1
|
Tsukahara T, Kethireddy S, Bonefas KM, Chen A, Sutton BLM, Bandow K, Dou Y, Iwase S, Sutton MA. Division of labor among H3K4 methyltransferases defines distinct facets of homeostatic plasticity. Cell Rep 2025; 44:115746. [PMID: 40402740 DOI: 10.1016/j.celrep.2025.115746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/27/2024] [Accepted: 05/06/2025] [Indexed: 05/24/2025] Open
Abstract
Heterozygous mutations in any of the six H3K4 methyltransferases (KMT2s) result in monogenic neurodevelopmental disorders, indicating non-redundant yet poorly understood roles of this enzyme family in neurodevelopment. However, the specific cellular role of KMT2 enzymes in the brain remains poorly understood, owing to the clear non-catalytic functions of each family member and the potential for functional redundancy in installing H3K4 methylation (H3K4me). Here, we identify an instructive role for H3K4me in controlling synapse function and a division of labor among the six KMT2 enzymes in regulating homeostatic synaptic scaling. Using RNAi screening, conditional genetics, small-molecule inhibitors, and transcriptional profiling, our data reveal that individual KMT2 enzymes have unique roles and operate in specific phases to control distinct facets of homeostatic scaling. Together, our results suggest that the expansion of this enzyme family in mammals is key to coupling fine-tuned gene expression changes to adaptive modifications of synaptic function.
Collapse
Affiliation(s)
- Takao Tsukahara
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA; Meikai University School of Dentistry, Department of Oral Biology and Tissue Engineering, Division of Biochemistry, Sakado, Saitama 350-0283, Japan
| | - Saini Kethireddy
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine M Bonefas
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex Chen
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brendan L M Sutton
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kenjiro Bandow
- Meikai University School of Dentistry, Department of Oral Biology and Tissue Engineering, Division of Biochemistry, Sakado, Saitama 350-0283, Japan
| | - Yali Dou
- Department of Medicine and Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Shigeki Iwase
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael A Sutton
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Al Ojaimi M, Banimortada BJ, Alragheb A, Hajir RS, Alves C, Walid D, Raza A, El-Hattab AW. Molecular and clinical aspects of histone-related disorders. Hum Genomics 2025; 19:47. [PMID: 40301961 PMCID: PMC12042324 DOI: 10.1186/s40246-025-00734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/20/2025] [Indexed: 05/01/2025] Open
Abstract
Epigenetics is the coordination of gene expression without alterations in the DNA sequence. Epigenetic gene expression is regulated by an intricate system that revolves around the interaction of histone proteins and DNA within the chromatin structure. Histones remain at the core of the epigenetic gene transcription regulation where histone proteins, along with the histone modification enzymes, and the subunits of chromatin remodelers and epigenetic readers play essential roles in regulating gene expression. Histone-related disorders encompass the syndromes induced by pathogenic variants in genes encoding histones, genes encoding histone modification enzymes, and genes encoding subunits of chromatin remodeler and epigenetic reader complexes. Defects in genes encoding histones lead to the expression of abnormal histone proteins. Abnormalities in genes encoding histone modification enzymes result in aberrant histone modifications. Defects in genes encoding subunits of the chromatin remodeler complexes result in defective chromatin remodeling. Defects in genes that code for the epigenetic readers (bromodomain proteins) will hinder their ability to regulate gene transcription. These disorders typically present manifestations that impact the nervous system which is particularly sensitive due to its need for specific patterns of gene expression for neural cell function and differentiation. To date, 72 histone-related disorders have been described including 7 syndromes due to defects in histone genes, 35 syndromes due to histone modifications defects, 26 syndromes due to defects in chromatin remodeling, and 4 due to defects in epigenetic readers. In this review article, the molecular basis of histone structure and function is first explained, followed by a summary of the histone-related syndromes.
Collapse
Affiliation(s)
- Mode Al Ojaimi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pediatrics and Adolescent Medicine, American University of Beirut, Beirut, Lebanon
- Keserwan Medical Center, Jounieh, Lebanon
| | - Bashar J Banimortada
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Abduljalil Alragheb
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Razan S Hajir
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Duaa Walid
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Afsheen Raza
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Department of Pediatrics, University Hospital Sharjah, Sharjah, United Arab Emirates.
- Department of Clinical Genetics, Burjeel Medical City, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Stehr AM, Fischer J, Mirza-Schreiber N, Bernardi K, Porrmann J, Harrer P, Kaiser F, Jamra RA, Winkelmann J, Jech R, Koy A, Oexle K, Zech M. Variable expressivity of KMT2B variants at codon 2565 in patients with dystonia and developmental disorders. Parkinsonism Relat Disord 2025; 133:107319. [PMID: 39933316 DOI: 10.1016/j.parkreldis.2025.107319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
INTRODUCTION Variable expressivity is an emerging characteristic of KMT2B-related dystonia. However, it remains poorly understood whether variants reoccurring at specific sites of lysine-specific methlytransferase-2B (KMT2B) can drive intra- and interfamilial clinical heterogeneity. Our goal was to ascertain independent families with variants affecting residue Arg2565 of KMT2B. METHODS Whole-exome/genome sequencing, multi-site recruitment, genotype-phenotype correlations, and DNA methylation episignature analysis were performed. RESULTS We report four individuals from two families harboring the variant c.7693C > G, p.Arg2565Gly. In an additional patient, a de-novo c.7693C > T, p.Arg2565Cys variant was identified. The observed phenotypic spectrum ranged from childhood-onset dystonia (N = 2) over unspecific intellectual disability syndromes (N = 2) to undiagnosed behavioral symptoms in adulthood (N = 1). Samples bearing p.Arg2565Gly had a KMT2B-typical episignature, although the effect on methylation was less pronounced than in carriers of loss-of-function KMT2B variants. CONCLUSIONS We established the existence of a KMT2B missense-mutation hotspot associated with varying degrees of disease severity and expression, providing information for patient counseling and elucidation of pathomechanisms.
Collapse
Affiliation(s)
- Antonia M Stehr
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Jan Fischer
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, Dresden, Germany
| | - Nazanin Mirza-Schreiber
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany; Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
| | - Katerina Bernardi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Joseph Porrmann
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology, Dresden, Germany
| | - Philip Harrer
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Frank Kaiser
- Institute of Human Genetics, Universitätsklinikum Essen, Essen, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Juliane Winkelmann
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; DZPG, Deutsches Zentrum für Psychische Gesundheit, Munich, Germany
| | - Robert Jech
- Department of Neurology, Charles University, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Konrad Oexle
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany; Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Michael Zech
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute for Advanced Study, Technical University of Munich, Garching, Germany.
| |
Collapse
|
4
|
Indelicato E, Zech M, Eberl A, Boesch S. Insights on the Shared Genetic Landscape of Neurodevelopmental and Movement Disorders. Curr Neurol Neurosci Rep 2025; 25:24. [PMID: 40095113 PMCID: PMC11914236 DOI: 10.1007/s11910-025-01414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE OF REVIEW Large-scale studies using hypothesis-free exome sequencing have revealed the strong heritability of neurodevelopmental disorders (NDDs) and their molecular overlap with later-onset, progressive, movement disorders phenotypes. In this review, we focus on the shared genetic landscape of NDDs and movement disorders. RECENT FINDINGS Cumulative research has shown that up to 30% of cases labelled as "cerebral palsy" have a monogenic etiology. Causal pathogenic variants are particularly enriched in genes previously associated with adult-onset progressive movement disorders, such as spastic paraplegias, dystonias, and cerebellar ataxias. Biological pathways that have emerged as common culprits are transcriptional regulation, neuritogenesis, and synaptic function. Defects in the same genes can cause neurological dysfunction both during early development and later in life. We highlight the implications of the increasing number of NDD gene etiologies for genetic testing in movement disorders. Finally, we discuss gaps and opportunities in the translation of this knowledge to the bedside.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria.
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Anna Eberl
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| |
Collapse
|
5
|
Cif L, Demailly D, Lin JP, Barwick KE, Sa M, Abela L, Malhotra S, Chong WK, Steel D, Sanchis-Juan A, Ngoh A, Trump N, Meyer E, Vasques X, Rankin J, Allain MW, Applegate CD, Isfahani SA, Baleine J, Balint B, Bassetti JA, Baple EL, Bhatia KP, Blanchet C, Burglen L, Cambonie G, Seng EC, Bastaraud SC, Cyprien F, Coubes C, d’Hardemare V, Deciphering Developmental Disorders Study, Doja A, Dorison N, Doummar D, Dy-Hollins ME, Farrelly E, Fitzpatrick DR, Fearon C, Fieg EL, Fogel BL, Forman EB, Fox RG, Genomics England Research Consortium, Gahl WA, Galosi S, Gonzalez V, Graves TD, Gregory A, Hallett M, Hasegawa H, Hayflick SJ, Hamosh A, Hully M, Jansen S, Jeong SY, Krier JB, Krystal S, Kumar KR, Laurencin C, Lee H, Lesca G, François LL, Lynch T, Mahant N, Martinez-Agosto JA, Milesi C, Mills KA, Mondain M, Morales-Briceno H, NIHR BioResource, Ostergaard JR, Pal S, Pallais JC, Pavillard F, Perrigault PF, Petersen AK, Polo G, Poulen G, Rinne T, Roujeau T, Rogers C, Roubertie A, Sahagian M, Schaefer E, Selim L, Selway R, Sharma N, Signer R, Soldatos AG, Stevenson DA, Stewart F, Tchan M, Undiagnosed Diseases Network, Verma IC, de Vries BBA, Wilson JL, Wong DA, Zaitoun R, Zhen D, et alCif L, Demailly D, Lin JP, Barwick KE, Sa M, Abela L, Malhotra S, Chong WK, Steel D, Sanchis-Juan A, Ngoh A, Trump N, Meyer E, Vasques X, Rankin J, Allain MW, Applegate CD, Isfahani SA, Baleine J, Balint B, Bassetti JA, Baple EL, Bhatia KP, Blanchet C, Burglen L, Cambonie G, Seng EC, Bastaraud SC, Cyprien F, Coubes C, d’Hardemare V, Deciphering Developmental Disorders Study, Doja A, Dorison N, Doummar D, Dy-Hollins ME, Farrelly E, Fitzpatrick DR, Fearon C, Fieg EL, Fogel BL, Forman EB, Fox RG, Genomics England Research Consortium, Gahl WA, Galosi S, Gonzalez V, Graves TD, Gregory A, Hallett M, Hasegawa H, Hayflick SJ, Hamosh A, Hully M, Jansen S, Jeong SY, Krier JB, Krystal S, Kumar KR, Laurencin C, Lee H, Lesca G, François LL, Lynch T, Mahant N, Martinez-Agosto JA, Milesi C, Mills KA, Mondain M, Morales-Briceno H, NIHR BioResource, Ostergaard JR, Pal S, Pallais JC, Pavillard F, Perrigault PF, Petersen AK, Polo G, Poulen G, Rinne T, Roujeau T, Rogers C, Roubertie A, Sahagian M, Schaefer E, Selim L, Selway R, Sharma N, Signer R, Soldatos AG, Stevenson DA, Stewart F, Tchan M, Undiagnosed Diseases Network, Verma IC, de Vries BBA, Wilson JL, Wong DA, Zaitoun R, Zhen D, Znaczko A, Dale RC, de Gusmão CM, Friedman J, Fung VSC, King MD, Mohammad SS, Rohena L, Waugh JL, Toro C, Raymond FL, Topf M, Coubes P, Gorman KM, Kurian MA. KMT2B-related disorders: expansion of the phenotypic spectrum and long-term efficacy of deep brain stimulation. ARXIV 2025:arXiv:2502.06320v1. [PMID: 39990802 PMCID: PMC11844621] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Heterozygous mutations in KMT2B are associated with an early-onset, progressive and often complex dystonia (DYT28). Key characteristics of typical disease include focal motor features at disease presentation, evolving through a caudocranial pattern into generalized dystonia, with prominent oromandibular, laryngeal and cervical involvement. Although KMT2B-related disease is emerging as one of the most common causes of early-onset genetic dystonia, much remains to be understood about the full spectrum of the disease. We describe a cohort of 53 patients with KMT2B mutations, with detailed delineation of their clinical phenotype and molecular genetic features. We report new disease presentations, including atypical patterns of dystonia evolution and a subgroup of patients with a non-dystonic neurodevelopmental phenotype. In addition to the previously reported systemic features, our study has identified co-morbidities, including the risk of status dystonicus, intrauterine growth retardation, and endocrinopathies. Analysis of this study cohort (n = 53) in tandem with published cases (n = 80) revealed that patients with chromosomal deletions and protein truncating variants had a significantly higher burden of systemic disease (with earlier onset of dystonia) than those with missense variants. Eighteen individuals had detailed longitudinal data available after insertion of deep brain stimulation for medically refractory dystonia. Median age at deep brain stimulation was 11.5 years (range: 4.5-37.0 years). Follow-up after deep brain stimulation ranged from 0.25 to 22 years. Significant improvement of motor function and disability (as assessed by the Burke Fahn Marsden's Dystonia Rating Scales, BFMDRS-M and BFMDRS-D) was evident at ł months, 1 year and last follow-up (motor, P = 0.001, P = 0.004, and P = 0.012; disability, P = 0.009, P = 0.002 and P = 0.012). At 1 year post-deep brain stimulation, >50% of subjects showed BFMDRS-M and BFMDRS-D improvements of >30%. In the long-term deep brain stimulation cohort (deep brain stimulation inserted for >5 years, n = 8), improvement of >30% was maintained in 5/8 and 3/8 subjects for the BFMDRS-M and BFMDRS-D, respectively. The greatest BFMDRS-M improvements were observed for trunk (53.2%) and cervical (50.5%) dystonia, with less clinical impact on laryngeal dystonia. Improvements in gait dystonia decreased from 20.9% at 1 year to 1ł.2% at last assessment; no patient maintained a fully independent gait. Reduction of BFMDRS-D was maintained for swallowing (52.9%). Five patients developed mild parkinsonism following deep brain stimulation. KMT2B-related disease comprises an expanding continuum from infancy to adulthood, with early evidence of genotype-phenotype correlations. Except for laryngeal dysphonia, deep brain stimulation provides a significant improvement in quality of life and function with sustained clinical benefit depending on symptoms distribution.
