1
|
Zhou Z, Qi Q, Wang WH, Dong J, Xu JJ, Feng YM, Zou ZC, Chen L, Ma JZ, Yao B. A novel homozygous mutation of CFAP300 identified in a Chinese patient with primary ciliary dyskinesia and infertility. Asian J Androl 2024:00129336-990000000-00243. [PMID: 39254424 DOI: 10.4103/aja202477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/19/2024] [Indexed: 09/11/2024] Open
Abstract
Primary ciliary dyskinesia (PCD) is a clinically rare, genetically and phenotypically heterogeneous condition characterized by chronic respiratory tract infections, male infertility, tympanitis, and laterality abnormalities. PCD is typically resulted from variants in genes encoding assembly or structural proteins that are indispensable for the movement of motile cilia. Here, we identified a novel nonsense mutation, c.466G>T, in cilia- and flagella-associated protein 300 (CFAP300) resulting in a stop codon (p.Glu156 *) through whole-exome sequencing (WES). The proband had a PCD phenotype with laterality defects and immotile sperm flagella displaying a combined loss of the inner dynein arm (IDA) and outer dynein arm (ODA). Bioinformatic programs predicted that the mutation is deleterious. Successful pregnancy was achieved through intracytoplasmic sperm injection (ICSI). Our results expand the spectrum of CFAP300 variants in PCD and provide reproductive guidance for infertile couples suffering from PCD caused by them.
Collapse
Affiliation(s)
- Zheng Zhou
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Qi Qi
- Center of Reproductive Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen-Hua Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jie Dong
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Juan-Juan Xu
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yu-Ming Feng
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhi-Chuan Zou
- Center of Reproductive Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210007, China
| | - Li Chen
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Center of Reproductive Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Center of Reproductive Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210007, China
| | - Jin-Zhao Ma
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Center of Reproductive Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Center of Reproductive Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210007, China
| | - Bing Yao
- Center of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Center of Reproductive Medicine, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
- Center of Reproductive Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210007, China
| |
Collapse
|
2
|
Zlotina A, Barashkova S, Zhuk S, Skitchenko R, Usoltsev D, Sokolnikova P, Artomov M, Alekseenko S, Simanova T, Goloborodko M, Berleva O, Kostareva A. Characterization of pathogenic genetic variants in Russian patients with primary ciliary dyskinesia using gene panel sequencing and transcript analysis. Orphanet J Rare Dis 2024; 19:310. [PMID: 39180133 PMCID: PMC11344339 DOI: 10.1186/s13023-024-03318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is a group of rare genetically heterogeneous disorders caused by defective cilia and flagella motility. The clinical phenotype of PCD patients commonly includes chronic oto-sino-pulmonary disease, infertility, and, in about half of cases, laterality defects due to randomization of left-right body asymmetry. To date, pathogenic variants in more than 50 genes responsible for motile cilia structure and assembly have been reported in such patients. While multiple population-specific mutations have been described in PCD cohorts from different countries, the data on genetic spectrum of PCD in Russian population are still extremely limited. RESULTS The present study provides a comprehensive clinical and genetic characterization of 21 Russian families with PCD living in various country regions. Anomalies of ciliary beating in patients` respiratory epithelial cells were confirmed by high-speed video microscopy. In the most cases, custom-designed panel sequencing allowed to uncover causative variants in well-known or rarely mentioned PCD-related genes, including DNAH5, DNAH11, CFAP300, LRRC6, ZMYND10, CCDC103, HYDIN, ODAD4, DNAL1, and OFD1. The variations comprised common mutations, as well as novel genetic variants, some of which probably specific for Russian patients. Additional targeted analysis of mRNA transcripts from ciliated cells enabled us to specify functional effects of newly identified genetic variants in DNAH5 (c.2052+3G>T, c.3599-2A>G), HYDIN (c.10949-2A>G, c.1797C>G), and ZMYND10 (c.510+1G>C) on splicing process. In particular, the splice site variant c.2052+3G>T, detected in four unrelated families, resulted in skipping of exon 14 in DNAH5 transcripts and, according to haplotype analysis of affected probands, was proposed as an ancestral founder mutation in Udmurt population. CONCLUSIONS The reported data provide a vital insight into genetic background of primary ciliary dyskinesia in the Russian population. The findings clearly illustrate the utility of gene panel sequencing coupled with transcriptional analysis in identification and clinical interpretation of novel genetic variants.
Collapse
Affiliation(s)
- Anna Zlotina
- Almazov National Medical Research Centre, Saint-Petersburg, Russia, 197341.
| | - Svetlana Barashkova
- Almazov National Medical Research Centre, Saint-Petersburg, Russia, 197341
- K.A. Raukhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, Saint-Petersburg, Russia, 191036
| | - Sergey Zhuk
- Almazov National Medical Research Centre, Saint-Petersburg, Russia, 197341
| | | | - Dmitrii Usoltsev
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43215, USA
| | - Polina Sokolnikova
- Almazov National Medical Research Centre, Saint-Petersburg, Russia, 197341
| | - Mykyta Artomov
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, 43215, USA
| | - Svetlana Alekseenko
- K.A. Raukhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, Saint-Petersburg, Russia, 191036
| | - Tatiana Simanova
- Republican Children's Clinical Hospital of the Ministry of Health of the Udmurt Republic, Izhevsk, Russia, 426009
| | - Maria Goloborodko
- K.A. Raukhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, Saint-Petersburg, Russia, 191036
| | - Olga Berleva
- K.A. Raukhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, Saint-Petersburg, Russia, 191036
| | - Anna Kostareva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia, 197341
- Department of Women's and Children's Health, Center for Molecular Medicine, Karolinska Institutet, 17176, Stockholm, Sweden
| |
Collapse
|
3
|
Raidt J, Riepenhausen S, Pennekamp P, Olbrich H, Amirav I, Athanazio RA, Aviram M, Balinotti JE, Bar-On O, Bode SFN, Boon M, Borrelli M, Carr SB, Crowley S, Dehlink E, Diepenhorst S, Durdik P, Dworniczak B, Emiralioğlu N, Erdem E, Fonnesu R, Gracci S, Große-Onnebrink J, Gwozdziewicz K, Haarman EG, Hansen CR, Hogg C, Holgersen MG, Kerem E, Körner RW, Kötz K, Kouis P, Loebinger MR, Lorent N, Lucas JS, Maj D, Mall MA, Marthin JK, Martinu V, Mazurek H, Mitchison HM, Nöthe-Menchen T, Özçelik U, Pifferi M, Pogorzelski A, Ringshausen FC, Roehmel JF, Rovira-Amigo S, Rumman N, Schlegtendal A, Shoemark A, Sperstad Kennelly S, Staar BO, Sutharsan S, Thomas S, Ullmann N, Varghese J, von Hardenberg S, Walker WT, Wetzke M, Witt M, Yiallouros P, Zschocke A, Ziętkiewicz E, Nielsen KG, Omran H. Analyses of 1236 genotyped primary ciliary dyskinesia individuals identify regional clusters of distinct DNA variants and significant genotype-phenotype correlations. Eur Respir J 2024; 64:2301769. [PMID: 38871375 PMCID: PMC11306806 DOI: 10.1183/13993003.01769-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/03/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) represents a group of rare hereditary disorders characterised by deficient ciliary airway clearance that can be associated with laterality defects. We aimed to describe the underlying gene defects, geographical differences in genotypes and their relationship to diagnostic findings and clinical phenotypes. METHODS Genetic variants and clinical findings (age, sex, body mass index, laterality defects, forced expiratory volume in 1 s (FEV1)) were collected from 19 countries using the European Reference Network's ERN-LUNG international PCD Registry. Genetic data were evaluated according to American College of Medical Genetics and Genomics guidelines. We assessed regional distribution of implicated genes and genetic variants as well as genotype correlations with laterality defects and FEV1. RESULTS The study included 1236 individuals carrying 908 distinct pathogenic DNA variants in 46 PCD genes. We found considerable variation in the distribution of PCD genotypes across countries due to the presence of distinct founder variants. The prevalence of PCD genotypes associated with pathognomonic ultrastructural defects (mean 72%, range 47-100%) and laterality defects (mean 42%, range 28-69%) varied widely among countries. The prevalence of laterality defects was significantly lower in PCD individuals without pathognomonic ciliary ultrastructure defects (18%). The PCD cohort had a reduced median FEV1 z-score (-1.66). Median FEV1 z-scores were significantly lower in CCNO (-3.26), CCDC39 (-2.49) and CCDC40 (-2.96) variant groups, while the FEV1 z-score reductions were significantly milder in DNAH11 (-0.83) and ODAD1 (-0.85) variant groups compared to the whole PCD cohort. CONCLUSION This unprecedented multinational dataset of DNA variants and information on their distribution across countries facilitates interpretation of the genetic epidemiology of PCD and indicates that the genetic variant can predict diagnostic and phenotypic features such as the course of lung function.
