1
|
Musfee FI, Jun G, Mitchell LE, Chen H, Guo D, Prakash SK, Adkar SS, Grove ML, Choi RB, Klarin D, Boerwinkle E, Milewicz DM. X-linked genetic associations in sporadic thoracic aortic dissection. Am J Med Genet A 2024; 194:e63644. [PMID: 38688863 PMCID: PMC11315632 DOI: 10.1002/ajmg.a.63644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2024] [Accepted: 04/13/2024] [Indexed: 05/02/2024]
Abstract
The male predominance in sporadic thoracic aortic aneurysm and dissection (TAD) suggests that the X chromosome contributes to TAD, but this has not been tested. We investigated whether X-linked variation-common (minor allele frequency [MAF] ≥0.01) and rare (MAF <0.01)-was associated with sporadic TAD in three cohorts of European descent (Discovery: 364 cases, 874 controls; Replication: 516 cases, 440,131 controls, and ARIC [Atherosclerosis Risk in Communities study]: 753 cases, 2247 controls). For analysis of common variants, we applied a sex-stratified logistic regression model followed by a meta-analysis of sex-specific odds ratios. Furthermore, we conducted a meta-analysis of overlapping common variants between the Discovery and Replication cohorts. For analysis of rare variants, we used a sex-stratified optimized sequence kernel association test model. Common variants results showed no statistically significant findings in the Discovery cohort. An intergenic common variant near SPANXN1 was statistically significant in the Replication cohort (p = 1.81 × 10-8). The highest signal from the meta-analysis of the Discovery and Replication cohorts was a ZNF182 intronic common variant (p = 3.5 × 10-6). In rare variants results, RTL9 reached statistical significance (p = 5.15 × 10-5). Although most of our results were statistically insignificant, our analysis is the most comprehensive X-chromosome association analysis of sporadic TAD to date.
Collapse
Affiliation(s)
- Fadi I. Musfee
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Goo Jun
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Laura E. Mitchell
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dongchuan Guo
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Siddharth K. Prakash
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| | - Shaunak Sanjay Adkar
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Megan L. Grove
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ryan Bohyun Choi
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Derek Klarin
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Dianna M. Milewicz
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, TX 77030, USA
| |
Collapse
|
2
|
Katz AE, Gupte T, Ganesh SK. From Atherosclerosis to Spontaneous Coronary Artery Dissection: Defining a Clinical and Genetic Risk Spectrum for Myocardial Infarction. Curr Atheroscler Rep 2024; 26:331-340. [PMID: 38761354 DOI: 10.1007/s11883-024-01208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE OF REVIEW Spontaneous coronary artery dissection (SCAD) has been increasingly recognized as a significant cause of acute myocardial infarction (AMI) in young and middle-aged women and arises through mechanisms independent of atherosclerosis. SCAD has a multifactorial etiology that includes environmental, individual, and genetic factors distinct from those typically associated with coronary artery disease. Here, we summarize the current understanding of the genetic factors contributing to the development of SCAD and highlight those factors which differentiate SCAD from atherosclerotic coronary artery disease. RECENT FINDINGS Recent studies have revealed several associated variants with varying effect sizes for SCAD, giving rise to a complex genetic architecture. Associated genes highlight an important role for arterial cells and their extracellular matrix in the pathogenesis of SCAD, as well as notable genetic overlap between SCAD and other systemic arteriopathies such as fibromuscular dysplasia and vascular connective tissue diseases. Further investigation of individual variants (including in the associated gene PHACTR1) along with polygenic score analysis have demonstrated an inverse genetic relationship between SCAD and atherosclerosis as distinct causes of AMI. SCAD represents an increasingly recognized cause of AMI with opposing clinical and genetic risk factors from that of AMI due to atherosclerosis, and it is often associated with complex underlying genetic conditions. Genetic study of SCAD on a larger scale and with more diverse cohorts will not only further our evolving understanding of a newly defined genetic spectrum for AMI, but it will also inform the clinical utility of integrating genetic testing in AMI prevention and management moving forward.
Collapse
Affiliation(s)
- Alexander E Katz
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Trisha Gupte
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Santhi K Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Hautakangas H, Palotie A, Pirinen M. Fine-mapping a genome-wide meta-analysis of 98,374 migraine cases identifies 181 sets of candidate causal variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.20.24307608. [PMID: 39371129 PMCID: PMC11451805 DOI: 10.1101/2024.05.20.24307608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Migraine is a highly prevalent neurovascular disorder for which genome-wide association studies (GWAS) have identified over one hundred risk loci, yet the causal variants and genes remain mostly unknown. Here, we meta-analyzed three migraine GWAS including 98,374 cases and 869,160 controls and identified 122 independent risk loci of which 35 were new. Fine-mapping of a meta-analysis is challenging because some variants may be missing from some participating studies and accurate linkage disequilibrium (LD) information of the variants is often not available. Here, using the exact in-sample LD, we first investigated which statistics could reliably capture the quality of fine-mapping when only reference LD was available. We observed that the posterior expected number of causal variants best distinguished between the high- and low-quality results. Next, we performed fine-mapping for 102 autosomal risk regions using FINEMAP. We produced high-quality fine-mapping for 93 regions and defined 181 distinct credible sets. Among the high-quality credible sets were 7 variants with very high posterior inclusion probability (PIP > 0.9) and 2 missense variants with PIP > 0.5 (rs6330 in NGF and rs1133400 in INPP5A). For 35 association signals, we managed to narrow down the set of potential risk variants to at most 5 variants.
Collapse
Affiliation(s)
- Heidi Hautakangas
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | | | | | | | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Department of Neurology and Department of Psychiatry Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research and Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Vandersteen AM, Weerakkody RA, Parry DA, Kanonidou C, Toddie-Moore DJ, Vandrovcova J, Darlay R, Santoyo-Lopez J, Meynert A, Kazkaz H, Grahame R, Cummings C, Bartlett M, Ghali N, Brady AF, Pope FM, van Dijk FS, Cordell HJ, Aitman TJ. Genetic complexity of diagnostically unresolved Ehlers-Danlos syndrome. J Med Genet 2024; 61:232-238. [PMID: 37813462 DOI: 10.1136/jmg-2023-109329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND The Ehlers-Danlos syndromes (EDS) are heritable disorders of connective tissue (HDCT), reclassified in the 2017 nosology into 13 subtypes. The genetic basis for hypermobile Ehlers-Danlos syndrome (hEDS) remains unknown. METHODS Whole exome sequencing (WES) was undertaken on 174 EDS patients recruited from a national diagnostic service for complex EDS and a specialist clinic for hEDS. Patients had already undergone expert phenotyping, laboratory investigation and gene sequencing, but were without a genetic diagnosis. Filtered WES data were reviewed for genes underlying Mendelian disorders and loci reported in EDS linkage, transcriptome and genome-wide association studies (GWAS). A genetic burden analysis (Minor Allele Frequency (MAF) <0.05) incorporating 248 Avon Longitudinal Study of Parents and Children (ALSPAC) controls sequenced as part of the UK10K study was undertaken using TASER methodology. RESULTS Heterozygous pathogenic (P) or likely pathogenic (LP) variants were identified in known EDS and Loeys-Dietz (LDS) genes. Multiple variants of uncertain significance where segregation and functional analysis may enable reclassification were found in genes associated with EDS, LDS, heritable thoracic aortic disease (HTAD), Mendelian disorders with EDS symptomatology and syndromes with EDS-like features. Genetic burden analysis revealed a number of novel loci, although none reached the threshold for genome-wide significance. Variants with biological plausibility were found in genes and pathways not currently associated with EDS or HTAD. CONCLUSIONS We demonstrate the clinical utility of large panel-based sequencing and WES for patients with complex EDS in distinguishing rare EDS subtypes, LDS and related syndromes. Although many of the P and LP variants reported in this cohort would be identified with current panel testing, they were not at the time of this study, highlighting the use of extended panels and WES as a clinical tool for complex EDS. Our results are consistent with the complex genetic architecture of EDS and suggest a number of novel hEDS and HTAD candidate genes and pathways.
Collapse
Affiliation(s)
- Anthony M Vandersteen
- Maritime Medical Genetics Service, IWK Health Centre, Halifax, Nova Scotia, Canada
- Faculty of Medicine, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ruwan A Weerakkody
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Institute of Clinical Sciences, Imperial College London, London, UK
- Department of Vascular Surgery, Royal Free Hospital, London, UK
| | - David A Parry
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Christina Kanonidou
- Department of Clinical Biochemistry, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Daniel J Toddie-Moore
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Street Institute of Neurology, University College London, London, UK
| | - Rebecca Darlay
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Alison Meynert
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, UK
| | - Hanadi Kazkaz
- Department of Rheumatology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Rodney Grahame
- Department of Rheumatology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Carole Cummings
- Ehlers-Danlos Syndrome National Diagnostic Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, Harrow, UK
- Department of Metabolism, Digestion and Reproduction Section of Genetics and Genomics, Imperial College London, London, UK
| | - Marion Bartlett
- Ehlers-Danlos Syndrome National Diagnostic Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, Harrow, UK
- Department of Metabolism, Digestion and Reproduction Section of Genetics and Genomics, Imperial College London, London, UK
| | - Neeti Ghali
- Ehlers-Danlos Syndrome National Diagnostic Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, Harrow, UK
- Department of Metabolism, Digestion and Reproduction Section of Genetics and Genomics, Imperial College London, London, UK
| | - Angela F Brady
- Ehlers-Danlos Syndrome National Diagnostic Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, Harrow, UK
- Department of Metabolism, Digestion and Reproduction Section of Genetics and Genomics, Imperial College London, London, UK
| | - F Michael Pope
- Ehlers-Danlos Syndrome National Diagnostic Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, Harrow, UK
- Department of Metabolism, Digestion and Reproduction Section of Genetics and Genomics, Imperial College London, London, UK
| | - Fleur S van Dijk
- Ehlers-Danlos Syndrome National Diagnostic Service, London North West University Healthcare NHS Trust, Northwick Park Hospital, Harrow, UK
- Department of Metabolism, Digestion and Reproduction Section of Genetics and Genomics, Imperial College London, London, UK
| | - Heather J Cordell
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Timothy J Aitman
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 182] [Impact Index Per Article: 182.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
6
|
Singh AA, Shetty DK, Jacob AG, Bayraktar S, Sinha S. Understanding genomic medicine for thoracic aortic disease through the lens of induced pluripotent stem cells. Front Cardiovasc Med 2024; 11:1349548. [PMID: 38440211 PMCID: PMC10910110 DOI: 10.3389/fcvm.2024.1349548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Thoracic aortic disease (TAD) is often silent until a life-threatening complication occurs. However, genetic information can inform both identification and treatment at an early stage. Indeed, a diagnosis is important for personalised surveillance and intervention plans, as well as cascade screening of family members. Currently, only 20% of heritable TAD patients have a causative mutation identified and, consequently, further advances in genetic coverage are required to define the remaining molecular landscape. The rapid expansion of next generation sequencing technologies is providing a huge resource of genetic data, but a critical issue remains in functionally validating these findings. Induced pluripotent stem cells (iPSCs) are patient-derived, reprogrammed cell lines which allow mechanistic insights, complex modelling of genetic disease and a platform to study aortic genetic variants. This review will address the need for iPSCs as a frontline diagnostic tool to evaluate variants identified by genomic discovery studies and explore their evolving role in biological insight through to drug discovery.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| |
Collapse
|
7
|
Gomes B, Singh A, O'Sullivan JW, Schnurr TM, Goddard PC, Loong S, Amar D, Hughes JW, Kostur M, Haddad F, Salerno M, Foo R, Montgomery SB, Parikh VN, Meder B, Ashley EA. Genetic architecture of cardiac dynamic flow volumes. Nat Genet 2024; 56:245-257. [PMID: 38082205 DOI: 10.1038/s41588-023-01587-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/23/2023] [Indexed: 02/04/2024]
Abstract
Cardiac blood flow is a critical determinant of human health. However, the definition of its genetic architecture is limited by the technical challenge of capturing dynamic flow volumes from cardiac imaging at scale. We present DeepFlow, a deep-learning system to extract cardiac flow and volumes from phase-contrast cardiac magnetic resonance imaging. A mixed-linear model applied to 37,653 individuals from the UK Biobank reveals genome-wide significant associations across cardiac dynamic flow volumes spanning from aortic forward velocity to aortic regurgitation fraction. Mendelian randomization reveals a causal role for aortic root size in aortic valve regurgitation. Among the most significant contributing variants, localizing genes (near ELN, PRDM6 and ADAMTS7) are implicated in connective tissue and blood pressure pathways. Here we show that DeepFlow cardiac flow phenotyping at scale, combined with genotyping data, reinforces the contribution of connective tissue genes, blood pressure and root size to aortic valve function.
