1
|
Tanaka T, Chung HL. Exploiting fly models to investigate rare human neurological disorders. Neural Regen Res 2025; 20:21-28. [PMID: 38767473 PMCID: PMC11246155 DOI: 10.4103/nrr.nrr-d-23-01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 03/02/2024] [Indexed: 05/22/2024] Open
Abstract
Rare neurological diseases, while individually are rare, collectively impact millions globally, leading to diverse and often severe neurological symptoms. Often attributed to genetic mutations that disrupt protein function or structure, understanding their genetic basis is crucial for accurate diagnosis and targeted therapies. To investigate the underlying pathogenesis of these conditions, researchers often use non-mammalian model organisms, such as Drosophila (fruit flies), which is valued for their genetic manipulability, cost-efficiency, and preservation of genes and biological functions across evolutionary time. Genetic tools available in Drosophila, including CRISPR-Cas9, offer a means to manipulate gene expression, allowing for a deep exploration of the genetic underpinnings of rare neurological diseases. Drosophila boasts a versatile genetic toolkit, rapid generation turnover, and ease of large-scale experimentation, making it an invaluable resource for identifying potential drug candidates. Researchers can expose flies carrying disease-associated mutations to various compounds, rapidly pinpointing promising therapeutic agents for further investigation in mammalian models and, ultimately, clinical trials. In this comprehensive review, we explore rare neurological diseases where fly research has significantly contributed to our understanding of their genetic basis, pathophysiology, and potential therapeutic implications. We discuss rare diseases associated with both neuron-expressed and glial-expressed genes. Specific cases include mutations in CDK19 resulting in epilepsy and developmental delay, mutations in TIAM1 leading to a neurodevelopmental disorder with seizures and language delay, and mutations in IRF2BPL causing seizures, a neurodevelopmental disorder with regression, loss of speech, and abnormal movements. And we explore mutations in EMC1 related to cerebellar atrophy, visual impairment, psychomotor retardation, and gain-of-function mutations in ACOX1 causing Mitchell syndrome. Loss-of-function mutations in ACOX1 result in ACOX1 deficiency, characterized by very-long-chain fatty acid accumulation and glial degeneration. Notably, this review highlights how modeling these diseases in Drosophila has provided valuable insights into their pathophysiology, offering a platform for the rapid identification of potential therapeutic interventions. Rare neurological diseases involve a wide range of expression systems, and sometimes common phenotypes can be found among different genes that cause abnormalities in neurons or glia. Furthermore, mutations within the same gene may result in varying functional outcomes, such as complete loss of function, partial loss of function, or gain-of-function mutations. The phenotypes observed in patients can differ significantly, underscoring the complexity of these conditions. In conclusion, Drosophila represents an indispensable and cost-effective tool for investigating rare neurological diseases. By facilitating the modeling of these conditions, Drosophila contributes to a deeper understanding of their genetic basis, pathophysiology, and potential therapies. This approach accelerates the discovery of promising drug candidates, ultimately benefiting patients affected by these complex and understudied diseases.
Collapse
Affiliation(s)
- Tomomi Tanaka
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
| | - Hyung-Lok Chung
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
2
|
Stark Z, Byrne AB, Sampson MG, Lennon R, Mallett AJ. A guide to gene-disease relationships in nephrology. Nat Rev Nephrol 2024:10.1038/s41581-024-00900-7. [PMID: 39443743 DOI: 10.1038/s41581-024-00900-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
The use of next-generation sequencing technologies such as exome and genome sequencing in research and clinical care has transformed our understanding of the molecular architecture of genetic kidney diseases. Although the capability to identify and rigorously assess genetic variants and their relationship to disease has advanced considerably in the past decade, the curation of clinically relevant relationships between genes and specific phenotypes has received less attention, despite it underpinning accurate interpretation of genomic tests. Here, we discuss the need to accurately define gene-disease relationships in nephrology and provide a framework for appraising genetic and experimental evidence critically. We describe existing international programmes that provide expert curation of gene-disease relationships and discuss sources of discrepancy as well as efforts at harmonization. Further, we highlight the need for alignment of disease and phenotype terminology to ensure robust and reproducible curation of knowledge. These collective efforts to support evidence-based translation of genomic sequencing into practice across clinical, diagnostic and research settings are crucial for delivering the promise of precision medicine in nephrology, providing more patients with timely diagnoses, accurate prognostic information and access to targeted treatments.
Collapse
Affiliation(s)
- Zornitza Stark
- ClinGen, Boston, MA, USA.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Australian Genomics, Melbourne, Victoria, Australia.
| | - Alicia B Byrne
- ClinGen, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Matthew G Sampson
- ClinGen, Boston, MA, USA
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
- Department of Paediatrics, Harvard Medical School, Boston, MA, USA
| | - Rachel Lennon
- ClinGen, Boston, MA, USA
- Wellcome Centre for Cell-Matrix Research, The University of Manchester, Manchester, UK
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester, UK
| | - Andrew J Mallett
- ClinGen, Boston, MA, USA.
- Townsville Hospital and Health Service, Townsville, Queensland, Australia.
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.
- Institute for Molecular Bioscience and Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Parmar JM, Laing NG, Kennerson ML, Ravenscroft G. Genetics of inherited peripheral neuropathies and the next frontier: looking backwards to progress forwards. J Neurol Neurosurg Psychiatry 2024; 95:992-1001. [PMID: 38744462 PMCID: PMC11503175 DOI: 10.1136/jnnp-2024-333436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Inherited peripheral neuropathies (IPNs) encompass a clinically and genetically heterogeneous group of disorders causing length-dependent degeneration of peripheral autonomic, motor and/or sensory nerves. Despite gold-standard diagnostic testing for pathogenic variants in over 100 known associated genes, many patients with IPN remain genetically unsolved. Providing patients with a diagnosis is critical for reducing their 'diagnostic odyssey', improving clinical care, and for informed genetic counselling. The last decade of massively parallel sequencing technologies has seen a rapid increase in the number of newly described IPN-associated gene variants contributing to IPN pathogenesis. However, the scarcity of additional families and functional data supporting variants in potential novel genes is prolonging patient diagnostic uncertainty and contributing to the missing heritability of IPNs. We review the last decade of IPN disease gene discovery to highlight novel genes, structural variation and short tandem repeat expansions contributing to IPN pathogenesis. From the lessons learnt, we provide our vision for IPN research as we anticipate the future, providing examples of emerging technologies, resources and tools that we propose that will expedite the genetic diagnosis of unsolved IPN families.