Collapse
Affiliation(s)
- Laura Cif
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté demédecine, Université de Montpellier, France
| | - Diane Demailly
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté demédecine, Université de Montpellier, France
| | - Jean-Pierre Lin
- Complex Motor Disorder Service, Children’s Neurosciences Department, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Children’s Neuromodulation Group, Women and Children’s Health Institute, Faculty of life Sciences and Medicine (FOLSM), King’s Health Partners, London, UK
| | - Katy E. Barwick
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mario Sa
- Complex Motor Disorder Service, Children’s Neurosciences Department, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Lucia Abela
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sony Malhotra
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, UK
| | - Wui K. Chong
- Developmental Imaging and Biophysics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dora Steel
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Alba Sanchis-Juan
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge, UK
| | - Adeline Ngoh
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Natalie Trump
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Esther Meyer
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Julia Rankin
- Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Meredith W. Allain
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Carolyn D. Applegate
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanaz Attaripour Isfahani
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Julien Baleine
- Unité de Soins Intensifs et Réanimation Pédiatrique et Néonatale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jennifer A. Bassetti
- Division of Medical Genetics, Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Emma L. Baple
- Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- Institute of Biomedical and Clinical Science RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Kailash P. Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Catherine Blanchet
- Département d’Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Lydie Burglen
- Département de génétique médicale, APHP Hôpital Armand Trousseau, Paris, France
| | - Gilles Cambonie
- Unité de Soins Intensifs et Réanimation Pédiatrique et Néonatale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Emilie Chan Seng
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté demédecine, Université de Montpellier, France
| | | | - Fabienne Cyprien
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté demédecine, Université de Montpellier, France
| | - Christine Coubes
- Département de Génétique médicale, Maladies rares et médecine personnalisée, CHU Montpellier, Montpellier, France
| | - Vincent d’Hardemare
- Unité Dyspa, Neurochirurgie Pédiatrique, Hôpital Fondation Rothschild, Paris, France
| | | | - Asif Doja
- Division of Neurology, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Nathalie Dorison
- Unité Dyspa, Neurochirurgie Pédiatrique, Hôpital Fondation Rothschild, Paris, France
| | - Diane Doummar
- Neuropédiatrie, Centre de référence neurogénétique mouvement anormaux de l’enfant, Hôpital Armand Trousseau, AP-HP, Sorbonne Université, France
| | - Marisela E. Dy-Hollins
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ellyn Farrelly
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
- Department of Pediatrics, Lucile Packard Children’s Hospital at Stanford, CA, USA
| | - David R. Fitzpatrick
- Human Genetics Unit, Medical and Developmental Genetics, University of Edinburgh Western General Hospital, Edinburgh, Scotland, UK
| | - Conor Fearon
- Department of Neurology, The Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin, Ireland
| | - Elizabeth L. Fieg
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brent L. Fogel
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Eva B. Forman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children’s Health Ireland at Temple Street, Dublin, Ireland
| | - Rachel G. Fox
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | | | - William A. Gahl
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Victoria Gonzalez
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté demédecine, Université de Montpellier, France
| | - Tracey D. Graves
- Department of Neurology, Hinchingbrooke Hospital, North West Anglia NHS Foundation Trust, Huntingdon, UK
| | - Allison Gregory
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Harutomo Hasegawa
- Complex Motor Disorder Service, Children’s Neurosciences Department, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Children’s Neuromodulation Group, Women and Children’s Health Institute, Faculty of life Sciences and Medicine (FOLSM), King’s Health Partners, London, UK
| | - Susan J. Hayflick
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
- Department of Paediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Ada Hamosh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marie Hully
- Département de Neurologie, APHP-Necker-Enfants Malades, Paris, France
| | - Sandra Jansen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Suh Young Jeong
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Joel B. Krier
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sidney Krystal
- Département de Neuroradiologie, Hôpital Fondation Rothschild, Paris
| | - Kishore R. Kumar
- Translational Genomics Group, Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Department of Neurogenetics, Kolling Institute, University of Sydney and Royal North Shore Hospital, St Leonards, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Sydney, NSW, Australia
| | - Chloé Laurencin
- Département de Neurologie, Hôpital Neurologique Pierre Wertheimer, Lyon, France
| | - Hane Lee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gaetan Lesca
- Département de Génétique, Hôpital Universitaire de Lyon, Lyon, France
| | | | - Timothy Lynch
- Department of Neurology, The Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin, Ireland
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Neil Mahant
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
| | - Julian A. Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Christophe Milesi
- Unité de Soins Intensifs et Réanimation Pédiatrique et Néonatale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Kelly A. Mills
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michel Mondain
- Département d’Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Hugo Morales-Briceno
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - NIHR BioResource
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Swasti Pal
- Institute of Genetics and Genomics, Sir Ganga Ram Hospital, Rajender Nagar, New Delhi, India
| | - Juan C. Pallais
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Frédérique Pavillard
- Département d’Anesthésie-Réanimation Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Pierre-Francois Perrigault
- Département d’Anesthésie-Réanimation Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | - Gustavo Polo
- Département de Neurochirurgie Fonctionnelle, Hôpital Neurologique et Neurochirurgical, Pierre Wertheimer, Lyon, France
| | - Gaetan Poulen
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté demédecine, Université de Montpellier, France
| | - Tuula Rinne
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Roujeau
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
| | - Caleb Rogers
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Agathe Roubertie
- Département de Neuropédiatrie, Hôpital Universitaire de Montpellier, Montpellier, France
- INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Michelle Sahagian
- Division of Neurology, Rady Children’s Hospital San Diego, CA, USA
- Department of Neuroscience, University of California San Diego, CA, USA
| | - Elise Schaefer
- Medical Genetics, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laila Selim
- Cairo University Children Hospital, Pediatric Neurology and Metabolic division, Cairo, Egypt
| | - Richard Selway
- Department of Neurosurgery, King’s College Hospital, London, UK
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Rebecca Signer
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ariane G. Soldatos
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David A. Stevenson
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Fiona Stewart
- Department of Genetic Medicine, Belfast Health and Social Care Trust, Belfast, UK
| | - Michel Tchan
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Department of Genetics, Westmead Hospital, Westmead, NSW, Australia
| | - Undiagnosed Diseases Network
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ishwar C. Verma
- Institute of Genetics and Genomics, Sir Ganga Ram Hospital, Rajender Nagar, New Delhi, India
| | - Bert B. A. de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jenny L. Wilson
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Derek A. Wong
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Raghda Zaitoun
- Department of Paediatrics, Neurology Division, Ain Shams University Hospital, Cairo, Egypt
| | - Dolly Zhen
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Anna Znaczko
- Department of Genetic Medicine, Belfast Health and Social Care Trust, Belfast, UK
| | - Russell C. Dale
- Department of Paediatric Neurology, The Children’s Hospital at Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Claudio M. de Gusmão
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Jennifer Friedman
- Division of Neurology, Rady Children’s Hospital San Diego, CA, USA
- Department of Neuroscience, University of California San Diego, CA, USA
- Departments of Paediatrics, University of California, San Diego, CA, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
| | - Victor S. C. Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mary D. King
- Department of Paediatric Neurology and Clinical Neurophysiology, Children’s Health Ireland at Temple Street, Dublin, Ireland
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Shekeeb S. Mohammad
- Department of Paediatric Neurology, The Children’s Hospital at Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Luis Rohena
- Division of Medical Genetics, Department of Pediatrics, San Antonio Military Medical Center, San Antonio, TX, USA
- Department of Pediatrics, Long School of Medicine, UT Health, San Antonio, TX, USA
| | - Jeff L. Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA
| | - Camilo Toro
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - F. Lucy Raymond
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, UK
| | - Philippe Coubes
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté demédecine, Université de Montpellier, France
| | - Kathleen M. Gorman
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Manju A. Kurian
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
6
|
Ding S, Xie G, Han Z, Wang Y, Shi M, Zhai F, Liu T, Xie Z, Zhang W, Wu Y, Yang X, Zhou A, Fang F, Ren S, Liang S, Cao H, Xiong H, Ding C, Dai L. The clinical spectrum and pathogenesis associated with KMT2B variants in Chinese pediatric patients. Parkinsonism Relat Disord 2024; 129:107172. [PMID: 39418857 DOI: 10.1016/j.parkreldis.2024.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/22/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE To evaluate the clinical spectrum and pathogenesis associated with KMT2B variants in Chinese children with dystonia or developmental delay. METHODS We reported twenty-seven (fourteen males and thirteen females) pediatric patients with KMT2B variants identified via next-generation sequencing from a single Chinese center. Moreover, transcriptomics and proteomics assays were performed on fibroblasts from patients with different genotypes to investigate the pathogenic mechanisms involved. RESULTS Twenty-six patients had dystonia including generalized dystonia (n = 19), multifocal dystonia (n = 6), and segmental dystonia (n = 1), and one patient had nondystonic severe-developmental delay (DD). All the twenty-six patients had complex dystonia compounded with other manifestations of movement disorders (tremor (n = 6), myoclonus (n = 5), status dystonicus (n = 2), and tic (n = 1)) or dysmorphic features and developmental delay. The onset of dystonia was between 1 month and 13 years 8 months (median 4 years 4 months). Dystonia was aggravated by fever (n = 11), and diurnal and climate fluctuations (n = 4). Eleven patients underwent deep brain stimulation and experienced significant improvements in motor function and disability. We identified twenty-six intragenic heterozygous KMT2B pathogenic variants and one Chr:19q13.12 contiguous gene deletion. Sixteen variants were novel. Differentially expressed genes induced by KMT2B variants were significantly enriched for mitochondria-related biological processes in patient fibroblasts. As a result, mitochondrial morphology of mitochondria was altered, and aerobic respiration was impaired. CONCLUSION Our study reports the pediatric cases of KMT2B-related disorder from a single center in China. Additionally, our study highlights the role of KMT2B variants in mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shuangjin Ding
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Gang Xie
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zonglin Han
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yangming Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Ming Shi
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Feng Zhai
- Department of Functional Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, China
| | - Tinghong Liu
- Department of Functional Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, China
| | - Zihang Xie
- Department of Functional Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, China
| | - Weihua Zhang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, China
| | - Yun Wu
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, China
| | - Xinying Yang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, China
| | - Anna Zhou
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, China
| | - Fang Fang
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, China
| | - Shuhong Ren
- Department of Neurology, Baoding Children's Hospital, China
| | - Shuli Liang
- Department of Functional Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, China
| | - Huiqing Cao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Hui Xiong
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, China.
| | - Changhong Ding
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, China; Department of Neurology, Baoding Children's Hospital, China.
| | - Lifang Dai
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China; Laboratory for Clinical Medicine, Capital Medical University, China.
| |
Collapse
|
7
|
da Silva Carvalho GF, de Gusmão CM, Wolff BM, Vieira LL, de Oliveira YG, Costa MR, da Silva Mendes R, Castro MAA, Sakuma MT, Kok F, Sadikovic B, Kulikowski LD. Methylation assay in KMT2B-related dystonia: a novel diagnostic validation tool. Clin Epigenetics 2024; 16:169. [PMID: 39587624 PMCID: PMC11590325 DOI: 10.1186/s13148-024-01780-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND/OBJECTIVES KMT2B-related dystonia (DYT28, OMIM #617284) is a progressive neurological condition characterized by early onset movement disorders with autosomal dominant inheritance. In this study, we describe the use of a genome methylation episignature methodology to functionally validate two variants of uncertain significance (VUS) in the KMT2B gene. METHODS Genome-wide methylation status was assessed using the EPIC methylation assay in peripheral blood samples from two subjects with early onset movement disorder and missense variants of uncertain significance in the KMT2B gene (p.Leu1720Phe and p.Tyr2515Cys). After QC and normalization steps, we compared the M values for all 144 probes, previously described as an EpiSign for KMT2B-related dystonia, between the two subjects and 14 controls individuals. RESULTS The individual harboring the p.Tyr2515Cys variant exhibited a hypermethylation profile compatible with pathogenic/likely pathogenic variants in KMT2B, allowing for variant reclassification, conclusive genetic counseling, and patient stratification for deep brain stimulation. In contrast, the individual harboring the p.Leu1720Phe variant had a methylation status similar to controls, practically ruling out KMT2B-related dystonia. CONCLUSION Investigation of methylation status can be a powerful tool to determine pathogenicity when facing KMT2B variants of uncertain significance. Methylation results may optimize genetic counseling and positively impact patient care.
Collapse
Affiliation(s)
| | | | - Beatriz Martins Wolff
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Lucas Liro Vieira
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Yanca Gasparini de Oliveira
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Mariana Ribeiro Costa
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Rafaela da Silva Mendes
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | - Fernando Kok
- Departamento de Neurologia, HC-FMUSP, São Paulo, SP, Brazil
| | - Bekim Sadikovic
- Molecular Genetics Laboratory, Division of Molecular Diagnostics, London Health Sciences Centre, London, ON, Canada
| | - Leslie Domenici Kulikowski
- Laboratorio de Citogenomica, Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
8
|
Le Grand Q, Tsuchida A, Koch A, Imtiaz MA, Aziz NA, Vigneron C, Zago L, Lathrop M, Dubrac A, Couffinhal T, Crivello F, Matthews PM, Mishra A, Breteler MMB, Tzourio C, Debette S. Diffusion imaging genomics provides novel insight into early mechanisms of cerebral small vessel disease. Mol Psychiatry 2024; 29:3567-3579. [PMID: 38811690 PMCID: PMC11541005 DOI: 10.1038/s41380-024-02604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
Cerebral small vessel disease (cSVD) is a leading cause of stroke and dementia. Genetic risk loci for white matter hyperintensities (WMH), the most common MRI-marker of cSVD in older age, were recently shown to be significantly associated with white matter (WM) microstructure on diffusion tensor imaging (signal-based) in young adults. To provide new insights into these early changes in WM microstructure and their relation with cSVD, we sought to explore the genetic underpinnings of cutting-edge tissue-based diffusion imaging markers across the adult lifespan. We conducted a genome-wide association study of neurite orientation dispersion and density imaging (NODDI) markers in young adults (i-Share study: N = 1 758, (mean[range]) 22.1[18-35] years), with follow-up in young middle-aged (Rhineland Study: N = 714, 35.2[30-40] years) and late middle-aged to older individuals (UK Biobank: N = 33 224, 64.3[45-82] years). We identified 21 loci associated with NODDI markers across brain regions in young adults. The most robust association, replicated in both follow-up cohorts, was with Neurite Density Index (NDI) at chr5q14.3, a known WMH locus in VCAN. Two additional loci were replicated in UK Biobank, at chr17q21.2 with NDI, and chr19q13.12 with Orientation Dispersion Index (ODI). Transcriptome-wide association studies showed associations of STAT3 expression in arterial and adipose tissue (chr17q21.2) with NDI, and of several genes at chr19q13.12 with ODI. Genetic susceptibility to larger WMH volume, but not to vascular risk factors, was significantly associated with decreased NDI in young adults, especially in regions known to harbor WMH in older age. Individually, seven of 25 known WMH risk loci were associated with NDI in young adults. In conclusion, we identified multiple novel genetic risk loci associated with NODDI markers, particularly NDI, in early adulthood. These point to possible early-life mechanisms underlying cSVD and to processes involving remyelination, neurodevelopment and neurodegeneration, with a potential for novel approaches to prevention.