Collapse
Affiliation(s)
- Bruna Gomes
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
- Department of Cardiology, Pneumology and Angiology, Heidelberg University Hospital, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Aditya Singh
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Jack W O'Sullivan
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Theresia M Schnurr
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Pagé C Goddard
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Shaun Loong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Amar
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - J Weston Hughes
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Mykhailo Kostur
- Department of Cardiology, Pneumology and Angiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Francois Haddad
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Michael Salerno
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Roger Foo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Stephen B Montgomery
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Victoria N Parikh
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Benjamin Meder
- Department of Cardiology, Pneumology and Angiology, Heidelberg University Hospital, Heidelberg, Germany
- Informatics for Life, Heidelberg, Germany
| | - Euan A Ashley
- Departments of Medicine, Genetics, Computer Science and Biomedical Data Science, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Raghavan A, Pirruccello JP, Ellinor PT, Lindsay ME. Using Genomics to Identify Novel Therapeutic Targets for Aortic Disease. Arterioscler Thromb Vasc Biol 2024; 44:334-351. [PMID: 38095107 PMCID: PMC10843699 DOI: 10.1161/atvbaha.123.318771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/21/2023] [Indexed: 01/04/2024]
Abstract
Aortic disease, including dissection, aneurysm, and rupture, carries significant morbidity and mortality and is a notable cause of sudden cardiac death. Much of our knowledge regarding the genetic basis of aortic disease has relied on the study of individuals with Mendelian aortopathies and, until recently, the genetic determinants of population-level variance in aortic phenotypes remained unclear. However, the application of machine learning methodologies to large imaging datasets has enabled researchers to rapidly define aortic traits and mine dozens of novel genetic associations for phenotypes such as aortic diameter and distensibility. In this review, we highlight the emerging potential of genomics for identifying causal genes and candidate drug targets for aortic disease. We describe how deep learning technologies have accelerated the pace of genetic discovery in this field. We then provide a blueprint for translating genetic associations to biological insights, reviewing techniques for locus and cell type prioritization, high-throughput functional screening, and disease modeling using cellular and animal models of aortic disease.
Collapse
Affiliation(s)
- Avanthi Raghavan
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - James P. Pirruccello
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
| | - Patrick T. Ellinor
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Mark E. Lindsay
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Spontaneous coronary artery dissection (SCAD) is a significant cause of acute myocardial infarction that is increasingly recognized in young and middle-aged women. The etiology of SCAD is likely multifactorial and may include the interaction of environmental and individual factors. Here, we summarize the current understanding of the genetic factors contributing to the development of SCAD. RECENT FINDINGS The molecular findings underlying SCAD have been demonstrated to include a combination of rare DNA sequence variants with large effects, common variants contributing to a complex genetic architecture, and variants with intermediate impact. The genes associated with SCAD highlight the role of arterial cells and their extracellular matrix in the pathogenesis of the disease and shed light on the relationship between SCAD and other disorders, including fibromuscular dysplasia and connective tissue diseases. While up to 10% of affected individuals may harbor a rare variant with large effect, SCAD most often presents as a complex genetic condition. Analyses of larger and more diverse cohorts will continue to improve our understanding of risk susceptibility loci and will also enable consideration of the clinical utility of genetic testing strategies in the management of SCAD.
Collapse
Affiliation(s)
- Alexander E Katz
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, USA
- Department of Human Genetics, University of Michigan, 7220, MSRB III, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-0644, USA
| | - Santhi K Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, USA.
- Department of Human Genetics, University of Michigan, 7220, MSRB III, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-0644, USA.
| |
Collapse
|
10
|
Jeoffrey SMH, Kalyanasundaram A, Zafar MA, Ziganshin BA, Elefteriades JA. Genetic Overlap of Spontaneous Dissection of Either the Thoracic Aorta or the Coronary Arteries. Am J Cardiol 2023; 205:69-74. [PMID: 37591066 DOI: 10.1016/j.amjcard.2023.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/19/2023]
Abstract
Ascending thoracic aortic dissection (ATAD) is a well-known vascular cause of sudden death. Spontaneous coronary artery dissections (SCAD) are emerging as an important cause of early-onset myocardial infarction and sudden death. Genetic variants in multiple connective tissue genes have been recognized to underlie ATAD; other genetic variants have similarly been recognized to underlie SCAD. Little data are available regarding any genetic commonality between ATAD and SCAD. Our objective is to determine and characterize any genetic overlap between genes coding for ATAD and SCAD. We identified and reviewed 17 retrospective and prospective genetic studies of thoracic aortic dissection and SCAD published between 2016 and 2022 identified through PubMed and Orbis. Articles highlighting the significant plausible triggers for ATAD or SCAD individually were analyzed. No previous study reviewed both ATAD and SCAD genetics together. Separate lists of causative genes were constructed for ATAD and SCAD-and then commonalities were sought. A Venn diagram was constructed to display the genetic overlap and common physiologic pathways involved. We identified a definite, meaningful overlap of 15 independent genes based on a genome-wide association study or other genetic methods. The associated genetic pathways involved various biologic processes including elastin degradation, smooth muscle cell function, and the TGFβ-pathway. The overlapping genes included the following: COL3A1, TGFB2, SMAD3, MYLK, TGFBR2, TGFBR1, LOX, FBN1, NOTCH1, ELN, COL5A1, COL5A2, COL1A2, MYH11, and TLN1. The corresponding molecular pathways were investigated and correlated for both diseases. We are not aware of other studies searching for genetic commonalities between ATAD and SCAD. We have successfully identified overlapping genes-and their corresponding molecular pathways-for ATAD and SCAD. We hope that these insights will lead to further clinical and scientific understanding of each disease through study of their fundamental commonalities.
Collapse
Affiliation(s)
| | - Asanish Kalyanasundaram
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - Mohammad A Zafar
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - Bulat A Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut
| | - John A Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
11
|
Zhang X, Che Y, Mao L, Li D, Deng J, Guo Y, Zhao Q, Zhang X, Wang L, Gao X, Chen Y, Zhang T. H3.3B controls aortic dissection progression by regulating vascular smooth muscle cells phenotypic transition and vascular inflammation. Genomics 2023; 115:110685. [PMID: 37454936 DOI: 10.1016/j.ygeno.2023.110685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/13/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Aortic dissection is a devastating cardiovascular disease with a high lethality. Histone variants maintain the genomic integrity and play important roles in development and diseases. However, the role of histone variants in aortic dissection has not been well identified. In the present study, H3f3b knockdown reduced the synthetic genes expression of VSMCs, while overexpressing H3f3b exacerbated the cellular immune response of VSMCs induced by inflammatory cytokines. Combined RNA-seq and ChIP-seq analyses revealed that histone variant H3.3B directly bound to the genes related to extracellular matrix, VSMC synthetic phenotype, cytokine responses and TGFβ signaling pathway, and regulated their expressions. In addition, VSMC-specific H3f3b knockin aggravated aortic dissection development in mice, while H3f3b knockout significantly reduced the incidence of aortic dissection. In term of mechanisms, H3.3B regulated Spp1 and Ccl2 genes, inducing the apoptosis of VSMCs and recruiting macrophages. This study demonstrated the vital roles of H3.3B in phenotypic transition of VSMCs, loss of media VSMCs, and vascular inflammation in aortic dissection.
Collapse
Affiliation(s)
- Xuelin Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yang Che
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lin Mao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Dandan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jianqing Deng
- Vascular Surgery Department, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Yilong Guo
- Vascular Surgery Department, The First Medical Center of PLA General Hospital, Beijing 100853, China
| | - Quanyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China
| | - Xingzhong Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration,Chinese Academy of Medical Sciences, Beijing 100037, China.
| | - Xiang Gao
- Department of Vascular Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Yinan Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China.
| | - Tao Zhang
- Vascular Surgery Department, Peking University People's Hospital, Beijing 100044, China.
| |
Collapse
|
12
|
Klarin D, Devineni P, Sendamarai AK, Angueira AR, Graham SE, Shen YH, Levin MG, Pirruccello JP, Surakka I, Karnam PR, Roychowdhury T, Li Y, Wang M, Aragam KG, Paruchuri K, Zuber V, Shakt GE, Tsao NL, Judy RL, Vy HMT, Verma SS, Rader DJ, Do R, Bavaria JE, Nadkarni GN, Ritchie MD, Burgess S, Guo DC, Ellinor PT, LeMaire SA, Milewicz DM, Willer CJ, Natarajan P, Tsao PS, Pyarajan S, Damrauer SM. Genome-wide association study of thoracic aortic aneurysm and dissection in the Million Veteran Program. Nat Genet 2023; 55:1106-1115. [PMID: 37308786 PMCID: PMC10335930 DOI: 10.1038/s41588-023-01420-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/05/2023] [Indexed: 06/14/2023]
Abstract
The current understanding of the genetic determinants of thoracic aortic aneurysms and dissections (TAAD) has largely been informed through studies of rare, Mendelian forms of disease. Here, we conducted a genome-wide association study (GWAS) of TAAD, testing ~25 million DNA sequence variants in 8,626 participants with and 453,043 participants without TAAD in the Million Veteran Program, with replication in an independent sample of 4,459 individuals with and 512,463 without TAAD from six cohorts. We identified 21 TAAD risk loci, 17 of which have not been previously reported. We leverage multiple downstream analytic methods to identify causal TAAD risk genes and cell types and provide human genetic evidence that TAAD is a non-atherosclerotic aortic disorder distinct from other forms of vascular disease. Our results demonstrate that the genetic architecture of TAAD mirrors that of other complex traits and that it is not solely inherited through protein-altering variants of large effect size.
Collapse
Affiliation(s)
- Derek Klarin
- Veterans Affairs (VA) Palo Alto Healthcare System, Palo Alto, CA, USA.
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Poornima Devineni
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, MA, USA
| | - Anoop K Sendamarai
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, MA, USA
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Anthony R Angueira
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E Graham
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX, USA
| | - Michael G Levin
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Medicine, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - James P Pirruccello
- Division of Cardiology, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Purushotham R Karnam
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, MA, USA
| | - Tanmoy Roychowdhury
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Minxian Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Krishna G Aragam
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kaavya Paruchuri
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Verena Zuber
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College, Imperial College London, London, UK
| | - Gabrielle E Shakt
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Noah L Tsao
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Renae L Judy
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Ha My T Vy
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shefali S Verma
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ron Do
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph E Bavaria
- Division of Cardiovascular Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Dong-Chuan Guo
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patrick T Ellinor
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Pradeep Natarajan
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Philip S Tsao
- Veterans Affairs (VA) Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Scott M Damrauer
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Gyftopoulos A, Ziganshin BA, Elefteriades JA, Ochoa Chaar CI. Comparison of Genes Associated with Thoracic and Abdominal Aortic Aneurysms. AORTA (STAMFORD, CONN.) 2023; 11:125-134. [PMID: 37279787 PMCID: PMC10449569 DOI: 10.1055/s-0043-57266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/09/2022] [Indexed: 06/08/2023]
Abstract
Aneurysms impacting the ascending thoracic aorta and the abdominal aorta affect patient populations with distinct clinical characteristics. Through a literature review, this paper compares the genetic associations of ascending thoracic aortic aneurysm (ATAA) with abdominal aortic aneurysms (AAA). Genes related to atherosclerosis, lipid metabolism, and tumor development are associated specifically with sporadic AAA, while genes controlling extracellular matrix (ECM) structure, ECM remodeling, and tumor growth factor β function are associated with both AAA and ATAA. Contractile element genes uniquely predispose to ATAA. Aside from known syndromic connective tissue disease and poly-aneurysmal syndromes (Marfan disease, Loeys-Dietz syndrome, and Ehlers-Danlos syndrome), there is only limited genetic overlap between AAA and ATAA. The rapid advances in genotyping and bioinformatics will elucidate further the various pathways associated with the development of aneurysms affecting various parts of the aorta.
Collapse
Affiliation(s)
| | - Bulat A. Ziganshin
- Aortic Institute, Yale University School of Medicine, New Haven, Connecticut
| | | | - Cassius I. Ochoa Chaar
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Chou E, Pirruccello JP, Ellinor PT, Lindsay ME. Genetics and mechanisms of thoracic aortic disease. Nat Rev Cardiol 2023; 20:168-180. [PMID: 36131050 DOI: 10.1038/s41569-022-00763-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 11/09/2022]
Abstract
Aortic disease has many forms including aortic aneurysm and dissection, aortic coarctation or abnormalities in aortic function, such as loss of aortic distensibility. Genetic analysis in humans is one of the most important experimental approaches in uncovering disease mechanisms, but the relative infrequency of thoracic aortic disease compared with other cardiovascular conditions such as coronary artery disease has hindered large-scale identification of genetic associations. In the past decade, advances in machine learning technology coupled with large imaging datasets from biobank repositories have facilitated a rapid expansion in our capacity to measure and genotype aortic traits, resulting in the identification of dozens of genetic associations. In this Review, we describe the history of technological advances in genetic discovery and explain how newer technologies such as deep learning can rapidly define aortic traits at scale. Furthermore, we integrate novel genetic observations provided by these advances into our current biological understanding of thoracic aortic disease and describe how these new findings can contribute to strategies to prevent and treat aortic disease.
Collapse
Affiliation(s)
- Elizabeth Chou
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
| | - James P Pirruccello
- Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick T Ellinor
- Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- Demoulas Center for Cardiac Arrhythmias, Massachusetts General Hospital, Boston, MA, USA
| | - Mark E Lindsay
- Harvard Medical School, Boston, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA.
