291) or milder forms with childhood-onset (SMALED2A MIM 615290). Etiopathogenesis is not fully clarified and a wide spectrum of phenotypic presentations is reported, ranging from extreme prenatal forms with adverse outcome, to slow progressive late-onset forms. We report a fetus at 22 gestational weeks with evidence of Arthrogryposis Multiplex Congenita on ultrasound, presenting with fixed extended lower limbs and flexed upper limbs, bilateral clubfoot and absent fetal movements. A trio-based prenatal Exome Sequencing was performed, disclosing a de novo heterozygous pathogenic in frame deletion (NM_015250.3: c.1636_1638delAAT; p.Asn546del) in BICD2. After pregnancy termination, quantitative analysis on NeuN immunostained spinal cord sections of the ventral horns, revealed that neuronal density was markedly reduced compared to the one of an age-matched normal fetus and an age-matched type-I Spinal Muscular Atrophy sample, used as a comparative model. The present case, the first prenatally diagnosed and neuropathologically characterized, showed an early motor neuron loss in SMALED2B, providing further insight into the pathological basis of BICD2-opathies.
Collapse
Affiliation(s)
- Enrica Marchionni
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Gioia Mastromoro
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniele Guadagnolo
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Coppola
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Mario Roggini
- Department of Pediatrics and Child Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Antonella Giancotti
- Department of Maternal and Child Health and Urologic Science, Sapienza University of Rome, Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.,Clinical Genomics Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| |
Collapse
|
30
|
Liu J, Huang Y, Li T, Jiang Z, Zeng L, Hu Z. The role of the Golgi apparatus in disease (Review). Int J Mol Med 2021; 47:38. [PMID: 33537825 PMCID: PMC7891830 DOI: 10.3892/ijmm.2021.4871] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
The Golgi apparatus is known to underpin many important cellular homeostatic functions, including trafficking, sorting and modifications of proteins or lipids. These functions are dysregulated in neurodegenerative diseases, cancer, infectious diseases and cardiovascular diseases, and the number of disease-related genes associated with Golgi apparatus is on the increase. Recently, many studies have suggested that the mutations in the genes encoding Golgi resident proteins can trigger the occurrence of diseases. By summarizing the pathogenesis of these genetic diseases, it was found that most of these diseases have defects in membrane trafficking. Such defects typically result in mislocalization of proteins, impaired glycosylation of proteins, and the accumulation of undegraded proteins. In the present review, we aim to understand the patterns of mutations in the genes encoding Golgi resident proteins and decipher the interplay between Golgi resident proteins and membrane trafficking pathway in cells. Furthermore, the detection of Golgi resident protein in human serum samples has the potential to be used as a diagnostic tool for diseases, and its central role in membrane trafficking pathways provides possible targets for disease therapy. Thus, we also introduced the clinical value of Golgi apparatus in the present review.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yan Huang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ting Li
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zheng Jiang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
31
|
Genetic mechanisms of peripheral nerve disease. Neurosci Lett 2020; 742:135357. [PMID: 33249104 DOI: 10.1016/j.neulet.2020.135357] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Peripheral neuropathies of genetic etiology are a very diverse group of disorders manifesting either as non-syndromic inherited neuropathies without significant manifestations outside the peripheral nervous system, or as part of a systemic or syndromic genetic disorder. The former and most frequent group is collectively known as Charcot-Marie-Tooth disease (CMT), with prevalence as high as 1:2,500 world-wide, and has proven to be genetically highly heterogeneous. More than 100 different genes have been identified so far to cause various CMT forms, following all possible inheritance patterns. CMT causative genes belong to several common functional pathways that are essential for the integrity of the peripheral nerve. Their discovery has provided insights into the normal biology of axons and myelinating cells, and has highlighted the molecular mechanisms including both loss of function and gain of function effects, leading to peripheral nerve degeneration. Demyelinating neuropathies result from dysfunction of genes primarily affecting myelinating Schwann cells, while axonal neuropathies are caused by genes affecting mostly neurons and their long axons. Furthermore, mutation in genes expressed outside the nervous system, as in the case of inherited amyloid neuropathies, may cause peripheral neuropathy resulting from accumulation of β-structured amyloid fibrils in peripheral nerves in addition to various organs. Increasing insights into the molecular-genetic mechanisms have revealed potential therapeutic targets. These will enable the development of novel therapeutics for genetic neuropathies that remain, in their majority, without effective treatment.
Collapse
|
32
|
Keren-Kaplan T, Bonifacino JS. ARL8 Relieves SKIP Autoinhibition to Enable Coupling of Lysosomes to Kinesin-1. Curr Biol 2020; 31:540-554.e5. [PMID: 33232665 DOI: 10.1016/j.cub.2020.10.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/16/2020] [Accepted: 10/23/2020] [Indexed: 01/24/2023]
Abstract
Long-range movement of organelles within the cytoplasm relies on coupling to microtubule motors, a process that is often mediated by adaptor proteins. In many cases, this coupling involves organelle- or adaptor-induced activation of the microtubule motors by conformational reversal of an autoinhibited state. Herein, we show that a similar regulatory mechanism operates for an adaptor protein named SKIP (also known as PLEKHM2). SKIP binds to the small guanosine triphosphatase (GTPase) ARL8 on the lysosomal membrane to couple lysosomes to the anterograde microtubule motor kinesin-1. Structure-function analyses of SKIP reveal that the C-terminal region comprising three pleckstrin homology (PH) domains interacts with the N-terminal region comprising ARL8- and kinesin-1-binding sites. This interaction inhibits coupling of lysosomes to kinesin-1 and, consequently, lysosome movement toward the cell periphery. We also find that ARL8 does not just recruit SKIP to the lysosomal membrane but also relieves SKIP autoinhibition, promoting kinesin-1-driven, anterograde lysosome transport. Finally, our analyses show that the largely disordered middle region of SKIP mediates self-association and that this self-association enhances the interaction of SKIP with kinesin-1. These findings indicate that SKIP is not just a passive connector of lysosome-bound ARL8 to kinesin-1 but is itself subject to intra- and inter-molecular interactions that regulate its function. We anticipate that similar organelle- or GTPase-induced conformational changes could regulate the activity of other kinesin adaptors.