Collapse
Affiliation(s)
- Quentin Le Grand
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ami Tsuchida
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
| | - Alexandra Koch
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Mohammed-Aslam Imtiaz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Chloé Vigneron
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
| | - Laure Zago
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
| | - Mark Lathrop
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, H3A 0G1, Canada
| | - Alexandre Dubrac
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada
- Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada
| | - Thierry Couffinhal
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, F-33600, Pessac, France
| | - Fabrice Crivello
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
| | - Paul M Matthews
- UK Dementia Research Institute and Department of Brain Sciences, Imperial College, London, UK
| | - Aniket Mishra
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Christophe Tzourio
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
- Bordeaux University Hospital, Department of Medical Informatics, F-33000, Bordeaux, France
| | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France.
- Bordeaux University Hospital, Department of Neurology, Institute for Neurodegenerative Diseases, F-33000, Bordeaux, France.
| |
Collapse
|
9
|
Kumar M, Aliyar A, Saini A, Sivasubbu S, Scaria V, Radhakrishnan DM, Rajan R, BK B. Unprecedented Co-occurrence: Identification of a Pathogenic Genetic Variant in the KMT2B Gene in a Wilson Disease Patient with a Pathogenic ATP7B Mutation. Ann Neurosci 2024; 31:277-282. [PMID: 39840144 PMCID: PMC11744613 DOI: 10.1177/09727531241286272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/23/2024] [Indexed: 01/23/2025] Open
Abstract
The pathophysiology of dystonia in Wilson disease (WD) is complex and poorly understood. Copper accumulation in the basal ganglia, disrupts dopaminergic pathways, contributing to dystonia's development via neurotransmitter imbalance. Despite advances in diagnosis and management, WD with dystonia remains a challenging condition to treat. We aim to report the unprecedented co-occurrence of pathogenic genetic variants in both the ATP7B and KMT2B genes in a patient with WD. A 13-year-old male presented at 12 with dysarthria and bilateral Kayser-Fleischer rings. Over months, dystonia spread to his left foot, upper limb, and trunk, accompanied by slowed daily activities. Diagnostic tests included MRI for brain structure, abdominal ultrasound for liver function, serum ceruloplasmin and copper levels to assess copper metabolism, and 24-hour urine copper tests for excretion levels. Whole exome sequencing was conducted using genomic DNA from peripheral blood samples. Variant classification followed guidelines from the American College of Medical Genetics and Genomics. The sequencing revealed compound heterozygous pathogenic variants in the ATP7B gene: NM_000053.4:c.2165dupT and NM_000053.4:c.813C>A. A pathogenic variant in the KMT2B gene, NM_014727:c.3052delA, was identified. This case highlights WD co-occurrence with ATP7B and KMT2B mutations, suggesting KMT2B as a potential genetic modifier.
Collapse
Affiliation(s)
- Mukesh Kumar
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Aminu Aliyar
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Arti Saini
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | | | - Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Binukumar BK
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
10
|
Sugeno N, Kumada S, Kashii H, Ikezawa J, Kawarai T, Nakamura T, Miyata A, Ishiyama S, Sato K, Yoshida S, Sekiguchi H, Hamanaka K, Miyatake S, Miyake N, Matsumoto N, Akagawa H, Kosaki K, Yoshihashi H, Hasegawa T, Aoki M. Reduced histone H3K4 trimethylation in oral mucosa of patients with DYT-KMT2B. Parkinsonism Relat Disord 2024; 124:107018. [PMID: 38810319 DOI: 10.1016/j.parkreldis.2024.107018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND DYT-KMT2B, also known as DYT28, is a childhood-onset hereditary dystonia caused by KMT2B mutation. The pathogenesis of DYT-KMT2B involves haploinsufficiency of KMT2B, an enzyme that catalyzes specific histone methylation (H3K4me3). Dysmorphic features in patients with DYT-KMT2B suggest that KMT2B dysfunction may extend beyond the neuronal system. Therefore, valuable diagnostic insights may be obtained from readily available tissue samples. OBJECTIVES To explore the altered H3K4me3 levels in non-neural tissue of DYT-KMT2B patients. METHODS A database analysis was performed to determine in which parts of the body and in which cells KMT2B is highly expressed. Twelve clinically and genetically diagnosed patients with DYT-KMT2B and 12 control subjects participated in this study. Oral mucosa-derived purified histone proteins were analyzed using Western blotting with anti-H3K4me3 and anti-H4 antibodies. RESULTS Higher expression of KMT2B was observed in oral keratinocytes and gingival fibroblasts, constituting the oral mucosa. In oral mucosa analyses, DYT-KMT2B cases exhibited markedly reduced H3K4me3 levels compared with the controls. Using a cutoff window of 0.90-0.98, the H3K4me3/H4 expression ratio was able to distinguish patient groups. CONCLUSIONS Oral mucosa H3K4me3 analysis is currently not sufficient as a diagnostic tool for DYT-KMT2B, but has the advantage for screening test since it is a non-invasive means.
Collapse
Affiliation(s)
- Naoto Sugeno
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan.
| | - Satoko Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, 183-0042, Japan
| | - Hirofumi Kashii
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, 183-0042, Japan
| | - Jun Ikezawa
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, 183-0042, Japan
| | - Toshitaka Kawarai
- Department of Clinical Neuroscience, Tokushima University, Tokushima, 770-0042, Japan; Department of Neurology, Harima-Himeji General Medical Center, Himeji, Hyogo, 670-8560, Japan
| | - Takaaki Nakamura
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Ako Miyata
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Shun Ishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Kazuki Sato
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Shun Yoshida
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| | - Hutoshi Sekiguchi
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Kanagawa, 236-0004, Japan
| | - Kohei Hamanaka
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Kanagawa, 236-0004, Japan
| | - Satoko Miyatake
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Kanagawa, 236-0004, Japan
| | - Noriko Miyake
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Kanagawa, 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Kanagawa, 236-0004, Japan
| | - Hiroyuki Akagawa
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hiroshi Yoshihashi
- Department of Clinical Genetics, Tokyo Metropolitan Children's Medical Center, Tokyo, 183-8561, Japan
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan; Department of Neurology, National Health Organization Sendai Nishitaga Hospital, Sendai, Miyagi, 982-8555, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
11
|
Zardetto B, van Roon-Mom W, Aartsma-Rus A, Lauffer MC. Treatability of the KMT2-Associated Neurodevelopmental Disorders Using Antisense Oligonucleotide-Based Treatments. Hum Mutat 2024; 2024:9933129. [PMID: 40225946 PMCID: PMC11925151 DOI: 10.1155/2024/9933129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/15/2025]
Abstract
Neurodevelopmental disorders (NDDs) of genetic origin are a group of early-onset neurological diseases with highly heterogeneous etiology and a symptomatic spectrum that includes intellectual disability, autism spectrum disorder, and learning and language disorders. One group of rare NDDs is associated with dysregulation of the KMT2 protein family. Members of this family share a common methyl transferase function and are involved in the etiology of rare haploinsufficiency disorders. For each of the KMT2 genes, at least one distinct disorder has been reported, yet clinical manifestations often overlap for multiple of these individually very rare disorders. Clinical care is currently focused on the management of symptoms with no targeted treatments available, illustrating a high unmet medical need and the urgency of developing disease-modifying therapeutic strategies. Antisense oligonucleotides (ASOs) are one option to treat some of these rare genetic disorders. ASOs are RNA-based treatments that can be employed to modulate gene expression through various mechanisms. In this work, we discuss the phenotypic features across the KMT2-associated NDDs and which ASO approaches are most suited for the treatment of each associated disorder. We hereby address variant-specific strategies as well as options applicable to larger groups of patients.
Collapse
Affiliation(s)
- Bianca Zardetto
- Dutch Center for RNA TherapeuticsDepartment of Human GeneticsLeiden University Medical CenterLeiden, Netherlands
| | - Willeke van Roon-Mom
- Dutch Center for RNA TherapeuticsDepartment of Human GeneticsLeiden University Medical CenterLeiden, Netherlands
| | - Annemieke Aartsma-Rus
- Dutch Center for RNA TherapeuticsDepartment of Human GeneticsLeiden University Medical CenterLeiden, Netherlands
| | - Marlen C. Lauffer
- Dutch Center for RNA TherapeuticsDepartment of Human GeneticsLeiden University Medical CenterLeiden, Netherlands
| |
Collapse
|
12
|
Thomsen M, Marth K, Loens S, Everding J, Junker J, Borngräber F, Ott F, Jesús S, Gelderblom M, Odorfer T, Kuhlenbäumer G, Kim HJ, Schaeffer E, Becktepe J, Kasten M, Brüggemann N, Pfister R, Kollewe K, Krauss JK, Lohmann E, Hinrichs F, Berg D, Jeon B, Busch H, Altenmüller E, Mir P, Kamm C, Volkmann J, Zittel S, Ferbert A, Zeuner KE, Rolfs A, Bauer P, Kühn AA, Bäumer T, Klein C, Lohmann K. Large-Scale Screening: Phenotypic and Mutational Spectrum in Isolated and Combined Dystonia Genes. Mov Disord 2024; 39:526-538. [PMID: 38214203 DOI: 10.1002/mds.29693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Pathogenic variants in several genes have been linked to genetic forms of isolated or combined dystonia. The phenotypic and genetic spectrum and the frequency of pathogenic variants in these genes have not yet been fully elucidated, neither in patients with dystonia nor with other, sometimes co-occurring movement disorders such as Parkinson's disease (PD). OBJECTIVES To screen >2000 patients with dystonia or PD for rare variants in known dystonia-causing genes. METHODS We screened 1207 dystonia patients from Germany (DysTract consortium), Spain, and South Korea, and 1036 PD patients from Germany for pathogenic variants using a next-generation sequencing gene panel. The impact on DNA methylation of KMT2B variants was evaluated by analyzing the gene's characteristic episignature. RESULTS We identified 171 carriers (109 with dystonia [9.0%]; 62 with PD [6.0%]) of 131 rare variants (minor allele frequency <0.005). A total of 52 patients (48 dystonia [4.0%]; four PD [0.4%, all with GCH1 variants]) carried 33 different (likely) pathogenic variants, of which 17 were not previously reported. Pathogenic biallelic variants in PRKRA were not found. Episignature analysis of 48 KMT2B variants revealed that only two of these should be considered (likely) pathogenic. CONCLUSION This study confirms pathogenic variants in GCH1, GNAL, KMT2B, SGCE, THAP1, and TOR1A as relevant causes in dystonia and expands the mutational spectrum. Of note, likely pathogenic variants only in GCH1 were also found among PD patients. For DYT-KMT2B, the recently described episignature served as a reliable readout to determine the functional effect of newly identified variants. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mirja Thomsen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katrin Marth
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Rostock, Rostock, Germany
| | - Sebastian Loens
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Institute of Systems Motor Science, CBBM, University of Lübeck, Lübeck, Germany
| | - Judith Everding
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Johanna Junker
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | - Fabian Ott
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Odorfer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Gregor Kuhlenbäumer
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Han-Joon Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Eva Schaeffer
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jos Becktepe
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Psychiatry, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | - Katja Kollewe
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Ebba Lohmann
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| | - Frauke Hinrichs
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Daniela Berg
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Christoph Kamm
- Department of Neurology, University Hospital Rostock, Rostock, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Kirsten E Zeuner
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Arndt Rolfs
- Medical Faculty, University of Rostock, Rostock, Germany
- Agyany Pharmaceuticals, Jerusalem, Israel
| | | | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, CBBM, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center of Rare Diseases, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
13
|
Bouhamdani N, McConkey H, Leblanc A, Sadikovic B, Amor MB. Diagnostic utility of DNA methylation episignature analysis for early diagnosis of KMT2B-related disorders: case report. Front Genet 2024; 15:1346044. [PMID: 38425714 PMCID: PMC10902455 DOI: 10.3389/fgene.2024.1346044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The lysine methyltransferase 2B (KMT2B) gene product is important for epigenetic modifications associated with active gene transcription in normal development and in maintaining proper neural function. Pathogenic variants in KMT2B have been associated with childhood-onset Dystonia-28 and Intellectual developmental disorder, autosomal dominant 68 (MRD 68) for cases of neurodevelopmental impairment without dystonia (DYT28; OMIM 617284 and MRD68; OMIM 619934, respectively). Since its first description in 2016, approximately one hundred KMT2B genetic variants have been reported with heterogeneous phenotypes, including atypical patterns of dystonia evolution and non-dystonic neurodevelopmental phenotypes. KMT2B-related disorders share many overlapping phenotypic characteristics with other neurodevelopmental disorders and delayed dystonia, that can appear later in childhood, often delaying clinical diagnosis. Furthermore, conventional genetic testing may not always provide actionable information (e.g., gene panel selection based on early clinical presentation or variants of uncertain significance), which prevents patients and families from obtaining early access to treatments and support. Herein, we describe the early diagnosis of KMT2B-related neurodevelopmental disorder by DNA methylation episignature testing in a 4-year-old patient without features of dystonia at diagnosis, which is reported to develop in more than 80% of KMT2B-related disorder cases. The proband, a 4-year-old female of Jewish-Israeli descent, presented with speech delay, microcephaly, poor weight gain, attention-deficit and hyperactivity disorder, dysmorphism, intellectual disabilities and joint hyperlaxity, but presented no signs of dystonia at initial evaluation. Episignature screening in this pre-symptomatic patient enabled accurate genetic diagnosis and timely and actionable intervention earlier in the natural history of Childhood-onset Dystonia-28.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Vitalité Health Network, Moncton, NB, Canada
- Faculty of medicine and health sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Moncton, Moncton, NB, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry Western University, London, ON, Canada
| | - Amélie Leblanc
- Vitalité Health Network, Moncton, NB, Canada
- Faculty of medicine and health sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Moncton, Moncton, NB, Canada
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry Western University, London, ON, Canada
| | - Mouna Ben Amor
- Vitalité Health Network, Moncton, NB, Canada
- Faculty of medicine and health sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Formation Médicale du Nouveau-Brunswick, Université de Moncton, Moncton, NB, Canada
| |
Collapse
|
14
|
Zhang L, Luo L, Liu C, Li Z. Novel KMT2B gene mutation in MUC4 positive low-grade fibromyxoid sarcoma. Diagn Pathol 2024; 19:30. [PMID: 38347522 PMCID: PMC10860237 DOI: 10.1186/s13000-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 02/02/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Low-grade Fibromyxoid Sarcoma(LGFM)is a rare fibrosarcoma, which mainly occurs in young people and is mostly seen in the trunk and limbs. The tumor is usually FUS-CREB3L2 fusion caused by t(7;16)(q32-34;p11)chromosome translocation, and rarely FUS-CREB3L1 and EWSR1-CREB3L1 fusion. MUC4 diffuse strong positive can be used as a specific index of LGFM. LGFM is similar to Sclerosing Epithelioid Fibrosarcoma(SEF) and may have the same origin. CASE PRESENTATION We report a case of LGFM in the chest wall. A female who is 59 years old. In 2016, CT showed dense nodule shadow and focal thickening of the left pleura, the patient underwent surgery, Pathological report that low to moderate malignant fibrosarcoma(fibromyxoid type). The CT re-examination in 2021 showed that the tumors on the left chest wall were significantly larger than before. Pathological examination showed the disease is composed of alternating collagen like and mucinous areas. Under high-power microscope, the tumor cells are consistent in shape, spindle or short spindle, and the tumor cells are arranged in bundles. In local areas, the density of tumor cells is significantly increased, mixed with collagen fibers, and small focal SEF appear. The result of immunohistochemistry showed that SMA, Desmin, CD34, STAT6, S100, SOX10, HMB45 and Melan A were negative, EMA was weakly positive, MUC4 was diffuse and strongly positive, and Ki67 index was low (3%). CONCLUSION Sequencing results showed that MET, EGFR, KMT2B and RET gene were mutated in LGFM, and KMT2B gene had cancer promoting effect, but there was no literature report in LGFM, which may be of certain significance for the diagnosis and treatment of LGFM.