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
15
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 1530] [Impact Index Per Article: 1530.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
16
|
Zhang JM, Au DT, Sawada H, Franklin MK, Moorleghen JJ, Howatt DA, Wang P, Aicher BO, Hampton B, Migliorini M, Ni F, Mullick AE, Wani MM, Ucuzian AA, Lu HS, Muratoglu SC, Daugherty A, Strickland DK. LRP1 protects against excessive superior mesenteric artery remodeling by modulating angiotensin II-mediated signaling. JCI Insight 2023; 8:e164751. [PMID: 36472907 PMCID: PMC9977308 DOI: 10.1172/jci.insight.164751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Vascular smooth muscle cells (vSMCs) exert a critical role in sensing and maintaining vascular integrity. These cells abundantly express the low-density lipoprotein receptor-related protein 1 (LRP1), a large endocytic signaling receptor that recognizes numerous ligands, including apolipoprotein E-rich lipoproteins, proteases, and protease-inhibitor complexes. We observed the spontaneous formation of aneurysms in the superior mesenteric artery (SMA) of both male and female mice in which LRP1 was genetically deleted in vSMCs (smLRP1-/- mice). Quantitative proteomics revealed elevated abundance of several proteins in smLRP1-/- mice that are known to be induced by angiotensin II-mediated (AngII-mediated) signaling, suggesting that this pathway was dysregulated. Administration of losartan, an AngII type I receptor antagonist, or an angiotensinogen antisense oligonucleotide to reduce plasma angiotensinogen concentrations restored the normal SMA phenotype in smLRP1-/- mice and prevented aneurysm formation. Additionally, using a vascular injury model, we noted excessive vascular remodeling and neointima formation in smLRP1-/- mice that was restored by losartan administration. Together, these findings reveal that LRP1 regulates vascular integrity and remodeling of the SMA by attenuating excessive AngII-mediated signaling.
Collapse
Affiliation(s)
- Jackie M Zhang
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dianaly T Au
- Center for Vascular and Inflammatory Diseases and
| | - Hisashi Sawada
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | - Pengjun Wang
- Saha Cardiovascular Research Center and Saha Aortic Center and
| | - Brittany O Aicher
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Fenge Ni
- Center for Vascular and Inflammatory Diseases and
| | | | | | - Areck A Ucuzian
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Vascular Services, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Hong S Lu
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Alan Daugherty
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Hao X, Cheng S, Jiang B, Xin S. Applying multi-omics techniques to the discovery of biomarkers for acute aortic dissection. Front Cardiovasc Med 2022; 9:961991. [PMID: 36588568 PMCID: PMC9797526 DOI: 10.3389/fcvm.2022.961991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Acute aortic dissection (AAD) is a cardiovascular disease that manifests suddenly and fatally. Due to the lack of specific early symptoms, many patients with AAD are often overlooked or misdiagnosed, which is undoubtedly catastrophic for patients. The particular pathogenic mechanism of AAD is yet unknown, which makes clinical pharmacological therapy extremely difficult. Therefore, it is necessary and crucial to find and employ unique biomarkers for Acute aortic dissection (AAD) as soon as possible in clinical practice and research. This will aid in the early detection of AAD and give clear guidelines for the creation of focused treatment agents. This goal has been made attainable over the past 20 years by the quick advancement of omics technologies and the development of high-throughput tissue specimen biomarker screening. The primary histology data support and add to one another to create a more thorough and three-dimensional picture of the disease. Based on the introduction of the main histology technologies, in this review, we summarize the current situation and most recent developments in the application of multi-omics technologies to AAD biomarker discovery and emphasize the significance of concentrating on integration concepts for integrating multi-omics data. In this context, we seek to offer fresh concepts and recommendations for fundamental investigation, perspective innovation, and therapeutic development in AAD.
Collapse
Affiliation(s)
- Xinyu Hao
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Shuai Cheng
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Bo Jiang
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China
| | - Shijie Xin
- Department of Vascular Surgery, The First Affiliated Hospital of China Medical University, China Medical University, Shenyang, China,Key Laboratory of Pathogenesis, Prevention and Therapeutics of Aortic Aneurysm, Shenyang, Liaoning, China,*Correspondence: Shijie Xin,
| |
Collapse
|
18
|
Bax M, Romanov V, Junday K, Giannoulatou E, Martinac B, Kovacic JC, Liu R, Iismaa SE, Graham RM. Arterial dissections: Common features and new perspectives. Front Cardiovasc Med 2022; 9:1055862. [PMID: 36561772 PMCID: PMC9763901 DOI: 10.3389/fcvm.2022.1055862] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Arterial dissections, which involve an abrupt tear in the wall of a major artery resulting in the intramural accumulation of blood, are a family of catastrophic disorders causing major, potentially fatal sequelae. Involving diverse vascular beds, including the aorta or coronary, cervical, pulmonary, and visceral arteries, each type of dissection is devastating in its own way. Traditionally they have been studied in isolation, rather than collectively, owing largely to the distinct clinical consequences of dissections in different anatomical locations - such as stroke, myocardial infarction, and renal failure. Here, we review the shared and unique features of these arteriopathies to provide a better understanding of this family of disorders. Arterial dissections occur commonly in the young to middle-aged, and often in conjunction with hypertension and/or migraine; the latter suggesting they are part of a generalized vasculopathy. Genetic studies as well as cellular and molecular investigations of arterial dissections reveal striking similarities between dissection types, particularly their pathophysiology, which includes the presence or absence of an intimal tear and vasa vasorum dysfunction as a cause of intramural hemorrhage. Pathway perturbations common to all types of dissections include disruption of TGF-β signaling, the extracellular matrix, the cytoskeleton or metabolism, as evidenced by the finding of mutations in critical genes regulating these processes, including LRP1, collagen genes, fibrillin and TGF-β receptors, or their coupled pathways. Perturbances in these connected signaling pathways contribute to phenotype switching in endothelial and vascular smooth muscle cells of the affected artery, in which their physiological quiescent state is lost and replaced by a proliferative activated phenotype. Of interest, dissections in various anatomical locations are associated with distinct sex and age predilections, suggesting involvement of gene and environment interactions in disease pathogenesis. Importantly, these cellular mechanisms are potentially therapeutically targetable. Consideration of arterial dissections as a collective pathology allows insight from the better characterized dissection types, such as that involving the thoracic aorta, to be leveraged to inform the less common forms of dissections, including the potential to apply known therapeutic interventions already clinically available for the former.
Collapse
Affiliation(s)
- Monique Bax
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Valentin Romanov
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Keerat Junday
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Jason C. Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- St. Vincent’s Hospital, Darlinghurst, NSW, Australia
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - Renjing Liu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Siiri E. Iismaa
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Robert M. Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
19
|
Bondareva O, Rodríguez-Aguilera JR, Oliveira F, Liao L, Rose A, Gupta A, Singh K, Geier F, Schuster J, Boeckel JN, Buescher JM, Kohli S, Klöting N, Isermann B, Blüher M, Sheikh BN. Single-cell profiling of vascular endothelial cells reveals progressive organ-specific vulnerabilities during obesity. Nat Metab 2022; 4:1591-1610. [PMID: 36400935 PMCID: PMC9684070 DOI: 10.1038/s42255-022-00674-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/30/2022] [Indexed: 11/20/2022]
Abstract
Obesity promotes diverse pathologies, including atherosclerosis and dementia, which frequently involve vascular defects and endothelial cell (EC) dysfunction. Each organ has distinct EC subtypes, but whether ECs are differentially affected by obesity is unknown. Here we use single-cell RNA sequencing to analyze transcriptomes of ~375,000 ECs from seven organs in male mice at progressive stages of obesity to identify organ-specific vulnerabilities. We find that obesity deregulates gene expression networks, including lipid handling, metabolic pathways and AP1 transcription factor and inflammatory signaling, in an organ- and EC-subtype-specific manner. The transcriptomic aberrations worsen with sustained obesity and are only partially mitigated by dietary intervention and weight loss. For example, dietary intervention substantially attenuates dysregulation of liver, but not kidney, EC transcriptomes. Through integration with human genome-wide association study data, we further identify a subset of vascular disease risk genes that are induced by obesity. Our work catalogs the impact of obesity on the endothelium, constitutes a useful resource and reveals leads for investigation as potential therapeutic targets.
Collapse
Affiliation(s)
- Olga Bondareva
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jesús Rafael Rodríguez-Aguilera
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Fabiana Oliveira
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Longsheng Liao
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Alina Rose
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Florian Geier
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
| | - Jenny Schuster
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
| | - Jes-Niels Boeckel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, University of Leipzig, Leipzig, Germany
| | - Joerg M Buescher
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig, Leipzig, Germany
| | - Bilal N Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany.
- Medical Faculty, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
20
|
Wang Y, Starovoytov A, Murad AM, Hunker KL, Brunham LR, Li JZ, Saw J, Ganesh SK. Burden of Rare Genetic Variants in Spontaneous Coronary Artery Dissection With High-risk Features. JAMA Cardiol 2022; 7:1045-1055. [PMID: 36103205 PMCID: PMC9475437 DOI: 10.1001/jamacardio.2022.2970] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/24/2022] [Indexed: 07/28/2023]
Abstract
Importance The emerging genetic basis of spontaneous coronary artery dissection (SCAD) has been defined as both partially complex and monogenic in some patients, involving variants predominantly in genes known to underlie vascular connective tissue diseases (CTDs). The effect of these genetic influences has not been defined in high-risk SCAD phenotypes, and the identification of a high-risk subgroup of individuals may help to guide clinical genetic evaluations of SCAD. Objective To identify and quantify the burden of rare genetic variation in individuals with SCAD with high-risk clinical features. Design, Setting, and Participants Whole-exome sequencing (WES) was performed for subsequent case-control association analyses and individual variant annotation among individuals with high-risk SCAD. Genetic variants were annotated for pathogenicity by in-silico analysis of genes previously defined by sequencing for vascular CTDs and/or SCAD, as well as genes prioritized by genome-wide association study (GWAS) and colocalization of arterial expression quantitative trait loci. Unbiased genome-wide association analysis of the WES data was performed by comparing aggregated variants in individuals with SCAD to healthy matched controls or the Genome Aggregation Database (gnomAD). This study was conducted at a tertiary care center. Individuals in the Canadian SCAD Registry genetics study with a high-risk SCAD phenotype were selected and defined as peripartum SCAD, recurrent SCAD, or SCAD in an individual with family history of arteriopathy. Main Outcomes and Measures Burden of genetic variants defined by DNA sequencing in individuals with high-risk SCAD. Results This study included a total of 336 participants (mean [SD] age, 53.0 [9.5] years; 301 female participants [90%]). Variants in vascular CTD genes were identified in 17.0% of individuals (16 of 94) with high-risk SCAD and were enriched (OR, 2.6; 95% CI, 1.6-4.2; P = 7.8 × 10-4) as compared with gnomAD, with leading significant signals in COL3A1 (OR, 13.4; 95% CI, 4.9-36.2; P = 2.8 × 10-4) and Loeys-Dietz syndrome genes (OR, 7.9; 95% CI, 2.9-21.2; P = 2.0 × 10-3). Variants in GWAS-prioritized genes, observed in 6.4% of individuals (6 of 94) with high-risk SCAD, were also enriched (OR, 3.6; 95% CI, 1.6-8.2; P = 7.4 × 10-3). Variants annotated as likely pathogenic or pathogenic occurred in 4 individuals, in the COL3A1, TGFBR2, and ADAMTSL4 genes. Genome-wide aggregated variant testing identified novel associations with peripartum SCAD. Conclusions and Relevance In this genetic study, approximately 1 in 5 individuals with a high-risk SCAD phenotype harbored a rare genetic variant in genes currently implicated for SCAD. Genetic screening in this subgroup of individuals presenting with SCAD may be considered.
Collapse
Affiliation(s)
- Yu Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor
| | - Andrew Starovoytov
- Division of Cardiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea M. Murad
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Kristina L. Hunker
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor
| | - Liam R. Brunham
- Division of Cardiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jun Z. Li
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor
| | - Jacqueline Saw
- Division of Cardiology, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Santhi K. Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor
| |
Collapse
|
21
|
Huang L, Tang J, Lin L, Wang R, Chen F, Wei Y, Si Y, Fu W. Association of genetic variants in ULK4 with the age of first onset of type B aortic dissection. Front Genet 2022; 13:956866. [PMID: 36118886 PMCID: PMC9478570 DOI: 10.3389/fgene.2022.956866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Background: The association between autophagy, structural alterations of the aortic wall, and endothelial dysfunction in humans has yet to be fully elucidated. The family of ULK (UNC51-like) enzymes plays critical roles in autophagy and development. This study aimed to evaluate the association between ULK gene family members and patient age of first type B aortic dissection (TBAD) onset. Methods: The genotype data in a TBAD cohort from China and the related summary-level datasets were analyzed. We applied the sequence kernel association test (SKAT) to test the association between single-nucleotide polymorphisms (SNPs) and age of first onset of TBAD controlling for gender, hypertension, and renal function. Next, we performed a 2-sample Mendelian randomization (MR) to explore the potential causal relationship between ULK4 and early onset of TBAD at the level of gene expression coupled with DNA methylation with genetic variants as instrumental variables. Results: A total of 159 TBAD patients with 1,180,097 SNPs were included. Concerning the association between the ULK gene family and the age of first onset of the TBAD, only ULK4 was found to be significant according to SKAT analysis (q-FDR = 0.0088). From 2-sample MR, the high level of ULK4 gene expression was related to a later age of first onset of TBAD (β = 4.58, p = 0.0214). Conclusion: This is the first study of the ULK gene family in TBAD, regarding the association with the first onset age. We demonstrated that the ULK4 gene is associated with the time of onset of TBAD based on both the SKAT and 2-sample MR analyses.