Collapse
Affiliation(s)
- Johanna Raidt
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Sarah Riepenhausen
- Institute of Medical Informatics, University of Muenster, Muenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Israel Amirav
- Department of Pediatrics, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Rodrigo A Athanazio
- Pulmonary Division - Heart Institute, Hospital das Clínicas da Faculdade de São Paulo, São Paulo, Brazil
| | - Micha Aviram
- Pediatric Pulmonary Unit, Soroka Medical Center, Beer Sheva, Israel
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Juan E Balinotti
- Respiratory Center, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Ophir Bar-On
- Pulmonary Institute, Schneider Children's Medical Center of Israel, Petach-Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sebastian F N Bode
- Center for Pediatrics - Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Pediatric and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Mieke Boon
- Department of Paediatrics, University Hospital, Leuven, Belgium
| | - Melissa Borrelli
- Department of Translational Medical Sciences, Pediatric Pulmonology, Federico II University, Naples, Italy
| | - Siobhan B Carr
- Department of Paediatric Respiratory Medicine and Primary Ciliary Dyskinesia Centre, Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - Suzanne Crowley
- Paediatric Department of Allergy and Lung Diseases, Oslo University Hospital, Oslo, Norway
| | - Eleonora Dehlink
- Division of Pediatric Pulmonology, Allergy and Endocrinology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Sandra Diepenhorst
- Department of Pediatric Respiratory Medicine and Allergy, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Peter Durdik
- Department of Paediatrics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Martin, Slovakia
| | - Bernd Dworniczak
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Nagehan Emiralioğlu
- Division of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ela Erdem
- Department of Pediatric Pulmonology, Marmara University School of Medicine, Istanbul, Turkey
| | - Rossella Fonnesu
- Department of Paediatrics, University Hospital of Pisa, Pisa, Italy
| | - Serena Gracci
- Department of Paediatrics, University Hospital of Pisa, Pisa, Italy
| | - Jörg Große-Onnebrink
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Karolina Gwozdziewicz
- Department of Pneumology and Cystic Fibrosis, Institute of Tuberculosis and Lung Diseases, Rabka, Poland
| | - Eric G Haarman
- Department of Pediatric Respiratory Medicine and Allergy, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Christine R Hansen
- Department of Pediatrics, Institution of Clinical Sciences, Lund University, Lund, Sweden
- Section for Lung Medicine, Metabolism and Neurology, Pediatrics Clinic, Skane University Hospital, Lund, Sweden
| | - Claire Hogg
- Department of Paediatric Respiratory Medicine and Primary Ciliary Dyskinesia Centre, Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - Mathias G Holgersen
- Danish Primary Ciliary Dyskinesia Centre, Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Eitan Kerem
- Department of Pediatrics and Pediatric Pulmonology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Robert W Körner
- Department of Pediatrics, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Karsten Kötz
- Department of Pediatrics, Queen Silvias Children Hospital, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Panayiotis Kouis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Michael R Loebinger
- Royal Brompton and Harefield Hospitals and National Heart and Lung Institute, Imperial College London, London, UK
| | - Natalie Lorent
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
- Department Chrometa, BREATHE Laboratory, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jane S Lucas
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Debora Maj
- Department of Paediatrics, University Hospital of Pisa, Pisa, Italy
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - June K Marthin
- Danish Primary Ciliary Dyskinesia Centre, Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Vendula Martinu
- Department of Paediatrics, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Henryk Mazurek
- Department of Pneumology and Cystic Fibrosis, Institute of Tuberculosis and Lung Diseases, Rabka, Poland
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Department, University College London, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Tabea Nöthe-Menchen
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Ugur Özçelik
- Division of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Massimo Pifferi
- Department of Paediatrics, University Hospital of Pisa, Pisa, Italy
| | - Andrzej Pogorzelski
- Department of Pneumology and Cystic Fibrosis, Institute of Tuberculosis and Lung Diseases, Rabka, Poland
| | - Felix C Ringshausen
- Department of Respiratory Medicine, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Jobst F Roehmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sandra Rovira-Amigo
- Paediatric Pulmonology Section, Department of Paediatrics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Nisreen Rumman
- Department of Pediatrics, Faculty of Medicine, Makassed Hospital, Al-Quds University, East Jerusalem, Palestine
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anne Schlegtendal
- University Children's Hospital, Ruhr University Bochum, Katholisches Klinikum Bochum, Bochum, Germany
| | - Amelia Shoemark
- Royal Brompton and Harefield Hospitals and National Heart and Lung Institute, Imperial College London, London, UK
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | | | - Ben O Staar
- Department of Respiratory Medicine, Hannover Medical School (MHH), Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Sivagurunathan Sutharsan
- Department of Pulmonary Medicine, Adult Cystic Fibrosis Center, University Hospital Essen - Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany
| | - Simon Thomas
- Wessex Regional Genetics Laboratory, Salisbury NHS Foundation Trust, Salisbury, UK
- Human Genetics and Genomic Medicine, University of Southampton Faculty of Medicine, Southampton, UK
| | - Nicola Ullmann
- Pneumology and Cystic Fibrosis Unit, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Rome, Italy
| | - Julian Varghese
- Institute of Medical Informatics, University of Muenster, Muenster, Germany
| | | | - Woolf T Walker
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Martin Wetzke
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Airway Research Center North (ARCN) Lübeck, German Center for Lung Research (DZL), Lübeck, Germany
| | - Michal Witt
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Panayiotis Yiallouros
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
- Pediatric Pulmonology Unit, Hospital "Archbishop Makarios III", Nicosia, Cyprus
| | - Anna Zschocke
- Department of Pediatric and Adolescent Medicine, Pediatrics III, Medical University, Innsbruck, Austria
| | - Ewa Ziętkiewicz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Kim G Nielsen
- Danish Primary Ciliary Dyskinesia Centre, Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
4
|
Ali I, Ali H, Unar A, Rahim F, Khan K, Dil S, Abbas T, Hussain A, Zeb A, Zubair M, Zhang H, Ma H, Jiang X, Khan MA, Xu B, Shah W, Shi Q. A novel homozygous missense TTC12 variant identified in an infertile Pakistani man with severe oligoasthenoteratozoospermia and primary ciliary dyskinesia. Mol Genet Genomics 2024; 299:69. [PMID: 38992144 DOI: 10.1007/s00438-024-02161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/23/2024] [Indexed: 07/13/2024]
Abstract
TTC12 is a cytoplasmic and centromere-localized protein that plays a role in the proper assembly of dynein arm complexes in motile cilia in both respiratory cells and sperm flagella. This finding underscores its significance in cellular motility and function. However, the wide role of TTC12 in human spermatogenesis-associated primary ciliary dyskinesia (PCD) still needs to be elucidated. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify potentially pathogenic variants causing PCD and multiple morphological abnormalities of sperm flagella (MMAF) in an infertile Pakistani man. Diagnostic imaging techniques were used for PCD screening in the patient. Real-time polymerase chain reaction (RT‒PCR) was performed to detect the effect of mutations on the mRNA abundance of the affected genes. Papanicolaou staining and scanning electron microscopy (SEM) were carried out to examine sperm morphology. Transmission electron microscopy (TEM) was performed to examine the ultrastructure of the sperm flagella, and the results were confirmed by immunofluorescence staining. Using WES and Sanger sequencing, a novel homozygous missense variant (c.C1069T; p.Arg357Trp) in TTC12 was identified in a patient from a consanguineous family. A computed tomography scan of the paranasal sinuses confirmed the symptoms of the PCD. RT-PCR showed a decrease in TTC12 mRNA in the patient's sperm sample. Papanicolaou staining, SEM, and TEM analysis revealed a significant change in shape and a disorganized axonemal structure in the sperm flagella of the patient. Immunostaining assays revealed that TTC12 is distributed throughout the flagella and is predominantly concentrated in the midpiece in normal spermatozoa. In contrast, spermatozoa from patient deficient in TTC12 showed minimal staining intensity for TTC12 or DNAH17 (outer dynein arms components). This could lead to MMAF and result in male infertility. This novel TTC12 variant not only illuminates the underlying genetic causes of male infertility but also paves the way for potential treatments targeting these genetic factors. This study represents a significant advancement in understanding the genetic basis of PCD-related infertility.
Collapse
Affiliation(s)
- Imtiaz Ali
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Haider Ali
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Ahsanullah Unar
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Fazal Rahim
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Khalid Khan
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Sobia Dil
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Tanveer Abbas
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Ansar Hussain
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Aurang Zeb
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Muhammad Zubair
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Huan Zhang
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Hui Ma
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Xiaohua Jiang
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Muzammil Ahmad Khan
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Khyber Pakhtunkhwa, Pakistan
| | - Bo Xu
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Wasim Shah
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Qinghua Shi
- Institute of Health and Medicine Division of Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Hefei Comprehensive National Science CenterFirst Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at MicroscaleBiomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
5
|
Ge H, Zhou W, He M, Zheng H, Zhao X, Zhang T, Zhang Y, Shao C, Cheng C, Liu Y, Tian X, Xu K, Zhang X. Mutations in CFAP47, a previously reported MMAF causative gene, also contribute to the respiratory defects in patients with PCD. Mol Genet Genomic Med 2024; 12:e2278. [PMID: 37723893 PMCID: PMC10767284 DOI: 10.1002/mgg3.2278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/06/2023] [Accepted: 08/17/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is a genetic ciliopathy characterized by dysfunction of motile cilia. Currently, approximately 50 causative genes accounting for 60%-70% of all PCD cases have been identified in PCD-affected individuals, but the etiology in approximately 30%-40% of PCD cases remains unknown. METHODS We analyzed the clinical and genetic data of two PCD individuals who were suspected of having PCD. Whole-exome sequencing and Sanger sequencing were performed to identify and verify the variants in CFAP47. We also evaluated the expression of CFAP47 by real-time quantitative PCR and immunofluorescence. Transmission electron microscopy in respiratory epithelial cells was also conducted to analyze ciliary function. RESULTS Two hemizygous missense variants of X-linked CFAP47 in two unrelated PCD individuals were identified. The expression of CFAP47 in two PCD individuals was significantly reduced in vivo and in vitro assays. A reduction in the amount of epithelial ciliary cells and basal bodies from PCD individuals was also observed. CONCLUSIONS We describe two hemizygous missense variants of X-linked CFAP47 in two unrelated PCD individuals and prove CFAP47 variants are related to a reduced number of epithelial ciliary cells. Therefore, we suggest that CFAP47 should be known as a novel pathogenic gene of human PCD.
Collapse
Affiliation(s)
- Haijun Ge
- McKusick‐Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Wangji Zhou
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Miao He
- McKusick‐Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Haixia Zheng
- McKusick‐Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xinyue Zhao
- McKusick‐Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Ting Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Ying Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Chi Shao
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Chongsheng Cheng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yaping Liu
- McKusick‐Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xinlun Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Kai‐Feng Xu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Xue Zhang
- McKusick‐Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular BiologyInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| |
Collapse
|
6
|
Hjeij R, Aprea I, Poeta M, Nöthe-Menchen T, Bracht D, Raidt J, Honecker BI, Dougherty GW, Olbrich H, Schwartz O, Keller U, Nüsse H, Diderich KEM, Vogelberg C, Santamaria F, Omran H. Pathogenic variants in CLXN encoding the outer dynein arm docking-associated calcium-binding protein calaxin cause primary ciliary dyskinesia. Genet Med 2023; 25:100798. [PMID: 36727596 DOI: 10.1016/j.gim.2023.100798] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Primary ciliary dyskinesia (PCD) is a heterogeneous disorder that includes respiratory symptoms, laterality defects, and infertility caused by dysfunction of motile cilia. Most PCD-causing variants result in abnormal outer dynein arms (ODAs), which provide the generative force for respiratory ciliary beating and proper mucociliary clearance. METHODS In addition to studies in mouse and planaria, clinical exome sequencing and functional analyses in human were performed. RESULTS In this study, we identified homozygous pathogenic variants in CLXN (EFCAB1/ODAD5) in 3 individuals with laterality defects and respiratory symptoms. Consistently, we found that Clxn is expressed in mice left-right organizer. Transmission electron microscopy depicted ODA defects in distal ciliary axonemes. Immunofluorescence microscopy revealed absence of CLXN from the ciliary axonemes, absence of the ODA components DNAH5, DNAI1, and DNAI2 from the distal axonemes, and mislocalization or absence of DNAH9. In addition, CLXN was undetectable in ciliary axonemes of individuals with defects in the ODA-docking machinery: ODAD1, ODAD2, ODAD3, and ODAD4. Furthermore, SMED-EFCAB1-deficient planaria displayed ciliary dysmotility. CONCLUSION Our results revealed that pathogenic variants in CLXN cause PCD with defects in the assembly of distal ODAs in the respiratory cilia. CLXN should be referred to as ODA-docking complex-associated protein ODAD5.
Collapse
Affiliation(s)
- Rim Hjeij
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Isabella Aprea
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Marco Poeta
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Tabea Nöthe-Menchen
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Diana Bracht
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Johanna Raidt
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Barbara I Honecker
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Gerard W Dougherty
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Oliver Schwartz
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Ulrike Keller
- Institute of Medical Physics and Biophysics, University of Muenster, Muenster, Germany
| | - Harald Nüsse
- Institute of Medical Physics and Biophysics, University of Muenster, Muenster, Germany
| | | | - Christian Vogelberg
- Pediatric Department, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, Dresden, Germany
| | - Francesca Santamaria
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany.
| |
Collapse
|
7
|
Rabiasz A, Ziętkiewicz E. Schmidtea mediterranea as a Model Organism to Study the Molecular Background of Human Motile Ciliopathies. Int J Mol Sci 2023; 24:ijms24054472. [PMID: 36901899 PMCID: PMC10002865 DOI: 10.3390/ijms24054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Cilia and flagella are evolutionarily conserved organelles that form protrusions on the surface of many growth-arrested or differentiated eukaryotic cells. Due to the structural and functional differences, cilia can be roughly classified as motile and non-motile (primary). Genetically determined dysfunction of motile cilia is the basis of primary ciliary dyskinesia (PCD), a heterogeneous ciliopathy affecting respiratory airways, fertility, and laterality. In the face of the still incomplete knowledge of PCD genetics and phenotype-genotype relations in PCD and the spectrum of PCD-like diseases, a continuous search for new causative genes is required. The use of model organisms has been a great part of the advances in understanding molecular mechanisms and the genetic basis of human diseases; the PCD spectrum is not different in this respect. The planarian model (Schmidtea mediterranea) has been intensely used to study regeneration processes, and-in the context of cilia-their evolution, assembly, and role in cell signaling. However, relatively little attention has been paid to the use of this simple and accessible model for studying the genetics of PCD and related diseases. The recent rapid development of the available planarian databases with detailed genomic and functional annotations prompted us to review the potential of the S. mediterranea model for studying human motile ciliopathies.