Collapse
Affiliation(s)
- Liying Zhang
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Luqiao Luo
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chao Liu
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhi Li
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
15
|
Sugeno N, Hasegawa T, Haginoya K, Kubota T, Ikeda K, Nakamura T, Ishiyama S, Sato K, Yoshida S, Koshimizu E, Uematsu M, Miyatake S, Matsumoto N, Aoki M. Detection of Modified Histones from Oral Mucosa of a Patient with DYT- KMT2B Dystonia. Mol Syndromol 2023; 14:461-468. [PMID: 38108041 PMCID: PMC10722472 DOI: 10.1159/000530625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/07/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction DYT-KMT2B is a rare childhood-onset, hereditary movement disorder typically characterized by lower-limb dystonia and subsequently spreads into the craniocervical and laryngeal muscles. Recently, KMT2B-encoding lysine (K)-specific histone methyltransferase 2B was identified as the causative gene for DYT-KMT2B, also known as DYT28. In addition to the fact that many physicians do not have sufficient experience or knowledge of hereditary dystonia, the clinical features of DYT-KMT2B overlap with those of other hereditary dystonia, and limited clinical biomarkers make the diagnosis difficult. Methods Histone proteins were purified from the oral mucosa of patients with de novo KMT2B mutation causing premature stop codon, and then trimethylated fourth lysine residue of histone H3 (H3K4me3) which was catalyzed by KMT2B was analyzed by immunoblotting with specific antibody. We further analyzed the significance of H3K4me3 in patients with DYT-KMT2B using publicly available datasets. Results H3K4me3 histone mark was markedly lower in the patient than in the control group. Additionally, a reanalysis of publicly available datasets concerning DNA methylation also demonstrated that KMT2B remained inactive in DYT-KMT2B. Discussion Although only one case was studied due to the rarity of the disease, the reduction of H3K4me3 in the patient's biological sample supports the dysfunction of KMT2B in DYT-KMT2B. Together with informatics approaches, our results suggest that KMT2B haploinsufficiency contributes to the DYT-KMT2B pathogenic process.
Collapse
Affiliation(s)
- Naoto Sugeno
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiro Haginoya
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
- Department of Pediatric Neurology, Miyagi Children’s Hospital, Sendai, Japan
| | - Takafumi Kubota
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kensuke Ikeda
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaaki Nakamura
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Ishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuki Sato
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shun Yoshida
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eriko Koshimizu
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Mitsugu Uematsu
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
16
|
Lee S, Menzies L, Hay E, Ochoa E, Docquier F, Rodger F, Deshpande C, Foulds NC, Jacquemont S, Jizi K, Kiep H, Kraus A, Löhner K, Morrison PJ, Popp B, Richardson R, van Haeringen A, Martin E, Toribio A, Li F, Jones WD, Sansbury FH, Maher ER. Epigenotype-genotype-phenotype correlations in SETD1A and SETD2 chromatin disorders. Hum Mol Genet 2023; 32:3123-3134. [PMID: 37166351 PMCID: PMC10630252 DOI: 10.1093/hmg/ddad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Germline pathogenic variants in two genes encoding the lysine-specific histone methyltransferase genes SETD1A and SETD2 are associated with neurodevelopmental disorders (NDDs) characterized by developmental delay and congenital anomalies. The SETD1A and SETD2 gene products play a critical role in chromatin-mediated regulation of gene expression. Specific methylation episignatures have been detected for a range of chromatin gene-related NDDs and have impacted clinical practice by improving the interpretation of variant pathogenicity. To investigate if SETD1A and/or SETD2-related NDDs are associated with a detectable episignature, we undertook targeted genome-wide methylation profiling of > 2 M CpGs using a next-generation sequencing-based assay. A comparison of methylation profiles in patients with SETD1A variants (n = 6) did not reveal evidence of a strong methylation episignature. A review of the clinical and genetic features of the SETD2 patient group revealed that, as reported previously, there were phenotypic differences between patients with truncating mutations (n = 4, Luscan-Lumish syndrome; MIM:616831) and those with missense codon 1740 variants [p.Arg1740Trp (n = 4) and p.Arg1740Gln (n = 2)]. Both SETD2 subgroups demonstrated a methylation episignature, which was characterized by hypomethylation and hypermethylation events, respectively. Within the codon 1740 subgroup, both the methylation changes and clinical phenotype were more severe in those with p.Arg1740Trp variants. We also noted that two of 10 cases with a SETD2-NDD had developed a neoplasm. These findings reveal novel epigenotype-genotype-phenotype correlations in SETD2-NDDs and predict a gain-of-function mechanism for SETD2 codon 1740 pathogenic variants.
Collapse
Affiliation(s)
- Sunwoo Lee
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Lara Menzies
- Department of Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Eleanor Hay
- Department of Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Eguzkine Ochoa
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - France Docquier
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Fay Rodger
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Charu Deshpande
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Saint Mary’s Hospital, Manchester, UK
| | - Nicola C Foulds
- Wessex Clinical Genetics Services, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sébastien Jacquemont
- CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Khadije Jizi
- CHU Sainte-Justine Research Centre, Montreal, Quebec, Canada
| | - Henriette Kiep
- Department of Neuropediatrics, University Hospital for Children and Adolescents, Leipzig, Germany
| | - Alison Kraus
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK
| | - Katharina Löhner
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Patrick J Morrison
- Patrick G Johnston Centre for Cancer Research and Cell Biology, Queens University Belfast, Belfast, UK
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center of Functional Genomics, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Ruth Richardson
- Northern Genetics Service, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Hospital, Leiden, The Netherlands
| | - Ezequiel Martin
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Ana Toribio
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Fudong Li
- MOE Key Laboratory for Cellular Dynamics, The School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wendy D Jones
- Department of Clinical Genetics, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Francis H Sansbury
- All Wales Medical Genomics Service, NHS Wales Cardiff and Vale University Health Board and Institute of Medical Genetics, University Hospital of Wales, Heath Park, Cardiff, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
17
|
Tsukahara T, Kethireddy S, Bonefas K, Chen A, Sutton BLM, Dou Y, Iwase S, Sutton MA. Division of labor among H3K4 Methyltransferases Defines Distinct Facets of Homeostatic Plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558734. [PMID: 37790395 PMCID: PMC10542164 DOI: 10.1101/2023.09.20.558734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Heterozygous mutations in any of the six H3K4 methyltransferases (KMT2s) result in monogenic neurodevelopmental disorders, indicating nonredundant yet poorly understood roles of this enzyme family in neurodevelopment. Recent evidence suggests that histone methyltransferase activity may not be central to KMT2 functions; however, the enzymatic activity is evolutionarily conserved, implicating the presence of selective pressure to maintain the catalytic activity. Here, we show that H3K4 methylation is dynamically regulated during prolonged alteration of neuronal activity. The perturbation of H3K4me by the H3.3K4M mutant blocks synaptic scaling, a form of homeostatic plasticity that buffers the impact of prolonged reductions or increases in network activity. Unexpectedly, we found that the six individual enzymes are all necessary for synaptic scaling and that the roles of KMT2 enzymes segregate into evolutionary-defined subfamilies: KMT2A and KMT2B (fly-Trx homologs) for synaptic downscaling, KMT2C and KMT2D (Trr homologs) for upscaling, and KMT2F and KMT2G (dSet homologs) for both directions. Selective blocking of KMT2A enzymatic activity by a small molecule and targeted disruption of the enzymatic domain both blocked the synaptic downscaling and interfered with the activity-dependent transcriptional program. Furthermore, our study revealed specific phases of synaptic downscaling, i.e., induction and maintenance, in which KMT2A and KMT2B play distinct roles. These results suggest that mammalian brains have co-opted intricate H3K4me installation to achieve stability of the expanding neuronal circuits.
Collapse
Affiliation(s)
- Takao Tsukahara
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Saini Kethireddy
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan
| | - Katherine Bonefas
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Alex Chen
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Brendan LM Sutton
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Yali Dou
- Department of Medicine and Department of Biochemistry and Molecular Medicine, Keck School of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Shigeki Iwase
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Michael A. Sutton
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
18
|
St John M, Tripathi T, Morgan AT, Amor DJ. To speak may draw on epigenetic writing and reading: Unravelling the complexity of speech and language outcomes across chromatin-related neurodevelopmental disorders. Neurosci Biobehav Rev 2023; 152:105293. [PMID: 37353048 DOI: 10.1016/j.neubiorev.2023.105293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Speech and language development are complex neurodevelopmental processes that are incompletely understood, yet current evidence suggests that speech and language disorders are prominent in those with disorders of chromatin regulation. This review aimed to unravel what is known about speech and language outcomes for individuals with chromatin-related neurodevelopmental disorders. A systematic literature search following PRISMA guidelines was conducted on 70 chromatin genes, to identify reports of speech/language outcomes across studies, including clinical reports, formal subjective measures, and standardised/objective measures. 3932 studies were identified and screened and 112 were systematically reviewed. Communication impairment was core across chromatin disorders, and specifically, chromatin writers and readers appear to play an important role in motor speech development. Identification of these relationships is important because chromatin disorders show promise as therapeutic targets due to the capacity for epigenetic modification. Further research is required using standardised and formal assessments to understand the nuanced speech/language profiles associated with variants in each gene, and the influence of chromatin dysregulation on the neurobiology of speech and language development.
Collapse
Affiliation(s)
- Miya St John
- Speech and Language, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Audiology and Speech Pathology, University of Melbourne, VIC, Australia.
| | - Tanya Tripathi
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Angela T Morgan
- Speech and Language, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Audiology and Speech Pathology, University of Melbourne, VIC, Australia; Speech Genomics Clinic, Royal Children's Hospital, Parkville, VIC, Australia.
| | - David J Amor
- Neurodisability and Rehabilitation, Murdoch Children's Research Institute, Parkville, VIC, Australia; Speech Genomics Clinic, Royal Children's Hospital, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, VIC, Australia.
| |
Collapse
|
19
|
Dhar D, Holla VV, Kumari R, Sriram N, Saini J, Yadav R, Pandey A, Kamble N, Muthusamy B, Pal PK. KMT2B-Related Dystonia in Indian Patients With Literature Review and Emphasis on Asian Cohort. J Mov Disord 2023; 16:285-294. [PMID: 37309110 PMCID: PMC10548078 DOI: 10.14802/jmd.23035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/12/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023] Open
Abstract
OBJECTIVE aaMutations in the KMT2B gene have been identified in patients previously diagnosed with idiopathic dystonia. Literature on KMT2B-related dystonia is sparse in the Indian and Asian populations. METHODS aaWe report seven patients with KMT2B-related dystonia studied prospectively from May 2021 to September 2022. Patients underwent deep clinical phenotyping and genetic testing by whole-exome sequencing (WES). A systematic literature search was performed to identify the spectrum of previously published KMT2B-related disorders in the Asian subcontinent. RESULTS aaThe seven identified patients with KMT2B-related dystonia had a median age at onset of four years. The majority experienced onset in the lower limbs (n = 5, 71.4%), with generalization at a median duration of 2 years. All patients except one had complex phenotypes manifesting as facial dysmorphism (n = 4), microcephaly (n = 3), developmental delay (n = 3), and short stature (n = 1). Magnetic resonance imaging (MRI) abnormalities were present in four cases. WES revealed novel mutations in the KMT2B gene in all patients except one. Compared to the largest cohort of patients with KMT2B-related disorders, the Asian cohort, comprising 42 patients, had a lower prevalence of female patients, facial dysmorphism, microcephaly, intellectual disability, and MRI abnormalities. Protein-truncating variants were more prevalent than missense variants. While microcephaly and short stature were more common in patients with missense mutations, facial dysmorphism was more common in patients with truncating variants. Deep brain stimulation, performed in 17 patients, had satisfactory outcomes. CONCLUSION aaThis is the largest series of patients with KMT2B-related disorders from India, further expanding the clinico-genotypic spectrum. The extended Asian cohort emphasizes the unique attributes of this part of the world.
Collapse
Affiliation(s)
- Debjyoti Dhar
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Riyanka Kumari
- Institute of Bioinformatics, International Technology Park, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Neeharika Sriram
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Jitender Saini
- Department of Neuroimaging and Intervention Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, International Technology Park, Bengaluru, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
20
|
Lumsden DE, Cif L, Capuano A, Allen NM. The changing face of reported status dystonicus - A systematic review. Parkinsonism Relat Disord 2023:105438. [PMID: 37268557 DOI: 10.1016/j.parkreldis.2023.105438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Status Dystonicus (SD) represents the most severe end of the spectrum of dystonia. We aimed to explore whether reported features of cases of SD have changed over time. METHODS A systematic review of cases of SD reported from 2017 to 2023 and comparison of features to data extracted from 2 previous literature reviews (epochs 2012-2017 and pre-2012). RESULTS From 53 papers, a total 206 SD episodes in 168 patients were identified from 2017 to 2023. Combining data from all 3 epochs, a total of 339 SD episodes were reported from 277 patients. SD episodes occurred mostly in children, with a trigger identified in 63.4% of episodes, most commonly infection/inflammation. Most reported underlying aetiologies were genetic (e.g. 49.5% between 2017 and 2023), including new associated aetiologies in each epoch. Deep Brain Stimulation (DBS)-related SD increased over time. Neurosurgical interventions were more frequently reported in later epochs. Across the epochs, return to or improvement post SD episode, compared to baseline was reported above 70%. Reported mortality was 4.9% most recently, compared to 11.4% and 7.9%, previously. CONCLUSIONS SD episodes reported have more than doubled in the last 5 years. Reports of medication change-induced SD have become less frequent, whilst episodes of DBS-related SD have become more frequent. More dystonia aetiologies, including novel aetiologies have been reported in recent cohorts, reflecting advances in genetic diagnosis. Neurosurgical interventions are increasingly reported in the management of SD episodes, including novel use of intraventricular baclofen. Overall outcomes from SD remain largely unchanged over time. No prospective epidemiological studies of SD were identified.