Collapse
Affiliation(s)
- Tal Keren-Kaplan
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Liu X, Rao L, Gennerich A. The regulatory function of the AAA4 ATPase domain of cytoplasmic dynein. Nat Commun 2020; 11:5952. [PMID: 33230227 PMCID: PMC7683685 DOI: 10.1038/s41467-020-19477-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/19/2020] [Indexed: 11/08/2022] Open
Abstract
Cytoplasmic dynein is the primary motor for microtubule minus-end-directed transport and is indispensable to eukaryotic cells. Although each motor domain of dynein contains three active AAA+ ATPases (AAA1, 3, and 4), only the functions of AAA1 and 3 are known. Here, we use single-molecule fluorescence and optical tweezers studies to elucidate the role of AAA4 in dynein's mechanochemical cycle. We demonstrate that AAA4 controls the priming stroke of the motion-generating linker, which connects the dimerizing tail of the motor to the AAA+ ring. Before ATP binds to AAA4, dynein remains incapable of generating motion. However, when AAA4 is bound to ATP, the gating of AAA1 by AAA3 prevails and dynein motion can occur. Thus, AAA1, 3, and 4 work together to regulate dynein function. Our work elucidates an essential role for AAA4 in dynein's stepping cycle and underscores the complexity and crosstalk among the motor's multiple AAA+ domains.
Collapse
Affiliation(s)
- Xinglei Liu
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Lu Rao
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Arne Gennerich
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
34
|
Ravenscroft G, Clayton JS, Faiz F, Sivadorai P, Milnes D, Cincotta R, Moon P, Kamien B, Edwards M, Delatycki M, Lamont PJ, Chan SH, Colley A, Ma A, Collins F, Hennington L, Zhao T, McGillivray G, Ghedia S, Chao K, O'Donnell-Luria A, Laing NG, Davis MR. Neurogenetic fetal akinesia and arthrogryposis: genetics, expanding genotype-phenotypes and functional genomics. J Med Genet 2020; 58:609-618. [PMID: 33060286 DOI: 10.1136/jmedgenet-2020-106901] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/16/2020] [Accepted: 07/05/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Fetal akinesia and arthrogryposis are clinically and genetically heterogeneous and have traditionally been refractive to genetic diagnosis. The widespread availability of affordable genome-wide sequencing has facilitated accurate genetic diagnosis and gene discovery in these conditions. METHODS We performed next generation sequencing (NGS) in 190 probands with a diagnosis of arthrogryposis multiplex congenita, distal arthrogryposis, fetal akinesia deformation sequence or multiple pterygium syndrome. This sequencing was a combination of bespoke neurogenetic disease gene panels and whole exome sequencing. Only class 4 and 5 variants were reported, except for two cases where the identified variants of unknown significance (VUS) are most likely to be causative for the observed phenotype. Co-segregation studies and confirmation of variants identified by NGS were performed where possible. Functional genomics was performed as required. RESULTS Of the 190 probands, 81 received an accurate genetic diagnosis. All except two of these cases harboured class 4 and/or 5 variants based on the American College of Medical Genetics and Genomics guidelines. We identified phenotypic expansions associated with CACNA1S, CHRNB1, GMPPB and STAC3. We describe a total of 50 novel variants, including a novel missense variant in the recently identified gene for arthrogryposis with brain malformations-SMPD4. CONCLUSIONS Comprehensive gene panels give a diagnosis for a substantial proportion (42%) of fetal akinesia and arthrogryposis cases, even in an unselected cohort. Recently identified genes account for a relatively large proportion, 32%, of the diagnoses. Diagnostic-research collaboration was critical to the diagnosis and variant interpretation in many cases, facilitated genotype-phenotype expansions and reclassified VUS through functional genomics.