Collapse
|
8
|
Li Y, Li Y, Wang Y, Meng L, Tan C, Du J, Tan YQ, Nie H, Zhang Q, Lu G, Lin G, Li H, Zhang H, Tu C. Identification of novel biallelic LRRC6 variants in male Chinese patients with primary ciliary dyskinesia and infertility. J Assist Reprod Genet 2023; 40:41-51. [PMID: 36515799 PMCID: PMC9840726 DOI: 10.1007/s10815-022-02681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The aim of this study is to identify the genetic cause of primary ciliary dyskinesia (PCD) and male infertility in two unrelated Han Chinese families. METHODS We performed whole-exome sequencing in two unrelated male Han Chinese patients suffering from infertility and PCD to identify the pathogenic variants. Ultrastructural and immunostaining analyses of patient's spermatozoa were performed to characterize the effect of the variants. The pathogenicity of the variants was validated using patient's spermatozoa by western blotting and immunostaining analysis. Intracytoplasmic sperm injection (ICSI) was conducted in the affected families. RESULTS Three variants in leucine-rich repeat containing 6 (LRRC6) [patient 1(compound heterozygote): NM_012472: c.538C > T, (p.R180*) and c.64dupT, (p.S22Ffs*19); patient 2 (homozygote): c.863C > A, (p.P288H)] were identified in two unrelated patients with PCD and male infertility. These variants were predicated deleterious and were absent or rare in human population genome data. LRRC6-mutant spermatozoa showed a highly aberrant morphology and ultrastructure with lacked inner and outer dynein arms. The LRRC6 protein was present along the normal sperm flagella, and was significantly decreased in the mutated spermatozoa. Interestingly, both patients were able to conceive through ICSI and birthed a healthy baby. CONCLUSION Our results extend the LRRC6 variant spectrum and provide reproductive guidance to families suffering from PCD-linked infertility caused by LRRC6 variants.
Collapse
Affiliation(s)
- Yunhao Li
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, 410081, China
| | - Yong Li
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Ying Wang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Yue-Qiu Tan
- Hunan Guangxiu Hospital, Hunan Normal University, Changsha, 410081, China
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Hongchuan Nie
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Qianjun Zhang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China
| | - Huanzhu Li
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China.
- College of Life Sciences, Hunan Normal University, Changsha, China.
| | - Huan Zhang
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China.
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410008, China.
| |
Collapse
|
9
|
Aprea I, Wilken A, Krallmann C, Nöthe-Menchen T, Olbrich H, Loges NT, Dougherty GW, Bracht D, Brenker C, Kliesch S, Strünker T, Tüttelmann F, Raidt J, Omran H. Pathogenic gene variants in CCDC39, CCDC40, RSPH1, RSPH9, HYDIN, and SPEF2 cause defects of sperm flagella composition and male infertility. Front Genet 2023; 14:1117821. [PMID: 36873931 PMCID: PMC9981940 DOI: 10.3389/fgene.2023.1117821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Primary Ciliary Dyskinesia (PCD) is a rare genetic disorder affecting the function of motile cilia in several organ systems. In PCD, male infertility is caused by defective sperm flagella composition or deficient motile cilia function in the efferent ducts of the male reproductive system. Different PCD-associated genes encoding axonemal components involved in the regulation of ciliary and flagellar beating are also reported to cause infertility due to multiple morphological abnormalities of the sperm flagella (MMAF). Here, we performed genetic testing by next generation sequencing techniques, PCD diagnostics including immunofluorescence-, transmission electron-, and high-speed video microscopy on sperm flagella and andrological work up including semen analyses. We identified ten infertile male individuals with pathogenic variants in CCDC39 (one) and CCDC40 (two) encoding ruler proteins, RSPH1 (two) and RSPH9 (one) encoding radial spoke head proteins, and HYDIN (two) and SPEF2 (two) encoding CP-associated proteins, respectively. We demonstrate for the first time that pathogenic variants in RSPH1 and RSPH9 cause male infertility due to sperm cell dysmotility and abnormal flagellar RSPH1 and RSPH9 composition. We also provide novel evidence for MMAF in HYDIN- and RSPH1-mutant individuals. We show absence or severe reduction of CCDC39 and SPEF2 in sperm flagella of CCDC39- and CCDC40-mutant individuals and HYDIN- and SPEF2-mutant individuals, respectively. Thereby, we reveal interactions between CCDC39 and CCDC40 as well as HYDIN and SPEF2 in sperm flagella. Our findings demonstrate that immunofluorescence microscopy in sperm cells is a valuable tool to identify flagellar defects related to the axonemal ruler, radial spoke head and the central pair apparatus, thus aiding the diagnosis of male infertility. This is of particular importance to classify the pathogenicity of genetic defects, especially in cases of missense variants of unknown significance, or to interpret HYDIN variants that are confounded by the presence of the almost identical pseudogene HYDIN2.
Collapse
Affiliation(s)
- I Aprea
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - A Wilken
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - C Krallmann
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - T Nöthe-Menchen
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - H Olbrich
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - N T Loges
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - G W Dougherty
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - D Bracht
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - C Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - S Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - T Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - F Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - J Raidt
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - H Omran
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| |
Collapse
|
10
|
Schultz R, Elenius V, Fassad MR, Freke G, Rogers A, Shoemark A, Koistinen T, Mohamed MA, Lim JSY, Mitchison HM, Sironen AI. CFAP300 mutation causing primary ciliary dyskinesia in Finland. Front Genet 2022; 13:985227. [PMID: 36246608 PMCID: PMC9561811 DOI: 10.3389/fgene.2022.985227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare genetic condition characterized by chronic respiratory tract infections and in some cases laterality defects and infertility. The symptoms of PCD are caused by malfunction of motile cilia, hair-like organelles protruding out of the cell that are responsible for removal of mucus from the airways and organizing internal organ positioning during embryonic development. PCD is caused by mutations in genes coding for structural or assembly proteins in motile cilia. Thus far mutations in over 50 genes have been identified and these variants explain around 70% of all known cases. Population specific genetics underlying PCD has been reported, thus highlighting the importance of characterizing gene variants in different populations for development of gene-based diagnostics. In this study, we identified a recurrent loss-of-function mutation c.198_200delinsCC in CFAP300 causing lack of the protein product. PCD patients homozygous for the identified CFAP300 mutation have immotile airway epithelial cilia associated with missing dynein arms in their ciliary axonemes. Furthermore, using super resolution microscopy we demonstrate that CFAP300 is transported along cilia in normal human airway epithelial cells suggesting a role for CFAP300 in dynein complex transport in addition to preassembly in the cytoplasm. Our results highlight the importance of CFAP300 in dynein arm assembly and improve diagnostics of PCD in Finland.
Collapse
Affiliation(s)
- Rüdiger Schultz
- Allergy Centre, Tampere University Hospital, Tampere, Finland
| | - Varpu Elenius
- Department of Pediatrics, Turku University Hospital, University of Turku, Turku, Finland
| | - Mahmoud R. Fassad
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Grace Freke
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Andrew Rogers
- PCD Diagnostic Team and Department of Paediatric Respiratory Medicine, Royal Brompton Hospita, London, United Kingdom
| | - Amelia Shoemark
- PCD Diagnostic Team and Department of Paediatric Respiratory Medicine, Royal Brompton Hospita, London, United Kingdom
- School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Tiina Koistinen
- Department of Otorhinolaryngology, Head and Neck Surgery, Kuopio University Hospital and University of Eastern Finland, Kuopio, Finland
| | - Mai A. Mohamed
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Jacqueline S. Y. Lim
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Hannah M. Mitchison
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Anu I. Sironen
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
11
|
Wang L, Li X, Liu G, Pan J. FBB18 participates in preassembly of almost all axonemal dyneins independent of R2TP complex. PLoS Genet 2022; 18:e1010374. [PMID: 36026524 PMCID: PMC9455862 DOI: 10.1371/journal.pgen.1010374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/08/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
Assembly of dynein arms requires cytoplasmic processes which are mediated by dynein preassembly factors (DNAAFs). CFAP298, which is conserved in organisms with motile cilia, is required for assembly of dynein arms but with obscure mechanisms. Here, we show that FBB18, a Chlamydomonas homologue of CFAP298, localizes to the cytoplasm and functions in folding/stabilization of almost all axonemal dyneins at the early steps of dynein preassembly. Mutation of FBB18 causes no or short cilia accompanied with partial loss of both outer and inner dynein arms. Comparative proteomics using 15N labeling suggests partial degradation of almost all axonemal dynein heavy chains (DHCs). A mutant mimicking a patient variant induces particular loss of DHCα. FBB18 associates with 9 DNAAFs and 14 out of 15 dynein HCs but not with IC1/IC2. FBB18 interacts with RuvBL1/2, components of the HSP90 co-chaperone R2TP complex but not the holo-R2TP complex. Further analysis suggests simultaneous formation of multiple DNAAF complexes involves dynein folding/stability and thus provides new insights into axonemal dynein preassembly.
Collapse
Affiliation(s)
- Limei Wang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xuecheng Li
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Guang Liu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, China
| |
Collapse
|
12
|
Smith AJ, Bustamante-Marin XM, Yin W, Sears PR, Herring LE, Dicheva NN, López-Giráldez F, Mane S, Tarran R, Leigh MW, Knowles MR, Zariwala MA, Ostrowski LE. The role of SPAG1 in the assembly of axonemal dyneins in human airway epithelia. J Cell Sci 2022; 135:jcs259512. [PMID: 35178554 PMCID: PMC8995097 DOI: 10.1242/jcs.259512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Mutations in SPAG1, a dynein axonemal assembly factor (DNAAF) that facilitates the assembly of dynein arms in the cytoplasm before their transport into the cilium, result in primary ciliary dyskinesia (PCD), a genetically heterogenous disorder characterized by chronic oto-sino-pulmonary disease, infertility and laterality defects. To further elucidate the role of SPAG1 in dynein assembly, we examined its expression, interactions and ciliary defects in control and PCD human airway epithelia. Immunoprecipitations showed that SPAG1 interacts with multiple DNAAFs, dynein chains and canonical components of the R2TP complex. Protein levels of dynein heavy chains (DHCs) and interactions between DHCs and dynein intermediate chains (DICs) were reduced in SPAG1 mutants. We also identified a previously uncharacterized 60 kDa SPAG1 isoform, through examination of PCD subjects with an atypical ultrastructural defect for SPAG1 variants, that can partially compensate for the absence of full-length SPAG1 to assemble a reduced number of outer dynein arms. In summary, our data show that SPAG1 is necessary for axonemal dynein arm assembly by scaffolding R2TP-like complexes composed of several DNAAFs that facilitate the folding and/or binding of the DHCs to the DIC complex.
Collapse
Affiliation(s)
- Amanda J. Smith
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ximena M. Bustamante-Marin
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weining Yin
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick R. Sears
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nedyalka N. Dicheva
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Shrikant Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06520, USA
| | - Robert Tarran
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Margaret W. Leigh
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael R. Knowles
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maimoona A. Zariwala
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lawrence E. Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Kos R, Israëls J, Gogh CDL, Altenburg J, Diepenhorst S, Paff T, Boon EMJ, Micha D, Pals G, Neerincx AH, Maitland‐van der Zee AH, Haarman EG. Primary ciliary dyskinesia in Volendam: Diagnostic and phenotypic features in patients with a
CCDC114
mutation. AMERICAN JOURNAL OF MEDICAL GENETICS PART C: SEMINARS IN MEDICAL GENETICS 2022; 190:89-101. [PMID: 35343062 PMCID: PMC9314105 DOI: 10.1002/ajmg.c.31968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 11/20/2022]
Abstract
Primary ciliary dyskinesia (PCD) is a heterogeneous disease, with impaired mucociliary clearance causing respiratory tract infections. A founding CCDC114 mutation has led to a relatively homogeneous and large Dutch PCD population in Volendam. Our aim was to describe their phenotype. Therefore, all Volendam PCD patients seen at the Amsterdam UMC were included in this study. Data were collected on lung function, microbiology, radiology, and ear‐nose‐throat (ENT) symptoms. A mixed effects model estimated lung function decline in %point per year (95% confidence interval [CI]). Thirty‐three (60%) out of approximately 56 Volendam PCD patients were treated at our center and included in this study. Only 30% of patients had situs inversus. FEV1 declined in children (−1.43%/year, CI: −1.80/−1.05), but not in adults (0.01%/year, CI: −0.36/0.38). Pseudomonas aeruginosa was cultured in 21% of children and 60% of adults, respectively. Patients who have been infected at some point with P. aeruginosa had a steeper decline in FEV1 as compared to patients that have never been infected. Neonatal symptoms (79%) and ENT problems (94%) were common; fertility issues however, were not (11%) common. Compared to other PCD cohorts, the Volendam/CCDC114 patients have a moderately severe phenotype with lung function decline predominantly occurring in childhood.