Collapse
Affiliation(s)
- Lihong Huang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Biostatistics, Zhongshan Hospital, Fudan University, Shanghai, China
- Clinical Research Unit, Institute of Clinical Science, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Jiaqi Tang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lijuan Lin
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruihan Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yongyue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yi Si
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yi Si, ; Weiguo Fu,
| | - Weiguo Fu
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yi Si, ; Weiguo Fu,
| |
Collapse
|
22
|
Rodrigues Bento J, Meester J, Luyckx I, Peeters S, Verstraeten A, Loeys B. The Genetics and Typical Traits of Thoracic Aortic Aneurysm and Dissection. Annu Rev Genomics Hum Genet 2022; 23:223-253. [PMID: 36044906 DOI: 10.1146/annurev-genom-111521-104455] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic predisposition and risk factors such as hypertension and smoking can instigate the development of thoracic aortic aneurysm (TAA), which can lead to highly lethal aortic wall dissection and/or rupture. Monogenic defects in multiple genes involved in the elastin-contractile unit and the TGFβ signaling pathway have been associated with TAA in recent years, along with several genetic modifiers and risk-conferring polymorphisms. Advances in omics technology have also provided significant insights into the processes behind aortic wall degeneration: inflammation, epigenetics, vascular smooth muscle phenotype change and depletion, reactive oxygen species generation, mitochondrial dysfunction, and angiotensin signaling dysregulation. These recent advances and findings might pave the way for a therapy that is capable of stopping and perhaps even reversing aneurysm progression.
Collapse
Affiliation(s)
- Jotte Rodrigues Bento
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium;
| | - Josephina Meester
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium;
| | - Ilse Luyckx
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium; .,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Silke Peeters
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium;
| | - Aline Verstraeten
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium;
| | - Bart Loeys
- Centre of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium; .,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
23
|
Francis CM, Futschik ME, Huang J, Bai W, Sargurupremraj M, Teumer A, Breteler MMB, Petretto E, Ho ASR, Amouyel P, Engelter ST, Bülow R, Völker U, Völzke H, Dörr M, Imtiaz MA, Aziz NA, Lohner V, Ware JS, Debette S, Elliott P, Dehghan A, Matthews PM. Genome-wide associations of aortic distensibility suggest causality for aortic aneurysms and brain white matter hyperintensities. Nat Commun 2022; 13:4505. [PMID: 35922433 PMCID: PMC9349177 DOI: 10.1038/s41467-022-32219-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 07/20/2022] [Indexed: 12/13/2022] Open
Abstract
Aortic dimensions and distensibility are key risk factors for aortic aneurysms and dissections, as well as for other cardiovascular and cerebrovascular diseases. We present genome-wide associations of ascending and descending aortic distensibility and area derived from cardiac magnetic resonance imaging (MRI) data of up to 32,590 Caucasian individuals in UK Biobank. We identify 102 loci (including 27 novel associations) tagging genes related to cardiovascular development, extracellular matrix production, smooth muscle cell contraction and heritable aortic diseases. Functional analyses highlight four signalling pathways associated with aortic distensibility (TGF-β, IGF, VEGF and PDGF). We identify distinct sex-specific associations with aortic traits. We develop co-expression networks associated with aortic traits and apply phenome-wide Mendelian randomization (MR-PheWAS), generating evidence for a causal role for aortic distensibility in development of aortic aneurysms. Multivariable MR suggests a causal relationship between aortic distensibility and cerebral white matter hyperintensities, mechanistically linking aortic traits and brain small vessel disease.
Collapse
Affiliation(s)
- Catherine M Francis
- National Heart and Lung Institute, Imperial College London, Programme in Cardiovascular Genetics and Genomics, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Matthias E Futschik
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC London Institute of Medical Sciences (LMS), Imperial College London, London, W12 0NN, UK
| | - Jian Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Wenjia Bai
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Computing, Imperial College London, London, UK
| | - Muralidharan Sargurupremraj
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, 78229, USA
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, 33000, Bordeaux, France
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Enrico Petretto
- Programme in Cardiovascular & Metabolic Disorders and Centre for Computational Biology, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
- Institute of Big Data and Artificial Intelligence, China Pharmaceutical University (CPU), 211198, Nanjing, China
- Computational Biology Programme, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Amanda S R Ho
- Computational Biology Programme, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Philippe Amouyel
- LabEx DISTALZ-U1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille, Lille, France
- Inserm, U1167, Lille, France
- Centre Hospitalier Universitaire Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Stefan T Engelter
- Department of Neurology and Stroke Center, University Hospital and University of Basel, Petersgraben 4, CH - 4031, Basel, Switzerland
- Department of Clinical Neurology and Neurorehabilitation, University Department of Geriatric Medicine FELIX PLATTER, University of Basel, Basel, Switzerland
| | - Robin Bülow
- Department of Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Marcus Dörr
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany
| | - Mohammed-Aslam Imtiaz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Valerie Lohner
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James S Ware
- National Heart and Lung Institute, Imperial College London, Programme in Cardiovascular Genetics and Genomics, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
- MRC London Institute of Medical Sciences (LMS), Imperial College London, London, W12 0NN, UK
| | - Stephanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, 33000, Bordeaux, France
- Department of Neurology, Institute for Neurodegenerative Diseases, Bordeaux University Hospital - CHU Bordeaux, 33000, Bordeaux, France
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
- Health Data Research (HDR) UK London at Imperial College London, London, UK
- Britsh Heart Foundation Centre of Research Excellence at Imperial College London, London, UK
- National Institute for Health Research Imperial Biomedical Research Centre, Imperial College London, London, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
- UK Dementia Research Institute at Imperial College London, London, UK.
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute at Imperial College London, London, UK.
- National Institute for Health Research Imperial Biomedical Research Centre, Imperial College London, London, UK.
| |
Collapse
|
24
|
Whole-Genome Sequencing of 100 Genomes Identifies a Distinctive Genetic Susceptibility Profile of Qatari Patients with Hypertension. J Pers Med 2022; 12:jpm12050722. [PMID: 35629146 PMCID: PMC9144388 DOI: 10.3390/jpm12050722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Essential hypertension (EH) is a leading risk condition for cardiovascular and renal complications. While multiple genes are associated with EH, little is known about its genetic etiology. Therefore, this study aimed to screen for variants that are associated with EH in 100 hypertensive/100 control patients comprising Qatari individuals using GWASs of whole-genome sequencing and compare these findings with genetic data obtained from more than 10,000 published peer-reviewed studies on EH. The GWAS analysis performed with 21,096 SNPs revealed 38 SNPs with a significant ≥4 log-p value association with EH. The two highest EH-associated SNPs (rs921932379 and rs113688672) revealed a significance score of ≥5 log-p value. These SNPs are located within the inter-genic region of GMPS-SETP14 and ISCA1P6-AC012451.1, respectively. Text mining yielded 3748 genes and 3078 SNPs, where 51 genes and 24 SNPs were mentioned in more than 30 and 10 different articles, respectively. Comparing our GWAS results to previously published articles revealed 194 that are unique to our patient cohort; of these, 13 genes that have 26 SNPs are the most significant with ≥4 log-p value. Of these genes, C2orf47-SPATS2L contains nine EH-associated SNPs. Most of EH-associated genes are related to ion gate channel activity and cardiac conduction. The disease–gene analysis revealed that a large number of EH-associated genes are associated with a variety of cardiovascular disorders. The clustering analysis using EH-associated SNPs across different ethnic groups showed high frequency for the minor allele in different ethnic groups, including Africans, East Asians, and South Asians. The combination of GWAS and text mining helped in identifying the unique genetic susceptibility profile of Qatari patients with EH. To our knowledge, this is the first small study that searched for genetic factors associated with EH in Qatari patients.
Collapse
|
25
|
Chai T, Tian M, Yang X, Qiu Z, Lin X, Chen L. Genome-Wide Identification of Associations of Circulating Molecules With Spontaneous Coronary Artery Dissection and Aortic Aneurysm and Dissection. Front Cardiovasc Med 2022; 9:874912. [PMID: 35571188 PMCID: PMC9091499 DOI: 10.3389/fcvm.2022.874912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Circulating proteins play functional roles in various biological processes and disease pathogenesis. The aim of this study was to highlight circulating proteins associated with aortic aneurysm and dissection (AAD) and spontaneous coronary artery dissection (SCAD). We examined the associations of circulating molecule levels with SCAD by integrating data from a genome-wide association study (GWAS) of CanSCAD and 7 pQTL studies. Mendelian randomization (MR) analysis was applied to examine the associations between circulating molecule levels and AAD by using data from UK Biobank GWAS and pQTL studies. The SCAD-associated SNPs in 1q21.2 were strongly associated with circulating levels of extracellular matrix protein 1 (ECM1) and 25 other proteins (encoded by CTSS, CAT, CNDP1, KNG1, SLAMF7, TIE1, CXCL1, MBL2, ESD, CXCL16, CCL14, KCNE5, CST7, PSME1, GPC3, MAP2K4, SPOCK3, LRPPRC, CLEC4M, NOG, C1QTNF9, CX3CL1, SCP2D1, SERPINF2, and FN1). These proteins were enriched in biological processes such as regulation of peptidase activity and regulation of cellular protein metabolic processes. Proteins (FGF6, FGF9, HGF, BCL2L1, and VEGFA) involved in the Ras signaling pathway were identified to be related to AAD. In addition, SCAD- and AAD-associated SNPs were associated with cytokine and lipid levels. MR analysis showed that circulating ECM1, SPOCK3 and IL1b levels were associated with AAD. Circulating levels of low-density lipoprotein cholesterol and small very-low-density lipoprotein particles were strongly associated with AAD. The present study found associations between circulating proteins and lipids and SCAD and AAD. Circulating ECM1 and low-density lipoprotein cholesterol may play a role in the pathology of SCAD and AAD.
Collapse
Affiliation(s)
- Tianci Chai
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fuzhou, China
- Department of Anesthesiology, Xinyi People’s Hospital, Xuzhou, China
| | - Mengyue Tian
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaojie Yang
- Fujian Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fuzhou, China
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhihuang Qiu
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fuzhou, China
| | - Xinjian Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Liangwan Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fuzhou, China
- *Correspondence: Liangwan Chen,
| |
Collapse
|
26
|
Chai T, Tian M, Yang X, Qiu Z, Lin X, Chen L. Association of Circulating Cathepsin B Levels With Blood Pressure and Aortic Dilation. Front Cardiovasc Med 2022; 9:762468. [PMID: 35425820 PMCID: PMC9001941 DOI: 10.3389/fcvm.2022.762468] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Hypertension is a key risk factor for spontaneous coronary artery dissection (SCAD) and aortic dilation. Circulating proteins play key roles in a range of biological processes and represent a major source of druggable targets. The aim of this study was to identify circulating proteins that were associated with blood pressure (BP), SCAD and aortic dilation. We identified shared genetic variants of BP and SCAD in genome-wide association studies, searched for circulating protein affected by these variants and examined the association of circulating protein levels with BP, aortic aneurysm and dissection (AAD) and aortic diameters by integrating data from circulating protein quantitative trait loci (pQTL) studies and genome wide association study (GWAS) in individuals from the UK Biobank using two-sample Mendelian randomization analysis methods. Single nucleotide polymorphisms (SNPs) in JAG1, ERI1, ULK4, THSD4, CMIP, COL4A2, FBN1, FAM76B, FGGY, NUS1, and HNF4G, which were related to extracellular matrix components, were associated with both BP and SCAD. We found 49 significant pQTL signals among these SNPs. The regulated proteins were encoded by MMP10, IL6R, FIGF, MMP1, CTSB, IGHG1, DSG2, TTC17, RETN, POMC, SCARF2, RELT, and GALNT16, which were enriched in biological processes such as collagen metabolic process and multicellular organism metabolic process. Causal associations between BP and AAD and aortic diameters were detected. Significant associations between circulating levels of cathepsin B, a well-known prorenin processing enzyme, and BP and aortic diameters were identified by using several Mendelian randomization analysis methods and were validated by independent data.
Collapse
Affiliation(s)
- Tianci Chai
- Department of Cardiovasclar Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
- Department of Anesthesiology, Xinyi People’s Hospital, Xuzhou, China
| | - Mengyue Tian
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaojie Yang
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhihuang Qiu
- Department of Cardiovasclar Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
| | - Xinjian Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Liangwan Chen
- Department of Cardiovasclar Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China
- *Correspondence: Liangwan Chen,
| |
Collapse
|
27
|
Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation 2022; 145:e153-e639. [PMID: 35078371 DOI: 10.1161/cir.0000000000001052] [Citation(s) in RCA: 2684] [Impact Index Per Article: 1342.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2022 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population and an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, and the global burden of cardiovascular disease and healthy life expectancy. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
28
|
Update on the molecular landscape of thoracic aortic aneurysmal disease. Curr Opin Cardiol 2022; 37:201-211. [PMID: 35175228 DOI: 10.1097/hco.0000000000000954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF THE REVIEW Thoracic aortic aneurysms and dissections (TAADs) are a major health problem in the Western population. This review summarises recent discoveries in the genetic landscape of TAAD disease, discusses current challenges in clinical practice, and describes the molecular road ahead in TAAD research. Disorders, in which aneurysmal disease is not observed in the thoracic aorta, are not discussed. RECENT FINDINGS Current gene discovery studies have pinpointed about 40 genes associated with TAAD risk, accounting for about 30% of the patients. Importantly, novel genes, and their subsequent functional characterisation, have expanded the knowledge on disease-related pathways providing crucial information on key elements in this disease, and it pinpoints new therapeutic targets. Moreover, current molecular evidence also suggests the existence of less monogenic nature of TAAD disease, in which the presentation of a diseased patient is most likely influenced by a multitude of genetic and environmental factors. SUMMARY CLINICAL PRACTICE/RELEVANCE Ongoing molecular genetic research continues to expand our understanding on the pathomechanisms underlying TAAD disease in order to improve molecular diagnosis, optimise risk stratification, advance therapeutic strategies and facilitate counselling of TAAD patients and their families.