Collapse
Affiliation(s)
- Gina Ravenscroft
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia .,Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Joshua S Clayton
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.,Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, Western Australia, Australia
| | - Fathimath Faiz
- PathWest Diagnostic Genomics, Nedlands, Western Australia, Australia
| | - Padma Sivadorai
- PathWest Diagnostic Genomics, Nedlands, Western Australia, Australia
| | - Di Milnes
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Rob Cincotta
- Maternal and Fetal Medicine, Mater Mothers' Hospital, Brisbane, Queensland, Australia
| | - Phillip Moon
- Department of Obstetrics, Redland Hospital, Cleveland, Queensland, Australia
| | - Ben Kamien
- Genetic Services WA, Women and Newborn Heath Service, Subiaco, Western Australia, Australia.,Hunter Genetics, Hunter New England Health, New Lambton, New South Wales, Australia
| | - Matthew Edwards
- Hunter Genetics, Hunter New England Health, New Lambton, New South Wales, Australia
| | - Martin Delatycki
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Phillipa J Lamont
- Neurology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Sophelia Hs Chan
- Paediatric Neurology Division, Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong
| | - Alison Colley
- Clinical Genetics Services SWSLHD, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Alan Ma
- Department of Clinical Genetics, Children's Hospital Westmead, Sydney, New South Wales, Australia
| | - Felicity Collins
- Clinical Genetics Department, Western Sydney Genetics Program, Children's Hospitalat Westmead, Westmead, New South Wales, Australia
| | - Lucinda Hennington
- Mercy Health, Mercy Hospital for Women, Heidelberg, Victoria, Australia.,Austin Health, Melbourne, Victoria, Australia.,Alfred Health, Melbourne, Victoria, Australia
| | - Teresa Zhao
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - George McGillivray
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sondhya Ghedia
- Department of Clinical Genetics, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Katherine Chao
- Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Anne O'Donnell-Luria
- Center for Mendelian Genomics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Nigel G Laing
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.,Faculty of Health and Medical Sciences, University of Western Australia, Nedlands, Western Australia, Australia.,PathWest Diagnostic Genomics, Nedlands, Western Australia, Australia
| | - Mark R Davis
- PathWest Diagnostic Genomics, Nedlands, Western Australia, Australia
| |
Collapse
|
35
|
Mendoza-Ferreira N, Karakaya M, Cengiz N, Beijer D, Brigatti KW, Gonzaga-Jauregui C, Fuhrmann N, Hölker I, Thelen MP, Zetzsche S, Rombo R, Puffenberger EG, De Jonghe P, Deconinck T, Zuchner S, Strauss KA, Carson V, Schrank B, Wunderlich G, Baets J, Wirth B. De Novo and Inherited Variants in GBF1 are Associated with Axonal Neuropathy Caused by Golgi Fragmentation. Am J Hum Genet 2020; 107:763-777. [PMID: 32937143 PMCID: PMC7491385 DOI: 10.1016/j.ajhg.2020.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/19/2020] [Indexed: 01/18/2023] Open
Abstract
Distal hereditary motor neuropathies (HMNs) and axonal Charcot-Marie-Tooth neuropathy (CMT2) are clinically and genetically heterogeneous diseases characterized primarily by motor neuron degeneration and distal weakness. The genetic cause for about half of the individuals affected by HMN/CMT2 remains unknown. Here, we report the identification of pathogenic variants in GBF1 (Golgi brefeldin A-resistant guanine nucleotide exchange factor 1) in four unrelated families with individuals affected by sporadic or dominant HMN/CMT2. Genomic sequencing analyses in seven affected individuals uncovered four distinct heterozygous GBF1 variants, two of which occurred de novo. Other known HMN/CMT2-implicated genes were excluded. Affected individuals show HMN/CMT2 with slowly progressive distal muscle weakness and musculoskeletal deformities. Electrophysiological studies confirmed axonal damage with chronic neurogenic changes. Three individuals had additional distal sensory loss. GBF1 encodes a guanine-nucleotide exchange factor that facilitates the activation of members of the ARF (ADP-ribosylation factor) family of small GTPases. GBF1 is mainly involved in the formation of coatomer protein complex (COPI) vesicles, maintenance and function of the Golgi apparatus, and mitochondria migration and positioning. We demonstrate that GBF1 is present in mouse spinal cord and muscle tissues and is particularly abundant in neuropathologically relevant sites, such as the motor neuron and the growth cone. Consistent with the described role of GBF1 in Golgi function and maintenance, we observed marked increase in Golgi fragmentation in primary fibroblasts derived from all affected individuals in this study. Our results not only reinforce the existing link between Golgi fragmentation and neurodegeneration but also demonstrate that pathogenic variants in GBF1 are associated with HMN/CMT2.
Collapse
|
36
|
Viollet LM, Swoboda KJ, Mao R, Best H, Ha Y, Toutain A, Guyant-Marechal L, Laroche-Raynaud C, Ghorab K, Barthez MA, Pedespan JM, Hernandorena X, Lia AS, Deleuze JF, Masson C, Nelson I, Nectoux J, Si Y. A novel pathogenic variant in DYNC1H1 causes various upper and lower motor neuron anomalies. Eur J Med Genet 2020; 63:104063. [PMID: 32947049 DOI: 10.1016/j.ejmg.2020.104063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To perform genotype-phenotype, clinical and molecular analysis in a large 3-generation family with autosomal dominant congenital spinal muscular atrophy. METHODS Using a combined genetic approach including whole genome scanning, next generation sequencing-based multigene panel, whole genome sequencing, and targeted variant Sanger sequencing, we studied the proband and multiple affected individuals of this family who presented bilateral proximal lower limb muscle weakness and atrophy. RESULTS We identified a novel heterozygous variant, c.1826T > C; p.Ile609Thr, in the DYNC1H1 gene localized within the common haplotype in the 14q32.3 chromosomal region which cosegregated with disease in this large family. Within the family, affected individuals were found to have a wide array of clinical variability. Although some individuals presented the typical lower motor neuron phenotype with areflexia and denervation, others presented with muscle weakness and atrophy, hyperreflexia, and absence of denervation suggesting a predominant upper motor neuron disease. In addition, some affected individuals presented with an intermediate phenotype characterized by hyperreflexia and denervation, expressing a combination of lower and upper motor neuron defects. CONCLUSION Our study demonstrates the wide clinical variability associated with a single disease causing variant in DYNC1H1 gene and this variant demonstrated a high penetrance within this large family.