Collapse
Affiliation(s)
- Renate Kos
- Department of Respiratory Medicine Amsterdam University Medical Centers – locatie AMC Amsterdam The Netherlands
| | - Joël Israëls
- Department of Pediatric Respiratory Medicine and Allergy Emma Children's Hospital, Amsterdam University Medical Centers Amsterdam The Netherlands
| | - Christine D. L. Gogh
- Department of Otolaryngology, Head and Neck Surgery Amsterdam University Medical Centers – locatie VUmc Amsterdam The Netherlands
| | - Josje Altenburg
- Department of Respiratory Medicine Amsterdam University Medical Centers – locatie AMC Amsterdam The Netherlands
| | - Sandra Diepenhorst
- Department of Pediatric Respiratory Medicine and Allergy Emma Children's Hospital, Amsterdam University Medical Centers Amsterdam The Netherlands
| | - Tamara Paff
- Department of Pediatric Respiratory Medicine and Allergy Emma Children's Hospital, Amsterdam University Medical Centers Amsterdam The Netherlands
| | - Elles M. J. Boon
- Department of Human Genetics Amsterdam University Medical Centers – locatie VUmc Amsterdam The Netherlands
| | - Dimitra Micha
- Department of Human Genetics Amsterdam University Medical Centers – locatie VUmc Amsterdam The Netherlands
| | - Gerard Pals
- Department of Human Genetics Amsterdam University Medical Centers – locatie VUmc Amsterdam The Netherlands
| | - Anne H. Neerincx
- Department of Respiratory Medicine Amsterdam University Medical Centers – locatie AMC Amsterdam The Netherlands
| | - Anke H. Maitland‐van der Zee
- Department of Respiratory Medicine Amsterdam University Medical Centers – locatie AMC Amsterdam The Netherlands
- Department of Pediatric Respiratory Medicine and Allergy Emma Children's Hospital, Amsterdam University Medical Centers Amsterdam The Netherlands
| | - Eric G. Haarman
- Department of Pediatric Respiratory Medicine and Allergy Emma Children's Hospital, Amsterdam University Medical Centers Amsterdam The Netherlands
| | | |
Collapse
|
14
|
Goutaki M, Hüsler L, Lam YT, Koppe HM, Jung A, Lazor R, Müller L, Pedersen ESL, Kuehni CE. Respiratory symptoms of Swiss people with Primary Ciliary Dyskinesia. ERJ Open Res 2022; 8:00673-2021. [PMID: 35415187 PMCID: PMC8995537 DOI: 10.1183/23120541.00673-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/06/2022] [Indexed: 11/08/2022] Open
Abstract
Background Mostly derived from chart reviews, where symptoms are recorded in a nonstandardised manner, clinical data about primary ciliary dyskinesia (PCD) are inconsistent, which leads to missing and unreliable information. We assessed the prevalence and frequency of respiratory and ear symptoms and studied differences by age and sex among an unselected population of Swiss people with PCD. Methods We sent a questionnaire that included items from the FOLLOW-PCD standardised questionnaire to all Swiss PCD registry participants. Results We received questionnaires from 74 (86%) out of 86 invited persons or their caregivers (median age 23 years, range 3–73 years), including 68% adults (≥18 years) and 51% females. Among participants, 70 (94%) reported chronic nasal symptoms; most frequently runny nose (65%), blocked nose (55%) or anosmia (38%). Ear pain and hearing problems were reported by 58% of the participants. Almost all (99%) reported cough and sputum production. The most common chronic cough complications were gastro-oesophageal reflux (n=11; 15%), vomiting (n=8; 11%) and urinary incontinence (n=6; 8%). Only nine (12%) participants reported frequent wheeze, which occurred mainly during infection or exercise, while 49 (66%) reported shortness of breath, and 9% even at rest or during daily activities. Older patients reported more frequent nasal symptoms and shortness of breath. We found no difference by sex or ultrastructural ciliary defect. Conclusion This is the first study to describe patient-reported PCD symptoms. The consistent collection of standardised clinical data will allow us to better characterise the phenotypic variability of the disease and study disease course and prognosis. Detailed information about patient-reported PCD symptoms will help characterise the phenotypic variability of the disease and could inform the development of individualised treatment strategies for patientshttps://bit.ly/363Zb4T
Collapse
|
15
|
Qiu T, Roy S. Ciliary dynein arms: Cytoplasmic preassembly, intraflagellar transport, and axonemal docking. J Cell Physiol 2022; 237:2644-2653. [DOI: 10.1002/jcp.30689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Tao Qiu
- Institute of Molecular and Cell Biology, Proteos Singapore Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore Singapore
- Department of Pediatrics, Yong Loo Ling School of Medicine National University of Singapore Singapore Singapore
| |
Collapse
|
16
|
Niziolek M, Bicka M, Osinka A, Samsel Z, Sekretarska J, Poprzeczko M, Bazan R, Fabczak H, Joachimiak E, Wloga D. PCD Genes-From Patients to Model Organisms and Back to Humans. Int J Mol Sci 2022; 23:ijms23031749. [PMID: 35163666 PMCID: PMC8836003 DOI: 10.3390/ijms23031749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a hereditary genetic disorder caused by the lack of motile cilia or the assembxly of dysfunctional ones. This rare human disease affects 1 out of 10,000-20,000 individuals and is caused by mutations in at least 50 genes. The past twenty years brought significant progress in the identification of PCD-causative genes and in our understanding of the connections between causative mutations and ciliary defects observed in affected individuals. These scientific advances have been achieved, among others, due to the extensive motile cilia-related research conducted using several model organisms, ranging from protists to mammals. These are unicellular organisms such as the green alga Chlamydomonas, the parasitic protist Trypanosoma, and free-living ciliates, Tetrahymena and Paramecium, the invertebrate Schmidtea, and vertebrates such as zebrafish, Xenopus, and mouse. Establishing such evolutionarily distant experimental models with different levels of cell or body complexity was possible because both basic motile cilia ultrastructure and protein composition are highly conserved throughout evolution. Here, we characterize model organisms commonly used to study PCD-related genes, highlight their pros and cons, and summarize experimental data collected using these models.
Collapse
Affiliation(s)
- Michal Niziolek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Marta Bicka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Faculty of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Zuzanna Samsel
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Justyna Sekretarska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106 Warsaw, Poland
| | - Rafal Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; (M.N.); (M.B.); (A.O.); (Z.S.); (J.S.); (M.P.); (R.B.); (H.F.)
- Correspondence: (E.J.); (D.W.); Tel.: +48-22-58-92-338 (E.J. & D.W.)
| |
Collapse
|
17
|
Liu L, Mamitsuka H, Zhu S. HPODNets: deep graph convolutional networks for predicting human protein-phenotype associations. Bioinformatics 2022; 38:799-808. [PMID: 34672333 DOI: 10.1093/bioinformatics/btab729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/18/2021] [Accepted: 10/18/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Deciphering the relationship between human genes/proteins and abnormal phenotypes is of great importance in the prevention, diagnosis and treatment against diseases. The Human Phenotype Ontology (HPO) is a standardized vocabulary that describes the phenotype abnormalities encountered in human disorders. However, the current HPO annotations are still incomplete. Thus, it is necessary to computationally predict human protein-phenotype associations. In terms of current, cutting-edge computational methods for annotating proteins (such as functional annotation), three important features are (i) multiple network input, (ii) semi-supervised learning and (iii) deep graph convolutional network (GCN), whereas there are no methods with all these features for predicting HPO annotations of human protein. RESULTS We develop HPODNets with all above three features for predicting human protein-phenotype associations. HPODNets adopts a deep GCN with eight layers which allows to capture high-order topological information from multiple interaction networks. Empirical results with both cross-validation and temporal validation demonstrate that HPODNets outperforms seven competing state-of-the-art methods for protein function prediction. HPODNets with the architecture of deep GCNs is confirmed to be effective for predicting HPO annotations of human protein and, more generally, node label ranking problem with multiple biomolecular networks input in bioinformatics. AVAILABILITY AND IMPLEMENTATION https://github.com/liulizhi1996/HPODNets. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lizhi Liu
- School of Computer Science, Fudan University, Shanghai 200433, China
| | - Hiroshi Mamitsuka
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto Prefecture 611-0011, Japan.,Department of Computer Science, Aalto University, Espoo 02150, Finland
| | - Shanfeng Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China.,Zhangjiang Fudan International Innovation Center, Shanghai 200433, China.,Shanghai Key Lab of Intelligent Information Processing, Fudan University, Shanghai 200433, China.,Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing 210032, China
| |
Collapse
|
18
|
Paff T, Omran H, Nielsen KG, Haarman EG. Current and Future Treatments in Primary Ciliary Dyskinesia. Int J Mol Sci 2021; 22:9834. [PMID: 34575997 PMCID: PMC8470068 DOI: 10.3390/ijms22189834] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 01/05/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare genetic ciliopathy in which mucociliary clearance is disturbed by the abnormal motion of cilia or there is a severe reduction in the generation of multiple motile cilia. Lung damage ensues due to recurrent airway infections, sometimes even resulting in respiratory failure. So far, no causative treatment is available and treatment efforts are primarily aimed at improving mucociliary clearance and early treatment of bacterial airway infections. Treatment guidelines are largely based on cystic fibrosis (CF) guidelines, as few studies have been performed on PCD. In this review, we give a detailed overview of the clinical studies performed investigating PCD to date, including three trials and several case reports. In addition, we explore precision medicine approaches in PCD, including gene therapy, mRNA transcript and read-through therapy.
Collapse
Affiliation(s)
- Tamara Paff
- Department of Paediatric Pulmonology, Emma Children’s Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
| | - Heymut Omran
- Department of General Pediatrics, University Childrens’s Hospital Muenster, 48149 Muenster, Germany;
| | - Kim G. Nielsen
- Danish PCD Centre, Danish Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Righospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Eric G. Haarman
- Department of Paediatric Pulmonology, Emma Children’s Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
19
|
Goutaki M, Pedersen ESL. Phenotype-genotype associations in primary ciliary dyskinesia: where do we stand? Eur Respir J 2021; 58:58/2/2100392. [PMID: 34353866 DOI: 10.1183/13993003.00392-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Myrofora Goutaki
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,Paediatric Respiratory Medicine, Children's University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Eva S L Pedersen
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Brennan SK, Ferkol TW, Davis SD. Emerging Genotype-Phenotype Relationships in Primary Ciliary Dyskinesia. Int J Mol Sci 2021; 22:ijms22158272. [PMID: 34361034 PMCID: PMC8348038 DOI: 10.3390/ijms22158272] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare inherited condition affecting motile cilia and leading to organ laterality defects, recurrent sino-pulmonary infections, bronchiectasis, and severe lung disease. Research over the past twenty years has revealed variability in clinical presentations, ranging from mild to more severe phenotypes. Genotype and phenotype relationships have emerged. The increasing availability of genetic panels for PCD continue to redefine these genotype-phenotype relationships and reveal milder forms of disease that had previously gone unrecognized.
Collapse
Affiliation(s)
- Steven K Brennan
- Department of Pediatrics, Division of Allergy and Pulmonary Medicine, Campus Box 8116, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA;
- Correspondence:
| | - Thomas W Ferkol
- Department of Pediatrics, Division of Allergy and Pulmonary Medicine, Campus Box 8116, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA;
| | - Stephanie D Davis
- Department of Pediatrics, University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC 27514, USA;
| |
Collapse
|
21
|
Antony D, Brunner HG, Schmidts M. Ciliary Dyneins and Dynein Related Ciliopathies. Cells 2021; 10:cells10081885. [PMID: 34440654 PMCID: PMC8391580 DOI: 10.3390/cells10081885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel developments in the field.