Collapse
Affiliation(s)
- Daniel E Lumsden
- Complex Motor Disorder Service, Children's Neurosciences, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK; Perinatal Imaging, Imaging Sciences and Biomedical Engineering, King's College London, UK.
| | - Laura Cif
- Department of Neurosurgery, University Hospital Montpellier, France
| | - Alessandro Capuano
- Department of Neuroscience, Bambino Gesù Children' Hospital, Rome, Italy; Cerebral Palsy Center -NeuropsychiatricUnit - ASL Viterbo, Viterbo, Italy
| | - Nicholas M Allen
- Department of Paediatrics (Neurology), University of Galway, Ireland
| |
Collapse
|
21
|
Di Fonzo A, Jinnah HA, Zech M. Dystonia genes and their biological pathways. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:61-103. [PMID: 37482402 DOI: 10.1016/bs.irn.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
High-throughput sequencing has been instrumental in uncovering the spectrum of pathogenic genetic alterations that contribute to the etiology of dystonia. Despite the immense heterogeneity in monogenic causes, studies performed during the past few years have highlighted that many rare deleterious variants associated with dystonic presentations affect genes that have roles in certain conserved pathways in neural physiology. These various gene mutations that appear to converge towards the disruption of interconnected cellular networks were shown to produce a wide range of different dystonic disease phenotypes, including isolated and combined dystonias as well as numerous clinically complex, often neurodevelopmental disorder-related conditions that can manifest with dystonic features in the context of multisystem disturbances. In this chapter, we summarize the manifold dystonia-gene relationships based on their association with a discrete number of unifying pathophysiological mechanisms and molecular cascade abnormalities. The themes on which we focus comprise dopamine signaling, heavy metal accumulation and calcifications in the brain, nuclear envelope function and stress response, gene transcription control, energy homeostasis, lysosomal trafficking, calcium and ion channel-mediated signaling, synaptic transmission beyond dopamine pathways, extra- and intracellular structural organization, and protein synthesis and degradation. Enhancing knowledge about the concept of shared etiological pathways in the pathogenesis of dystonia will motivate clinicians and researchers to find more efficacious treatments that allow to reverse pathologies in patient-specific core molecular networks and connected multipathway loops.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
22
|
Soliani L, Alcalá San Martín A, Balsells S, Hernando‐Davalillo C, Ortigoza‐Escobar JD. Chromosome Microarray Analysis for the Investigation of Deletions in Pediatric Movement Disorders: A Systematic Review of the Literature. Mov Disord Clin Pract 2023; 10:547-557. [PMID: 37070051 PMCID: PMC10105116 DOI: 10.1002/mdc3.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
Background Chromosome microarray analysis (CMA) can detect copy number variants (CNV) beyond the resolution of standard G-banded karyotyping. De novo or inherited microdeletions may cause autosomal dominant movement disorders. Objectives The purpose of this study was to analyze the clinical characteristics, associated features, and genetic information of children with deletions in known genes that cause movement disorders and to make recommendations regarding the diagnostic application of CMA. Methods Clinical cases published in English were identified in scientific databases (PubMed, ClinVar, and DECIPHER) from January 1998 to July 2019 following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Cases with deletions or microdeletions greater than 300 kb were selected. Information collected included age, sex, movement disorders, associated features, and the size and location of the deletion. Duplications or microduplications were not included. Results A total of 18.097 records were reviewed, and 171 individuals were identified. Ataxia (30.4%), stereotypies (23.9%), and dystonia (21%) were the most common movement disorders. A total of 16% of the patients demonstrated more than one movement disorder. The most common associated features were intellectual disability or developmental delay (78.9%) and facial dysmorphism (57.8%). The majority (77.7%) of microdeletions were smaller than 5 Mb. We find no correlation between movement disorders, their associated features, and the size of microdeletions. Conclusions Our results support the use of CMA as an investigational test in children with movement disorders. As the majority of identified articles were case reports and small case series (low quality), future efforts should focus on larger prospective studies to examine the causation of microdeletions in pediatric movement disorders.
Collapse
Affiliation(s)
- Luca Soliani
- IRCCS Istituto delle Scienze Neurologiche di Bologna UOC Neuropsichiatria dell'età PediatricaBolognaItaly
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC) Università di BolognaBolognaItaly
| | - Adrián Alcalá San Martín
- Department of Genetic and Molecular Medicine and Pediatric Institute of Rare DiseasesHospital Sant Joan de Déu BarcelonaBarcelonaSpain
| | - Sol Balsells
- Department of StatisticsInstitut de Recerca Sant Joan de DéuBarcelonaSpain
| | - Cristina Hernando‐Davalillo
- Department of Genetic and Molecular Medicine and Pediatric Institute of Rare DiseasesHospital Sant Joan de Déu BarcelonaBarcelonaSpain
| | - Juan Darío Ortigoza‐Escobar
- U‐703 Centre for Biomedical Research on Rare Diseases (CIBER‐ER)Instituto de Salud Carlos IIIBarcelonaSpain
- Movement Disorders Unit, Pediatric Neurology Department, Institut de RecercaHospital Sant Joan de Déu BarcelonaBarcelonaSpain
- European Reference Network for Rare Neurological Diseases (ERN‐RND)BarcelonaSpain
| |
Collapse
|
23
|
O'Shea SA, Shih LC. Global Epidemiology of Movement Disorders: Rare or Underdiagnosed? Semin Neurol 2023; 43:4-16. [PMID: 36893797 DOI: 10.1055/s-0043-1764140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
In this manuscript, we review the epidemiology of movement disorders including Parkinson's disease (PD), atypical parkinsonism, essential tremor, dystonia, functional movement disorders, tic disorders, chorea, and ataxias. We emphasize age-, sex-, and geography-based incidence and prevalence, as well as notable trends including the rising incidence and prevalence of PD. Given the growing global interest in refining clinical diagnostic skills in recognizing movement disorders, we highlight some key epidemiological findings that may be of interest to clinicians and health systems tasked with diagnosing and managing the health of patients with movement disorders.
Collapse
Affiliation(s)
- Sarah A O'Shea
- Department of Neurology, Columbia University, Vagelos College of Physicians and Surgeons, New York City, New York
| | - Ludy C Shih
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts.,Department of Neurology, Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
24
|
Akter H, Rahman MM, Sarker S, Basiruzzaman M, Islam MM, Rahaman MA, Rahaman MA, Eshaque TB, Dity NJ, Sarker S, Amin MR, Hossain MM, Lopa M, Jahan N, Hossain S, Islam A, Mondol A, Faruk MO, Saha N, Kundu GK, Kanta SI, Kazal RK, Fatema K, Rahman MA, Hasan M, Hossain Mollah MA, Hosen MI, Karuvantevida N, Begum G, Zehra B, Nassir N, Nabi AHMN, Uddin KMF, Uddin M. Construction of copy number variation landscape and characterization of associated genes in a Bangladeshi cohort of neurodevelopmental disorders. Front Genet 2023; 14:955631. [PMID: 36959829 PMCID: PMC10028086 DOI: 10.3389/fgene.2023.955631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction: Copy number variations (CNVs) play a critical role in the pathogenesis of neurodevelopmental disorders (NDD) among children. In this study, we aim to identify clinically relevant CNVs, genes and their phenotypic characteristics in an ethnically underrepresented homogenous population of Bangladesh. Methods: We have conducted chromosomal microarray analysis (CMA) for 212 NDD patients with male to female ratio of 2.2:1.0 to identify rare CNVs. To identify candidate genes within the rare CNVs, gene constraint metrics [i.e., "Critical-Exon Genes (CEGs)"] were applied to the population data. Autism Diagnostic Observation Schedule-Second Edition (ADOS-2) was followed in a subset of 95 NDD patients to assess the severity of autism and all statistical tests were performed using the R package. Results: Of all the samples assayed, 12.26% (26/212) and 57.08% (121/212) patients carried pathogenic and variant of uncertain significance (VOUS) CNVs, respectively. While 2.83% (6/212) patients' pathogenic CNVs were found to be located in the subtelomeric regions. Further burden test identified females are significant carriers of pathogenic CNVs compared to males (OR = 4.2; p = 0.0007). We have observed an increased number of Loss of heterozygosity (LOH) within cases with 23.85% (26/109) consanguineous parents. Our analyses on imprinting genes show, 36 LOH variants disrupting 69 unique imprinted genes and classified these variants as VOUS. ADOS-2 subset shows severe social communication deficit (p = 0.014) and overall ASD symptoms severity (p = 0.026) among the patients carrying duplication CNV compared to the CNV negative group. Candidate gene analysis identified 153 unique CEGs in pathogenic CNVs and 31 in VOUS. Of the unique genes, 18 genes were found to be in smaller (<1 MB) focal CNVs in our NDD cohort and we identified PSMC3 gene as a strong candidate gene for Autism Spectrum Disorder (ASD). Moreover, we hypothesized that KMT2B gene duplication might be associated with intellectual disability. Conclusion: Our results show the utility of CMA for precise genetic diagnosis and its integration into the diagnosis, therapy and management of NDD patients.
Collapse
Affiliation(s)
- Hosneara Akter
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Muhammad Mizanur Rahman
- Department of Paediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Shaoli Sarker
- Department of Child Neurology, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Paediatric Neuroscience, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Mohammed Basiruzzaman
- Department of Child Neurology, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Neurology, National Institute of Neurosciences and Hospital, Dhaka, Bangladesh
| | - Md. Mazharul Islam
- Department of Child Neurology, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Neurology, National Institute of Neurosciences and Hospital, Dhaka, Bangladesh
| | - Md. Atikur Rahaman
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
| | | | | | - Nushrat Jahan Dity
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Shouvik Sarker
- Institute of Plant Genetics, Department of Plant Biotechnology, Leibniz University Hannover, Hanover, Germany
| | - Md. Robed Amin
- Department of Medicine, Dhaka Medical College, Dhaka, Bangladesh
| | - Mohammad Monir Hossain
- Department of Paediatric Neurology, National Institute of Neuroscience and Hospital, Dhaka, Bangladesh
| | - Maksuda Lopa
- Centre for Precision Therapeutics, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Nargis Jahan
- Centre for Precision Therapeutics, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Shafaat Hossain
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Amirul Islam
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
- Cellular Intelligence Lab, GenomeArc Inc, Toronto, ON, Canada
| | | | - Md Omar Faruk
- Centre for Precision Therapeutics, NeuroGen Healthcare, Dhaka, Bangladesh
| | - Narayan Saha
- Department of Paediatric Neurology, National Institute of Neuroscience and Hospital, Dhaka, Bangladesh
| | - Gopen kumar Kundu
- Department of Child Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Shayla Imam Kanta
- Department of Paediatric Neuroscience, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Rezaul Karim Kazal
- Department of Obstetrics and Gynaecology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Kanij Fatema
- Department of Paediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Md. Ashrafur Rahman
- Department of Pharmaceutical Sciences, Wilkes University, Pennsylvania, PA, United States
| | - Maruf Hasan
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
| | | | - Md. Ismail Hosen
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Noushad Karuvantevida
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Ghausia Begum
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Binte Zehra
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nasna Nassir
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - A. H. M. Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - K. M. Furkan Uddin
- Genetics and Genomic Medicine Centre, NeuroGen Healthcare, Dhaka, Bangladesh
- Department of Biochemistry, Holy Family Red Crescent Medical College, Dhaka, Bangladesh
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Cellular Intelligence (Ci) Lab, GenomeArc Inc, Toronto, ON, Canada
| |
Collapse
|
25
|
Roth C, Kilpinen H, Kurian MA, Barral S. Histone lysine methyltransferase-related neurodevelopmental disorders: current knowledge and saRNA future therapies. Front Cell Dev Biol 2023; 11:1090046. [PMID: 36923252 PMCID: PMC10009263 DOI: 10.3389/fcell.2023.1090046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Neurodevelopmental disorders encompass a group of debilitating diseases presenting with motor and cognitive dysfunction, with variable age of onset and disease severity. Advances in genetic diagnostic tools have facilitated the identification of several monogenic chromatin remodeling diseases that cause Neurodevelopmental disorders. Chromatin remodelers play a key role in the neuro-epigenetic landscape and regulation of brain development; it is therefore not surprising that mutations, leading to loss of protein function, result in aberrant neurodevelopment. Heterozygous, usually de novo mutations in histone lysine methyltransferases have been described in patients leading to haploinsufficiency, dysregulated protein levels and impaired protein function. Studies in animal models and patient-derived cell lines, have highlighted the role of histone lysine methyltransferases in the regulation of cell self-renewal, cell fate specification and apoptosis. To date, in depth studies of histone lysine methyltransferases in oncology have provided strong evidence of histone lysine methyltransferase dysregulation as a determinant of cancer progression and drug resistance. As a result, histone lysine methyltransferases have become an important therapeutic target for the treatment of different cancer forms. Despite recent advances, we still lack knowledge about the role of histone lysine methyltransferases in neuronal development. This has hampered both the study and development of precision therapies for histone lysine methyltransferases-related Neurodevelopmental disorders. In this review, we will discuss the current knowledge of the role of histone lysine methyltransferases in neuronal development and disease progression. We will also discuss how RNA-based technologies using small-activating RNAs could potentially provide a novel therapeutic approach for the future treatment of histone lysine methyltransferase haploinsufficiency in these Neurodevelopmental disorders, and how they could be first tested in state-of-the-art patient-derived neuronal models.
Collapse
Affiliation(s)
- Charlotte Roth
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Helena Kilpinen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Manju A. Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Serena Barral
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
26
|
Ritchie FD, Lizarraga SB. The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities. Front Neurosci 2023; 17:989109. [PMID: 36845425 PMCID: PMC9950662 DOI: 10.3389/fnins.2023.989109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Brain size is controlled by several factors during neuronal development, including neural progenitor proliferation, neuronal arborization, gliogenesis, cell death, and synaptogenesis. Multiple neurodevelopmental disorders have co-morbid brain size abnormalities, such as microcephaly and macrocephaly. Mutations in histone methyltransferases that modify histone H3 on Lysine 36 and Lysine 4 (H3K36 and H3K4) have been identified in neurodevelopmental disorders involving both microcephaly and macrocephaly. H3K36 and H3K4 methylation are both associated with transcriptional activation and are proposed to sterically hinder the repressive activity of the Polycomb Repressor Complex 2 (PRC2). During neuronal development, tri-methylation of H3K27 (H3K27me3) by PRC2 leads to genome wide transcriptional repression of genes that regulate cell fate transitions and neuronal arborization. Here we provide a review of neurodevelopmental processes and disorders associated with H3K36 and H3K4 histone methyltransferases, with emphasis on processes that contribute to brain size abnormalities. Additionally, we discuss how the counteracting activities of H3K36 and H3K4 modifying enzymes vs. PRC2 could contribute to brain size abnormalities which is an underexplored mechanism in relation to brain size control.