Collapse
Affiliation(s)
- Louis M Viollet
- Pediatric Motor Disorders Research Program and Department of Medical Genetics/Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Kathryn J Swoboda
- Pediatric Motor Disorders Research Program, University of Utah School of Medicine, Salt Lake City, UT and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Rong Mao
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories and Departments of Pathology and Medical Genetics/Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Hunter Best
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories and Departments of Pathology and Medical Genetics/Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Youna Ha
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, USA.
| | | | | | | | | | | | | | | | - Anne-Sophie Lia
- Biochimie et Genetique Moleculaire, Hopital Dupuytren, Limoges, France.
| | | | - Cecile Masson
- Institut Imagine, Hopital Necker Enfants Malades, Paris, France.
| | | | - Juliette Nectoux
- Biochimie et Genetique Moleculaire, Hopital Cochin, Paris, France.
| | - Yue Si
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories and Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA; Clinical Genomics Program, GeneDx, MD, USA.
| |
Collapse
|
37
|
Tsai MH, Cheng HY, Nian FS, Liu C, Chao NH, Chiang KL, Chen SF, Tsai JW. Impairment in dynein-mediated nuclear translocation by BICD2 C-terminal truncation leads to neuronal migration defect and human brain malformation. Acta Neuropathol Commun 2020; 8:106. [PMID: 32665036 PMCID: PMC7362644 DOI: 10.1186/s40478-020-00971-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
During brain development, the nucleus of migrating neurons follows the centrosome and translocates into the leading process. Defects in these migratory events, which affect neuronal migration, cause lissencephaly and other neurodevelopmental disorders. However, the mechanism of nuclear translocation remains elusive. Using whole exome sequencing (WES), we identified a novel nonsense BICD2 variant p.(Lys775Ter) (K775X) from a lissencephaly patient. Interestingly, most BICD2 missense variants have been associated with human spinal muscular atrophy (SMA) without obvious brain malformations. By in utero electroporation, we showed that BicD2 knockdown in mouse embryos inhibited neuronal migration. Surprisingly, we observed severe blockage of neuronal migration in cells overexpressing K775X but not in those expressing wild-type BicD2 or SMA-associated missense variants. The centrosome of the mutant was, on average, positioned farther away from the nucleus, indicating a failure in nuclear translocation without affecting the centrosome movement. Furthermore, BicD2 localized at the nuclear envelope (NE) through its interaction with NE protein Nesprin-2. K775X variant disrupted this interaction and further interrupted the NE recruitment of BicD2 and dynein. Remarkably, fusion of BicD2-K775X with NE-localizing domain KASH resumed neuronal migration. Our results underscore impaired nuclear translocation during neuronal migration as an important pathomechanism of lissencephaly.
Collapse
|
38
|
Picher-Martel V, Morin C, Brunet D, Dionne A. SMALED2 with BICD2 gene mutations: Report of two cases and portrayal of a classical phenotype. Neuromuscul Disord 2020; 30:669-673. [PMID: 32709491 DOI: 10.1016/j.nmd.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
The spinal muscular atrophies (SMA) affect lower motor neurons leading to important muscle atrophy and paralysis. Some cases of SMA affect mostly the lower limbs and are called autosomal dominant spinal muscular atrophy, lower extremity predominant (SMALED). So far, two genes have been identified to cause this phenotype, DYNC1H1 (SMALED1) and BICD2 (SMALED2). This pathology is rare, but patients exhibit classical features which should be recognised by physicians. We present two unrelated cases of SMALED2 with previously described c.320C>T BICD2 mutations. Our cases exhibit non-progressive weakness and atrophy of the lower limbs associated with contractures and unique muscle MRI findings suggestive of classical SMALED2. We also performed an extensive review of the literature to present the classical and atypical phenotypes of BICD2. Indeed, some features appear to be highly suggestive of the disease, including upper limb sparing, sparing of the adductors muscles on physical examination and MRI, congenital contractures and normal nerve conductions studies.
Collapse
Affiliation(s)
- Vincent Picher-Martel
- CERVO Brain Research Center, 2601 Chemin de la Canardière, Quebec, Quebec G1J 2G3, Canada; Université Laval, Québec, Canada; CHU de Québec, Hôpital de l'Enfant-Jésus, Département des sciences neurologiques, Quebec, Quebec, Canada.