Collapse
Affiliation(s)
- Jevin M Parmar
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Nigel G Laing
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Preventive Genetics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Marina L Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, New South Wales, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, New South Wales, Australia
| | - Gianina Ravenscroft
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Maroofian R, Pagnamenta AT, Navabazam A, Schwessinger R, Roberts HE, Lopopolo M, Dehghani M, Vahidi Mehrjardi MY, Haerian A, Soltanianzadeh M, Noori Kooshki MH, Knight SJL, Miller KA, McGowan SJ, Chatron N, Timberlake AT, Melo US, Mundlos S, Buck D, Twigg SRF, Taylor JC, Wilkie AOM, Calpena E. Familial severe skeletal Class II malocclusion with gingival hyperplasia caused by a complex structural rearrangement at the KCNJ2-KCNJ16 locus. HGG ADVANCES 2024; 5:100352. [PMID: 39257002 PMCID: PMC11465088 DOI: 10.1016/j.xhgg.2024.100352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024] Open
Abstract
The aim of this work was to identify the underlying genetic cause in a four-generation family segregating an unusual phenotype comprising a severe form of skeletal Class II malocclusion with gingival hyperplasia. SNP array identified a copy number gain on chromosome 1 (chr1); however, this chromosomal region did not segregate correctly in the extended family. Exome sequencing also failed to identify a candidate causative variant but highlighted co-segregating genetic markers on chr17 and chr19. Short- and long-read genome sequencing allowed us to pinpoint and characterize at nucleotide-level resolution a chromothripsis-like complex rearrangement (CR) inserted into the chr17 co-segregating region at the KCNJ2-SOX9 locus. The CR involved the gain of five different regions from chr1 that are shuffled, chained, and inserted as a single block (∼828 kb) at chr17q24.3. The inserted sequences contain craniofacial enhancers that are predicted to interact with KCNJ2/KCNJ16 through neo-topologically associating domain (TAD) formation to induce ectopic activation. Our findings suggest that the CR inserted at chr17q24.3 is the cause of the severe skeletal Class II malocclusion with gingival hyperplasia in this family and expands the panoply of phenotypes linked to variation at the KCNJ2-SOX9 locus. In addition, we highlight a previously overlooked potential role for misregulation of the KCNJ2/KCNJ16 genes in the pathomechanism of gingival hyperplasia associated with deletions and other rearrangements of the 17q24.2-q24.3 region (MIM 135400).
Collapse
Affiliation(s)
- Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Alistair T Pagnamenta
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alireza Navabazam
- Faculty of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ron Schwessinger
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Hannah E Roberts
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Maria Lopopolo
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Mohammadreza Dehghani
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Alireza Haerian
- Faculty of Dentistry, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Samantha J L Knight
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kerry A Miller
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Simon J McGowan
- Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Andrew T Timberlake
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Medical Center, New York, NY, USA
| | - Uirá Souto Melo
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - David Buck
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jenny C Taylor
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Andrew O M Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Unidad CIBERER, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.
| |
Collapse
|
5
|
Ambrosino E, Abou Tayoun AN, Abramowicz M, Zilfalil BA, Boughtwood T, Hamdi Y, Hubbard T, Kato K, Lopes-Cendes I, Majumder PP, Mascalzoni D, Ndiaye R, Ramsay M, Repetto GM, Shotelersuk V, Taylor S, Reeder JC, Ross AL. The WHO genomics program of work for equitable implementation of human genomics for global health. Nat Med 2024; 30:2711-2713. [PMID: 39227441 DOI: 10.1038/s41591-024-03225-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Affiliation(s)
- Elena Ambrosino
- Science Division, World Health Organization, Geneva, Switzerland.
| | - Ahmad N Abou Tayoun
- Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai Health, Dubai, United Arab Emirates
- Center for Genomic Discovery, Mohammed Bin Rashid University, Dubai Health, Dubai, United Arab Emirates
| | - Marc Abramowicz
- Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Bin Alwi Zilfalil
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Tiffany Boughtwood
- Australian Genomics, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Tim Hubbard
- ELIXIR, Wellcome Genome Campus, Hinxton, UK
- Department of Medical & Molecular Genetics, King's College London, London, UK
| | - Kazuto Kato
- Department of Biomedical Ethics and Public Policy, graduate School of Medicine, Osaka University, Suita, Japan
| | - Iscia Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Partha Pratim Majumder
- John C. Martin Center for Liver Research and Innovations, Kolkata, India
- Indian Statistical Institute, Kolkata, India
| | - Deborah Mascalzoni
- Department of Public Health and Caring Science, Uppsala University, Uppsala, Switzerland
- Institute for Biomedicine, Eurac Research, Bolzano, Italy
| | - Rokhaya Ndiaye
- Division of Human Genetics, Faculty of Medicine, Pharmacy and Odonto-Stomatology, University Cheikh Anta DIOP, Dakar, Senegal
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gabriela M Repetto
- Center for Genetics and Genomics, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sherry Taylor
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - John C Reeder
- Science Division, World Health Organization, Geneva, Switzerland
| | - Anna Laura Ross
- Science Division, World Health Organization, Geneva, Switzerland
| |
Collapse
|
6
|
Chong JX, Berger SI, Baxter S, Smith E, Xiao C, Calame DG, Hawley MH, Rivera-Munoz EA, DiTroia S, Bamshad MJ, Rehm HL. Considerations for reporting variants in novel candidate genes identified during clinical genomic testing. Genet Med 2024; 26:101199. [PMID: 38944749 PMCID: PMC11456385 DOI: 10.1016/j.gim.2024.101199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
Since the first novel gene discovery for a Mendelian condition was made via exome sequencing, the rapid increase in the number of genes known to underlie Mendelian conditions coupled with the adoption of exome (and more recently, genome) sequencing by diagnostic testing labs has changed the landscape of genomic testing for rare diseases. Specifically, many individuals suspected to have a Mendelian condition are now routinely offered clinical ES. This commonly results in a precise genetic diagnosis but frequently overlooks the identification of novel candidate genes. Such candidates are also less likely to be identified in the absence of large-scale gene discovery research programs. Accordingly, clinical laboratories have both the opportunity, and some might argue a responsibility, to contribute to novel gene discovery, which should, in turn, increase the diagnostic yield for many conditions. However, clinical diagnostic laboratories must necessarily balance priorities for throughput, turnaround time, cost efficiency, clinician preferences, and regulatory constraints and often do not have the infrastructure or resources to effectively participate in either clinical translational or basic genome science research efforts. For these and other reasons, many laboratories have historically refrained from broadly sharing potentially pathogenic variants in novel genes via networks such as Matchmaker Exchange, much less reporting such results to ordering providers. Efforts to report such results are further complicated by a lack of guidelines for clinical reporting and interpretation of variants in novel candidate genes. Nevertheless, there are myriad benefits for many stakeholders, including patients/families, clinicians, and researchers, if clinical laboratories systematically and routinely identify, share, and report novel candidate genes. To facilitate this change in practice, we developed criteria for triaging, sharing, and reporting novel candidate genes that are most likely to be promptly validated as underlying a Mendelian condition and translated to use in clinical settings.