Collapse
|
27
|
van Jaarsveld RH, Reilly J, Cornips MC, Hadders MA, Agolini E, Ahimaz P, Anyane-Yeboa K, Bellanger SA, van Binsbergen E, van den Boogaard MJ, Brischoux-Boucher E, Caylor RC, Ciolfi A, van Essen TAJ, Fontana P, Hopman S, Iascone M, Javier MM, Kamsteeg EJ, Kerkhof J, Kido J, Kim HG, Kleefstra T, Lonardo F, Lai A, Lev D, Levy MA, Lewis MES, Lichty A, Mannens MMAM, Matsumoto N, Maya I, McConkey H, Megarbane A, Michaud V, Miele E, Niceta M, Novelli A, Onesimo R, Pfundt R, Popp B, Prijoles E, Relator R, Redon S, Rots D, Rouault K, Saida K, Schieving J, Tartaglia M, Tenconi R, Uguen K, Verbeek N, Walsh CA, Yosovich K, Yuskaitis CJ, Zampino G, Sadikovic B, Alders M, Oegema R. Delineation of a KDM2B-related neurodevelopmental disorder and its associated DNA methylation signature. Genet Med 2023; 25:49-62. [PMID: 36322151 PMCID: PMC9825659 DOI: 10.1016/j.gim.2022.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD. METHODS Through international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature. RESULTS We recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism. CONCLUSION Pathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.
Collapse
Affiliation(s)
| | - Jack Reilly
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Marie-Claire Cornips
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michael A Hadders
- Oncode Institute and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy
| | - Priyanka Ahimaz
- Division of Clinical Genetics, Department of Pediatrics, Columbia University, New York, NY
| | - Kwame Anyane-Yeboa
- Division of Clinical Genetics, Department of Pediatrics, Columbia University, New York, NY
| | - Severine Audebert Bellanger
- Service de Génétique Médicale et de Biologie de la Reproduction, Centre Hospitalier Regional Universitaire Brest, Brest, France
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ton A J van Essen
- Department of Medical Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Paolo Fontana
- Medical Genetics Unit, A.O.R.N. San Pio, Benevento, Italy
| | - Saskia Hopman
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maria Iascone
- Laboratorio di Genetica Medica - ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Margaret M Javier
- Department of Medical Genetics, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Jun Kido
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Abbe Lai
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program and Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Dorit Lev
- The Rina Mor Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - M E Suzanne Lewis
- Department of Medical Genetics, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Marcel M A M Mannens
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Idit Maya
- The Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petach-Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Haley McConkey
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Andre Megarbane
- Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Institut Jérôme Lejeune, Paris, France
| | - Vincent Michaud
- Department of Medical Genetics, CHU Bordeaux, Bordeaux, France
| | - Evelina Miele
- Department of Pediatric Hematology and Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00165 Rome, Italy
| | - Roberta Onesimo
- Center for Rare Diseases and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bernt Popp
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany; Center of Functional Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Sylvia Redon
- Service de Génétique Médicale et de Biologie de la Reproduction, Centre Hospitalier Regional Universitaire Brest, Brest, France; Université de Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Dmitrijs Rots
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Karen Rouault
- Service de Génétique Médicale et de Biologie de la Reproduction, Centre Hospitalier Regional Universitaire Brest, Brest, France; Université de Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Jolanda Schieving
- Department of Pediatric Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Romano Tenconi
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, Padova, Italy
| | - Kevin Uguen
- Service de Génétique Médicale et de Biologie de la Reproduction, Centre Hospitalier Regional Universitaire Brest, Brest, France
| | - Nienke Verbeek
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christopher A Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA
| | - Keren Yosovich
- Molecular Genetic Laboratory, Edith Wolfson Medical Center, Holon, Israel
| | - Christopher J Yuskaitis
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Giuseppe Zampino
- Center for Rare Diseases and Congenital Defects, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Faculty of Medicine and Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada.
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands.
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
28
|
Chudy D, Raguž M, Vuletić V, Rački V, Papić E, Nenadić Baranašić N, Barišić N. GPi DBS treatment outcome in children with monogenic dystonia: a case series and review of the literature. Front Neurol 2023; 14:1151900. [PMID: 37168666 PMCID: PMC10166204 DOI: 10.3389/fneur.2023.1151900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Dystonia is the third most common pediatric movement disorder and is often difficult to treat. Deep brain stimulation (DBS) of the internal pallidum (GPi) has been demonstrated as a safe and effective treatment for genetic dystonia in adolescents and adults. The results of DBS in children are limited to individual cases or case series, although it has been proven to be an effective procedure in carefully selected pediatric cohorts. The aim of our study was to present the treatment outcome for 7- to 9-year-old pediatric patients with disabling monogenic isolated generalized DYT-THAP1 and DYT-KMT2B dystonia after bilateral GPi-DBS. Patients and results We present three boys aged <10 years; two siblings with disabling generalized DYT-THAP1 dystonia and a boy with monogenic-complex DYT-KMT2B. Dystonia onset occurred between the ages of 3 and 6. Significantly disabled children were mostly dependent on their parents. Pharmacotherapy was inefficient and patients underwent bilateral GPi-DBS. Clinical signs of dystonia improved significantly in the first month after the implantation and continued to maintain improved motor functions, which were found to have improved further at follow-up. These patients were ambulant without support and included in everyday activities. All patients had significantly lower Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) values, indicating >25% improvement over the first 15 months. However, there was a decline in speech and upper limb function, manifesting with bradylalia, bradykinesia, and dysphonia, which decreased after treatment with trihexyphenidyl. Conclusion Although reports of patients with monogenic dystonia, particularly DYT-THAP1, treated with DBS are still scarce, DBS should be considered as an efficient treatment approach in children with pharmacoresistent dystonia, especially with generalized monogenic dystonia and to prevent severe and disabling symptoms that reduce the quality of life, including emotional and social aspects. Patients require an individual approach and parents should be properly informed about expectations and possible outcomes, including relapses and impairments, in addition to DBS responsiveness and related improvements. Furthermore, early genetic diagnosis and the provision of appropriate treatments, including DBS, are mandatory for preventing severe neurologic impairments.
Collapse
Affiliation(s)
- Darko Chudy
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marina Raguž
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
- *Correspondence: Marina Raguž
| | - Vladimira Vuletić
- Department of Neurology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Valentino Rački
- Department of Neurology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Eliša Papić
- Department of Neurology, School of Medicine, University of Rijeka, Rijeka, Croatia
| | - Nataša Nenadić Baranašić
- Department of Pediatrics, University Hospital Centre, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nina Barišić
- Department of Pediatrics, University Hospital Centre, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
29
|
Bukhari-Parlakturk N, Frucht SJ. Isolated and combined dystonias: Update. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:425-442. [PMID: 37620082 DOI: 10.1016/b978-0-323-98817-9.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Dystonia is a hyperkinetic movement disorder with a unique motor phenomenology that can manifest as an isolated clinical syndrome or combined with other neurological features. This chapter reviews the characteristic features of dystonia phenomenology and the syndromic approach to evaluating the disorders that may allow us to differentiate the isolated and combined syndromes. We also present the most common types of isolated and combined dystonia syndromes. Since accelerated gene discoveries have increased our understanding of the molecular mechanisms of dystonia pathogenesis, we also present isolated and combined dystonia syndromes by shared biological pathways. Examples of these converging mechanisms of the isolated and combined dystonia syndromes include (1) disruption of the integrated response pathway through eukaryotic initiation factor 2 alpha signaling, (2) disease of dopaminergic signaling, (3) alterations in the cerebello-thalamic pathway, and (4) disease of protein mislocalization and stability. The discoveries that isolated and combined dystonia syndromes converge in shared biological pathways will aid in the development of clinical trials and therapeutic strategies targeting these convergent molecular pathways.
Collapse
Affiliation(s)
- Noreen Bukhari-Parlakturk
- Department of Neurology, Movement Disorders Division, Duke University (NBP), Durham, NC, United States.
| | - Steven J Frucht
- Department of Neurology, NYU Grossman School of Medicine (SJF), New York, NY, United States
| |
Collapse
|
30
|
Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat Rev Mol Cell Biol 2023; 24:6-26. [PMID: 36028557 DOI: 10.1038/s41580-022-00518-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.
Collapse
Affiliation(s)
- Trisha A Macrae
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Julie Fothergill-Robinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
31
|
Hara K, Ouchi H, Hamanaka K, Miyatake S, Matsumoto N. [A case of generalized dystonia DYT28 with a novel de novo mutation in the KMT2B gene]. Rinsho Shinkeigaku 2022; 62:856-859. [PMID: 36288966 DOI: 10.5692/clinicalneurol.cn-001773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The patient exhibited plantarflexion during walking at the age of five. He then developed writer's cramp at the age of six, dysphonia at 15 years, and action-induced dystonia with left knee elevation and trunk swinging when walking at 16 years, which subsequently spread to the right leg at 19 years. Levodopa therapy was ineffective for dystonia. Brain MRI showed no abnormalities. He was diagnosed with DYT28 after detecting a novel heterozygous mutation (c.433C>T, p.Arg145*) in the KMT2B gene using whole-exome sequencing at age 39. Furthermore, the patient's parents exhibited normal alleles, confirming the de novo status of KMT2B gene mutation. We should consider DYT28 in addition to DYT1 and DYT5 in patients who developed leg dystonia in childhood.
Collapse
Affiliation(s)
- Kenju Hara
- Department of Neurology, Akita Red Cross Hospital
| | - Haruka Ouchi
- Department of Neurology, Akita Red Cross Hospital
| | - Kohei Hamanaka
- Department of Human Genetics, Yokohama City University Graduate School of Medicine
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine
- Clinical Genetics Department, Yokohama City University Hospital
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine
| |
Collapse
|
32
|
Monfrini E, Ciolfi A, Cavallieri F, Ferilli M, Soliveri P, Pedace L, Erro R, Del Sorbo F, Valzania F, Fioravanti V, Cossu G, Pellegrini M, Salviati L, Invernizzi F, Oppo V, Murgia D, Giometto B, Picillo M, Garavaglia B, Morgante F, Tartaglia M, Carecchio M, Di Fonzo A. Adult-onset KMT2B-related dystonia. Brain Commun 2022; 4:fcac276. [PMID: 36483457 PMCID: PMC9724767 DOI: 10.1093/braincomms/fcac276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 07/25/2023] Open
Abstract
KMT2B-related dystonia (DYT-KMT2B, also known as DYT28) is an autosomal dominant neurological disorder characterized by varying combinations of generalized dystonia, psychomotor developmental delay, mild-to-moderate intellectual disability and short stature. Disease onset occurs typically before 10 years of age. We report the clinical and genetic findings of a series of subjects affected by adult-onset dystonia, hearing loss or intellectual disability carrying rare heterozygous KMT2B variants. Twelve cases from five unrelated families carrying four rare KMT2B missense variants predicted to impact protein function are described. Seven affected subjects presented with adult-onset focal or segmental dystonia, three developed isolated progressive hearing loss, and one displayed intellectual disability and short stature. Genome-wide DNA methylation profiling allowed to discriminate these adult-onset dystonia cases from controls and early-onset DYT-KMT2B patients. These findings document the relevance of KMT2B variants as a potential genetic determinant of adult-onset dystonia and prompt to further characterize KMT2B carriers investigating non-dystonic features.
Collapse
Affiliation(s)
- Edoardo Monfrini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
- Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan 20122, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42124, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Reggio Emilia 42124, Italy
| | - Marco Ferilli
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | - Paola Soliveri
- Parkinson Institute, ASST G. Pini-CTO, Milan 20126, Italy
- Fondazione Grigioni per il Morbo di Parkinson, Milan 20125, Italy
| | - Lucia Pedace
- Department of Onco-Hematology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00165, Italy
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, Neuroscience Section, University of Salerno, Baronissi, SA 84081, Italy
| | - Francesca Del Sorbo
- Parkinson Institute, ASST G. Pini-CTO, Milan 20126, Italy
- Fondazione Grigioni per il Morbo di Parkinson, Milan 20125, Italy
| | - Franco Valzania
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42124, Italy
| | - Valentina Fioravanti
- Neurology Unit, Neuromotor & Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia 42124, Italy
| | - Giovanni Cossu
- Department of Neuroscience, Brotzu Hospital, Cagliari 09047, Italy
| | - Maria Pellegrini
- Neurology Unit, Trento Hospital, Azienda Provinciale per i Servizi Sanitari (APSS) di Trento, Trento 38122, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Padova 35131, Italy
| | - Federica Invernizzi
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano 20126, Italy
| | - Valentina Oppo
- Department of Neuroscience, Brotzu Hospital, Cagliari 09047, Italy
| | - Daniela Murgia
- Department of Neuroscience, Brotzu Hospital, Cagliari 09047, Italy
| | - Bruno Giometto
- Neurology Unit, Trento Hospital, Azienda Provinciale per i Servizi Sanitari (APSS) di Trento, Trento 38122, Italy
| | - Marina Picillo
- Department of Medicine, Surgery and Dentistry ‘Scuola Medica Salernitana’, Neuroscience Section, University of Salerno, Baronissi, SA 84081, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano 20126, Italy
| | - Francesca Morgante
- Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London SW170RE, United Kingdom
- Department of Experimental and Clinical Medicine, University of Messina, Messina 98122, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00146, Italy
| | | | - Alessio Di Fonzo
- Correspondence to: Alessio Di Fonzo, MD PhD Via Francesco Sforza 35, 20122, Milan, Italy E-mail:
| |
Collapse
|
33
|
Jayathirtha M, Neagu AN, Whitham D, Alwine S, Darie CC. Investigation of the effects of downregulation of jumping translocation breakpoint (JTB) protein expression in MCF7 cells for potential use as a biomarker in breast cancer. Am J Cancer Res 2022; 12:4373-4398. [PMID: 36225631 PMCID: PMC9548009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023] Open
Abstract
MCF7 is a commonly used luminal type A non-invasive/poor-invasive human breast cancer cell line that does not usually migrate or invade compared with MDA-MB-231 highly metastatic cells, which emphasize an invasive and migratory behavior. Under special conditions, MCF7 cells might acquire invasive features. The aberration in expression and biological functions of the jumping translocation breackpoint (JTB) protein is associated with malignant transformation of cells, based on mitochondrial dysfunction, inhibition of tumor suppressive function of TGF-β, and involvement in cancer cell cycle. To investigate new putative functions of JTB by cellular proteomics, we analyzed the biological processes and pathways that are associated with the JTB protein downregulation. The results demonstrated that MCF7 cell line developed a more "aggressive" phenotype and behavior. Most of the proteins that were overexpressed in this experiment promoted the actin cytoskeleton reorganization that is involved in growth and metastatic dissemination of cancer cells. Some of these proteins are involved in the epithelial-mesenchymal transition (EMT) process (ACTBL2, TUBA4A, MYH14, CSPG5, PKM, UGDH, HSP90AA2, and MIF), in correlation with the energy metabolism reprogramming (PKM, UGDH), stress-response (HSP10, HSP70A1A, HSP90AA2), and immune and inflammatory response (MIF and ERp57-TAPBP). Almost all upregulated proteins in JTB downregulated condition promote viability, motility, proliferation, invasion, survival into a hostile microenvironment, metabolic reprogramming, and escaping of tumor cells from host immune control, leading to a more invasive phenotype for MCF7 cell line. Due to their downregulated condition, four proteins, such as CREBZF, KMT2B, SELENOS and CACNA1I are also involved in maintenance of the invasive phenotype of cancer cells, promoting cell proliferation, migration, invasion and tumorigenesis. Other downregulated proteins, such as MAZ, PLEKHG2, ENO1, TPI2, TOR2A, and CNNM1, may promote suppression of cancer cell growth, invasion, EMT, tumorigenic abilities, interacting with glucose and lipid metabolism, disrupting nuclear envelope stability, or suppressing apoptosis and developing anti-angiogenetic activities. Therefore, the main biological processes and pathways that may increase the tumorigenic potential of the MCF7 cells in JTB downregulated condition are related to the actin cytoskeleton organization, EMT, mitotic cell cycle, glycolysis and fatty acid metabolism, inflammatory response and macrophage activation, chemotaxis and migration, cellular response to stress condition (oxidative stress and hypoxia), transcription control, histone modification and ion transport.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IasiCarol I bvd. No. 22, Iasi 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
34
|
Di Fonzo A, Albanese A, Jinnah HH. The apparent paradox of phenotypic diversity and shared mechanisms across dystonia syndromes. Curr Opin Neurol 2022; 35:502-509. [PMID: 35856917 PMCID: PMC9309988 DOI: 10.1097/wco.0000000000001076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW We describe here how such mechanisms shared by different genetic forms can give rise to motor performance dysfunctions with a clinical aspect of dystonia. RECENT FINDINGS The continuing discoveries of genetic causes for dystonia syndromes are transforming our view of these disorders. They share unexpectedly common underlying mechanisms, including dysregulation in neurotransmitter signaling, gene transcription, and quality control machinery. The field has further expanded to include forms recently associated with endolysosomal dysfunction. SUMMARY The discovery of biological pathways shared between different monogenic dystonias is an important conceptual advance in the understanding of the underlying mechanisms, with a significant impact on the pathophysiological understanding of clinical phenomenology. The functional relationship between dystonia genes could revolutionize current dystonia classification systems, classifying patients with different monogenic forms based on common pathways. The most promising effect of these advances is on future mechanism-based therapeutic approaches.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neurology Unit, Milan, Italy
| | - Alberto Albanese
- Department of Neurology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Hyder H. Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Emory University School of Medicine, Atlanta GA, 30322, USA
| |
Collapse
|
35
|
Dzinovic I, Winkelmann J, Zech M. Genetic intersection between dystonia and neurodevelopmental disorders: Insights from genomic sequencing. Parkinsonism Relat Disord 2022; 102:131-140. [DOI: 10.1016/j.parkreldis.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
|
36
|
Shimazaki R, Ikezawa J, Okiyama R, Azuma K, Akagawa H, Takahashi K. Dystonic Tremor in Adult-onset DYT-KMT2B. Intern Med 2022; 61:2357-2360. [PMID: 35022352 PMCID: PMC9424094 DOI: 10.2169/internalmedicine.8700-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
KMT2B-related dystonia (DYT28, DYT-KMT2B) is an inherited dystonia that generally begins in the lower limbs during childhood and evolves into generalized dystonia. We herein report a case of adult-onset DYT28 with dystonic tremor. A 27-year-old woman initially displayed right upper limb and cervical tremors over the course of 1 year. A neurological examination also revealed cervical and lower limb dystonia. Although the disease generally develops during childhood, we diagnosed the woman with DYT28, as genetic testing revealed a mutation in KMT2B. Adult-onset patients with DYT28 might also show uncommon symptoms as well as DYT-TOR1A (DYT1).