Collapse
Affiliation(s)
- Dinu Antony
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany;
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
| | - Han G. Brunner
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany;
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
- Correspondence: ; Tel.: +49-761-44391; Fax: +49-761-44710
| |
Collapse
|
22
|
Yiallouros PK, Kouis P, Kyriacou K, Evriviadou A, Anagnostopoulou P, Matthaiou A, Tsiolakis I, Pirpa P, Michailidou K, Potamiti L, Loizidou MA, Hadjisavvas A. Implementation of multigene panel NGS diagnosis in the national primary ciliary dyskinesia cohort of Cyprus: An island with a high disease prevalence. Hum Mutat 2021; 42:e62-e77. [PMID: 33715250 DOI: 10.1002/humu.24196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/24/2021] [Accepted: 03/06/2021] [Indexed: 12/16/2022]
Abstract
We aimed to determine a genetic diagnosis in the national primary ciliary dyskinesia (PCD) cohort of Cyprus, an island with a high disease prevalence. We used targeted next-generation sequencing (NGS) of 39 PCD genes in 48 patients of Greek-Cypriot and other ancestries. We achieved a molecular diagnosis in 74% of the unrelated families tested. We identified 24 different mutations in 11 genes, 12 of which are novel. Homozygosity was more common in Greek-Cypriot than non-Greek-Cypriot patients (88% vs. 46.2%, p = .016). Four mutations (DNAH11:c.5095-2A>G, CFAP300:c.95_103delGCCGGCTCC, TTC25:c.716G>A, RSPH9:c.670+2T>C) were found in 74% of the diagnosed Greek-Cypriot families. Patients with RSPH9 mutations demonstrated higher nasal nitric oxide (57 vs. 15 nl/min, p <.001), higher forced expiratory volume in 1 s (-0.89 vs. -2.37, p = .018) and forced vital capacity (-1.00 vs. -2.16, p = .029) z scores than the rest of the cohort. Targeted multigene-panel NGS is an efficient tool for early diagnosis of PCD, providing insight into genetic disease epidemiology and improved patient stratification.
Collapse
Affiliation(s)
- Panayiotis K Yiallouros
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus.,Pediatric Pulmonology Unit, Hospital "Archbishop Makarios III", Nicosia, Cyprus
| | - Panayiotis Kouis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Aigli Evriviadou
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Pinelopi Anagnostopoulou
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus.,Pediatric Pulmonology Unit, Hospital "Archbishop Makarios III", Nicosia, Cyprus
| | - Andreas Matthaiou
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Ioannis Tsiolakis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Panayiota Pirpa
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Louiza Potamiti
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria A Loizidou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andreas Hadjisavvas
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
23
|
Identification of a frame shift mutation in the CCDC151 gene in a Han-Chinese family with Kartagener syndrome. Biosci Rep 2021; 40:225129. [PMID: 32490514 PMCID: PMC7298131 DOI: 10.1042/bsr20192510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 01/10/2023] Open
Abstract
Kartagener syndrome (KS), a subtype of primary ciliary dyskinesia (PCD), is characterized by bronchiectasis, chronic sinusitis, male infertility and situs inversus. KS is a genetically heterogeneous disease that is inherited in an autosomal recessive form; however, X-linked inheritance has also been reported. As of this writing [late 2020], at least 34 loci, most of which have known genes, have been reported in the literature as associating with KS. In the present study, we identified a frame shift mutation, c.167delG (p.G56Dfs*26), in the coiled-coil domain containing 151 gene (CCDC151) responsible for KS in a Han-Chinese family. To our knowledge, this is the first report of a CCDC151 c.167delG mutation in the KS patient. These findings may expand the CCDC151 mutation spectrum of KS, and contribute to future genetic counseling and gene-targeted therapy for this disease.
Collapse
|
24
|
Duong Phu M, Bross S, Burkhalter MD, Philipp M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol Ther 2021; 225:107841. [PMID: 33771583 DOI: 10.1016/j.pharmthera.2021.107841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Ciliopathies are a family of rather diverse conditions, which have been grouped based on the finding of altered or dysfunctional cilia, potentially motile, small cellular antennae extending from the surface of postmitotic cells. Cilia-related disorders include embryonically arising conditions such as Joubert, Usher or Kartagener syndrome, but also afflictions with a postnatal or even adult onset phenotype, i.e. autosomal dominant polycystic kidney disease. The majority of ciliopathies are syndromic rather than affecting only a single organ due to cilia being found on almost any cell in the human body. Overall ciliopathies are considered rare diseases. Despite that, pharmacological research and the strive to help these patients has led to enormous therapeutic advances in the last decade. In this review we discuss new treatment options for certain ciliopathies, give an outlook on promising future therapeutic strategies, but also highlight the limitations in the development of therapeutic approaches of ciliopathies.
Collapse
Affiliation(s)
- Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Stefan Bross
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|
25
|
Aprea I, Nöthe-Menchen T, Dougherty GW, Raidt J, Loges NT, Kaiser T, Wallmeier J, Olbrich H, Strünker T, Kliesch S, Pennekamp P, Omran H. Motility of efferent duct cilia aids passage of sperm cells through the male reproductive system. Mol Hum Reprod 2021; 27:gaab009. [PMID: 33561200 PMCID: PMC7936721 DOI: 10.1093/molehr/gaab009] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Motile cilia line the efferent ducts of the mammalian male reproductive tract. Several recent mouse studies have demonstrated that a reduced generation of multiple motile cilia in efferent ducts is associated with obstructive oligozoospermia and fertility issues. However, the sole impact of efferent duct cilia dysmotility on male infertility has not been studied so far either in mice or human. Using video microscopy, histological- and ultrastructural analyses, we examined male reproductive tracts of mice deficient for the axonemal motor protein DNAH5: this defect exclusively disrupts the outer dynein arm (ODA) composition of motile cilia but not the ODA composition and motility of sperm flagella. These mice have immotile efferent duct cilia that lack ODAs, which are essential for ciliary beat generation. Furthermore, they show accumulation of sperm in the efferent duct. Notably, the ultrastructure and motility of sperm from these males are unaffected. Likewise, human individuals with loss-of-function DNAH5 mutations present with reduced sperm count in the ejaculate (oligozoospermia) and dilatations of the epididymal head but normal sperm motility, similar to DNAH5 deficient mice. The findings of this translational study demonstrate, in both mice and men, that efferent duct ciliary motility is important for male reproductive fitness and uncovers a novel pathomechanism distinct from primary defects of sperm motility (asthenozoospermia). If future work can identify environmental factors or defects in genes other than DNAH5 that cause efferent duct cilia dysmotility, this will help unravel other causes of oligozoospermia and may influence future practices in genetic and fertility counseling as well as ART.
Collapse
Affiliation(s)
- Isabella Aprea
- Department of General Pediatrics, University Hospital Muenster, Muenster 48149, Germany
| | - Tabea Nöthe-Menchen
- Department of General Pediatrics, University Hospital Muenster, Muenster 48149, Germany
| | - Gerard W Dougherty
- Department of General Pediatrics, University Hospital Muenster, Muenster 48149, Germany
| | - Johanna Raidt
- Department of General Pediatrics, University Hospital Muenster, Muenster 48149, Germany
| | - Niki T Loges
- Department of General Pediatrics, University Hospital Muenster, Muenster 48149, Germany
| | - Thomas Kaiser
- Department of General Pediatrics, University Hospital Muenster, Muenster 48149, Germany
| | - Julia Wallmeier
- Department of General Pediatrics, University Hospital Muenster, Muenster 48149, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Hospital Muenster, Muenster 48149, Germany
| | - Timo Strünker
- Department of Clinical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Muenster 48149, Germany
| | - Sabine Kliesch
- Department of Clinical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Muenster 48149, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Muenster, Muenster 48149, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster 48149, Germany
| |
Collapse
|
26
|
Aprea I, Raidt J, Höben IM, Loges NT, Nöthe-Menchen T, Pennekamp P, Olbrich H, Kaiser T, Biebach L, Tüttelmann F, Horvath J, Schubert M, Krallmann C, Kliesch S, Omran H. Defects in the cytoplasmic assembly of axonemal dynein arms cause morphological abnormalities and dysmotility in sperm cells leading to male infertility. PLoS Genet 2021; 17:e1009306. [PMID: 33635866 PMCID: PMC7909641 DOI: 10.1371/journal.pgen.1009306] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Axonemal protein complexes, such as outer (ODA) and inner (IDA) dynein arms, are responsible for the generation and regulation of flagellar and ciliary beating. Studies in various ciliated model organisms have shown that axonemal dynein arms are first assembled in the cell cytoplasm and then delivered into axonemes during ciliogenesis. In humans, mutations in genes encoding for factors involved in this process cause structural and functional defects of motile cilia in various organs such as the airways and result in the hereditary disorder primary ciliary dyskinesia (PCD). Despite extensive knowledge about the cytoplasmic assembly of axonemal dynein arms in respiratory cilia, this process is still poorly understood in sperm flagella. To better define its clinical relevance on sperm structure and function, and thus male fertility, further investigations are required. Here we report the fertility status in different axonemal dynein preassembly mutant males (DNAAF2/ KTU, DNAAF4/ DYX1C1, DNAAF6/ PIH1D3, DNAAF7/ZMYND10, CFAP300/C11orf70 and LRRC6). Besides andrological examinations, we functionally and structurally analyzed sperm flagella of affected individuals by high-speed video- and transmission electron microscopy as well as systematically compared the composition of dynein arms in sperm flagella and respiratory cilia by immunofluorescence microscopy. Furthermore, we analyzed the flagellar length in dynein preassembly mutant sperm. We found that the process of axonemal dynein preassembly is also critical in sperm, by identifying defects of ODAs and IDAs in dysmotile sperm of these individuals. Interestingly, these mutant sperm consistently show a complete loss of ODAs, while some respiratory cilia from the same individual can retain ODAs in the proximal ciliary compartment. This agrees with reports of solely one distinct ODA type in sperm, compared to two different ODA types in proximal and distal respiratory ciliary axonemes. Consistent with observations in model organisms, we also determined a significant reduction of sperm flagellar length in these individuals. These findings are relevant to subsequent studies on the function and composition of sperm flagella in PCD patients and non-syndromic infertile males. Our study contributes to a better understanding of the fertility status in PCD-affected males and should help guide genetic and andrological counselling for affected males and their families. Impaired male fertility is a major issue and affects several men worldwide. Patients may present with reduced number or complete absence of sperm in the ejaculate, as well as functional and/or morphological sperm defects compromising sperm motility. Despite several diagnostic efforts, the underlying causes of these defects often remain unknown („idiopathic“). The beating of sperm flagella as well as motile cilia, such as those of the respiratory tract, is driven by dynein-based motor protein complexes, namely outer and inner dynein arms. In motile cilia these protein complexes are known to be first assembled in the cytoplasm and then delivered into the cilium. In sperm, this process is still poorly understood. Here we analyze sperm cells of male individuals with mutations in distinct genes encoding factors involved in the preassembly of these motor protein complexes. Consistent with defects in their respiratory ciliated cells, these individuals also demonstrate defects in sperm flagella that cause male infertility due to immotile sperm, with a reduction of flagellar length. Our results strengthen the assumption that the preassembly process of outer and inner dynein arms is clinically relevant also in sperm and provide knowledge that should guide genetic and andrological counselling for a subgroup of men with idiopathic infertility.
Collapse
Affiliation(s)
- Isabella Aprea
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Johanna Raidt
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Inga Marlena Höben
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Niki Tomas Loges
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Tabea Nöthe-Menchen
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Thomas Kaiser
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Luisa Biebach
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Muenster, Muenster, Germany
| | - Judit Horvath
- Institute of Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Maria Schubert
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - Claudia Krallmann
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - Sabine Kliesch
- Institute of Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
- * E-mail:
| |
Collapse
|
27
|
Legendre M, Zaragosi LE, Mitchison HM. Motile cilia and airway disease. Semin Cell Dev Biol 2020; 110:19-33. [PMID: 33279404 DOI: 10.1016/j.semcdb.2020.11.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 01/10/2023]
Abstract
A finely regulated system of airway epithelial development governs the differentiation of motile ciliated cells of the human respiratory tract, conferring the body's mucociliary clearance defence system. Human cilia dysfunction can arise through genetic mutations and this is a cause of debilitating disease morbidities that confer a greatly reduced quality of life. The inherited human motile ciliopathy disorder, primary ciliary dyskinesia (PCD), can arise from mutations in genes affecting various aspects of motile cilia structure and function through deficient production, transport and assembly of cilia motility components or through defective multiciliogenesis. Our understanding about the development of the respiratory epithelium, motile cilia biology and the implications for human pathology has expanded greatly over the past 20 years since isolation of the first PCD gene, rising to now nearly 50 genes. Systems level insights about cilia motility in health and disease have been made possible through intensive molecular and omics (genomics, transcriptomics, proteomics) research, applied in ciliate organisms and in animal and human disease modelling. Here, we review ciliated airway development and the genetic stratification that underlies PCD, for which the underlying genotype can increasingly be connected to biological mechanism and disease prognostics. Progress in this field can facilitate clinical translation of research advances, with potential for great medical impact, e.g. through improvements in ciliopathy disease diagnosis, management, family counselling and by enhancing the potential for future genetically tailored approaches to disease therapeutics.