Collapse
Affiliation(s)
- Jessica X Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA; Brotman-Baty Institute for Precision Medicine, Seattle, WA.
| | - Seth I Berger
- Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC
| | - Samantha Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Erica Smith
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA
| | - Changrui Xiao
- Department of Neurology, University of California Irvine, Orange, CA
| | - Daniel G Calame
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neurosciences, Baylor College of Medicine, Houston, TX
| | | | | | - Stephanie DiTroia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Michael J Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA; Brotman-Baty Institute for Precision Medicine, Seattle, WA; Department of Pediatrics, Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA
| | - Heidi L Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
7
|
Chundru VK, Zhang Z, Walter K, Lindsay SJ, Danecek P, Eberhardt RY, Gardner EJ, Malawsky DS, Wigdor EM, Torene R, Retterer K, Wright CF, Ólafsdóttir H, Guillen Sacoto MJ, Ayaz A, Akbeyaz IH, Türkdoğan D, Al Balushi AI, Bertoli-Avella A, Bauer P, Szenker-Ravi E, Reversade B, McWalter K, Sheridan E, Firth HV, Hurles ME, Samocha KE, Ustach VD, Martin HC. Federated analysis of autosomal recessive coding variants in 29,745 developmental disorder patients from diverse populations. Nat Genet 2024; 56:2046-2053. [PMID: 39313616 PMCID: PMC11525179 DOI: 10.1038/s41588-024-01910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/14/2024] [Indexed: 09/25/2024]
Abstract
Autosomal recessive coding variants are well-known causes of rare disorders. We quantified the contribution of these variants to developmental disorders in a large, ancestrally diverse cohort comprising 29,745 trios, of whom 20.4% had genetically inferred non-European ancestries. The estimated fraction of patients attributable to exome-wide autosomal recessive coding variants ranged from ~2-19% across genetically inferred ancestry groups and was significantly correlated with average autozygosity. Established autosomal recessive developmental disorder-associated (ARDD) genes explained 84.0% of the total autosomal recessive coding burden, and 34.4% of the burden in these established genes was explained by variants not already reported as pathogenic in ClinVar. Statistical analyses identified two novel ARDD genes: KBTBD2 and ZDHHC16. This study expands our understanding of the genetic architecture of developmental disorders across diverse genetically inferred ancestry groups and suggests that improving strategies for interpreting missense variants in known ARDD genes may help diagnose more patients than discovering the remaining genes.
Collapse
Affiliation(s)
- V Kartik Chundru
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, UK
| | - Zhancheng Zhang
- GeneDx, Gaithersburg, MD, USA
- Deka Biosciences, Germantown, MD, USA
| | - Klaudia Walter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sarah J Lindsay
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Eugene J Gardner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- MRC Epidemiology Unit, Cambridge, UK
| | | | - Emilie M Wigdor
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Rebecca Torene
- GeneDx, Gaithersburg, MD, USA
- Geisinger, Danville, PA, USA
| | - Kyle Retterer
- GeneDx, Gaithersburg, MD, USA
- Geisinger, Danville, PA, USA
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Royal Devon and Exeter Hospital, Exeter, UK
| | | | | | - Akif Ayaz
- Istanbul Medipol University, Medical School, Department of Medical Genetics, Istanbul, Turkey
| | - Ismail Hakki Akbeyaz
- Marmara University Medical Faculty, Pendik Training and Research Hospital, Department of Pediatric Neurology, Istanbul, Turkey
| | - Dilşad Türkdoğan
- Marmara University Medical Faculty, Pendik Training and Research Hospital, Department of Pediatric Neurology, Istanbul, Turkey
| | | | | | - Peter Bauer
- Medical Genetics, CENTOGENE GmbH, Rostock, Germany
- Clinic of Internal Medicine, Department of Hematology, Oncology, and Palliative Medicine, University Medicine Rostock, Rostock, Germany
| | | | - Bruno Reversade
- Laboratory of Human Genetics & Therapeutics, BESE, KAUST, Thuwal, Saudi Arabia
| | | | - Eamonn Sheridan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Leeds Institute of Medical Research, University of Leeds, St. James's University Hospital, Leeds, UK
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK
| | - Helen V Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge University Hospitals Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | | | - Kaitlin E Samocha
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
8
|
van Karnebeek CDM, O'Donnell-Luria A, Baynam G, Baudot A, Groza T, Jans JJM, Lassmann T, Letinturier MCV, Montgomery SB, Robinson PN, Sansen S, Mehrian-Shai R, Steward C, Kosaki K, Durao P, Sadikovic B. Leaving no patient behind! Expert recommendation in the use of innovative technologies for diagnosing rare diseases. Orphanet J Rare Dis 2024; 19:357. [PMID: 39334316 PMCID: PMC11438178 DOI: 10.1186/s13023-024-03361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Genetic diagnosis plays a crucial role in rare diseases, particularly with the increasing availability of emerging and accessible treatments. The International Rare Diseases Research Consortium (IRDiRC) has set its primary goal as: "Ensuring that all patients who present with a suspected rare disease receive a diagnosis within one year if their disorder is documented in the medical literature". Despite significant advances in genomic sequencing technologies, more than half of the patients with suspected Mendelian disorders remain undiagnosed. In response, IRDiRC proposes the establishment of "a globally coordinated diagnostic and research pipeline". To help facilitate this, IRDiRC formed the Task Force on Integrating New Technologies for Rare Disease Diagnosis. This multi-stakeholder Task Force aims to provide an overview of the current state of innovative diagnostic technologies for clinicians and researchers, focusing on the patient's diagnostic journey. Herein, we provide an overview of a broad spectrum of emerging diagnostic technologies involving genomics, epigenomics and multi-omics, functional testing and model systems, data sharing, bioinformatics, and Artificial Intelligence (AI), highlighting their advantages, limitations, and the current state of clinical adaption. We provide expert recommendations outlining the stepwise application of these innovative technologies in the diagnostic pathways while considering global differences in accessibility. The importance of FAIR (Findability, Accessibility, Interoperability, and Reusability) and CARE (Collective benefit, Authority to control, Responsibility, and Ethics) data management is emphasized, along with the need for enhanced and continuing education in medical genomics. We provide a perspective on future technological developments in genome diagnostics and their integration into clinical practice. Lastly, we summarize the challenges related to genomic diversity and accessibility, highlighting the significance of innovative diagnostic technologies, global collaboration, and equitable access to diagnosis and treatment for people living with rare disease.