Collapse
|
29
|
Kalyanasundaram A, Elefteriades J. The Genetics of Inheritable Aortic Diseases. CURRENT CARDIOVASCULAR RISK REPORTS 2022. [DOI: 10.1007/s12170-022-00687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Daghals I, Sargurupremraj M, Danning R, Gormley P, Malik R, Amouyel P, Metso T, Pezzini A, Kurth T, Debette S, Chasman D. Migraine, Stroke, and Cervical Arterial Dissection: Shared Genetics for a Triad of Brain Disorders With Vascular Involvement. Neurol Genet 2022; 8:e653. [PMID: 35128049 PMCID: PMC8808356 DOI: 10.1212/nxg.0000000000000653] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Background and Objectives Migraine, stroke, and cervical artery dissection (CeAD) represent a triad of cerebrovascular disorders with pairwise comorbid relationships and vascular involvement. Larger samples and recent advances in methodology invite systematic exploration of their shared genetics. Methods Genetic analyses leveraged summary statistics from genome-wide association studies of the largest available samples of each disorder, including subtypes of stroke (ischemic stroke, large artery stroke, small vessel stroke, and cardioembolic stroke) and migraine (with aura and without aura). For each pair of disorders, genetic correlation was assessed both on a genome-wide basis and within independent segments across the genome including known specific loci for each disorder. A cross-trait meta-analysis was used to identify novel candidate loci. Finally, potential causality of migraine susceptibility on stroke and CeAD was assessed by Mendelian randomization. Results Among all pairs of disorders, genome-wide genetic correlation was observed only between CeAD and migraine, particularly MO. Local genetic correlations were more extensive between migraine and CeAD than those between migraine and stroke or CeAD and stroke and revealed evidence for novel CeAD associations at rs6693567 (ADAMTSL4/ECM1), rs11187838 (PLCE1), and rs7940646 (MRVI1) while strengthening prior subthreshold evidence at rs9486725 (FHL5) and rs650724 (LRP1). At known migraine loci, novel associations with stroke had concordant risk alleles for small vessel stroke at rs191602009 (CARF) and for cardioembolic stroke at rs55884259 (NKX2-5). Known migraine loci also revealed novel associations but with opposite risk alleles for all stroke, ischemic stroke, and small vessel stroke at rs55928386 (HTRA1), for large artery stroke at rs11172113 (LRP1), and for all stroke and ischemic stroke at rs1535791 and rs4942561 (both LRCH1), respectively. rs182923402 (near PTCH1) was a novel concordant locus for migraine and cardioembolic stroke. Mendelian randomization supported potential causal influences of migraine on CeAD (odds ratio [95% confidence interval] per doubling migraine prevalence = 1.69 [1.24-2.3], p = 0.0009) with concordant risk, but with opposite risk on large artery stroke (0.86 [0.76-0.96], p = 0.0067). Discussion The findings emphasize shared genetic risk between migraine and CeAD while identifying loci with likely vascular function in migraine and shared but opposite genetic risk between migraine and stroke subtypes, and a central role of LRP1 in all 3 cerebrovascular disorders.
Collapse
Affiliation(s)
| | | | - Rebecca Danning
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | - Padhraig Gormley
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | - Rainer Malik
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | - Philippe Amouyel
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | - Tiina Metso
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | - Alessandro Pezzini
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | - Tobias Kurth
- From the Harvard Medical School (I.D., D.C.), Boston, MA; Division of Preventive Medicine (I.D., R.D., D.C.), Brigham and Women's Hospital, Boston, MA; University of Bordeaux (M.S., S.D.), Inserm, Bordeaux Population Health Research Center, Team VINTAGE, UMR 1219, France; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases (M.S.), University of Texas Health, San Antonio; Massachusetts General Hospital (P.G.), Boston; Institute for Stroke and Dementia Research (R.M.), Klinikum der Universität München, Ludwig-Maximilians-University, Germany; LabEx DISTALZ-U1167 (P.A.), RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, University of Lille; Inserm U1167 (P.A.), Lille; Centre Hospitalier Universitaire Lille (P.A.); Institut Pasteur de Lille (P.A.), France; Department of Neurology (T.M.), Helsinki University Central Hospital, Finland; Department of Clinical and Experimental Sciences (A.P.), Neurology Clinic, Brescia University Hospital, Italy; Institute of Public Health (T.K.), Charité—Universitätsmedizin Berlin, Germany; and Department of Neurology (S.D.), CHU de Bordeaux, France
| | | | | |
Collapse
|
31
|
Integrative analysis of transcriptome-wide association study and mRNA expression profile identified candidate genes and pathways associated with aortic aneurysm and dissection. Gene 2022; 808:145993. [PMID: 34626721 DOI: 10.1016/j.gene.2021.145993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Aortic aneurysm and dissection (AAD) are a set of life-threatening diseases. This study aimed to investigate the genetic mechanisms of AAD by integrating transcriptome-wide association study (TWAS) and mRNA expression profile. METHODS The genome-wide association study (GWAS) summary data of AAD was obtained from the UK Biobank, which contains 452,264 White British individuals, including 1470 AAD patients. The TWAS analysis was performed by integrating expression quantitative trait loci (eQTL) data of aorta and the GWAS dataset of AAD using the FUSION software. The TWAS significant genes and differentially expressed genes (DEGs) identified by mRNA expression profile of aortic dissection were integrated to find common genes and biological process. For TWAS significant genes, protein-protein interaction (PPI) network analysis was further conducted based on STRING database. RESULTS TWAS identified 423 genes with P < 0.05. After comparing the results of TWAS and mRNA expression profile, 11 overlapping genes (PDE8B, IKBKE, HMGA1, PKM, CHST1, DUS3L, S100A16, PTGS1, RAB38, PDLIM5, NOL6) and 15 common gene ontology (GO) terms (including extracellular matrix organization, external encapsulating structure organization, cell-substrate adhesion, actin filament-based process, focal adhesion, protein kinase activity) were identified. 9 hub genes of the TWAS results were identified via PPI network analysis, including RPS9, RPS18, RSRC1, DNAJC3, HBS1L, PRKCA, NCAM1, ITGB3, FTSJ3. CONCLUSION Multiple candidate genes and biological processes associated with AAD were identified by the present integrative study of TWAS and mRNA expression profile. Further studies are needed to elucidate the genetic mechanisms of AAD.
Collapse
|
32
|
Erhart P, Körfer D, Grond-Ginsbach C, Qiao JL, Bischoff MS, Hempel M, Schaaf CP, Grau A, Böckler D. Genetic Variation in LRP1 Associates with Stanford Type B Aortic Dissection Risk and Clinical Outcome. J Cardiovasc Dev Dis 2022; 9:jcdd9010014. [PMID: 35050224 PMCID: PMC8780592 DOI: 10.3390/jcdd9010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Genetic variation in LRP1 (low-density lipoprotein receptor-related protein 1) was reported to be associated with thoracic aortic dissections and aneurysms. The aims of this study were to confirm this association in a prospective single-center patient cohort of patients with acute Stanford type B aortic dissections (STBAD) and to assess the impact of LRP1 variation on clinical outcome. The single nucleotide variation (SNV) rs11172113 within the LRP1 gene was genotyped in 113 STBAD patients and 768 healthy control subjects from the same population. The T-allele of rs11172113 was more common in STBAD patients as compared to the reference group (72.6% vs. 59.6%) and confirmed to be an independent risk factor for STBAD (p = 0.002) after sex and age adjustment in a logistic regression model analyzing diabetes, smoking and hypertension as additional risk factors. Analysis of clinical follow-up (median follow-up 2.0 years) revealed that patients with the T-allele were more likely to suffer aorta-related complications (T-allele 75.6% vs. 63.8%; p = 0.022). In this study sample of STBAD patients, variation in LRP1 was an independent risk factor for STBAD and affected clinical outcome.
Collapse
Affiliation(s)
- Philipp Erhart
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.K.); (C.G.-G.); (J.-L.Q.); (M.S.B.); (D.B.)
- Correspondence: ; Tel.: +49-6221-56-6249
| | - Daniel Körfer
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.K.); (C.G.-G.); (J.-L.Q.); (M.S.B.); (D.B.)
| | - Caspar Grond-Ginsbach
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.K.); (C.G.-G.); (J.-L.Q.); (M.S.B.); (D.B.)
| | - Jia-Lu Qiao
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.K.); (C.G.-G.); (J.-L.Q.); (M.S.B.); (D.B.)
| | - Moritz S. Bischoff
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.K.); (C.G.-G.); (J.-L.Q.); (M.S.B.); (D.B.)
| | - Maja Hempel
- Institute of Human Genetics, Heidelberg University, 69120 Heidelberg, Germany; (M.H.); (C.P.S.)
| | - Christian P. Schaaf
- Institute of Human Genetics, Heidelberg University, 69120 Heidelberg, Germany; (M.H.); (C.P.S.)
| | - Armin Grau
- Department of Neurology, Community Hospital Klinikum der Stadt Ludwigshafen am Rhein, 67063 Ludwigshafen, Germany;
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (D.K.); (C.G.-G.); (J.-L.Q.); (M.S.B.); (D.B.)
| |
Collapse
|
33
|
Pirruccello JP, Chaffin MD, Chou EL, Fleming SJ, Lin H, Nekoui M, Khurshid S, Friedman SF, Bick AG, Arduini A, Weng LC, Choi SH, Akkad AD, Batra P, Tucker NR, Hall AW, Roselli C, Benjamin EJ, Vellarikkal SK, Gupta RM, Stegmann CM, Juric D, Stone JR, Vasan RS, Ho JE, Hoffmann U, Lubitz SA, Philippakis AA, Lindsay ME, Ellinor PT. Deep learning enables genetic analysis of the human thoracic aorta. Nat Genet 2022; 54:40-51. [PMID: 34837083 PMCID: PMC8758523 DOI: 10.1038/s41588-021-00962-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Enlargement or aneurysm of the aorta predisposes to dissection, an important cause of sudden death. We trained a deep learning model to evaluate the dimensions of the ascending and descending thoracic aorta in 4.6 million cardiac magnetic resonance images from the UK Biobank. We then conducted genome-wide association studies in 39,688 individuals, identifying 82 loci associated with ascending and 47 with descending thoracic aortic diameter, of which 14 loci overlapped. Transcriptome-wide analyses, rare-variant burden tests and human aortic single nucleus RNA sequencing prioritized genes including SVIL, which was strongly associated with descending aortic diameter. A polygenic score for ascending aortic diameter was associated with thoracic aortic aneurysm in 385,621 UK Biobank participants (hazard ratio = 1.43 per s.d., confidence interval 1.32-1.54, P = 3.3 × 10-20). Our results illustrate the potential for rapidly defining quantitative traits with deep learning, an approach that can be broadly applied to biomedical images.
Collapse
Affiliation(s)
- James P Pirruccello
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Precision Cardiology Laboratory, The Broad Institute & Bayer US LLC, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mark D Chaffin
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Precision Cardiology Laboratory, The Broad Institute & Bayer US LLC, Cambridge, MA, USA
| | - Elizabeth L Chou
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Division of Vascular and Endovascular Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Stephen J Fleming
- Precision Cardiology Laboratory, The Broad Institute & Bayer US LLC, Cambridge, MA, USA
- Data Sciences Platform, Broad Institute, Cambridge, MA, USA
| | - Honghuang Lin
- Framingham Heart Study, Boston University and National Heart, Lung, and Blood Institute, Framingham, MA, USA
- Department of Medicine, Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Mahan Nekoui
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Shaan Khurshid
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
| | | | - Alexander G Bick
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Department of Medicine, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Alessandro Arduini
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Precision Cardiology Laboratory, The Broad Institute & Bayer US LLC, Cambridge, MA, USA
| | - Lu-Chen Weng
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
| | - Seung Hoan Choi
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
| | - Amer-Denis Akkad
- Precision Cardiology Laboratory, The Broad Institute & Bayer US LLC, Cambridge, MA, USA
| | - Puneet Batra
- Data Sciences Platform, Broad Institute, Cambridge, MA, USA
| | | | - Amelia W Hall
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
| | - Carolina Roselli
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Emelia J Benjamin
- Framingham Heart Study, Boston University and National Heart, Lung, and Blood Institute, Framingham, MA, USA
- Department of Medicine, Cardiology and Preventive Medicine Sections, Boston University School of Medicine, Boston, MA, USA
- Epidemiology Department, Boston University School of Public Health, Boston, MA, USA
| | | | - Rajat M Gupta
- Department of Medicine, Divisions of Cardiovascular Medicine and Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Christian M Stegmann
- Precision Cardiology Laboratory, The Broad Institute & Bayer US LLC, Cambridge, MA, USA
| | - Dejan Juric
- Harvard Medical School, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - James R Stone
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Ramachandran S Vasan
- Framingham Heart Study, Boston University and National Heart, Lung, and Blood Institute, Framingham, MA, USA
- Department of Medicine, Cardiology and Preventive Medicine Sections, Boston University School of Medicine, Boston, MA, USA
- Epidemiology Department, Boston University School of Public Health, Boston, MA, USA
| | - Jennifer E Ho
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Udo Hoffmann
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Steven A Lubitz
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Anthony A Philippakis
- Data Sciences Platform, Broad Institute, Cambridge, MA, USA
- GV, Mountain View, CA, USA
| | - Mark E Lindsay
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Thoracic Aortic Center, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick T Ellinor
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Cardiovascular Disease Initiative, Broad Institute, Cambridge, MA, USA.