Collapse
Affiliation(s)
- Rui Shimazaki
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Japan
| | - Jun Ikezawa
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Japan
| | - Ryoichi Okiyama
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Japan
| | - Kenko Azuma
- Tokyo Women's Medical University, Institute for Integrated Medical Sciences, Japan
| | - Hiroyuki Akagawa
- Tokyo Women's Medical University, Institute for Integrated Medical Sciences, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Japan
| |
Collapse
|
37
|
Buzo EL, De la Casa-Fages B, Sánchez MG, Sánchez JP, Carballal CF, Vidorreta JG, Sierra OM, Chicote AC, Grandas F. Pallidal deep brain stimulation response in two siblings with atypical adult-onset dystonia related to a KMT2B variant. J Neurol Sci 2022; 438:120295. [DOI: 10.1016/j.jns.2022.120295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/05/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
|
38
|
Poreba E, Lesniewicz K, Durzynska J. Histone-lysine N-methyltransferase 2 (KMT2) complexes - a new perspective. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108443. [PMID: 36154872 DOI: 10.1016/j.mrrev.2022.108443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/25/2022] [Accepted: 09/19/2022] [Indexed: 01/01/2023]
Abstract
Histone H3 Lys4 (H3K4) methylation is catalyzed by the Histone-Lysine N-Methyltransferase 2 (KMT2) protein family, and its members are required for gene expression control. In vertebrates, the KMT2s function in large multisubunit complexes known as COMPASS or COMPASS-like complexes (COMplex of Proteins ASsociated with Set1). The activity of these complexes is critical for proper development, and mutation-induced defects in their functioning have frequently been found in human cancers. Moreover, inherited or de novo mutations in KMT2 genes are among the etiological factors in neurodevelopmental disorders such as Kabuki and Kleefstra syndromes. The canonical role of KMT2s is to catalyze H3K4 methylation, which results in a permissive chromatin environment that drives gene expression. However, current findings described in this review demonstrate that these enzymes can regulate processes that are not dependent on methylation: noncatalytic functions of KMT2s include DNA damage response, cell division, and metabolic activities. Moreover, these enzymes may also methylate non-histone substrates and play a methylation-dependent function in the DNA damage response. In this review, we present an overview of the new, noncanonical activities of KMT2 complexes in a variety of cellular processes. These discoveries may have crucial implications for understanding the functions of these methyltransferases in developmental processes, disease, and epigenome-targeting therapeutic strategies in the future.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Julia Durzynska
- Department of Genetics, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| |
Collapse
|
39
|
Ojaimi MA, Banimortada BJ, Othman A, Riedhammer KM, Almannai M, El-Hattab AW. Disorders of histone methylation: molecular basis and clinical syndromes. Clin Genet 2022; 102:169-181. [PMID: 35713103 DOI: 10.1111/cge.14181] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/01/2022]
Abstract
Epigenetic modifications of DNA and histone tails are essential for gene expression regulation. They play an essential role in neurodevelopment as nervous system development is a complex process requiring a dynamic pattern of gene expression. Histone methylation is one of the vital epigenetic regulators and mostly occurs on lysine residues of histones H3 and H4. Histone methylation is catalyzed by two sets of enzymes: histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs). KMT2 enzymes form a distinct multi-subunit complex known as COMPASS to enhance their catalytic activity and diversify their biologic functions. Several neurodevelopmental syndromes result from defects of histone methylation which can be caused by deficiencies in histone methyltransferases and demethylases, loss of the histone methyltransferase activator TASP1, or derangements in COMPASS formation. In this review article, the molecular mechanism of histone methylation is discussed followed by summarizing clinical syndromes caused by monogenic defects in histone methylation.
Collapse
Affiliation(s)
- Mode Al Ojaimi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Amna Othman
- Genetics and Genomic Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.,Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Mohammed Almannai
- Genetics and Precision Medicine Department, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Pediatrics Department, University Hospital Sharjah, Sharjah, United Arab Emirates.,Genetics and Metabolic Department, KidsHeart Medical Center, Abu Dhabi, United Arab Emirates
| |
Collapse
|
40
|
Lee S, Ochoa E, Barwick K, Cif L, Rodger F, Docquier F, Pérez-Dueñas B, Clark G, Martin E, Banka S, Kurian MA, Maher ER. Comparison of methylation episignatures in KMT2B- and KMT2D-related human disorders. Epigenomics 2022; 14:537-547. [PMID: 35506254 DOI: 10.2217/epi-2021-0521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim & methods: To investigate peripheral blood methylation episignatures in KMT2B-related dystonia (DYT-KMT2B), the authors undertook genome-wide methylation profiling of ∼2 M CpGs using a next-generation sequencing-based assay and compared the findings with those in controls and patients with KMT2D-related Kabuki syndrome type 1 (KS1). Results: A total of 1812 significantly differentially methylated CpG positions (false discovery rate < 0.05) were detected in DYT-KMT2B samples compared with controls. Multi-dimensional scaling analysis showed that the 10 DYT-KMT2B samples clustered together and separately from 29 controls and 10 with pathogenic variants in KMT2D. The authors found that most differentially methylated CpG positions were specific to one disorder and that all (DYT-KMT2B) and most (Kabuki syndrome type 1) methylation alterations in CpG islands were gain of methylation events. Conclusion: Using sensitive methylation profiling methodology, the authors replicated recent reports of a methylation episignature for DYT-KMT2B. These findings will facilitate the development of episignature-based assays to improve diagnostic accuracy.
Collapse
Affiliation(s)
- Sunwoo Lee
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Eguzkine Ochoa
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Katy Barwick
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London, WC1N 1DZ, UK
| | - Laura Cif
- Departement de Neurochirurgie, Unite des Pathologies Cerebrales Resistantes, Unite de Recherche sur les Comportements et Mouvements Anormaux, Hopital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France, & Faculte de Medecine, Universite de Montpellier, France
| | - Fay Rodger
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK.,Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - France Docquier
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK.,Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Belén Pérez-Dueñas
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London, WC1N 1DZ, UK
| | - Graeme Clark
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK.,Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Ezequiel Martin
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK.,Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Siddharth Banka
- Division of Evolution, Infection & Genomics, School of Biological Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK, & Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Foundation NHS Trust, Health Innovation Manchester, Manchester, M13 9WL, UK
| | - Manju A Kurian
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London, WC1N 1DZ, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
41
|
Grosz BR, Tisch S, Tchan MC, Fung VSC, Darveniza P, Fellner A, Kurian MA, McLean A, Tomlinson SE, Smyth R, Devery S, Wu KHC, Kennerson ML, Kumar KR. A novel synonymous KMT2B variant in a patient with dystonia causes aberrant splicing. Mol Genet Genomic Med 2022; 10:e1923. [PMID: 35293157 PMCID: PMC9034664 DOI: 10.1002/mgg3.1923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Abstract
Background Heterozygous KMT2B variants are a common cause of dystonia. A novel synonymous KMT2B variant, c.5073C>T (p.Gly1691=) was identified in an individual with childhood‐onset progressive dystonia. Methods The splicing impact of c.5073C>T was assessed using an in vitro exon‐trapping assay. The genomic region of KMT2B exons 23–26 was cloned into the pSpliceExpress plasmid between exon 2 and 3 of the rat Ins2 gene. The c.5073C>T variant was then introduced through site‐directed mutagenesis. The KMT2B wild‐type and c.5073C>T plasmids were transfected separately into HeLa cells and RNA was extracted 48 hours after transfection. The RNA was reverse transcribed to produce cDNA, which was PCR amplified using primers annealing to the flanking rat Ins2 sequences. Results Sanger sequencing of the PCR products revealed that c.5073C>T caused a novel splice donor site and therefore a 5‐bp deletion of KMT2B exon 23 in mature mRNA, leading to a coding frameshift and premature stop codon (p.Lys1692AsnfsTer7). Conclusion To our knowledge, this is the first report of a KMT2B synonymous variant associated with dystonia. Reassessment of synonymous variants may increase diagnostic yield for inherited disorders including monogenic dystonia. This is of clinical importance, given the generally favourable response to deep brain stimulation for KMT2B‐related dystonia.
Collapse
Affiliation(s)
- Bianca R Grosz
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
| | - Stephen Tisch
- Department of Neurology, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,School of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Michel C Tchan
- Clinical Genomics, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,Department of Genetic Medicine, Westmead Hospital, Westmead, New South Wales, Australia.,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Victor S C Fung
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, New South Wales, Australia
| | - Paul Darveniza
- Department of Neurology, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Avi Fellner
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel.,Department of Neurology, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Manju A Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, London, UK
| | - Alison McLean
- Clinical Genomics, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Susan E Tomlinson
- Department of Neurology, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Renee Smyth
- Clinical Genomics, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Sophie Devery
- Clinical Genomics, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - Kathy H C Wu
- School of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Clinical Genomics, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,School of Medicine, University of Notre Dame, Fremantle, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia.,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Kishore R Kumar
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales, Australia.,Department of Neurology, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| |
Collapse
|
42
|
Lange LM, Gonzalez-Latapi P, Rajalingam R, Tijssen MAJ, Ebrahimi-Fakhari D, Gabbert C, Ganos C, Ghosh R, Kumar KR, Lang AE, Rossi M, van der Veen S, van de Warrenburg B, Warner T, Lohmann K, Klein C, Marras C. Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force - An Update. Mov Disord 2022; 37:905-935. [PMID: 35481685 DOI: 10.1002/mds.28982] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Movement Disorder Society Task Force for the Nomenclature of Genetic Movement Disorders presented a new system for naming genetically determined movement disorders and provided a criterion-based list of confirmed monogenic movement disorders. Since then, a substantial number of novel disease-causing genes have been described, which warrant classification using this system. In addition, with this update, we further refined the system and propose dissolving the imaging-based categories of Primary Familial Brain Calcification and Neurodegeneration with Brain Iron Accumulation and reclassifying these genetic conditions according to their predominant phenotype. We also introduce the novel category of Mixed Movement Disorders (MxMD), which includes conditions linked to multiple equally prominent movement disorder phenotypes. In this article, we present updated lists of newly confirmed monogenic causes of movement disorders. We found a total of 89 different newly identified genes that warrant a prefix based on our criteria; 6 genes for parkinsonism, 21 for dystonia, 38 for dominant and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for spastic paraplegia, 3 for paroxysmal movement disorders, and 6 for mixed movement disorder phenotypes; 10 genes were linked to combined phenotypes and have been assigned two new prefixes. The updated lists represent a resource for clinicians and researchers alike and they have also been published on the website of the Task Force for the Nomenclature of Genetic Movement Disorders on the homepage of the International Parkinson and Movement Disorder Society (https://www.movementdisorders.org/MDS/About/Committees--Other-Groups/MDS-Task-Forces/Task-Force-on-Nomenclature-in-Movement-Disorders.htm). © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Paulina Gonzalez-Latapi
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada.,Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rajasumi Rajalingam
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Marina A J Tijssen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christos Ganos
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Rhia Ghosh
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Sterre van der Veen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom Warner
- Department of Clinical & Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|
43
|
Cătană A, Kutasi E, Cuzmici‑Barabaș Z, Militaru D, Iordănescu I, Militaru M. O'Donnel‑Luria‑Rodan Syndrome: New gene variant identified in Romania (A case report). Exp Ther Med 2022; 23:367. [PMID: 35481221 PMCID: PMC9016787 DOI: 10.3892/etm.2022.11294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/01/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Andreea Cătană
- Department of Oncogenetics, Institute of Oncology I. Chiricuță, Cluj‑Napoca, Transylvania 4000015, Romania
| | - Enikő Kutasi
- Department of Oncogenetics, Institute of Oncology I. Chiricuță, Cluj‑Napoca, Transylvania 4000015, Romania
| | - Zina Cuzmici‑Barabaș
- Department of Molecular Sciences, University of Medicine and Pharmacy, Cluj‑Napoca, Transylvania 4000012, Romania
| | - Diana Militaru
- Department of Molecular Sciences, University of Medicine and Pharmacy, Cluj‑Napoca, Transylvania 4000012, Romania
| | - Irina Iordănescu
- Department of Medical Genetics, Genetic Center Laboratory, Regina Maria, Bucharest 011376, Romania
| | - Mariela Militaru
- Department of Molecular Sciences, University of Medicine and Pharmacy, Cluj‑Napoca, Transylvania 4000012, Romania
| |
Collapse
|
44
|
Zhang ZL, Yu PF, Ling ZQ. The role of KMT2 gene in human tumors. Histol Histopathol 2022; 37:323-334. [PMID: 35233758 DOI: 10.14670/hh-18-447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Histone methylation plays a crucial role in the regulation of gene transcriptional expression, and aberration of methylation-modifying enzyme genes can lead to a variety of genetic diseases, including human cancers. The histone modified protein KMT2 (lysin methyltransferase) family are involved in cell proliferation, growth, development and differentiation through regulating gene expression, and are closely related with many blood cancers and solid tumors. In recent years, several studies have shown that mutations in the KMT2 gene occur frequently in a variety of human cancers and the mutation status of the KMT2 gene may be correlated with the occurrence, development and prognosis of some tumors. Research uncovering the clinical characteristics and molecular mechanisms of KMT2 mutation in human tumors will be helpful for early diagnosis and prognosis of tumors as well as drug development for targeted therapies.