Collapse
Affiliation(s)
- Clara D M van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam Gastro-Enterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, USA
| | - Gareth Baynam
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, MMG, Marseille, France
| | - Anaïs Baudot
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, MMG, Marseille, France
| | - Tudor Groza
- Rare Care Centre, Perth Children's Hospital and Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Perth, Australia
- European Molecular Biology Laboratory (EMBL-EBI), European Bioinformatics Institute, Hinxton, UK
| | - Judith J M Jans
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | - Ruty Mehrian-Shai
- Pediatric Brain Cancer Molecular Lab, Sheba Medical Center, Ramat Gan, Israel
| | | | | | - Patricia Durao
- The Cure and Action for Tay-Sachs (CATS) Foundation, Altringham, UK
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences, London, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| |
Collapse
|
9
|
Heredia-Torrejón M, Montañez R, González-Meneses A, Carcavilla A, Medina MA, Lechuga-Sancho AM. VUS next in rare diseases? Deciphering genetic determinants of biomolecular condensation. Orphanet J Rare Dis 2024; 19:327. [PMID: 39243101 PMCID: PMC11380411 DOI: 10.1186/s13023-024-03307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/06/2024] [Indexed: 09/09/2024] Open
Abstract
The diagnostic odysseys for rare disease patients are getting shorter as next-generation sequencing becomes more widespread. However, the complex genetic diversity and factors influencing expressivity continue to challenge accurate diagnosis, leaving more than 50% of genetic variants categorized as variants of uncertain significance.Genomic expression intricately hinges on localized interactions among its products. Conventional variant prioritization, biased towards known disease genes and the structure-function paradigm, overlooks the potential impact of variants shaping the composition, location, size, and properties of biomolecular condensates, genuine membraneless organelles swiftly sensing and responding to environmental changes, and modulating expressivity.To address this complexity, we propose to focus on the nexus of genetic variants within biomolecular condensates determinants. Scrutinizing variant effects in these membraneless organelles could refine prioritization, enhance diagnostics, and unveil the molecular underpinnings of rare diseases. Integrating comprehensive genome sequencing, transcriptomics, and computational models can unravel variant pathogenicity and disease mechanisms, enabling precision medicine. This paper presents the rationale driving our proposal and describes a protocol to implement this approach. By fusing state-of-the-art knowledge and methodologies into the clinical practice, we aim to redefine rare diseases diagnosis, leveraging the power of scientific advancement for more informed medical decisions.
Collapse
Affiliation(s)
- María Heredia-Torrejón
- Inflammation, Nutrition, Metabolism and Oxidative Stress Research Laboratory, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain
- Mother and Child Health and Radiology Department. Area of Clinical Genetics, University of Cadiz. Faculty of Medicine, Cadiz, Spain
| | - Raúl Montañez
- Inflammation, Nutrition, Metabolism and Oxidative Stress Research Laboratory, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain.
- Department of Molecular Biology and Biochemistry, University of Malaga, Andalucía Tech, E-29071, Málaga, Spain.
| | - Antonio González-Meneses
- Division of Dysmorphology, Department of Paediatrics, Virgen del Rocio University Hospital, Sevilla, Spain
- Department of Paediatrics, Medical School, University of Sevilla, Sevilla, Spain
| | - Atilano Carcavilla
- Pediatric Endocrinology Department, Hospital Universitario La Paz, 28046, Madrid, Spain
- Multidisciplinary Unit for RASopathies, Hospital Universitario La Paz, 28046, Madrid, Spain
| | - Miguel A Medina
- Department of Molecular Biology and Biochemistry, University of Malaga, Andalucía Tech, E-29071, Málaga, Spain.
- Biomedical Research Institute and nanomedicine platform of Málaga IBIMA-BIONAND, E-29071, Málaga, Spain.