| | - Clément Morin
- Centre régional de Rimouski, Département de neurologie, Quebec, Quebec, Canada
| | - Denis Brunet
- Université Laval, Québec, Canada; CHU de Québec, Hôpital de l'Enfant-Jésus, Département des sciences neurologiques, Quebec, Quebec, Canada
| | - Annie Dionne
- Université Laval, Québec, Canada; CHU de Québec, Hôpital de l'Enfant-Jésus, Département des sciences neurologiques, Quebec, Quebec, Canada
| |
Collapse
|
39
|
Beijer D, Sisto A, Van Lent J, Baets J, Timmerman V. Defects in Axonal Transport in Inherited Neuropathies. J Neuromuscul Dis 2020; 6:401-419. [PMID: 31561383 PMCID: PMC6918914 DOI: 10.3233/jnd-190427] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Axonal transport is a highly complex process essential for sustaining proper neuronal functioning. Disturbances can result in an altered neuronal homeostasis, aggregation of cargoes, and ultimately a dying-back degeneration of neurons. The impact of dysfunction in axonal transport is shown by genetic defects in key proteins causing a broad spectrum of neurodegenerative diseases, including inherited peripheral neuropathies. In this review, we provide an overview of the cytoskeletal components, molecular motors and adaptor proteins involved in axonal transport mechanisms and their implication in neuronal functioning. In addition, we discuss the involvement of axonal transport dysfunction in neurodegenerative diseases with a particular focus on inherited peripheral neuropathies. Lastly, we address some recent scientific advances most notably in therapeutic strategies employed in the area of axonal transport, patient-derived iPSC models, in vivo animal models, antisense-oligonucleotide treatments, and novel chemical compounds.
Collapse
Affiliation(s)
- Danique Beijer
- Neurogenetics Research Group, Department of Medical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| | - Angela Sisto
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| | - Jonas Van Lent
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| | - Jonathan Baets
- Neurogenetics Research Group, Department of Medical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium.,Neurology Department, University Hospital Antwerp, Antwerpen, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research Group, Department of Biomedical Sciences, University of Antwerp, Antwerpen, Belgium.,Neurogenetics Laboratory, Institute Born Bunge, Antwerpen, Belgium
| |
Collapse
|
40
|
Abstract
The intracellular transport system in neurons is specialized to an extraordinary degree, enabling the delivery of critical cargo to sites in axons or dendrites that are far removed from the cell center. Vesicles formed in the cell body are actively transported by kinesin motors along axonal microtubules to presynaptic sites that can be located more than a meter away. Both growth factors and degradative vesicles carrying aged organelles or aggregated proteins take the opposite route, driven by dynein motors. Distance is not the only challenge; precise delivery of cargos to sites of need must also be accomplished. For example, localized delivery of presynaptic components to hundreds of thousands of "en passant" synapses distributed along the length of a single axon in some neuronal subtypes provides a layer of complexity that must be successfully navigated to maintain synaptic transmission. We review recent advances in the field of axonal transport, with a focus on conceptual developments, and highlight our growing quantitative understanding of neuronal trafficking and its role in maintaining the synaptic function that underlies higher cognitive processes such as learning and memory.
Collapse
Affiliation(s)
- Pedro Guedes-Dias
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Institute of Neuronal Cell Biology, Technische Universität München, 80802 Munich, Germany
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Rossor AM, Sleigh JN, Groves M, Muntoni F, Reilly MM, Hoogenraad CC, Schiavo G. Loss of BICD2 in muscle drives motor neuron loss in a developmental form of spinal muscular atrophy. Acta Neuropathol Commun 2020; 8:34. [PMID: 32183910 PMCID: PMC7076953 DOI: 10.1186/s40478-020-00909-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/01/2020] [Indexed: 12/27/2022] Open
Abstract
Autosomal dominant missense mutations in BICD2 cause Spinal Muscular Atrophy Lower Extremity Predominant 2 (SMALED2), a developmental disease of motor neurons. BICD2 is a key component of the cytoplasmic dynein/dynactin motor complex, which in axons drives the microtubule-dependent retrograde transport of intracellular cargo towards the cell soma. Patients with pathological mutations in BICD2 develop malformations of cortical and cerebellar development similar to Bicd2 knockout (-/-) mice. In this study we sought to re-examine the motor neuron phenotype of conditional Bicd2-/- mice. Bicd2-/- mice show a significant reduction in the number of large calibre motor neurons of the L4 ventral root compared to wild type mice. Muscle-specific knockout of Bicd2 results in a similar reduction in L4 ventral axons comparable to global Bicd2-/- mice. Rab6, a small GTPase required for the sorting of exocytic vesicles from the Trans Golgi Network to the plasma membrane is a major binding partner of BICD2. We therefore examined the secretory pathway in SMALED2 patient fibroblasts and demonstrated that BICD2 is required for physiological flow of constitutive secretory cargoes from the Trans Golgi Network to the plasma membrane using a VSV-G reporter assay. Together, these data indicate that BICD2 loss from muscles is a major driver of non-cell autonomous pathology in the motor nervous system, which has important implications for future therapeutic approaches in SMALED2.
Collapse
Affiliation(s)
- Alexander M Rossor
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| | - James N Sleigh
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK
| | - Michael Groves
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre and National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, University College London Institute of Child Health, London, WC1N 1EH, UK
| | - Mary M Reilly
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Giampietro Schiavo
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.
- Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London, WC1N 3BG, UK.
| |
Collapse
|
42
|
Koboldt DC, Waldrop MA, Wilson RK, Flanigan KM. The Genotypic and Phenotypic Spectrum of
BICD2
Variants in Spinal Muscular Atrophy. Ann Neurol 2020; 87:487-496. [DOI: 10.1002/ana.25704] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel C. Koboldt
- Institute for Genomic Medicine Nationwide Children's Hospital Columbus OH
- Department of Pediatrics Ohio State University Columbus OH
| | - Megan A. Waldrop
- Department of Pediatrics Ohio State University Columbus OH
- Center for Gene Therapy Nationwide Children's Hospital Columbus OH
- Department of Neurology Ohio State University Columbus OH
| | - Richard K. Wilson
- Institute for Genomic Medicine Nationwide Children's Hospital Columbus OH
- Department of Pediatrics Ohio State University Columbus OH
| | - Kevin M. Flanigan
- Department of Pediatrics Ohio State University Columbus OH
- Center for Gene Therapy Nationwide Children's Hospital Columbus OH
- Department of Neurology Ohio State University Columbus OH
| |
Collapse
|
43
|
Frasquet M, Camacho A, Vílchez R, Argente‐Escrig H, Millet E, Vázquez‐Costa JF, Silla R, Sánchez‐Monteagudo A, Vílchez JJ, Espinós C, Lupo V, Sevilla T. Clinical spectrum of
BICD2
mutations. Eur J Neurol 2020; 27:1327-1335. [DOI: 10.1111/ene.14173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/03/2020] [Indexed: 11/27/2022]
Affiliation(s)
- M. Frasquet
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
| | - A. Camacho
- Division of Child Neurology Hospital Universitario 12 de Octubre MadridSpain
- Faculty of Medicine Complutense University of Madrid Madrid Spain
| | - R. Vílchez
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
| | - H. Argente‐Escrig
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ValenciaSpain
| | - E. Millet
- Department of Clinical Neurophysiology Hospital Universitari i Politècnic La Fe ValenciaSpain
| | - J. F. Vázquez‐Costa
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ValenciaSpain
- Department of Medicine Universitat de València ValenciaSpain
| | - R. Silla
- Neurology Department Hospital Clínico Universitario ValenciaSpain
| | - A. Sánchez‐Monteagudo
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Service of Genomics and Translational Genetics Centro de Investigación Príncipe Felipe (CIPF) ValenciaSpain
| | - J. J. Vílchez
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ValenciaSpain
| | - C. Espinós
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Service of Genomics and Translational Genetics Centro de Investigación Príncipe Felipe (CIPF) ValenciaSpain
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders ValenciaSpain
- Department of Genetics Universitat de València Valencia Spain
| | - V. Lupo
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Service of Genomics and Translational Genetics Centro de Investigación Príncipe Felipe (CIPF) ValenciaSpain
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders ValenciaSpain
| | - T. Sevilla
- Neuromuscular Diseases Unit Neurology Department Hospital Universitari i Politècnic La Fe ValenciaSpain
- Neuromuscular & Ataxias Research Group Instituto de Investigación Sanitaria La Fe ValenciaSpain
- Joint Unit for Research on Rare Diseases CIPF‐IISLa Fe Valencia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ValenciaSpain
- Department of Medicine Universitat de València ValenciaSpain
| |
Collapse
|
44
|
Cui H, Noell CR, Behler RP, Zahn JB, Terry LR, Russ BB, Solmaz SR. Adapter Proteins for Opposing Motors Interact Simultaneously with Nuclear Pore Protein Nup358. Biochemistry 2019; 58:5085-5097. [PMID: 31756096 DOI: 10.1021/acs.biochem.9b00907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nup358 is a protein subunit of the nuclear pore complex that recruits the opposing microtubule motors kinesin-1 and dynein [via the dynein adaptor Bicaudal D2 (BicD2)] to the nuclear envelope. This pathway is important for positioning of the nucleus during the early steps of mitotic spindle assembly and also essential for an important process in brain development. It is unknown whether dynein and kinesin-1 interact with Nup358 simultaneously or whether they compete. Here, we have reconstituted and characterized a minimal complex of kinesin-1 light chain 2 (KLC2) and Nup358. The proteins interact through a W-acidic motif in Nup358, which is highly conserved among vertebrates but absent in insects. While Nup358 and KLC2 form predominantly monomers, their interaction results in the formation of 2:2 complexes, and the W-acidic motif is required for the oligomerization. In active motor complexes, BicD2 and KLC2 each form dimers. Notably, we show that the dynein adaptor BicD2 and KLC2 interact simultaneously with Nup358, resulting in the formation of 2:2:2 complexes. Mutation of the W-acidic motif results in the formation of 1:1:1 complexes. On the basis of our data, we propose that Nup358 recruits simultaneously one kinesin-1 motor and one dynein motor via BicD2 to the nucleus. We hypothesize that the binding sites are close enough to promote direct interactions between these motor recognition domains, which may be important for the regulation of the motility of these opposing motors. Our data provide important insights into a nuclear positioning pathway that is crucial for brain development and faithful chromosome segregation.