Collapse
Affiliation(s)
- Marie Legendre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Childhood Genetic Disorders, Département de Génétique Médicale, Hôpital Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris 75012, France
| | | | - Hannah M Mitchison
- Genetics and Genomic Medicine, University College London, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK.
| |
Collapse
|
28
|
Abstract
Asthenozoospermia (AZS), defined by reduced motility or absent sperm motility, is one of the main causes of male infertility. This condition may be divided into isolated AZS in the absence of other symptoms and syndromic AZS, which is characterized by several concurrent clinical symptoms. Sperm motility depends on fully functional flagellum, energy availability, and the crosstalk of several signaling pathways; therefore, mutations in genes involved in flagellar assembly and motile regulation can cause AZS. Thus, it is crucial to understand the genetic causes and mechanisms contributing to AZS. In this review, we summarize the current knowledge about the particular genes and mechanisms involved in intact flagellum, energy availability, and signaling transduction that could cause human AZS and discuss the respective gene defects known to be responsible for these abnormalities. Additionally, we discuss intracytoplasmic sperm injection outcomes and offspring health where available in these cases.
Collapse
Affiliation(s)
- Chaofeng Tu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China; College of Life Science, Hunan Normal University, Changsha, China
| | - Weili Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Tongyao Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Guangxiu Lu
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Ge Lin
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Yue-Qiu Tan
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China; College of Life Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
29
|
Immunofluorescence Analysis as a Diagnostic Tool in a Spanish Cohort of Patients with Suspected Primary Ciliary Dyskinesia. J Clin Med 2020; 9:jcm9113603. [PMID: 33182294 PMCID: PMC7695268 DOI: 10.3390/jcm9113603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal recessive rare disease caused by an alteration of ciliary structure. Immunofluorescence, consisting in the detection of the presence and distribution of cilia proteins in human respiratory cells by fluorescence, has been recently proposed as a technique to improve understanding of disease-causing genes and diagnosis rate in PCD. The objective of this study is to determine the accuracy of a panel of four fluorescently labeled antibodies (DNAH5, DNALI1, GAS8 and RSPH4A or RSPH9) as a PCD diagnostic tool in the absence of transmission electron microscopy analysis. The panel was tested in nasal brushing samples of 74 patients with clinical suspicion of PCD. Sixty-eight (91.9%) patients were evaluable for all tested antibodies. Thirty-three cases (44.6%) presented an absence or mislocation of protein in the ciliary axoneme (15 absent and 3 proximal distribution of DNAH5 in the ciliary axoneme, 3 absent DNAH5 and DNALI1, 7 absent DNALI1 and cytoplasmatic localization of GAS8, 1 absent GAS8, 3 absent RSPH9 and 1 absent RSPH4A). Fifteen patients had confirmed or highly likely PCD but normal immunofluorescence results (68.8% sensitivity and 100% specificity). In conclusion, immunofluorescence analysis is a quick, available, low-cost and reliable diagnostic test for PCD, although it cannot be used as a standalone test.
Collapse
|
30
|
Jiao SY, Yang YH, Chen SR. Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice. Hum Reprod Update 2020; 27:154-189. [PMID: 33118031 DOI: 10.1093/humupd/dmaa034] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Infertility is a major issue in human reproductive health, affecting an estimated 15% of couples worldwide. Infertility can result from disorders of sex development (DSD) or from reproductive endocrine disorders (REDs) with onset in infancy, early childhood or adolescence. Male infertility, accounting for roughly half of all infertility cases, generally manifests as decreased sperm count (azoospermia or oligozoospermia), attenuated sperm motility (asthenozoospermia) or a higher proportion of morphologically abnormal sperm (teratozoospermia). Female infertility can be divided into several classical types, including, but not limited to, oocyte maturation arrest, premature ovarian insufficiency (POI), fertilization failure and early embryonic arrest. An estimated one half of infertility cases have a genetic component; however, most genetic causes of human infertility are currently uncharacterized. The advent of high-throughput sequencing technologies has greatly facilitated the identification of infertility-associated gene mutations in patients over the past 20 years. OBJECTIVE AND RATIONALE This review aims to conduct a narrative review of the genetic causes of human infertility. Loss-of-function mutation discoveries related to human infertility are summarized and further illustrated in tables. Corresponding knockout/mutated animal models of causative genes for infertility are also introduced. SEARCH METHODS A search of the PubMed database was performed to identify relevant studies published in English. The term 'mutation' was combined with a range of search terms related to the core focus of the review: infertility, DSD, REDs, azoospermia or oligozoospermia, asthenozoospermia, multiple morphological abnormalities of the sperm flagella (MMAF), primary ciliary dyskinesia (PCD), acephalic spermatozoa syndrome (ASS), globozoospermia, teratozoospermia, acrosome, oocyte maturation arrest, POI, zona pellucida, fertilization defects and early embryonic arrest. OUTCOMES Our search generated ∼2000 records. Overall, 350 articles were included in the final review. For genetic investigation of human infertility, the traditional candidate gene approach is proceeding slowly, whereas high-throughput sequencing technologies in larger cohorts of individuals is identifying an increasing number of causative genes linked to human infertility. This review provides a wide panel of gene mutations in several typical forms of human infertility, including DSD, REDs, male infertility (oligozoospermia, MMAF, PCD, ASS and globozoospermia) and female infertility (oocyte maturation arrest, POI, fertilization failure and early embryonic arrest). The causative genes, their identified mutations, mutation rate, studied population and their corresponding knockout/mutated mice of non-obstructive azoospermia, MMAF, ASS, globozoospermia, oocyte maturation arrest, POI, fertilization failure and early embryonic arrest are further illustrated by tables. In this review, we suggest that (i) our current knowledge of infertility is largely obtained from knockout mouse models; (ii) larger cohorts of clinical cases with distinct clinical characteristics need to be recruited in future studies; (iii) the whole picture of genetic causes of human infertility relies on both the identification of more mutations for distinct types of infertility and the integration of known mutation information; (iv) knockout/mutated animal models are needed to show whether the phenotypes of genetically altered animals are consistent with findings in human infertile patients carrying a deleterious mutation of the homologous gene; and (v) the molecular mechanisms underlying human infertility caused by pathogenic mutations are largely unclear in most current studies. WILDER IMPLICATIONS It is important to use our current understanding to identify avenues and priorities for future research in the field of genetic causes of infertility as well as to apply mutation knowledge to risk prediction, genetic diagnosis and potential treatment for human infertility.
Collapse
Affiliation(s)
- Shi-Ya Jiao
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | - Yi-Hong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, 610041 Chengdu, China
| | - Su-Ren Chen
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| |
Collapse
|
31
|
Abstract
Motile cilia are highly complex hair-like organelles of epithelial cells lining the surface of various organ systems. Genetic mutations (usually with autosomal recessive inheritance) that impair ciliary beating cause a variety of motile ciliopathies, a heterogeneous group of rare disorders. The pathogenetic mechanisms, clinical symptoms and severity of the disease depend on the specific affected genes and the tissues in which they are expressed. Defects in the ependymal cilia can result in hydrocephalus, defects in the cilia in the fallopian tubes or in sperm flagella can cause female and male subfertility, respectively, and malfunctional motile monocilia of the left-right organizer during early embryonic development can lead to laterality defects such as situs inversus and heterotaxy. If mucociliary clearance in the respiratory epithelium is severely impaired, the disorder is referred to as primary ciliary dyskinesia, the most common motile ciliopathy. No single test can confirm a diagnosis of motile ciliopathy, which is based on a combination of tests including nasal nitric oxide measurement, transmission electron microscopy, immunofluorescence and genetic analyses, and high-speed video microscopy. With the exception of azithromycin, there is no evidence-based treatment for primary ciliary dyskinesia; therapies aim at relieving symptoms and reducing the effects of reduced ciliary motility.
Collapse
|
32
|
Andrés-Benito P, Povedano M, Torres P, Portero-Otín M, Ferrer I. Altered Dynein Axonemal Assembly Factor 1 Expression in C-Boutons in Bulbar and Spinal Cord Motor-Neurons in Sporadic Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2020; 78:416-425. [PMID: 30939186 DOI: 10.1093/jnen/nlz019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dyneins are major components of microtubules. Dynein assembly is modulated by a heterogeneous group of dynein axonemal assembly factors (DNAAFs). The present study analyzes dynein axonemal assembly factor 1 (DNAAF1) and leucine-rich repeat-containing protein 50 (LRRC50), the corresponding encoded protein, in lower motor neurons in spinal cord of sALS postmortem samples and hSOD1-G93A transgenic mice compared with controls. DNAAF1 mRNA is significantly reduced in the anterior horn in sALS, and LRRC50 immunoreactivity is significantly reduced in C-boutons of the remaining motor neurons of the anterior horn, dorsal nucleus of the vagus nerve, and hypoglossal nuclei at terminal stages of ALS. LRRC50 immunoreactivity has a perinuclear distribution in motor neurons in sALS thus suggesting a disorder of transport. The number of LRRC50-/S1R-immunoreactive structures is also significantly decreased in hSOD1-G93A transgenic mice at the age of 90 days (preclinical stages), and the number of motor neurons with LRRC50-immunoreactive structures is significantly reduced in animals aged 150 days (clinical stages). These observations suggest cholinergic denervation of motor neurons as a pathogenic factor in motor neuron disease. LRRC50 protein levels were not detected in human CSF.
Collapse
Affiliation(s)
- Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Spain.,Institute Carlos III, Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Hospitalet de Llobregat, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Mònica Povedano
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
| | - Pascual Torres
- Departament Medicina Experimental, Facultat de Medicina, Universitat de Lleida, IRBLLEIDA, Lleida, Spain
| | - Manuel Portero-Otín
- Departament Medicina Experimental, Facultat de Medicina, Universitat de Lleida, IRBLLEIDA, Lleida, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Spain.,Institute Carlos III, Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Hospitalet de Llobregat, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.,Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, IDIBELL, L'Hospitalet de Llobregat, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
33
|
Sironen A, Shoemark A, Patel M, Loebinger MR, Mitchison HM. Sperm defects in primary ciliary dyskinesia and related causes of male infertility. Cell Mol Life Sci 2020; 77:2029-2048. [PMID: 31781811 PMCID: PMC7256033 DOI: 10.1007/s00018-019-03389-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 01/22/2023]
Abstract
The core axoneme structure of both the motile cilium and sperm tail has the same ultrastructural 9 + 2 microtubular arrangement. Thus, it can be expected that genetic defects in motile cilia also have an effect on sperm tail formation. However, recent studies in human patients, animal models and model organisms have indicated that there are differences in components of specific structures within the cilia and sperm tail axonemes. Primary ciliary dyskinesia (PCD) is a genetic disease with symptoms caused by malfunction of motile cilia such as chronic nasal discharge, ear, nose and chest infections and pulmonary disease (bronchiectasis). Half of the patients also have situs inversus and in many cases male infertility has been reported. PCD genes have a role in motile cilia biogenesis, structure and function. To date mutations in over 40 genes have been identified cause PCD, but the exact effect of these mutations on spermatogenesis is poorly understood. Furthermore, mutations in several additional axonemal genes have recently been identified to cause a sperm-specific phenotype, termed multiple morphological abnormalities of the sperm flagella (MMAF). In this review, we discuss the association of PCD genes and other axonemal genes with male infertility, drawing particular attention to possible differences between their functions in motile cilia and sperm tails.