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029, Madrid, Spain.
| | - Alfonso M Lechuga-Sancho
- Inflammation, Nutrition, Metabolism and Oxidative Stress Research Laboratory, Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, Spain
- Division of Endocrinology, Department of Paediatrics, Puerta del Mar University Hospital, Cádiz, Spain
- Area of Paediatrics, Department of Child and Mother Health and Radiology, Medical School, University of Cadiz, Cadiz, Spain
| |
Collapse
|
10
|
Venkateswaran S, Michaud J, Ito Y, Geraghty M, Lewis EC, Ellezam B, Boycott KM, Dyment DA, Kernohan KD. IRF2BPL-Related Disorder, Causing Neurodevelopmental Disorder with Regression, Abnormal Movements, Loss of Speech and Seizures (NEDAMSS) Is Characterized by Pathology Consistent with DRPLA. Mov Disord 2024. [PMID: 39224955 DOI: 10.1002/mds.29938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Childhood neurodegenerative diseases often pose a challenge to clinicians to diagnose because of the degree of genetic heterogeneity and variable presentations. Here, we present a child with progressive neurodegeneration consisting of spasticity, dystonia, and ataxia in which postmortem pathological analysis led to the diagnosis of interferon regulatory factor 2 binding protein like (IRF2BPL)-related disorder. METHODS Detailed postmortem gross and histological examination was conducted, and findings consistent with dentatorubral-pallidoluysian atrophy (DRPLA) and included polyglutamine (polyQ) inclusions. Follow up testing for the CAG repeat expansion at ATN1 was non-diagnostic. RESULTS Subsequent exome sequencing reanalysis of the research exome identified a pathogenic de novo IRF2BPL variant. The IRF2BPL c.562C>T, p.(Arg188Ter) variant, distal to the polyQ repeat tract, results in variable mRNA levels depending on the cell type examined with decreased mRNA in the brain, as well as destabilization of the protein product and corresponding downstream molecular abnormalities in patient derived cells. CONCLUSION We provide the first detailed pathological description for IRF2BPL-related disorder, termed NEDAMSS (neurodevelopmental disorder with regression, abnormal movements, loss of speech and seizures; Mendelian Inheritance in Man, 618088) and evidence for the inclusion of this condition in the differential diagnosis of spastic-ataxic neurodegenerative conditions, reminiscent of DRPLA. Although the individuals with NEDAMSS do not carry an expansion, the polyQ repeat tract may play a role in the pathological inclusions that would represent a novel disease mechanism for polyQ repeats. © 2024 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sunita Venkateswaran
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Children's Hospital, London Health Sciences Centre, Western University, London, Canada
| | - Jean Michaud
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Canada
| | - Yoko Ito
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Michael Geraghty
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Newborn Screening Ontario, Ottawa, Canada
| | | | - Benjamin Ellezam
- Division of Pathology, CHU Ste-Justine, University of Montréal, Montréal, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
- Newborn Screening Ontario, Ottawa, Canada
| |
Collapse
|
11
|
Palmer EE, Cederroth H, Cederroth M, Delgado-Vega AM, Roberts N, Taylan F, Nordgren A, Botto LD. Equity in action: The Diagnostic Working Group of The Undiagnosed Diseases Network International. NPJ Genom Med 2024; 9:37. [PMID: 38965249 PMCID: PMC11224220 DOI: 10.1038/s41525-024-00422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/29/2024] [Indexed: 07/06/2024] Open
Abstract
Rare diseases are recognized as a global public health priority. A timely and accurate diagnosis is a critical enabler for precise and personalized health care. However, barriers to rare disease diagnoses are especially steep for those from historically underserved communities, including low- and middle-income countries. The Undiagnosed Diseases Network International (UDNI) was launched in 2015 to help fill the knowledge gaps that impede diagnosis for rare diseases, and to foster the translation of research into medical practice, aided by active patient involvement. To better pursue these goals, in 2021 the UDNI established the Diagnostic Working Group of the UDNI (UDNI DWG) as a community of practice that would (a) accelerate diagnoses for more families; (b) support and share knowledge and skills by developing Undiagnosed Diseases Programs, particularly those in lower resource areas; and (c) promote discovery and expand global medical knowledge. This Perspectives article documents the initial establishment and iterative co-design of the UDNI DWG.
Collapse
Affiliation(s)
- Elizabeth Emma Palmer
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
- Centre for Clinical Genetics, Sydney Childrens' Hospitals Network, Sydney, NSW, Australia.
| | | | | | - Angelica Maria Delgado-Vega
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Natalie Roberts
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Institute of Biomedicine, Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lorenzo D Botto
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
12
|
Cacheiro P, Lawson S, Van den Veyver IB, Marengo G, Zocche D, Murray SA, Duyzend M, Robinson PN, Smedley D. Lethal phenotypes in Mendelian disorders. Genet Med 2024; 26:101141. [PMID: 38629401 PMCID: PMC11232373 DOI: 10.1016/j.gim.2024.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
PURPOSE Existing resources that characterize the essentiality status of genes are based on either proliferation assessment in human cell lines, viability evaluation in mouse knockouts, or constraint metrics derived from human population sequencing studies. Several repositories document phenotypic annotations for rare disorders; however, there is a lack of comprehensive reporting on lethal phenotypes. METHODS We queried Online Mendelian Inheritance in Man for terms related to lethality and classified all Mendelian genes according to the earliest age of death recorded for the associated disorders, from prenatal death to no reports of premature death. We characterized the genes across these lethality categories, examined the evidence on viability from mouse models and explored how this information could be used for novel gene discovery. RESULTS We developed the Lethal Phenotypes Portal to showcase this curated catalog of human essential genes. Differences in the mode of inheritance, physiological systems affected, and disease class were found for genes in different lethality categories, as well as discrepancies between the lethal phenotypes observed in mouse and human. CONCLUSION We anticipate that this resource will aid clinicians in the diagnosis of early lethal conditions and assist researchers in investigating the properties that make these genes essential for human development.