- Precision Cardiology Laboratory, The Broad Institute & Bayer US LLC, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Benjamins JW, Yeung MW, van de Vegte YJ, Said MA, van der Linden T, Ties D, Juarez-Orozco LE, Verweij N, van der Harst P. Genomic insights in ascending aortic size and distensibility. EBioMedicine 2022; 75:103783. [PMID: 34968759 PMCID: PMC8718733 DOI: 10.1016/j.ebiom.2021.103783] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alterations in the anatomic and biomechanical properties of the ascending aorta (AAo) can give rise to various vascular pathologies. The aim of the current study is to gain additional insights in the biology of the AAo size and function. METHODS We developed an AI based analysis pipeline for the segmentation of the AAo, and the extraction of AAO parameters. We then performed genome-wide association studies of AAo maximum area, AAo minimum area and AAo distensibility in up to 37,910 individuals from the UK Biobank. Variants that were significantly associated with AAo phenotypes were used as instrumental variables in Mendelian randomization analyses to investigate potential causal relationships with coronary artery disease, myocardial infarction, stroke and aneurysms. FINDINGS Genome-wide association studies revealed a total of 107 SNPs in 78 loci. We annotated 101 candidate genes involved in various biological processes, including connective tissue development (THSD4 and COL6A3). Mendelian randomization analyses showed a causal association with aneurysm development, but not with other vascular diseases. INTERPRETATION We identified 78 loci that provide insights into mechanisms underlying AAo size and function in the general population and provide genetic evidence for their role in aortic aneurysm development.
Collapse
Affiliation(s)
- Jan Walter Benjamins
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands.
| | - Ming Wai Yeung
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands; Department of Heart and Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherland
| | - Yordi J van de Vegte
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - M Abdullah Said
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Thijs van der Linden
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Daan Ties
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Luis E Juarez-Orozco
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands; Department of Heart and Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherland
| | - Niek Verweij
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands
| | - Pim van der Harst
- University of Groningen, University Medical Center Groningen, Department of Cardiology, Groningen, the Netherlands; Department of Heart and Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherland
| |
Collapse
|
35
|
Regulatory variants in TCF7L2 are associated with thoracic aortic aneurysm. Am J Hum Genet 2021; 108:1578-1589. [PMID: 34265237 DOI: 10.1016/j.ajhg.2021.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023] Open
Abstract
Thoracic aortic aneurysm (TAA) is characterized by dilation of the aortic root or ascending/descending aorta. TAA is a heritable disease that can be potentially life threatening. While 10%-20% of TAA cases are caused by rare, pathogenic variants in single genes, the origin of the majority of TAA cases remains unknown. A previous study implicated common variants in FBN1 with TAA disease risk. Here, we report a genome-wide scan of 1,351 TAA-affected individuals and 18,295 control individuals from the Cardiovascular Health Improvement Project and Michigan Genomics Initiative at the University of Michigan. We identified a genome-wide significant association with TAA for variants within the third intron of TCF7L2 following replication with meta-analysis of four additional independent cohorts. Common variants in this locus are the strongest known genetic risk factor for type 2 diabetes. Although evidence indicates the presence of different causal variants for TAA and type 2 diabetes at this locus, we observed an opposite direction of effect. The genetic association for TAA colocalizes with an aortic eQTL of TCF7L2, suggesting a functional relationship. These analyses predict an association of higher expression of TCF7L2 with TAA disease risk. In vitro, we show that upregulation of TCF7L2 is associated with BCL2 repression promoting vascular smooth muscle cell apoptosis, a key driver of TAA disease.
Collapse
|
36
|
Chai T, Tian M, Yang X, Qiu Z, Lin X, Chen L. Genome-Wide Identification of RNA Modifications for Spontaneous Coronary Aortic Dissection. Front Genet 2021; 12:696562. [PMID: 34276799 PMCID: PMC8283668 DOI: 10.3389/fgene.2021.696562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 02/02/2023] Open
Abstract
RNA modification plays important roles in many biological processes such as gene expression control. Genetic variants that affect RNA modification may have functional roles in aortic dissection. The aim of this study was to identify RNA modifications related to spontaneous coronary artery dissection (SCAD). We examined the association of RNA modification-associated single-nucleotide polymorphisms (RNAm-SNPs) with SCAD in summary data from a genome-wide association study (GWAS) of European descent (270 SCAD cases and 5,263 controls). Furthermore, we performed expression quantitative loci (eQTL) and protein quantitative loci (pQTL) analyses for the RNAm-SNPs using publicly available data. Functional enrichment and protein–protein interaction analyses were performed for the identified proteins. We found 11,464 unique RNAm-SNPs in the SCAD GWAS dataset, and 519 were nominally associated with SCAD. Nine RNAm-SNPs were associated with SCAD at p < 0.001, and among them, seven were N6-methyladenosine (m6A) methylation-related SNPs, one (rs113664950 in HLA-DQB1) was m7G-associated SNP, and one [rs580060 in the 3′-UTR of Mitochondrial Ribosomal Protein S21 (MRPS21)] was A-to-I modification SNP. The genome-wide significant SNP rs3818978 (SCAD association p = 5.74 × 10–10) in the 5′-UTR of MRPS21 was related to m6A modification. These nine SNPs all showed eQTL effects, and six of them were associated with circulating protein or metabolite levels. The related protein-coding genes were enriched in specific Gene Ontology (GO) terms such as extracellular space, extracellular region, defense response, lymphocyte migration, receptor binding and cytokine receptor binding, and so on. The present study found the associations between RNAm-SNPs and SCAD. The findings suggested that RNA modification may play functional roles in SCAD.
Collapse
Affiliation(s)
- Tianci Chai
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China.,Department of Anesthesiology, Xinyi People's Hospital, Xuzhou, China
| | - Mengyue Tian
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaojie Yang
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China.,Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhihuang Qiu
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| | - Xinjian Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Liangwan Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| |
Collapse
|
37
|
Li YH, Cao Y, Liu F, Zhao Q, Adi D, Huo Q, Liu Z, Luo JY, Fang BB, Tian T, Li XM, Liu D, Yang YN. Visualization and Analysis of Gene Expression in Stanford Type A Aortic Dissection Tissue Section by Spatial Transcriptomics. Front Genet 2021; 12:698124. [PMID: 34262602 PMCID: PMC8275070 DOI: 10.3389/fgene.2021.698124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Spatial transcriptomics enables gene expression events to be pinpointed to a specific location in biological tissues. We developed a molecular approach for low-cell and high-fiber Stanford type A aortic dissection and preliminarily explored and visualized the heterogeneity of ascending aortic types and mapping cell-type-specific gene expression to specific anatomical domains. Methods: We collected aortic samples from 15 patients with Stanford type A aortic dissection and a case of ascending aorta was randomly selected followed by 10x Genomics and spatial transcriptomics sequencing. In data processing of normalization, component analysis and dimensionality reduction analysis, different algorithms were compared to establish the pipeline suitable for human aortic tissue. Results: We identified 19,879 genes based on the count level of gene expression at different locations and they were divided into seven groups based on gene expression trends. Major cell that the population may contain are indicated, and we can find different main distribution of different cell types, among which the tearing sites were mainly macrophages and stem cells. The gene expression of these different locations and the cell types they may contain are correlated and discussed in terms of their involvement in immunity, regulation of oxygen homeostasis, regulation of cell structure and basic function. Conclusion: This approach provides a spatially resolved transcriptome− and tissue-wide perspective of the adult human aorta and will allow the application of human fibrous aortic tissues without any effect on genes in different layers with low RNA expression levels. Our findings will pave the way toward both a better understanding of Stanford type A aortic dissection pathogenesis and heterogeneity and the implementation of more effective personalized therapeutic approaches.
Collapse
Affiliation(s)
- Yan-Hong Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ying Cao
- Computational Virology Group, Center for Bacteria and Virus Resources and Application, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, China
| | - Fen Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qian Zhao
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dilare Adi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qiang Huo
- Department of Cardiac Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zheng Liu
- Department of Cardiac Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jun-Yi Luo
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Bin-Bin Fang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ting Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Di Liu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Computational Virology Group, Center for Bacteria and Virus Resources and Application, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Xinjiang Medical University, Urumqi, China
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
38
|
Milewicz DM, Guo D, Hostetler E, Marin I, Pinard AC, Cecchi AC. Update on the genetic risk for thoracic aortic aneurysms and acute aortic dissections: implications for clinical care. THE JOURNAL OF CARDIOVASCULAR SURGERY 2021; 62:203-210. [PMID: 33736427 PMCID: PMC8513124 DOI: 10.23736/s0021-9509.21.11816-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genetic variation plays a significant role in predisposing individuals to thoracic aortic aneurysms and dissections. Advances in genomic research have led to the discovery of 11 genes validated to cause heritable thoracic aortic disease (HTAD). Identifying the pathogenic variants responsible for aortic disease in affected patients confers substantial clinical utility by establishing a definitive diagnosis to inform tailored treatment and management, and enables identification of at-risk relatives to prevent downstream morbidity and mortality. The availability and access to clinical genetic testing has improved dramatically such that genetic testing is considered an integral part of the clinical evaluation for patients with thoracic aortic disease. This review provides an update on our current understanding of the genetic basis of thoracic aortic disease, practical recommendations for genetic testing, and clinical implications.
Collapse
Affiliation(s)
- Dianna M Milewicz
- McGovern Medical School, Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA -
| | - Dongchuan Guo
- McGovern Medical School, Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Ellen Hostetler
- McGovern Medical School, Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Isabella Marin
- McGovern Medical School, Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Amelie C Pinard
- McGovern Medical School, Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Alana C Cecchi
- McGovern Medical School, Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
39
|
Systematic review of genome-wide association studies of abdominal aortic aneurysm. Atherosclerosis 2021; 327:39-48. [PMID: 34038762 DOI: 10.1016/j.atherosclerosis.2021.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Abdominal aortic aneurysm (AAA) is an important cause of death worldwide and has an estimated heritability between 70 and 77%. Genome-wide association studies (GWAS) are an established way to discover genetic risk variants. The aim of this study was to systematically review the findings and quality of previous AAA GWAS. METHODS The Medline, PubMed, Web of Science and relevant genetic databases were searched to identify previous AAA GWAS. A framework was developed to grade the methodological quality of the GWAS. Data from included studies were extracted to assess methods and findings. RESULTS Eight case-control studies were included. Thirty-three of the 38 total single nucleotide polymorphisms (SNPs) previously reported were associated with AAA diagnosis at genome-wide significance (p < 5.0 × 10-8). The CDKN2B antisense RNA-1 gene had the most significant association with AAA diagnosis (p = 6.94 × 10-29 and p = 1.54 × 10-33 for rs4007642 and rs10757274 respectively). Age, sex and smoking history were not reported for the complete cohort in any of the included studies, although five of the eight studies adjusted or matched for at least two confounding variables. All included studies had important design limitations including lack of sample size estimation, inconsistent case and control ascertainment and limited phenotyping of the AAAs. AAA growth was assessed in one GWAS, however, no significant associations with the reported SNPs were found. CONCLUSIONS This systematic review identified 33 SNPs associated with AAA diagnosis at genome-wide significance previously validated in multiple cohorts. The association between SNPs and AAA growth was not adequately examined. Previous GWAS have a number of design limitations.
Collapse
|
40
|
He Z, Wang G, Wu J, Tang Z, Luo M. The molecular mechanism of LRP1 in physiological vascular homeostasis and signal transduction pathways. Biomed Pharmacother 2021; 139:111667. [PMID: 34243608 DOI: 10.1016/j.biopha.2021.111667] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Interactions between vascular smooth muscle cells (VSMCs), endothelial cells (ECs), pericytes (PCs) and macrophages (MФ), the major components of blood vessels, play a crucial role in maintaining vascular structural and functional homeostasis. Low-density lipoprotein (LDL) receptor-related protein-1 (LRP1), a transmembrane receptor protein belonging to the LDL receptor family, plays multifunctional roles in maintaining endocytosis, homeostasis, and signal transduction. Accumulating evidence suggests that LRP1 modulates vascular homeostasis mainly by regulating vasoactive substances and specific intracellular signaling pathways, including the plasminogen activator inhibitor 1 (PAI-1) signaling pathway, platelet-derived growth factor (PDGF) signaling pathway, transforming growth factor-β (TGF-β) signaling pathway and vascular endothelial growth factor (VEGF) signaling pathway. The aim of the present review is to focus on recent advances in the discovery and mechanism of vascular homeostasis regulated by LRP1-dependent signaling pathways. These recent discoveries expand our understanding of the mechanisms controlling LRP1 as a target for studies on vascular complications.