Collapse
Affiliation(s)
- Heying Cui
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Crystal R Noell
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Rachael P Behler
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Jacqueline B Zahn
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Lynn R Terry
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Blaine B Russ
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Sozanne R Solmaz
- Department of Chemistry , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| |
Collapse
|
45
|
Will L, Portegies S, van Schelt J, van Luyk M, Jaarsma D, Hoogenraad CC. Dynein activating adaptor BICD2 controls radial migration of upper-layer cortical neurons in vivo. Acta Neuropathol Commun 2019; 7:162. [PMID: 31655624 PMCID: PMC6815425 DOI: 10.1186/s40478-019-0827-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/03/2019] [Indexed: 01/19/2023] Open
Abstract
For the proper organization of the six-layered mammalian neocortex it is required that neurons migrate radially from their place of birth towards their designated destination. The molecular machinery underlying this neuronal migration is still poorly understood. The dynein-adaptor protein BICD2 is associated with a spectrum of human neurological diseases, including malformations of cortical development. Previous studies have shown that knockdown of BICD2 interferes with interkinetic nuclear migration in radial glial progenitor cells, and that Bicd2-deficient mice display an altered laminar organization of the cerebellum and the neocortex. However, the precise in vivo role of BICD2 in neocortical development remains unclear. By comparing cell-type specific conditional Bicd2 knock-out mice, we found that radial migration in the cortex predominantly depends on BICD2 function in post-mitotic neurons. Neuron-specific Bicd2 cKO mice showed severely impaired radial migration of late-born upper-layer neurons. BICD2 depletion in cortical neurons interfered with proper Golgi organization, and neuronal maturation and survival of cortical plate neurons. Single-neuron labeling revealed a specific role of BICD2 in bipolar locomotion. Rescue experiments with wildtype and disease-related mutant BICD2 constructs revealed that a point-mutation in the RAB6/RANBP2-binding-domain, associated with cortical malformation in patients, fails to restore proper cortical neuron migration. Together, these findings demonstrate a novel, cell-intrinsic role of BICD2 in cortical neuron migration in vivo and provide new insights into BICD2-dependent dynein-mediated functions during cortical development.
Collapse
|
46
|
Atkins M, Gasmi L, Bercier V, Revenu C, Del Bene F, Hazan J, Fassier C. FIGNL1 associates with KIF1Bβ and BICD1 to restrict dynein transport velocity during axon navigation. J Cell Biol 2019; 218:3290-3306. [PMID: 31541015 PMCID: PMC6781435 DOI: 10.1083/jcb.201805128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 05/30/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
Atkins et al. identify a new role for Fidgetin-like 1 in motor axon navigation via its regulation of bidirectional axonal transport. They show that Fidgetin-like 1 binds Kif1bβ and the opposed polarity-directed motor dynein/dynactin in a molecular complex and controls circuit wiring by reducing dynein velocity in developing motor axons. Neuronal connectivity relies on molecular motor-based axonal transport of diverse cargoes. Yet the precise players and regulatory mechanisms orchestrating such trafficking events remain largely unknown. We here report the ATPase Fignl1 as a novel regulator of bidirectional transport during axon navigation. Using a yeast two-hybrid screen and coimmunoprecipitation assays, we showed that Fignl1 binds the kinesin Kif1bβ and the dynein/dynactin adaptor Bicaudal D-1 (Bicd1) in a molecular complex including the dynactin subunit dynactin 1. Fignl1 colocalized with Kif1bβ and showed bidirectional mobility in zebrafish axons. Notably, Kif1bβ and Fignl1 loss of function similarly altered zebrafish motor axon pathfinding and increased dynein-based transport velocity of Rab3 vesicles in these navigating axons, pinpointing Fignl1/Kif1bβ as a dynein speed limiter complex. Accordingly, disrupting dynein/dynactin activity or Bicd1/Fignl1 interaction induced motor axon pathfinding defects characteristic of Fignl1 gain or loss of function, respectively. Finally, pharmacological inhibition of dynein activity partially rescued the axon pathfinding defects of Fignl1-depleted larvae. Together, our results identify Fignl1 as a key dynein regulator required for motor circuit wiring.
Collapse
Affiliation(s)
- Melody Atkins
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Laïla Gasmi
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Valérie Bercier
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Céline Revenu
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Filippo Del Bene
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Jamilé Hazan
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Coralie Fassier
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| |
Collapse
|
47
|
Bergendahl LT, Gerasimavicius L, Miles J, Macdonald L, Wells JN, Welburn JPI, Marsh JA. The role of protein complexes in human genetic disease. Protein Sci 2019; 28:1400-1411. [PMID: 31219644 DOI: 10.1002/pro.3667] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
Many human genetic disorders are caused by mutations in protein-coding regions of DNA. Taking protein structure into account has therefore provided key insight into the molecular mechanisms underlying human genetic disease. Although most studies have focused on the intramolecular effects of mutations, the critical role of the assembly of proteins into complexes is being increasingly recognized. Here, we review multiple ways in which consideration of protein complexes can help us to understand and explain the effects of pathogenic mutations. First, we discuss disorders caused by mutations that perturb intersubunit interactions in homomeric and heteromeric complexes. Second, we address how protein complex assembly can facilitate a dominant-negative mechanism, whereby mutated subunits can disrupt the activity of wild-type protein. Third, we show how mutations that change protein expression levels can lead to damaging stoichiometric imbalances. Finally, we review how mutations affecting different subunits of the same heteromeric complex often cause similar diseases, whereas mutations in different interfaces of the same subunit can cause distinct phenotypes.