Collapse
Affiliation(s)
- Anu Sironen
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| | - Amelia Shoemark
- Department of Paediatrics, Royal Brompton Hospital, London, UK
- School of Medicine, University of Dundee, Dundee, UK
| | - Mitali Patel
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Michael R Loebinger
- Host Defence Unit, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Hannah M Mitchison
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| |
Collapse
|
34
|
Ardura-Garcia C, Goutaki M, Carr SB, Crowley S, Halbeisen FS, Nielsen KG, Pennekamp P, Raidt J, Thouvenin G, Yiallouros PK, Omran H, Kuehni CE. Registries and collaborative studies for primary ciliary dyskinesia in Europe. ERJ Open Res 2020; 6:00005-2020. [PMID: 32494577 PMCID: PMC7248350 DOI: 10.1183/23120541.00005-2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/17/2020] [Indexed: 01/30/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare inherited disease characterised by malfunctioning cilia leading to a heterogeneous clinical phenotype with many organ systems affected. There is a lack of data on clinical presentation, prognosis and effectiveness of treatments, making it mandatory to improve the scientific evidence base. This article reviews the data resources that are available in Europe for clinical and epidemiological research in PCD, namely established national PCD registries and national cohort studies, plus two large collaborative efforts (the international PCD (iPCD) Cohort and the International PCD Registry), and discusses their strengths, limitations and perspectives. Denmark, Cyprus, Norway and Switzerland have national population-based registries, while England and France conduct multicentre cohort studies. Based on the data contained in these registries, the prevalence of diagnosed PCD is 3–7 per 100 000 in children and 0.2–6 per 100 000 in adults. All registries, together with other studies from Europe and beyond, contribute to the iPCD Cohort, a collaborative study including data from over 4000 PCD patients, and to the International PCD Registry, which is part of the ERN (European Reference Network)-LUNG network. This rich resource of readily available, standardised and contemporaneous data will allow obtaining fast answers to emerging clinical and research questions in PCD. The growing collaborative network of national and international registries and cohort studies of patients with PCD provides an excellent resource for research on this rare diseasehttps://bit.ly/3dto75l
Collapse
Affiliation(s)
- Cristina Ardura-Garcia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,On behalf of the iPCD Cohort, Bern, Switzerland
| | - Myrofora Goutaki
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,On behalf of the iPCD Cohort, Bern, Switzerland.,Paediatric Respiratory Medicine, Children's University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Siobhán B Carr
- Primary Ciliary Dyskinesia Centre, Dept of Paediatric Respiratory Medicine, Imperial College and Royal Brompton Hospital, London, UK.,On behalf of the English Paediatric PCD Management Service, London, UK
| | - Suzanne Crowley
- Paediatric Dept of Allergy and Lung Diseases, Oslo University Hospital, Oslo, Norway.,On behalf of the Norwegian PCD Registry, Oslo, Norway
| | - Florian S Halbeisen
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,On behalf of the Swiss PCD Registry, Bern, Switzerland
| | - Kim G Nielsen
- Danish PCD Centre Copenhagen, Paediatric Pulmonary Service, Copenhagen University Hospital, Copenhagen, Denmark.,On behalf of the Danish PCD Registry, Copenhagen, Denmark
| | - Petra Pennekamp
- Dept of General Pediatrics, University Hospital Muenster, Muenster, Germany.,On behalf of the International PCD Registry Team, Muenster, Germany
| | - Johanna Raidt
- Dept of General Pediatrics, University Hospital Muenster, Muenster, Germany.,On behalf of the International PCD Registry Team, Muenster, Germany
| | - Guillaume Thouvenin
- Service de Pneumologie Pédiatrique, Hôpital Trousseau AP-HP, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Inserm UMR S 933 RaDiCo-PCD, Paris, France.,On behalf of the French RaDiCo-PCD Cohort, Paris, France
| | - Panayiotis K Yiallouros
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus.,On behalf of the Cyprus PCD Registry, Nicosia, Cyprus
| | - Heymut Omran
- Dept of General Pediatrics, University Hospital Muenster, Muenster, Germany.,On behalf of the International PCD Registry Team, Muenster, Germany
| | - Claudia E Kuehni
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.,On behalf of the iPCD Cohort, Bern, Switzerland.,Paediatric Respiratory Medicine, Children's University Hospital of Bern, University of Bern, Bern, Switzerland
| |
Collapse
|
35
|
Zietkiewicz E, Bukowy-Bieryllo Z, Rabiasz A, Daca-Roszak P, Wojda A, Voelkel K, Rutkiewicz E, Pogorzelski A, Rasteiro M, Witt M. CFAP300: Mutations in Slavic Patients with Primary Ciliary Dyskinesia and a Role in Ciliary Dynein Arms Trafficking. Am J Respir Cell Mol Biol 2020; 61:440-449. [PMID: 30916986 DOI: 10.1165/rcmb.2018-0260oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous hereditary disease from a class of ciliopathies. In spite of the recent progress, the genetic basis of PCD in one-third of patients remains unknown. In search for new genes and/or mutations, whole-exome sequencing was performed in 120 unrelated Polish patients with PCD, in whom no genetic cause of PCD was earlier identified. Among a number of pathogenic variants in PCD genes, mutations in CFAP300 (alias C11orf70) were detected. Extended screening in the whole Polish PCD cohort revealed the relatively high frequency (3.6%) of otherwise rare c.[198_200 del_insCC] variant, indicating that it should be included in population-specific genetic tests for PCD in Slavic populations. Immunofluorescence analysis of the respiratory epithelial cells from patients with CFAP300 mutations revealed the absence or aberrant localization of outer and inner dynein arm markers, consistent with transmission electron microscope images indicating the lack of both dynein arms. Interestingly, the disparate localization of DNAH5 and DNALI1 proteins in patients with CFAP300 mutations suggested differential mechanisms for the trafficking of preassembled outer and inner dynein arms to the axoneme. The profile of CFAP300 expression during ciliogenesis in suspension culture was consistent with its role in cilia assembly. Gene silencing experiments, performed in a model organism, Schmidtea mediterranea (flatworm), pointed to the conserved role of CFAP300 in ciliary function.
Collapse
Affiliation(s)
- Ewa Zietkiewicz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Alicja Rabiasz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Alina Wojda
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Voelkel
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Ewa Rutkiewicz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Andrzej Pogorzelski
- Department of Pneumology and Cystic Fibrosis, Institute of Tuberculosis and Lung Diseases, Rabka, Poland; and
| | - Margarida Rasteiro
- Chronic Diseases Research Centre (CEDOC), NOVA Medical School-Faculdade de Ciências Médicas, Lisbon, Portugal
| | - Michal Witt
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
36
|
Implementation of a Gene Panel for Genetic Diagnosis of Primary Ciliary Dyskinesia. Arch Bronconeumol 2020; 57:186-194. [PMID: 32253119 DOI: 10.1016/j.arbres.2020.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Primary ciliary dyskinesia (PCD) is characterized by an alteration in the ciliary structure causing difficulty in the clearance of respiratory secretions. Diagnosis is complex and based on a combination of techniques. The objective of this study was to design a gene panel including all known causative genes, and to corroborate their diagnostic utility in a cohort of Spanish patients. METHODS This was a multicenter cross-sectional study of patients with a high suspicion of PCD, according to European Respiratory Society criteria, designed around a gene panel for massive sequencing using SeqCap EZ capture technology that included 44 genes associated with PCD. RESULTS We included 79 patients, 53 of whom had a diagnosis of confirmed or highly probable PCD. The sensitivity of the gene panel was 81.1%, with a specificity of 100%. Candidate variants were found in some of the genes of the panel in 43 patients with PCD, 51.2% (22/43) of whom were homozygotes and 48.8% (21/43) compound heterozygotes. The most common causative genes were DNAH5 and CCDC39. We found 52 different variants, 36 of which were not previously described in the literature. CONCLUSIONS The design and implementation of a tailored gene panel produces a high yield in the genetic diagnosis of PCD. This panel provides a better understanding of the causative factors involved in these patients and lays down the groundwork for future therapeutic approaches.
Collapse
|
37
|
Wang Y, Tu C, Nie H, Meng L, Li D, Wang W, Zhang H, Lu G, Lin G, Tan YQ, Du J. Novel DNAAF6 variants identified by whole-exome sequencing cause male infertility and primary ciliary dyskinesia. J Assist Reprod Genet 2020; 37:811-820. [PMID: 32170493 DOI: 10.1007/s10815-020-01735-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To identify the genetic cause of patients with primary ciliary dyskinesia (PCD) and male infertility from two unrelated Han Chinese families. METHODS We conducted whole-exome sequencing of three individuals with PCD and male infertility from two unrelated Chinese families, and performed a targeted look-up for DNAAF6 variants in our previously reported cohort of 442 individuals (219 with isolated oligoasthenospermia and 223 fertile controls). Ultrastructural and immunostaining analyses of patients' spermatozoa were performed. The pathogenicity of the variants was validated using patient's spermatozoa and HEK293T cells. Intracytoplasmic sperm injection (ICSI) treatment was conducted in two patients. RESULTS We identified one novel hemizygous frameshift variant (NM_173494, c.319_329del: p.R107fs) of DNAAF6 gene (previously named PIH1D3) in family 1 and one novel hemizygous missense variant (c.290G>T: p.G97V) in family 2. No hemizygous deleterious variants in DNAAF6 were detected in the control cohort of 442 individuals. Ultrastructural and immunostaining analyses of patients' spermatozoa showed the absence of outer and inner dynein arms in sperm flagella. Both variants were proven to lead to DNAAF6 protein degradation in HEK293T cells. Both patients carrying DNAAF6 variants underwent one ICSI cycle and delivered one healthy child each. CONCLUSION We identified novel DNAAF6 variants causing male infertility and PCD in Han Chinese patients. This finding extended the spectrum of variants in DNAAF6 and revealed new light on the impact of DNAAF6 variants in sperm flagella.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Hongchuan Nie
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Lanlan Meng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Dongyan Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Weili Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Huan Zhang
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- National Engineering and Research Center of Human Stem Cell, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- National Engineering and Research Center of Human Stem Cell, Changsha, China
| | - Yue-Qiu Tan
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
- Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, 410078, Hunan, China.
| | - Juan Du
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
- Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
38
|
Thomas L, Bouhouche K, Whitfield M, Thouvenin G, Coste A, Louis B, Szymanski C, Bequignon E, Papon JF, Castelli M, Lemullois M, Dhalluin X, Drouin-Garraud V, Montantin G, Tissier S, Duquesnoy P, Copin B, Dastot F, Couvet S, Barbotin AL, Faucon C, Honore I, Maitre B, Beydon N, Tamalet A, Rives N, Koll F, Escudier E, Tassin AM, Touré A, Mitchell V, Amselem S, Legendre M. TTC12 Loss-of-Function Mutations Cause Primary Ciliary Dyskinesia and Unveil Distinct Dynein Assembly Mechanisms in Motile Cilia Versus Flagella. Am J Hum Genet 2020; 106:153-169. [PMID: 31978331 DOI: 10.1016/j.ajhg.2019.12.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023] Open
Abstract
Cilia and flagella are evolutionarily conserved organelles whose motility relies on the outer and inner dynein arm complexes (ODAs and IDAs). Defects in ODAs and IDAs result in primary ciliary dyskinesia (PCD), a disease characterized by recurrent airway infections and male infertility. PCD mutations in assembly factors have been shown to cause a combined ODA-IDA defect, affecting both cilia and flagella. We identified four loss-of-function mutations in TTC12, which encodes a cytoplasmic protein, in four independent families in which affected individuals displayed a peculiar PCD phenotype characterized by the absence of ODAs and IDAs in sperm flagella, contrasting with the absence of only IDAs in respiratory cilia. Analyses of both primary cells from individuals carrying TTC12 mutations and human differentiated airway cells invalidated for TTC12 by a CRISPR-Cas9 approach revealed an IDA defect restricted to a subset of single-headed IDAs that are different in flagella and cilia, whereas TTC12 depletion in the ciliate Paramecium tetraurelia recapitulated the sperm phenotype. Overall, our study, which identifies TTC12 as a gene involved in PCD, unveils distinct dynein assembly mechanisms in human motile cilia versus flagella.
Collapse
|
39
|
Rare Human Diseases: Model Organisms in Deciphering the Molecular Basis of Primary Ciliary Dyskinesia. Cells 2019; 8:cells8121614. [PMID: 31835861 PMCID: PMC6952885 DOI: 10.3390/cells8121614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a recessive heterogeneous disorder of motile cilia, affecting one per 15,000-30,000 individuals; however, the frequency of this disorder is likely underestimated. Even though more than 40 genes are currently associated with PCD, in the case of approximately 30% of patients, the genetic cause of the manifested PCD symptoms remains unknown. Because motile cilia are highly evolutionarily conserved organelles at both the proteomic and ultrastructural levels, analyses in the unicellular and multicellular model organisms can help not only to identify new proteins essential for cilia motility (and thus identify new putative PCD-causative genes), but also to elucidate the function of the proteins encoded by known PCD-causative genes. Consequently, studies involving model organisms can help us to understand the molecular mechanism(s) behind the phenotypic changes observed in the motile cilia of PCD affected patients. Here, we summarize the current state of the art in the genetics and biology of PCD and emphasize the impact of the studies conducted using model organisms on existing knowledge.