Collapse
Affiliation(s)
- Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Samantha Lawson
- ITS Research, Queen Mary University of London, London, United Kingdom
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Gabriel Marengo
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - David Zocche
- North West Thames Regional Genetics Service, Northwick Park and St Mark's Hospitals, London, United Kingdom
| | | | - Michael Duyzend
- Massachusetts General Hospital, Boston, MA; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA; Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Peter N Robinson
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
13
|
Chong JX, Berger SI, Baxter S, Smith E, Xiao C, Calame DG, Hawley MH, Rivera-Munoz EA, DiTroia S, Bamshad MJ, Rehm HL. Considerations for reporting variants in novel candidate genes identified during clinical genomic testing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579012. [PMID: 38370830 PMCID: PMC10871197 DOI: 10.1101/2024.02.05.579012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Since the first novel gene discovery for a Mendelian condition was made via exome sequencing (ES), the rapid increase in the number of genes known to underlie Mendelian conditions coupled with the adoption of exome (and more recently, genome) sequencing by diagnostic testing labs has changed the landscape of genomic testing for rare disease. Specifically, many individuals suspected to have a Mendelian condition are now routinely offered clinical ES. This commonly results in a precise genetic diagnosis but frequently overlooks the identification of novel candidate genes. Such candidates are also less likely to be identified in the absence of large-scale gene discovery research programs. Accordingly, clinical laboratories have both the opportunity, and some might argue a responsibility, to contribute to novel gene discovery which should in turn increase the diagnostic yield for many conditions. However, clinical diagnostic laboratories must necessarily balance priorities for throughput, turnaround time, cost efficiency, clinician preferences, and regulatory constraints, and often do not have the infrastructure or resources to effectively participate in either clinical translational or basic genome science research efforts. For these and other reasons, many laboratories have historically refrained from broadly sharing potentially pathogenic variants in novel genes via networks like Matchmaker Exchange, much less reporting such results to ordering providers. Efforts to report such results are further complicated by a lack of guidelines for clinical reporting and interpretation of variants in novel candidate genes. Nevertheless, there are myriad benefits for many stakeholders, including patients/families, clinicians, researchers, if clinical laboratories systematically and routinely identify, share, and report novel candidate genes. To facilitate this change in practice, we developed criteria for triaging, sharing, and reporting novel candidate genes that are most likely to be promptly validated as underlying a Mendelian condition and translated to use in clinical settings.
Collapse
Affiliation(s)
- Jessica X. Chong
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA, 98195, USA
- Brotman-Baty Institute for Precision Medicine, 1959 NE Pacific Street, Box 357657, Seattle, WA, 98195, USA
| | - Seth I. Berger
- Center for Genetic Medicine Research, Children’s National Research Institute, 111 Michigan Ave, NW, Washington, DC, 20010, USA
| | - Samantha Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02141, USA
| | - Erica Smith
- Department of Clinical Diagnostics, Ambry Genetics, 15 Argonaut, Aliso Viejo, CA, 92656, USA
| | - Changrui Xiao
- Department of Neurology, University of California Irvine, 200 South Manchester Ave. St 206E, Orange, CA, 92868, USA
| | - Daniel G. Calame
- Department of Pediatrics, Division of Pediatric Neurology and Developmental Neurosciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Megan H. Hawley
- Clinical Operations, Invitae, 485F US-1 Suite 110, Iselin, NJ, 08830, USA
| | - E. Andres Rivera-Munoz
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza T605, Houston, TX, 77030, USA
| | - Stephanie DiTroia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02141, USA
| | | | - Michael J. Bamshad
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, 1959 NE Pacific Street, Box 357371, Seattle, WA, 98195, USA
- Brotman-Baty Institute for Precision Medicine, 1959 NE Pacific Street, Box 357657, Seattle, WA, 98195, USA
- Department of Pediatrics, Division of Genetic Medicine, Seattle Children’s Hospital, Seattle, WA, 98195, USA
| | - Heidi L. Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02141, USA
- Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St, Boston, MA, 02114, USA
| |
Collapse
|
14
|
Gudmundsson S, Singer-Berk M, Stenton SL, Goodrich JK, Wilson MW, Einson J, Watts NA, Lappalainen T, Rehm HL, MacArthur DG, O’Donnell-Luria A. Exploring penetrance of clinically relevant variants in over 800,000 humans from the Genome Aggregation Database. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.593113. [PMID: 38915639 PMCID: PMC11195293 DOI: 10.1101/2024.06.12.593113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Incomplete penetrance, or absence of disease phenotype in an individual with a disease-associated variant, is a major challenge in variant interpretation. Studying individuals with apparent incomplete penetrance can shed light on underlying drivers of altered phenotype penetrance. Here, we investigate clinically relevant variants from ClinVar in 807,162 individuals from the Genome Aggregation Database (gnomAD), demonstrating improved representation in gnomAD version 4. We then conduct a comprehensive case-by-case assessment of 734 predicted loss of function variants (pLoF) in 77 genes associated with severe, early-onset, highly penetrant haploinsufficient disease. We identified explanations for the presumed lack of disease manifestation in 701 of the variants (95%). Individuals with unexplained lack of disease manifestation in this set of disorders rarely occur, underscoring the need and power of deep case-by-case assessment presented here to minimize false assignments of disease risk, particularly in unaffected individuals with higher rates of secondary properties that result in rescue.
Collapse
Affiliation(s)
- Sanna Gudmundsson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Moriel Singer-Berk
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sarah L. Stenton
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia K. Goodrich
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael W. Wilson
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Nicholas A Watts
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Tuuli Lappalainen
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- New York Genome Center, New York, NY, USA
| | - Heidi L. Rehm
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel G. MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Anne O’Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine & Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Migliavacca MP, Sobreira J, Bermeo D, Gomes M, Alencar D, Sussuchi L, Souza CA, Silva JS, Kroll JE, Burger M, Guarischi-Sousa R, Villela D, Yamamoto GL, Milanezi F, Horigoshi N, Cesar RG, de Carvalho WB, Honjo RS, Bertola DR, Kim CA, de Souza L, Procianoy RS, Silveria RC, Rosenberg C, Giugliani R, Campana GA, Scapulatempo-Neto C, Sobreira N. Whole genome sequencing as a first-tier diagnostic test for infants in neonatal intensive care units: A pilot study in Brazil. Am J Med Genet A 2024; 194:e63544. [PMID: 38258498 DOI: 10.1002/ajmg.a.63544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024]
Abstract
In this pilot study, we aimed to evaluate the feasibility of whole genome sequencing (WGS) as a first-tier diagnostic test for infants hospitalized in neonatal intensive care units in the Brazilian healthcare system. The cohort presented here results from a joint collaboration between private and public hospitals in Brazil considering the initiative of a clinical laboratory to provide timely diagnosis for critically ill infants. We performed trio (proband and parents) WGS in 21 infants suspected of a genetic disease with an urgent need for diagnosis to guide medical care. Overall, the primary indication for genetic testing was dysmorphic syndromes (n = 14, 67%) followed by inborn errors of metabolism (n = 6, 29%) and skeletal dysplasias (n = 1, 5%). The diagnostic yield in our cohort was 57% (12/21) based on cases that received a definitive or likely definitive diagnostic result from WGS analysis. A total of 16 pathogenic/likely pathogenic variants and 10 variants of unknown significance were detected, and in most cases inherited from an unaffected parent. In addition, the reported variants were of different types, but mainly missense (58%) and associated with autosomal diseases (19/26); only three were associated with X-linked diseases, detected in hemizygosity in the proband an inherited from an unaffected mother. Notably, we identified 10 novel variants, absent from public genomic databases, in our cohort. Considering the entire diagnostic process, the average turnaround time from enrollment to medical report in our study was 53 days. Our findings demonstrate the remarkable utility of WGS as a diagnostic tool, elevating the potential of transformative impact since it outperforms conventional genetic tests. Here, we address the main challenges associated with implementing WGS in the medical care system in Brazil, as well as discuss the potential benefits and limitations of WGS as a diagnostic tool in the neonatal care setting.