Collapse
Affiliation(s)
- L Therese Bergendahl
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Lukas Gerasimavicius
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Jamilla Miles
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Lewis Macdonald
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Jonathan N Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, 14850
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| |
Collapse
|
48
|
Zhou Y, Li Z, Ding Y, Zhang P, Wang J. WITHDRAWN: MicroRNA-340 suppresses pancreatic cancer growth by targeting BICD2. Pancreatology 2019:S1424-3903(19)30556-3. [PMID: 31153780 DOI: 10.1016/j.pan.2019.05.453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Yong Zhou
- Department of General Surgery, The Second Affiliated Hospital of Shandong University, Ji'nan City, Shandong Province, 250033, PR China
| | - Zhaohua Li
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong University, Ji'nan City, Shandong Province, 250033, PR China.
| | - Yinglu Ding
- Department of General Surgery, The Second Affiliated Hospital of Shandong University, Ji'nan City, Shandong Province, 250033, PR China
| | - Peng Zhang
- Department of General Surgery, The Second Affiliated Hospital of Shandong University, Ji'nan City, Shandong Province, 250033, PR China
| | - Jinqing Wang
- Department of General Surgery, The Second Affiliated Hospital of Shandong University, Ji'nan City, Shandong Province, 250033, PR China
| |
Collapse
|
49
|
Caracci MO, Fuentealba LM, Marzolo MP. Golgi Complex Dynamics and Its Implication in Prevalent Neurological Disorders. Front Cell Dev Biol 2019; 7:75. [PMID: 31134199 PMCID: PMC6514153 DOI: 10.3389/fcell.2019.00075] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Coupling of protein synthesis with protein delivery to distinct subcellular domains is essential for maintaining cellular homeostasis, and defects thereof have consistently been shown to be associated with several diseases. This function is particularly challenging for neurons given their polarized nature and differential protein requirements in synaptic boutons, dendrites, axons, and soma. Long-range trafficking is greatly enhanced in neurons by discrete mini-organelles resembling the Golgi complex (GC) referred to as Golgi outposts (GOPs) which play an essential role in the development of dendritic arborization. In this context, the morphology of the GC is highly plastic, and the polarized distribution of this organelle is necessary for neuronal migration and polarized growth. Furthermore, synaptic components are readily trafficked and modified at GOP suggesting a function for this organelle in synaptic plasticity. However, little is known about GOPs properties and biogenesis and the role of GOP dysregulation in pathology. In this review, we discuss current literature supporting a role for GC dynamics in prevalent neurological disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and epilepsy, and examine the association of these disorders with the wide-ranging effects of GC function on common cellular pathways regulating neuronal excitability, polarity, migration, and organellar stress. First, we discuss the role of Golgins and Golgi-associated proteins in the regulation of GC morphology and dynamics. Then, we consider abnormal GC arrangements observed in neurological disorders and associations with common neuronal defects therein. Finally, we consider the cell signaling pathways involved in the modulation of GC dynamics and argue for a master regulatory role for Reelin signaling, a well-known regulator of neuronal polarity and migration. Determining the cellular pathways involved in shaping the Golgi network will have a direct and profound impact on our current understanding of neurodevelopment and neuropathology and aid the development of novel therapeutic strategies for improved patient care and prognosis.
Collapse
Affiliation(s)
- Mario O Caracci
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luz M Fuentealba
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María-Paz Marzolo
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
50
|
Martinez Carrera LA, Gabriel E, Donohoe CD, Hölker I, Mariappan A, Storbeck M, Uhlirova M, Gopalakrishnan J, Wirth B. Novel insights into SMALED2: BICD2 mutations increase microtubule stability and cause defects in axonal and NMJ development. Hum Mol Genet 2019. [PMID: 29528393 DOI: 10.1093/hmg/ddy086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bicaudal D2 (BICD2) encodes a highly conserved motor adaptor protein that regulates the dynein-dynactin complex in different cellular processes. Heterozygous mutations in BICD2 cause autosomal dominant lower extremity-predominant spinal muscular atrophy-2 (SMALED2). Although, various BICD2 mutations have been shown to alter interactions with different binding partners or the integrity of the Golgi apparatus, the specific pathological effects of BICD2 mutations underlying SMALED2 remain elusive. Here, we show that the fibroblasts derived from individuals with SMALED2 exhibit stable microtubules. Importantly, this effect was observed regardless of where the BICD2 mutation is located, which unifies the most likely cellular mechanism affecting microtubules. Significantly, overexpression of SMALED2-causing BICD2 mutations in the disease-relevant cell type, motor neurons, also results in an increased microtubule stability which is accompanied by axonal aberrations such as collateral branching and overgrowth. To study the pathological consequences of BICD2 mutations in vivo, and to address the controversial debate whether two of these mutations are neuron or muscle specific, we generated the first Drosophila model of SMALED2. Strikingly, neuron-specific expression of BICD2 mutants resulted in reduced neuromuscular junction size in larvae and impaired locomotion of adult flies. In contrast, expressing BICD2 mutations in muscles had no obvious effect on motor function, supporting a primarily neurological etiology of the disease. Thus, our findings contribute to the better understanding of SMALED2 pathology by providing evidence for a common pathomechanism of BICD2 mutations that increase microtubule stability in motor neurons leading to increased axonal branching and to impaired neuromuscular junction development.
Collapse
Affiliation(s)
- Lilian A Martinez Carrera
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Elke Gabriel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Colin D Donohoe
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Irmgard Hölker
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Aruljothi Mariappan
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Markus Storbeck
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Mirka Uhlirova
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Jay Gopalakrishnan
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.,Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.,Center for Rare Diseases Cologne, University Hospital of Cologne, 50931 Cologne, Germany
| |
Collapse
|