Collapse
Affiliation(s)
- Zhi-Long Zhang
- Zhejiang Cancer Institute (Experimental Research Center), Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, PR China
- The Second Clinical Medical College of Zhejiang Chinese Medicine University, Hangzhou, PR China
| | - Peng-Fei Yu
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, PR China.
| | - Zhi-Qiang Ling
- Zhejiang Cancer Institute (Experimental Research Center), Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, PR China.
| |
Collapse
|
45
|
A New Pathologic KMT2B Variant Associated with Childhood Onset Dystonia Presenting as Variable Phenotypes among Family Members. Tremor Other Hyperkinet Mov (N Y) 2022; 12:7. [PMID: 35415007 PMCID: PMC8932353 DOI: 10.5334/tohm.679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/10/2022] [Indexed: 11/20/2022] Open
|
46
|
Molecular Diagnostic Outcomes from 700 Cases: What Can We Learn from a Retrospective Analysis of Clinical Exome Sequencing? J Mol Diagn 2022; 24:274-286. [PMID: 35065284 PMCID: PMC9904168 DOI: 10.1016/j.jmoldx.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 01/19/2023] Open
Abstract
Clinical exome sequencing (CES) aids in the diagnosis of rare genetic disorders. Herein, we report the molecular diagnostic yield and spectrum of genetic alterations contributing to disease in 700 pediatric cases analyzed at the Children's Hospital of Philadelphia. The overall diagnostic yield was 23%, with three cases having more than one molecular diagnosis and 2.6% having secondary/additional findings. A candidate gene finding was reported in another 8.4% of cases. The clinical indications with the highest diagnostic yield were neurodevelopmental disorders (including seizures), whereas immune- and oncology-related indications were negatively associated with molecular diagnosis. The rapid expansion of knowledge regarding the genome's role in human disease necessitates reanalysis of CES samples. To capture these new discoveries, a subset of cases (n = 240) underwent reanalysis, with an increase in diagnostic yield. We describe our experience reporting CES results in a pediatric setting, including reporting of secondary findings, reporting newly discovered genetic conditions, and revisiting negative test results. Finally, we highlight the challenges associated with implementing critical updates to the CES workflow. Although these updates are necessary, they demand an investment of time and resources from the laboratory. In summary, these data demonstrate the clinical utility of exome sequencing and reanalysis, while highlighting the critical considerations for continuous improvement of a CES test in a clinical laboratory.
Collapse
|
47
|
Salah A, Almannai M, Ojaimi MA, Radefeldt M, Gulati N, Iqbal M, Alawbathani S, Al-Ali R, Beetz C, El-Hattab AW. A homozygous frame-shift variant in PROSER1 is associated with developmental delay, hypotonia, genitourinary malformations, and distinctive facial features. Clin Genet 2022; 101:565-570. [PMID: 35229282 DOI: 10.1111/cge.14126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
We report four children from three related families who presented with a similar phenotype characterized by developmental delay, hypotonia, seizures, failure-to-thrive, strabismus, drooling, recurrent otitis media, hearing impairment, and genitourinary malformations. They also shared common facial features including arched eyebrows, prominent eyes, broad nasal bridge, low-hanging columella, open mouth, thick lower lip, protruding tongue, large low-set ears, and parietal bossing. Exome sequencing for affected individuals revealed a homozygous frame-shift variant, c.1833del; p.(Thr612Glnfs*22), in PROSER1 which encodes the proline and serine rich protein 1 (PROSER1). PROSER1 has recently been found to be part of the histone methyltransferases KMT2C/KMT2D complexes. PROSER1 stabilizes TET2, a member of TET family of DNA demethylases which is involved in recruiting the enhancer-associated KMT2C/KMT2D complexes and mediating DNA demethylation, activating gene expression. Therefore, PROSER1 may play vital and potentially general roles in gene regulation, consistent with the wide phenotypic spectrum observed in the individuals presented here. The consistent phenotype, the loss-of-function predicted from the frame-shift, the co-segregation of the phenotype in our large pedigree, the vital role of PROSER1 in gene regulation, and the association of related genes with neurodevelopmental disorders argue for the loss of PROSER1 to be the cause for a novel recognizable syndrome. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Azza Salah
- Pediatrics, University Hospital Sharjah, Sharjah, United Arab Emirates
| | - Mohammed Almannai
- Genetics and Precision Medicine Department, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
| | - Mode Al Ojaimi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | | | | | | | | | - Ayman W El-Hattab
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Clinical Genetics, University Hospital Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
48
|
Wilson KD, Porter EG, Garcia BA. Reprogramming of the epigenome in neurodevelopmental disorders. Crit Rev Biochem Mol Biol 2022; 57:73-112. [PMID: 34601997 PMCID: PMC9462920 DOI: 10.1080/10409238.2021.1979457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023]
Abstract
The etiology of neurodevelopmental disorders (NDDs) remains a challenge for researchers. Human brain development is tightly regulated and sensitive to cellular alterations caused by endogenous or exogenous factors. Intriguingly, the surge of clinical sequencing studies has revealed that many of these disorders are monogenic and monoallelic. Notably, chromatin regulation has emerged as highly dysregulated in NDDs, with many syndromes demonstrating phenotypic overlap, such as intellectual disabilities, with one another. Here we discuss epigenetic writers, erasers, readers, remodelers, and even histones mutated in NDD patients, predicted to affect gene regulation. Moreover, this review focuses on disorders associated with mutations in enzymes involved in histone acetylation and methylation, and it highlights syndromes involving chromatin remodeling complexes. Finally, we explore recently discovered histone germline mutations and their pathogenic outcome on neurological function. Epigenetic regulators are mutated at every level of chromatin organization. Throughout this review, we discuss mechanistic investigations, as well as various animal and iPSC models of these disorders and their usefulness in determining pathomechanism and potential therapeutics. Understanding the mechanism of these mutations will illuminate common pathways between disorders. Ultimately, classifying these disorders based on their effects on the epigenome will not only aid in prognosis in patients but will aid in understanding the role of epigenetic machinery throughout neurodevelopment.
Collapse
Affiliation(s)
- Khadija D Wilson
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth G Porter
- Department of Biochemistry and Molecular Biophysics, University of Washington School of Medicine, St. Louis, MO, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, University of Washington School of Medicine, St. Louis, MO, USA
| |
Collapse
|
49
|
Neilson DE, Zech M, Hufnagel RB, Slone J, Wang X, Homan S, Gutzwiller LM, Leslie EJ, Leslie ND, Xiao J, Hedera P, LeDoux MS, Gebelein B, Wilbert F, Eckenweiler M, Winkelmann J, Gilbert DL, Huang T. A Novel Variant of ATP5MC3 Associated with Both Dystonia and Spastic Paraplegia. Mov Disord 2022; 37:375-383. [PMID: 34636445 PMCID: PMC8840961 DOI: 10.1002/mds.28821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND In a large pedigree with an unusual phenotype of spastic paraplegia or dystonia and autosomal dominant inheritance, linkage analysis previously mapped the disease to chromosome 2q24-2q31. OBJECTIVE The aim of this study is to identify the genetic cause and molecular basis of an unusual autosomal dominant spastic paraplegia and dystonia. METHODS Whole exome sequencing following linkage analysis was used to identify the genetic cause in a large family. Cosegregation analysis was also performed. An additional 384 individuals with spastic paraplegia or dystonia were screened for pathogenic sequence variants in the adenosine triphosphate (ATP) synthase membrane subunit C locus 3 gene (ATP5MC3). The identified variant was submitted to the "GeneMatcher" program for recruitment of additional subjects. Mitochondrial functions were analyzed in patient-derived fibroblast cell lines. Transgenic Drosophila carrying mutants were studied for movement behavior and mitochondrial function. RESULTS Exome analysis revealed a variant (c.318C > G; p.Asn106Lys) (NM_001689.4) in ATP5MC3 in a large family with autosomal dominant spastic paraplegia and dystonia that cosegregated with affected individuals. No variants were identified in an additional 384 individuals with spastic paraplegia or dystonia. GeneMatcher identified an individual with the same genetic change, acquired de novo, who manifested upper-limb dystonia. Patient fibroblast studies showed impaired complex V activity, ATP generation, and oxygen consumption. Drosophila carrying orthologous mutations also exhibited impaired mitochondrial function and displayed reduced mobility. CONCLUSION A unique form of familial spastic paraplegia and dystonia is associated with a heterozygous ATP5MC3 variant that also reduces mitochondrial complex V activity.
Collapse
Affiliation(s)
- Derek E. Neilson
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Current: Division of Genetics and Metabolism, Phoenix Children’s Hospital, Phoenix, AZ
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Robert B. Hufnagel
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Jesse Slone
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Current: Division of Genetics, Department of Pediatrics, University at Buffalo, NY
| | - Xinjian Wang
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Shelli Homan
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Lisa M. Gutzwiller
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Elizabeth J. Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Nancy D. Leslie
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Jianfeng Xiao
- Departments of Neurology and Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN
| | - Peter Hedera
- Department of Neurology, University of Louisville, Louisville, KY
| | - Mark S. LeDoux
- University of Memphis and Veracity Neuroscience LLC, Memphis, TN
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Friederike Wilbert
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Matthias Eckenweiler
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Donald L. Gilbert
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Current: Division of Genetics, Department of Pediatrics, University at Buffalo, NY
| |
Collapse
|
50
|
Riedhammer KM, Burgemeister AL, Cantagrel V, Amiel J, Siquier-Pernet K, Boddaert N, Hertecant J, Kannouche PL, Pouvelle C, Htun S, Slavotinek AM, Beetz C, Diego-Alvarez D, Kampe K, Fleischer N, Awamleh Z, Weksberg R, Kopajtich R, Meitinger T, Suleiman J, El-Hattab AW. OUP accepted manuscript. Hum Mol Genet 2022; 31:3083-3094. [PMID: 35512351 PMCID: PMC9476618 DOI: 10.1093/hmg/ddac098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/04/2022] [Accepted: 04/23/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND TASP1 encodes an endopeptidase activating histone methyltransferases of the KMT2 family. Homozygous loss-of-function variants in TASP1 have recently been associated with Suleiman-El-Hattab syndrome. We report six individuals with Suleiman-El-Hattab syndrome and provide functional characterization of this novel histone modification disorder in a multi-omics approach. METHODS Chromosomal microarray/exome sequencing in all individuals. Western blotting from fibroblasts in two individuals. RNA sequencing and proteomics from fibroblasts in one individual. Methylome analysis from blood in two individuals. Knock-out of tasp1 orthologue in zebrafish and phenotyping. RESULTS All individuals had biallelic TASP1 loss-of-function variants and a phenotype including developmental delay, multiple congenital anomalies (including cardiovascular and posterior fossa malformations), a distinct facial appearance and happy demeanor. Western blot revealed absence of TASP1. RNA sequencing/proteomics showed HOX gene downregulation (HOXA4, HOXA7, HOXA1 and HOXB2) and dysregulation of transcription factor TFIIA. A distinct methylation profile intermediate between control and Kabuki syndrome (KMT2D) profiles could be produced. Zebrafish tasp1 knock-out revealed smaller head size and abnormal cranial cartilage formation in tasp1 crispants. CONCLUSION This work further delineates Suleiman-El-Hattab syndrome, a recognizable neurodevelopmental syndrome. Possible downstream mechanisms of TASP1 deficiency include perturbed HOX gene expression and dysregulated TFIIA complex. Methylation pattern suggests that Suleiman-El-Hattab syndrome can be categorized into the group of histone modification disorders including Wiedemann-Steiner and Kabuki syndrome.
Collapse
Affiliation(s)
- Korbinian M Riedhammer
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | | | - Vincent Cantagrel
- Developmental Brain Disorders Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR, 75015 Paris, France
| | - Jeanne Amiel
- Department of Genetics, AP-HP, Necker Enfants Malades Hospital, Université Paris Cité, Imagine Institute, 75015 Paris, France
| | - Karine Siquier-Pernet
- Developmental Brain Disorders Laboratory, Université Paris Cité, Imagine Institute, INSERM UMR, 75015 Paris, France
| | - Nathalie Boddaert
- Département de radiologie pédiatrique, INSERM UMR 1163 and INSERM U1000, AP-HP, Necker Enfants Malades Hospital, 75015 Paris, France
| | - Jozef Hertecant
- Division of Genetics and Metabolics, Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Patricia L Kannouche
- CNRS UMR 9019, Université Paris-Saclay, Equipe labellisée Ligue contre le Cancer, Gustave Roussy, 94805 Villejuif, France
| | - Caroline Pouvelle
- CNRS UMR 9019, Université Paris-Saclay, Equipe labellisée Ligue contre le Cancer, Gustave Roussy, 94805 Villejuif, France
| | - Stephanie Htun
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anne M Slavotinek
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | - Zain Awamleh
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Rosanna Weksberg
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- Department of Molecular Genetics, Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Robert Kopajtich
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Jehan Suleiman
- Division of Neurology, Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ayman W El-Hattab
- To whom correspondence should be addressed at: College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates. Tel: +971 508875123; Fax: +97137131044;
| |
Collapse
|