Collapse
Affiliation(s)
| | - Joselito Sobreira
- Diagnósticos da América S.A., DASA, São Paulo, Brazil
- Hospital Infantil Sabará, São Paulo, Brazil
| | - Diana Bermeo
- Diagnósticos da América S.A., DASA, São Paulo, Brazil
| | | | - Dayse Alencar
- Diagnósticos da América S.A., DASA, São Paulo, Brazil
| | | | | | | | | | | | | | | | - Guilherme L Yamamoto
- Diagnósticos da América S.A., DASA, São Paulo, Brazil
- Instituto da Criança, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | | | - Rachel Sayuri Honjo
- Instituto da Criança, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | | | - Chong Ae Kim
- Instituto da Criança, Faculdade de Medicina (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Lucian de Souza
- Hospital das Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | | | - Rita C Silveria
- Hospital das Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | | | - Roberto Giugliani
- Diagnósticos da América S.A., DASA, São Paulo, Brazil
- Hospital das Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | | | | | - Nara Sobreira
- Diagnósticos da América S.A., DASA, São Paulo, Brazil
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Her Y, Pascual DM, Goldstone-Joubert Z, Marcogliese PC. Variant functional assessment in Drosophila by overexpression: what can we learn? Genome 2024; 67:158-167. [PMID: 38412472 DOI: 10.1139/gen-2023-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The last decade has been highlighted by the increased use of next-generation DNA sequencing technology to identify novel human disease genes. A critical downstream part of this process is assigning function to a candidate gene variant. Functional studies in Drosophila melanogaster, the common fruit fly, have made a prominent contribution in annotating variant impact in an in vivo system. The use of patient-derived knock-in flies or rescue-based, "humanization", approaches are novel and valuable strategies in variant testing but have been recently widely reviewed. An often-overlooked strategy for determining variant impact has been GAL4/upstream activation sequence-mediated tissue-defined overexpression in Drosophila. This mini-review will summarize the recent contribution of ectopic overexpression of human reference and variant cDNA in Drosophila to assess variant function, interpret the consequence of the variant, and in some cases infer biological mechanisms.
Collapse
Affiliation(s)
- Yina Her
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Danielle M Pascual
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Zoe Goldstone-Joubert
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Paul C Marcogliese
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
- Excellence in Neurodevelopment and Rehabilitation Research in Child Health (ENRRICH) Theme, Winnipeg, MB, Canada
| |
Collapse
|
17
|
Vuocolo B, German RJ, Lalani SR, Murali CN, Bacino CA, Baskin S, Littlejohn R, Odom JD, McLean S, Schmid C, Nutter M, Stuebben M, Magness E, Juarez O, El Achi D, Mitchell B, Glinton KE, Robak L, Nagamani SCS, Saba L, Ritenour A, Zhang L, Streff H, Chan K, Kemere KJ, Carter K, Owen N, Vossaert L, Liu P, Bellen H, Wangler MF. Improving access to exome sequencing in a medically underserved population through the Texome Project. Genet Med 2024; 26:101102. [PMID: 38431799 PMCID: PMC11161315 DOI: 10.1016/j.gim.2024.101102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
PURPOSE Genomic medicine can end diagnostic odysseys for patients with complex phenotypes; however, limitations in insurance coverage and other systemic barriers preclude individuals from accessing comprehensive genetics evaluation and testing. METHODS The Texome Project is a 4-year study that reduces barriers to genomic testing for individuals from underserved and underrepresented populations. Participants with undiagnosed, rare diseases who have financial barriers to obtaining exome sequencing (ES) clinically are enrolled in the Texome Project. RESULTS We highlight the Texome Project process and describe the outcomes of the first 60 ES results for study participants. Participants received a genetic evaluation, ES, and return of results at no cost. We summarize the psychosocial or medical implications of these genetic diagnoses. Thus far, ES provided molecular diagnoses for 18 out of 60 (30%) of Texome participants. Plus, in 11 out of 60 (18%) participants, a partial or probable diagnosis was identified. Overall, 5 participants had a change in medical management. CONCLUSION To date, the Texome Project has recruited a racially, ethnically, and socioeconomically diverse cohort. The diagnostic rate and medical impact in this cohort support the need for expanded access to genetic testing and services. The Texome Project will continue reducing barriers to genomic care throughout the future study years.
Collapse
Affiliation(s)
- Blake Vuocolo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Ryan J German
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Chaya N Murali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Stephanie Baskin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | | | - John D Odom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | - Scott McLean
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | - Carrie Schmid
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | - Morgan Nutter
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | - Melissa Stuebben
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | - Emily Magness
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Olivia Juarez
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | - Dina El Achi
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | - Bailey Mitchell
- Department of Pediatrics, Baylor College of Medicine, San Antonio, TX
| | - Kevin E Glinton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Laurie Robak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital Department of Pathology, Houston, TX
| | - Lisa Saba
- Texas Children's Hospital Department of Pathology, Houston, TX
| | - Adasia Ritenour
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital Department of Pathology, Houston, TX
| | - Katie Chan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - K Jordan Kemere
- Department of Internal Medicine, Section Transition Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Kent Carter
- Department of Pediatrics, University of Texas Rio Grande Valley, Harlingen, TX
| | | | | | | | - Hugo Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX.
| |
Collapse
|
18
|
Kernohan KD, Boycott KM. The expanding diagnostic toolbox for rare genetic diseases. Nat Rev Genet 2024; 25:401-415. [PMID: 38238519 DOI: 10.1038/s41576-023-00683-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 05/23/2024]
Abstract
Genomic technologies, such as targeted, exome and short-read genome sequencing approaches, have revolutionized the care of patients with rare genetic diseases. However, more than half of patients remain without a diagnosis. Emerging approaches from research-based settings such as long-read genome sequencing and optical genome mapping hold promise for improving the identification of disease-causal genetic variants. In addition, new omic technologies that measure the transcriptome, epigenome, proteome or metabolome are showing great potential for variant interpretation. As genetic testing options rapidly expand, the clinical community needs to be mindful of their individual strengths and limitations, as well as remaining challenges, to select the appropriate diagnostic test, correctly interpret results and drive innovation to address insufficiencies. If used effectively - through truly integrative multi-omics approaches and data sharing - the resulting large quantities of data from these established and emerging technologies will greatly improve the interpretative power of genetic and genomic diagnostics for rare diseases.