Collapse
Affiliation(s)
- Zhaohui He
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Department of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Zonghao Tang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
41
|
Traylor M, Persyn E, Tomppo L, Klasson S, Abedi V, Bakker MK, Torres N, Li L, Bell S, Rutten-Jacobs L, Tozer DJ, Griessenauer CJ, Zhang Y, Pedersen A, Sharma P, Jimenez-Conde J, Rundek T, Grewal RP, Lindgren A, Meschia JF, Salomaa V, Havulinna A, Kourkoulis C, Crawford K, Marini S, Mitchell BD, Kittner SJ, Rosand J, Dichgans M, Jern C, Strbian D, Fernandez-Cadenas I, Zand R, Ruigrok Y, Rost N, Lemmens R, Rothwell PM, Anderson CD, Wardlaw J, Lewis CM, Markus HS. Genetic basis of lacunar stroke: a pooled analysis of individual patient data and genome-wide association studies. Lancet Neurol 2021; 20:351-361. [PMID: 33773637 PMCID: PMC8062914 DOI: 10.1016/s1474-4422(21)00031-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/06/2020] [Accepted: 01/15/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND The genetic basis of lacunar stroke is poorly understood, with a single locus on 16q24 identified to date. We sought to identify novel associations and provide mechanistic insights into the disease. METHODS We did a pooled analysis of data from newly recruited patients with an MRI-confirmed diagnosis of lacunar stroke and existing genome-wide association studies (GWAS). Patients were recruited from hospitals in the UK as part of the UK DNA Lacunar Stroke studies 1 and 2 and from collaborators within the International Stroke Genetics Consortium. Cases and controls were stratified by ancestry and two meta-analyses were done: a European ancestry analysis, and a transethnic analysis that included all ancestry groups. We also did a multi-trait analysis of GWAS, in a joint analysis with a study of cerebral white matter hyperintensities (an aetiologically related radiological trait), to find additional genetic associations. We did a transcriptome-wide association study (TWAS) to detect genes for which expression is associated with lacunar stroke; identified significantly enriched pathways using multi-marker analysis of genomic annotation; and evaluated cardiovascular risk factors causally associated with the disease using mendelian randomisation. FINDINGS Our meta-analysis comprised studies from Europe, the USA, and Australia, including 7338 cases and 254 798 controls, of which 2987 cases (matched with 29 540 controls) were confirmed using MRI. Five loci (ICA1L-WDR12-CARF-NBEAL1, ULK4, SPI1-SLC39A13-PSMC3-RAPSN, ZCCHC14, ZBTB14-EPB41L3) were found to be associated with lacunar stroke in the European or transethnic meta-analyses. A further seven loci (SLC25A44-PMF1-BGLAP, LOX-ZNF474-LOC100505841, FOXF2-FOXQ1, VTA1-GPR126, SH3PXD2A, HTRA1-ARMS2, COL4A2) were found to be associated in the multi-trait analysis with cerebral white matter hyperintensities (n=42 310). Two of the identified loci contain genes (COL4A2 and HTRA1) that are involved in monogenic lacunar stroke. The TWAS identified associations between the expression of six genes (SCL25A44, ULK4, CARF, FAM117B, ICA1L, NBEAL1) and lacunar stroke. Pathway analyses implicated disruption of the extracellular matrix, phosphatidylinositol 5 phosphate binding, and roundabout binding (false discovery rate <0·05). Mendelian randomisation analyses identified positive associations of elevated blood pressure, history of smoking, and type 2 diabetes with lacunar stroke. INTERPRETATION Lacunar stroke has a substantial heritable component, with 12 loci now identified that could represent future treatment targets. These loci provide insights into lacunar stroke pathogenesis, highlighting disruption of the vascular extracellular matrix (COL4A2, LOX, SH3PXD2A, GPR126, HTRA1), pericyte differentiation (FOXF2, GPR126), TGF-β signalling (HTRA1), and myelination (ULK4, GPR126) in disease risk. FUNDING British Heart Foundation.
Collapse
Affiliation(s)
- Matthew Traylor
- Clinical Pharmacology and The Barts Heart Centre and NIHR Barts Biomedical Research Centre, Barts Health NHS Trust, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Elodie Persyn
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Liisa Tomppo
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Sofia Klasson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Vida Abedi
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Health System, Danville, PA, USA
| | - Mark K Bakker
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nuria Torres
- Stroke Pharmacogenomics and Genetics, Sant Pau Institute of Research, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Linxin Li
- Centre for the Prevention of Stroke and Dementia, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Steven Bell
- Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Loes Rutten-Jacobs
- Product Development Personalized Health Care, F Hoffmann-La Roche, Basel, Switzerland
| | - Daniel J Tozer
- Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Christoph J Griessenauer
- Neuroscience Institute, Geisinger Health System, Danville, PA, USA; Institute of Neurointervention, Paracelsus Medical University, Salzburg, Austria
| | - Yanfei Zhang
- Genomic Medicine Institute, Geisinger Health System, Danville, PA, USA
| | - Annie Pedersen
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pankaj Sharma
- Institute of Cardiovascular Research, Royal Holloway University of London, London, UK
| | - Jordi Jimenez-Conde
- Neurovascular Research Group, Department of Neurology of Hospital del Mar-IMIM (Institut Hospital del Mar d'Investigacions Mediques), Universitat Autonoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Tatjana Rundek
- Evelyn F McKnight Brain Institute, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Raji P Grewal
- Neuroscience Institute, Saint Francis Medical Center, School of Health and Medical Sciences, Seton Hall University, South Orange, NJ, USA
| | - Arne Lindgren
- Department of Neurology, Skane University Hospital, Lund, Sweden; Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
| | | | - Veikko Salomaa
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Aki Havulinna
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM HiLIFE), Helsinki, Finland
| | - Christina Kourkoulis
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA; Program in Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Katherine Crawford
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Sandro Marini
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Steven J Kittner
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA; Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Jonathan Rosand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Program in Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), LMU Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christina Jern
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Daniel Strbian
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland; Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Israel Fernandez-Cadenas
- Stroke Pharmacogenomics and Genetics, Sant Pau Institute of Research, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain; Neurovascular Research Laboratory and Neurovascular Unit, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Ramin Zand
- Neuroscience Institute, Geisinger Health System, Danville, PA, USA
| | - Ynte Ruigrok
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands
| | - Natalia Rost
- J Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Robin Lemmens
- Experimental Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; VIB Center for Brain & Disease Research, Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Peter M Rothwell
- Centre for the Prevention of Stroke and Dementia, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Christopher D Anderson
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Program in Medical & Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, UK Dementia Research Institute and Row Fogo Centre for Research into the Ageing Brain, University of Edinburgh, Edinburgh, UK
| | - Cathryn M Lewis
- Department of Medical and Molecular Genetics, King's College London, London, UK; Social, Genetic, and Developmental Psychiatry Centre, King's College London, London, UK
| | - Hugh S Markus
- Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
42
|
Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MSV, Evenson KR, Ferguson JF, Gupta DK, Khan SS, Kissela BM, Knutson KL, Lee CD, Lewis TT, Liu J, Loop MS, Lutsey PL, Ma J, Mackey J, Martin SS, Matchar DB, Mussolino ME, Navaneethan SD, Perak AM, Roth GA, Samad Z, Satou GM, Schroeder EB, Shah SH, Shay CM, Stokes A, VanWagner LB, Wang NY, Tsao CW. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021; 143:e254-e743. [PMID: 33501848 DOI: 10.1161/cir.0000000000000950] [Citation(s) in RCA: 3211] [Impact Index Per Article: 1070.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2021 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population, an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors related to cardiovascular disease. RESULTS Each of the 27 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
43
|
Preuss F, Chatterjee D, Mathea S, Shrestha S, St-Germain J, Saha M, Kannan N, Raught B, Rottapel R, Knapp S. Nucleotide Binding, Evolutionary Insights, and Interaction Partners of the Pseudokinase Unc-51-like Kinase 4. Structure 2020; 28:1184-1196.e6. [PMID: 32814032 DOI: 10.1016/j.str.2020.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/17/2020] [Accepted: 07/29/2020] [Indexed: 01/11/2023]
Abstract
Unc-51-like kinase 4 (ULK4) is a pseudokinase that has been linked to the development of several diseases. Even though sequence motifs required for ATP binding in kinases are lacking, ULK4 still tightly binds ATP and the presence of the co-factor is required for structural stability of ULK4. Here, we present a high-resolution structure of a ULK4-ATPγS complex revealing a highly unusual ATP binding mode in which the lack of the canonical VAIK motif lysine is compensated by K39, located N-terminal to αC. Evolutionary analysis suggests that degradation of active site motifs in metazoan ULK4 has co-occurred with an ULK4-specific activation loop, which stabilizes the C helix. In addition, cellular interaction studies using BioID and biochemical validation data revealed high confidence interactors of the pseudokinase and armadillo repeat domains. Many of the identified ULK4 interaction partners were centrosomal and tubulin-associated proteins and several active kinases suggesting interesting regulatory roles for ULK4.
Collapse
Affiliation(s)
- Franziska Preuss
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Deep Chatterjee
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sebastian Mathea
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Safal Shrestha
- Institute of Bioinformatics & Department of Biochemistry and Molecular Biology, University of Georgia, 120 Green Street, Athens, GA 30602-7229, USA
| | - Jonathan St-Germain
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C4, Canada
| | - Manipa Saha
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C4, Canada
| | - Natarajan Kannan
- Institute of Bioinformatics & Department of Biochemistry and Molecular Biology, University of Georgia, 120 Green Street, Athens, GA 30602-7229, USA
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C4, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, Toronto M5G 2C4, Canada; Departments of Medicine, Immunology and Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada; Division of Rheumatology, St. Michael's Hospital, Toronto M5B 1W8, Canada
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; German Cancer Consortium (DKTK) and Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany.
| |
Collapse
|
44
|
Miner GH, Renton AE, Taubenfeld E, Tadros RO, Marcora E, Lookstein RA, Faries PL, Marin ML. Whole genome sequencing identifies loci specifically associated with thoracic aortic wall defects and abdominal aortic aneurysms in patients with European ancestry. JVS Vasc Sci 2020; 1:233-245. [PMID: 34617051 PMCID: PMC8489199 DOI: 10.1016/j.jvssci.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/08/2020] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE The objective of this study was to better understand the pathophysiology and underlying genetic mechanisms behind two abdominal aortic aneurysm (AAA) subtypes using computed tomographic imaging in combination with whole genome sequencing. METHODS Patients with a known AAA and European ancestry were included in this investigation and underwent genetic and image analysis. Patients with AAAs and indications of descending thoracic aortic pathology (aortic dissection, penetrating aortic ulcers, intramural hematoma, atheromas, ulcerative plaque, and intramural ulceration, and intimal flaps/tears) were classified as having thoracic aortic disease, grouped together, and compared with patients with an AAA and a normal descending thoracic aorta. Whole genome sequencing was then performed on the 93 patients who had imaging features consistent with thoracic aortic disease and the 126 patients with a normal descending thoracic aorta. RESULTS The results of this study suggest one variant-level, four gene-level, and one gene set-level associations in patients with thoracic aortic disease who also had an AAA. The variant rs79508780 located in TSEN54 achieved study-wide significance (P = 1.71E-06). BATF3 and SMLR1 were significantly associated and EFCAB3 and TAF4 were reached suggestive assocation with a diseased descending thoracic aorta (P = 5.23E-26, P = 1.86E-25, P = 1.54E-05, and P = 8.31E-05, respectively). Gene sets were also compiled using MSigDB and trait-based index single nucleotide variation from major genome-wide association studies. GO_DNA_DOUBLE_STRAND_BREAK_PROCESSING, a gene set related to double-stranded DNA break repair, was significantly associated with thoracic aortic disease in AAA patients (P = 1.80E-06). CONCLUSIONS This pilot study provides further evidence that an AAA may be the end result of multiple degenerative pathways. Genetic variations in vitamin D signaling, cholesterol metabolism, extracellular matrix breakdown, and double-stranded DNA break repair pathways were associated with European patients who had an AAA and thoracic aortic disease. Additionally, this study provides support for the application of a radiogenomic approach for the investigation of other potential pathologies that could lead to the development of an AAA or influence future management decisions. (JVS-Vascular Science.). CLINICAL RELEVANCE In this study, we provide evidence that abdominal aortic aneurysms (AAAs) may be a result of multiple pathophysiologies rather than a single disease. We have identified genetic variants involved in vitamin D signaling, cholesterol metabolism, extracellular matrix breakdown, and double-stranded DNA break repair associated with structural defects in the aortic wall in patients with AAAs who are of European descent. Patients with AAAs and structural defects in the thoracic aorta have been previously linked to differential behavior after endovascular aneurysm repair. These patients with wall defects exhibited greater sac regression, a marker of surgical success, after endovascular aneurysm repair. Our study demonstrates the usefulness of a radiogenomic approach for elucidating mechanisms behind the formation and future behavior of AAAs that could aid surgeons in making future procedural and management decisions.