Collapse
|
40
|
Role of the Novel Hsp90 Co-Chaperones in Dynein Arms' Preassembly. Int J Mol Sci 2019; 20:ijms20246174. [PMID: 31817850 PMCID: PMC6940843 DOI: 10.3390/ijms20246174] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
The outer and inner dynein arms (ODAs and IDAs) are composed of multiple subunits including dynein heavy chains possessing a motor domain. These complex structures are preassembled in the cytoplasm before being transported to the cilia. The molecular mechanism(s) controlling dynein arms’ preassembly is poorly understood. Recent evidence suggests that canonical R2TP complex, an Hsp-90 co-chaperone, in cooperation with dynein axonemal assembly factors (DNAAFs), plays a crucial role in the preassembly of ODAs and IDAs. Here, we have summarized recent data concerning the identification of novel chaperone complexes and their role in dynein arms’ preassembly and their association with primary cilia dyskinesia (PCD), a human genetic disorder.
Collapse
|
41
|
Horani A, Brody SL. Frequenting Sequencing: How Genetics Teaches Us Cilia Biology. Am J Respir Cell Mol Biol 2019; 61:403-404. [PMID: 30951371 PMCID: PMC6775949 DOI: 10.1165/rcmb.2019-0103ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Amjad Horani
- Department of PediatricsWashington University School of MedicineSaint Louis, Missouriand
| | - Steven L. Brody
- Department of MedicineWashington University School of MedicineSaint Louis, Missouri
| |
Collapse
|
42
|
Osinka A, Poprzeczko M, Zielinska MM, Fabczak H, Joachimiak E, Wloga D. Ciliary Proteins: Filling the Gaps. Recent Advances in Deciphering the Protein Composition of Motile Ciliary Complexes. Cells 2019; 8:cells8070730. [PMID: 31319499 PMCID: PMC6678824 DOI: 10.3390/cells8070730] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Cilia are highly evolutionarily conserved, microtubule-based cell protrusions present in eukaryotic organisms from protists to humans, with the exception of fungi and higher plants. Cilia can be broadly divided into non-motile sensory cilia, called primary cilia, and motile cilia, which are locomotory organelles. The skeleton (axoneme) of primary cilia is formed by nine outer doublet microtubules distributed on the cilium circumference. In contrast, the skeleton of motile cilia is more complex: in addition to outer doublets, it is composed of two central microtubules and several diverse multi-protein complexes that are distributed periodically along both types of microtubules. For many years, researchers have endeavored to fully characterize the protein composition of ciliary macro-complexes and the molecular basis of signal transduction between these complexes. Genetic and biochemical analyses have suggested that several hundreds of proteins could be involved in the assembly and function of motile cilia. Within the last several years, the combined efforts of researchers using cryo-electron tomography, genetic and biochemical approaches, and diverse model organisms have significantly advanced our knowledge of the ciliary structure and protein composition. Here, we summarize the recent progress in the identification of the subunits of ciliary complexes, their precise intraciliary localization determined by cryo-electron tomography data, and the role of newly identified proteins in cilia.
Collapse
Affiliation(s)
- Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Magdalena M Zielinska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
43
|
Mianné J, Ahmed E, Bourguignon C, Fieldes M, Vachier I, Bourdin A, Assou S, De Vos J. Induced Pluripotent Stem Cells for Primary Ciliary Dyskinesia Modeling and Personalized Medicine. Am J Respir Cell Mol Biol 2019; 59:672-683. [PMID: 30230352 DOI: 10.1165/rcmb.2018-0213tr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare and heterogeneous genetic disorder that affects the structure and function of motile cilia. In the airway epithelium, impaired ciliary motion results in reduced or absent mucociliary clearance that leads to the appearance of chronic airway infection, sinusitis, and bronchiectasis. Currently, there is no effective treatment for PCD, and research is limited by the lack of convenient models to study this disease and investigate innovative therapies. Furthermore, the high heterogeneity of PCD genotypes is likely to hinder the development of a single therapy for all patients. The generation of patient-derived, induced pluripotent stem cells, and their differentiation into airway epithelium, as well as genome editing technologies, could represent major tools for in vitro PCD modeling and for developing personalized therapies. Here, we review PCD pathogenesis and then discuss how human induced pluripotent stem cells could be used to model this disease for the development of innovative, patient-specific biotherapies.
Collapse
Affiliation(s)
- Joffrey Mianné
- 1 Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Engi Ahmed
- 1 Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Chloé Bourguignon
- 1 Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Mathieu Fieldes
- 1 Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Isabelle Vachier
- 2 PhyMedExp, University of Montpellier, INSERM, Centre Hospitalier Universitaire Montpellier, Montpellier, France; and
| | - Arnaud Bourdin
- 2 PhyMedExp, University of Montpellier, INSERM, Centre Hospitalier Universitaire Montpellier, Montpellier, France; and
| | - Said Assou
- 1 Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - John De Vos
- 1 Institute for Regenerative Medicine and Biotherapy, University of Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire Montpellier, Montpellier, France.,3 Centre Hospitalier Universitaire Montpellier, Department of Cell and Tissue Engineering, Hospital Saint-Eloi, Montpellier, France
| |
Collapse
|
44
|
Leigh MW, Horani A, Kinghorn B, O'Connor MG, Zariwala MA, Knowles MR. Primary Ciliary Dyskinesia (PCD): A genetic disorder of motile cilia. ACTA ACUST UNITED AC 2019; 4:51-75. [PMID: 31572664 DOI: 10.3233/trd-190036] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Margaret W Leigh
- Department of Pediatrics and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - BreAnna Kinghorn
- Seattle Children's Hospital, Department of Pediatrics, University of Washington School of Medicine; Seattle, Washington
| | - Michael G O'Connor
- Department of Pediatrics, Vanderbilt University Medical Center and Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tennessee
| | - Maimoona A Zariwala
- Department of Pathology/Lab Medicine and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Michael R Knowles
- Department of Medicine and Marsico Lung Institute, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
45
|
Lack of GAS2L2 Causes PCD by Impairing Cilia Orientation and Mucociliary Clearance. Am J Hum Genet 2019; 104:229-245. [PMID: 30665704 DOI: 10.1016/j.ajhg.2018.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/14/2018] [Indexed: 01/01/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetic disorder in which impaired ciliary function leads to chronic airway disease. Exome sequencing of a PCD subject identified an apparent homozygous frameshift variant, c.887_890delTAAG (p.Val296Glyfs∗13), in exon 5; this frameshift introduces a stop codon in amino acid 308 of the growth arrest-specific protein 2-like 2 (GAS2L2). Further genetic screening of unrelated PCD subjects identified a second proband with a compound heterozygous variant carrying the identical frameshift variant and a large deletion (c.867_∗343+1207del; p.?) starting in exon 5. Both individuals had clinical features of PCD but normal ciliary axoneme structure. In this research, using human nasal cells, mouse models, and X.laevis embryos, we show that GAS2L2 is abundant at the apical surface of ciliated cells, where it localizes with basal bodies, basal feet, rootlets, and actin filaments. Cultured GAS2L2-deficient nasal epithelial cells from one of the affected individuals showed defects in ciliary orientation and had an asynchronous and hyperkinetic (GAS2L2-deficient = 19.8 Hz versus control = 15.8 Hz) ciliary-beat pattern. These results were recapitulated in Gas2l2-/- mouse tracheal epithelial cell (mTEC) cultures and in X. laevis embryos treated with Gas2l2 morpholinos. In mice, the absence of Gas2l2 caused neonatal death, and the conditional deletion of Gas2l2 impaired mucociliary clearance (MCC) and led to mucus accumulation. These results show that a pathogenic variant in GAS2L2 causes a genetic defect in ciliary orientation and impairs MCC and results in PCD.
Collapse
|
46
|
Goutaki M, Eich MO, Halbeisen FS, Barben J, Casaulta C, Clarenbach C, Hafen G, Latzin P, Regamey N, Lazor R, Tschanz S, Zanolari M, Maurer E, Kuehni CE, For the Swiss PCD Registry (CH-PCD) Working Group. The Swiss Primary Ciliary Dyskinesia registry: objectives, methods and first results. Swiss Med Wkly 2019; 149:w20004. [DOI: 10.57187/smw.2019.20004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare, hereditary, multiorgan disease caused by defects in the structure and function of motile cilia. It results in a wide range of clinical manifestations, most commonly in the upper and lower airways. Central data collection in national and international registries is essential to studying the epidemiology of rare diseases and filling in gaps in knowledge of diseases such as PCD. For this reason, the Swiss Primary Ciliary Dyskinesia Registry (CH-PCD) was founded in 2013 as a collaborative project between epidemiologists and adult and paediatric pulmonologists. We describe the objectives and methodology of the CH-PCD, present initial results, and give an overview of current and ongoing projects.
The registry records patients of any age, suffering from PCD, who are treated and resident in Switzerland. It collects information from patients identified through physicians, diagnostic facilities and patient organisations. The registry dataset contains data on diagnostic evaluations, lung function, microbiology and imaging, symptoms, treatments and hospitalisations.
By May 2018, CH-PCD has contacted 566 physicians of different specialties and identified 134 patients with PCD. At present, this number represents an overall 1 in 63,000 prevalence of people diagnosed with PCD in Switzerland. Prevalence differs by age and region; it is highest in children and adults younger than 30 years, and in Espace Mittelland. The median age of patients in the registry is 25 years (range 5–73), and 41 patients have a definite PCD diagnosis based on recent international guidelines. Data from CH-PCD are contributed to international collaborative studies and the registry facilitates patient identification for nested studies.
CH-PCD has proven to be a valuable research tool that already has highlighted weaknesses in PCD clinical practice in Switzerland.
Trial registration number
NCT03606200
Collapse
|
47
|
Loges NT, Antony D, Maver A, Deardorff MA, Güleç EY, Gezdirici A, Nöthe-Menchen T, Höben IM, Jelten L, Frank D, Werner C, Tebbe J, Wu K, Goldmuntz E, Čuturilo G, Krock B, Ritter A, Hjeij R, Bakey Z, Pennekamp P, Dworniczak B, Brunner H, Peterlin B, Tanidir C, Olbrich H, Omran H, Schmidts M. Recessive DNAH9 Loss-of-Function Mutations Cause Laterality Defects and Subtle Respiratory Ciliary-Beating Defects. Am J Hum Genet 2018; 103:995-1008. [PMID: 30471718 PMCID: PMC6288205 DOI: 10.1016/j.ajhg.2018.10.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/23/2018] [Indexed: 11/29/2022] Open
Abstract
Dysfunction of motile monocilia, altering the leftward flow at the embryonic node essential for determination of left-right body asymmetry, is a major cause of laterality defects. Laterality defects are also often associated with reduced mucociliary clearance caused by defective multiple motile cilia of the airway and are responsible for destructive airway disease. Outer dynein arms (ODAs) are essential for ciliary beat generation, and human respiratory cilia contain different ODA heavy chains (HCs): the panaxonemally distributed γ-HC DNAH5, proximally located β-HC DNAH11 (defining ODA type 1), and the distally localized β-HC DNAH9 (defining ODA type 2). Here we report loss-of-function mutations in DNAH9 in five independent families causing situs abnormalities associated with subtle respiratory ciliary dysfunction. Consistent with the observed subtle respiratory phenotype, high-speed video microscopy demonstrates distally impaired ciliary bending in DNAH9 mutant respiratory cilia. DNAH9-deficient cilia also lack other ODA components such as DNAH5, DNAI1, and DNAI2 from the distal axonemal compartment, demonstrating an essential role of DNAH9 for distal axonemal assembly of ODAs type 2. Yeast two-hybrid and co-immunoprecipitation analyses indicate interaction of DNAH9 with the ODA components DNAH5 and DNAI2 as well as the ODA-docking complex component CCDC114. We further show that during ciliogenesis of respiratory cilia, first proximally located DNAH11 and then distally located DNAH9 is assembled in the axoneme. We propose that the β-HC paralogs DNAH9 and DNAH11 achieved specific functional roles for the distinct axonemal compartments during evolution with human DNAH9 function matching that of ancient β-HCs such as that of the unicellular Chlamydomonas reinhardtii.
Collapse
|