Collapse
|
45
|
Turley TN, O'Byrne MM, Kosel ML, de Andrade M, Gulati R, Hayes SN, Tweet MS, Olson TM. Identification of Susceptibility Loci for Spontaneous Coronary Artery Dissection. JAMA Cardiol 2020; 5:929-938. [PMID: 32374345 DOI: 10.1001/jamacardio.2020.0872] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Importance Spontaneous coronary artery dissection (SCAD), an idiopathic disorder that predominantly affects young to middle-aged women, has emerged as an important cause of acute coronary syndrome, myocardial infarction, and sudden cardiac death. Objective To identify common single-nucleotide variants (SNVs) associated with SCAD susceptibility. Design, Setting, and Participants This single-center genome-wide association study examined approximately 5 million genotyped and imputed SNVs and subsequent SNV-targeted replication analysis results in individuals enrolled in the Mayo Clinic SCAD registry from August 30, 2011, to August 2, 2018. Data analysis was performed from June 21, 2017, to December 30, 2019. Main Outcomes and Measures Genetic loci and positional candidate genes associated with SCAD. Results This study included 484 white women with SCAD (mean [SD] age, 46.6 [9.2] years) and 1477 white female controls in the discovery cohort (mean [SD] age, 64.0 [14.5] years) and 183 white women with SCAD (mean [SD] age, 47.1 [9.9] years) and 340 white female controls in the replication cohort (mean [SD] age, 51.0 [15.3] years). Associations with SCAD risk reached genome-wide significance at 3 loci (1q21.3 [OR, 1.78; 95% CI, 1.51-2.09; P = 2.63 × 10-12], 6p24.1 [OR, 1.77; 95% CI, 1.51-2.09; P = 7.09 × 10-12], and 12q13.3 [OR, 1.67; 95% CI, 1.42-1.97; P = 3.62 × 10-10]), and 7 loci had evidence suggestive of an association (1q24.2 [OR, 2.10; 95% CI, 1.58-2.79; P = 2.88 × 10-7], 3q22.3 [OR, 1.47; 95% CI, 1.26-1.71; P = 6.65 × 10-7], 4q34.3 [OR, 1.84; 95% CI, 1.44-2.35; P = 9.80 × 10-7], 8q24.3 [OR, 2.57; 95% CI, 1.76-3.75; P = 9.65 × 10-7], 15q21.1 [OR, 1.75; 95% CI, 1.40-2.18; P = 7.23 × 10-7], 16q24.1 [OR, 1.91; 95% CI, 1.49-2.44; P = 2.56 × 10-7], and 21q22.11 [OR, 2.11; 95% CI, 1.59-2.82; P = 3.12 × 10-7]) after adjusting for the top 5 principal components. Associations were validated for 5 of the 10 risk alleles in the replication cohort. In a meta-analysis of the discovery and replication cohorts, associations for the 5 SNVs were significant, with relatively large effect sizes (1q21.3 [OR, 1.77; 95% CI, 1.54-2.03; P = 3.26 × 10-16], 6p24.1 [OR, 1.71; 95% CI, 1.49-1.97; P = 4.59 × 10-14], 12q13.3 [OR, 1.69; 95% CI, 1.47-1.94; P = 1.42 × 10-13], 15q21.1 [OR, 1.79; 95% CI, 1.48-2.17; P = 2.12 × 10-9], and 21q22.11 [OR, 2.18; 95% CI, 1.70-2.81; P = 1.09 × 10-9]). Each index SNV was within or near a gene highly expressed in arterial tissue and previously linked to SCAD (PHACTR1) and/or other vascular disorders (LRP1, LINC00310, and FBN1). Conclusions and Relevance This study revealed 5 replicated risk loci and positional candidate genes for SCAD, most of which are associated with extracoronary arteriopathies. Moreover, the alternate alleles of 3 SNVs have been previously associated with atherosclerotic coronary artery disease, further implicating allelic susceptibility to coronary artery atherosclerosis vs dissection.
Collapse
Affiliation(s)
- Tamiel N Turley
- Molecular Pharmacology and Experimental Therapeutics Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Megan M O'Byrne
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Matthew L Kosel
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Mariza de Andrade
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Rajiv Gulati
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sharonne N Hayes
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Marysia S Tweet
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Timothy M Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
46
|
Rohde S, Zafar MA, Ziganshin BA, Elefteriades JA. Thoracic aortic aneurysm gene dictionary. Asian Cardiovasc Thorac Ann 2020; 29:682-696. [PMID: 32689806 DOI: 10.1177/0218492320943800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Thoracic aortic aneurysm is typically clinically silent, with a natural history of progressive enlargement until a potentially lethal complication such as rupture or dissection occurs. Underlying genetic predisposition strongly influences the risk of thoracic aortic aneurysm and dissection. Familial cases are more virulent, have a higher rate of aneurysm growth, and occur earlier in life. To date, over 30 genes have been associated with syndromic and non-syndromic thoracic aortic aneurysm and dissection. The causative genes and their specific variants help to predict the disease phenotype, including age at presentation, risk of dissection at small aortic sizes, and risk of other cardiovascular and systemic manifestations. This genetic "dictionary" is already a clinical reality, allowing us to personalize care based on specific causative mutations for a substantial proportion of these patients. Widespread genetic sequencing of thoracic aortic aneurysm and dissection patients has been and continues to be crucial to the rapid expansion of this dictionary and ultimately, the delivery of truly personalized care to every patient.
Collapse
Affiliation(s)
- Stefanie Rohde
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| | - Mohammad A Zafar
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| | - Bulat A Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA.,Department of Cardiovascular and Endovascular Surgery, Kazan State Medical University, Kazan, Russia
| | - John A Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
47
|
Nandakumar P, Lee D, Hoffmann TJ, Ehret GB, Arking D, Ranatunga D, Li M, Grove ML, Boerwinkle E, Schaefer C, Kwok PY, Iribarren C, Risch N, Chakravarti A. Analysis of putative cis-regulatory elements regulating blood pressure variation. Hum Mol Genet 2020; 29:1922-1932. [PMID: 32436959 PMCID: PMC7372556 DOI: 10.1093/hmg/ddaa098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/29/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Hundreds of loci have been associated with blood pressure (BP) traits from many genome-wide association studies. We identified an enrichment of these loci in aorta and tibial artery expression quantitative trait loci in our previous work in ~100 000 Genetic Epidemiology Research on Aging study participants. In the present study, we sought to fine-map known loci and identify novel genes by determining putative regulatory regions for these and other tissues relevant to BP. We constructed maps of putative cis-regulatory elements (CREs) using publicly available open chromatin data for the heart, aorta and tibial arteries, and multiple kidney cell types. Variants within these regions may be evaluated quantitatively for their tissue- or cell-type-specific regulatory impact using deltaSVM functional scores, as described in our previous work. We aggregate variants within these putative CREs within 50 Kb of the start or end of 'expressed' genes in these tissues or cell types using public expression data and use deltaSVM scores as weights in the group-wise sequence kernel association test to identify candidates. We test for association with both BP traits and expression within these tissues or cell types of interest and identify the candidates MTHFR, C10orf32, CSK, NOV, ULK4, SDCCAG8, SCAMP5, RPP25, HDGFRP3, VPS37B and PPCDC. Additionally, we examined two known QT interval genes, SCN5A and NOS1AP, in the Atherosclerosis Risk in Communities Study, as a positive control, and observed the expected heart-specific effect. Thus, our method identifies variants and genes for further functional testing using tissue- or cell-type-specific putative regulatory information.
Collapse
Affiliation(s)
- Priyanka Nandakumar
- Department of Genetic Medicine, McKusick-Nathans Institute, Baltimore, MD 21205, USA
| | - Dongwon Lee
- Department of Genetic Medicine, McKusick-Nathans Institute, Baltimore, MD 21205, USA
- Center for Human Genetics and Genomics, NYU School of Medicine, New York, NY 10016, USA
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Thomas J Hoffmann
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Georg B Ehret
- Department of Genetic Medicine, McKusick-Nathans Institute, Baltimore, MD 21205, USA
- Center for Human Genetics and Genomics, NYU School of Medicine, New York, NY 10016, USA
- Cardiology, Department of Specialties of Internal Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Dan Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Baltimore, MD 21205, USA
| | - Dilrini Ranatunga
- Kaiser Permanente Northern California Division of Research, Oakland, California 94612 USA
| | - Man Li
- Division of Nephrology, Department of Human Genetics, University of Utah, Salt Lake City, Utah 84132, USA
| | - Megan L Grove
- Human Genetics Center, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Catherine Schaefer
- Kaiser Permanente Northern California Division of Research, Oakland, California 94612 USA
| | - Pui-Yan Kwok
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Carlos Iribarren
- Kaiser Permanente Northern California Division of Research, Oakland, California 94612 USA
| | - Neil Risch
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- Kaiser Permanente Northern California Division of Research, Oakland, California 94612 USA
| | - Aravinda Chakravarti
- Department of Genetic Medicine, McKusick-Nathans Institute, Baltimore, MD 21205, USA
- Center for Human Genetics and Genomics, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
48
|
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Shay CM, Spartano NL, Stokes A, Tirschwell DL, VanWagner LB, Tsao CW. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation 2020; 141:e139-e596. [PMID: 31992061 DOI: 10.1161/cir.0000000000000757] [Citation(s) in RCA: 4976] [Impact Index Per Article: 1244.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports on the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2020 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population, metrics to assess and monitor healthy diets, an enhanced focus on social determinants of health, a focus on the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors, implementation strategies, and implications of the American Heart Association's 2020 Impact Goals. RESULTS Each of the 26 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, healthcare administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
49
|
Ostberg NP, Zafar MA, Ziganshin BA, Elefteriades JA. The Genetics of Thoracic Aortic Aneurysms and Dissection: A Clinical Perspective. Biomolecules 2020; 10:E182. [PMID: 31991693 PMCID: PMC7072177 DOI: 10.3390/biom10020182] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Thoracic aortic aneurysm and dissection (TAAD) affects many patients globally and has high mortality rates if undetected. Once thought to be solely a degenerative disease that afflicted the aorta due to high pressure and biomechanical stress, extensive investigation of the heritability and natural history of TAAD has shown a clear genetic basis for the disease. Here, we review both the cellular mechanisms and clinical manifestations of syndromic and non-syndromic TAAD. We particularly focus on genes that have been linked to dissection at diameters <5.0 cm, the current lower bound for surgical intervention. Genetic screening tests to identify patients with TAAD associated mutations that place them at high risk for dissection are also discussed.
Collapse
Affiliation(s)
- Nicolai P. Ostberg
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (N.P.O.); (M.A.Z.); (B.A.Z.)
| | - Mohammad A. Zafar
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (N.P.O.); (M.A.Z.); (B.A.Z.)
| | - Bulat A. Ziganshin
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (N.P.O.); (M.A.Z.); (B.A.Z.)
- Department of Cardiovascular and Endovascular Surgery, Kazan State Medical University, 420012 Kazan, Russia
| | - John A. Elefteriades
- Aortic Institute at Yale-New Haven Hospital, Yale University School of Medicine, New Haven, CT 06510, USA; (N.P.O.); (M.A.Z.); (B.A.Z.)
| |
Collapse
|
50
|
Zhao S, Jiang H, Liang ZH, Ju H. Integrating Multi-Omics Data to Identify Novel Disease Genes and Single-Neucleotide Polymorphisms. Front Genet 2020; 10:1336. [PMID: 32038707 PMCID: PMC6993083 DOI: 10.3389/fgene.2019.01336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Stroke ranks the second leading cause of death among people over the age of 60 in the world. Stroke is widely regarded as a complex disease that is affected by genetic and environmental factors. Evidence from twin and family studies suggests that genetic factors may play an important role in its pathogenesis. Therefore, research on the genetic association of susceptibility genes can help understand the mechanism of stroke. Genome-wide association study (GWAS) has found a large number of stroke-related loci, but their mechanism is unknown. In order to explore the function of single-nucleotide polymorphisms (SNPs) at the molecular level, in this paper, we integrated 8 GWAS datasets with brain expression quantitative trait loci (eQTL) dataset to identify SNPs and genes which are related to four types of stroke (ischemic stroke, large artery stroke, cardioembolic stroke, small vessel stroke). Thirty-eight SNPs which can affect 14 genes expression are found to be associated with stroke. Among these 14 genes, 10 genes expression are associated with ischemic stroke, one gene for large artery stroke, six genes for cardioembolic stroke and eight genes for small vessel stroke. To explore the effects of environmental factors on stroke, we identified methylation susceptibility loci associated with stroke using methylation quantitative trait loci (MQTL). Thirty-one of these 38 SNPs are at greater risk of methylation and can significantly change gene expression level. Overall, the genetic pathogenesis of stroke is explored from locus to gene, gene to gene expression and gene expression to phenotype.
Collapse
Affiliation(s)
- Sheng Zhao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zong-Hui Liang
- Department of Radiology, Jian'an District Centre Hospital of Fudan University, Shanghai, China
| | - Hong Ju
- Department of Information Engineering, Heilongjiang Biological Science and Technology Career Academy, Harbin, China
| |
Collapse
|