Collapse
Affiliation(s)
- Kristin D Kernohan
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
- Newborn Screening Ontario, CHEO, Ottawa, ON, Canada
| | - Kym M Boycott
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada.
- Department of Genetics, CHEO, Ottawa, ON, Canada.
| |
Collapse
|
19
|
Araújo Salomão RP, Rezende Filho FM, Borges V, Kurian MA, Ferraz HB, Breedveld GJ, Bonifati V, Barsottini OG, Pedroso JL. Clinical, neuroimaging and genetic findings in Brazilian patients with neurodegeneration with brain iron accumulation. Parkinsonism Relat Disord 2024; 123:106103. [PMID: 38582019 DOI: 10.1016/j.parkreldis.2024.106103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 04/08/2024]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) encompasses a clinically and genetically heterogeneous group of rare disorders. Here, we report clinical, neuroimaging and genetic studies in twenty three Brazilian NBIA patients. In thirteen subjects, deleterious variants were detected in known NBIA-causing genes (PANK2, PLA2G6, C9ORF12, WDR45 and FA2H), including previously unreported variants in PANK2 and PLA2G6. Two patients carried rare, likely pathogenic variants in genes not previously associated with NBIA: KMT2A c.11785A > C (p.Ile3929Leu), and TIMM8A c.127T > C (p.Cys43Arg), suggesting an expansion of their associated phenotypes to include NBIA. In eight patients the etiology remains unsolved, suggesting variants undetectable by the adopted methods, or the existence of additional NBIA-causing genes.
Collapse
Affiliation(s)
| | | | - Vanderci Borges
- Movement Disorders Unit, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Manju A Kurian
- Great Ormond Street Hospital, Department of Neurology, London, United Kingdom
| | | | - Guido J Breedveld
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, the Netherlands
| | - Vincenzo Bonifati
- Erasmus MC, University Medical Center Rotterdam, Department of Clinical Genetics, the Netherlands
| | - Orlando G Barsottini
- Department of Neurology, Ataxia Unit, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - José Luiz Pedroso
- Department of Neurology, Ataxia Unit, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
20
|
Chao KR, Wang L, Panchal R, Liao C, Abderrazzaq H, Ye R, Schultz P, Compitello J, Grant RH, Kosmicki JA, Weisburd B, Phu W, Wilson MW, Laricchia KM, Goodrich JK, Goldstein D, Goldstein JI, Vittal C, Poterba T, Baxter S, Watts NA, Solomonson M, Tiao G, Rehm HL, Neale BM, Talkowski ME, MacArthur DG, O'Donnell-Luria A, Karczewski KJ, Radivojac P, Daly MJ, Samocha KE. The landscape of regional missense mutational intolerance quantified from 125,748 exomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.588920. [PMID: 38645134 PMCID: PMC11030311 DOI: 10.1101/2024.04.11.588920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Missense variants can have a range of functional impacts depending on factors such as the specific amino acid substitution and location within the gene. To interpret their deleteriousness, studies have sought to identify regions within genes that are specifically intolerant of missense variation 1-12 . Here, we leverage the patterns of rare missense variation in 125,748 individuals in the Genome Aggregation Database (gnomAD) 13 against a null mutational model to identify transcripts that display regional differences in missense constraint. Missense-depleted regions are enriched for ClinVar 14 pathogenic variants, de novo missense variants from individuals with neurodevelopmental disorders (NDDs) 15,16 , and complex trait heritability. Following ClinGen calibration recommendations for the ACMG/AMP guidelines, we establish that regions with less than 20% of their expected missense variation achieve moderate support for pathogenicity. We create a missense deleteriousness metric (MPC) that incorporates regional constraint and outperforms other deleteriousness scores at stratifying case and control de novo missense variation, with a strong enrichment in NDDs. These results provide additional tools to aid in missense variant interpretation.
Collapse
|
21
|
Hadar N, Dolgin V, Oustinov K, Yogev Y, Poleg T, Safran A, Freund O, Agam N, Jean MM, Proskorovski-Ohayon R, Wormser O, Drabkin M, Halperin D, Eskin-Schwartz M, Narkis G, Sued-Hendrickson S, Aminov I, Gombosh M, Aharoni S, Birk OS. VARista: a free web platform for streamlined whole-genome variant analysis across T2T, hg38, and hg19. Hum Genet 2024; 143:695-701. [PMID: 38607411 DOI: 10.1007/s00439-024-02671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
With the increasing importance of genomic data in understanding genetic diseases, there is an essential need for efficient and user-friendly tools that simplify variant analysis. Although multiple tools exist, many present barriers such as steep learning curves, limited reference genome compatibility, or costs. We developed VARista, a free web-based tool, to address these challenges and provide a streamlined solution for researchers, particularly those focusing on rare monogenic diseases. VARista offers a user-centric interface that eliminates much of the technical complexity typically associated with variant analysis. The tool directly supports VCF files generated using reference genomes hg19, hg38, and the emerging T2T, with seamless remapping capabilities between them. Features such as gene summaries and links, tissue and cell-specific gene expression data for both adults and fetuses, as well as automated PCR design and integration with tools such as SpliceAI and AlphaMissense, enable users to focus on the biology and the case itself. As we demonstrate, VARista proved effective in narrowing down potential disease-causing variants, prioritizing them effectively, and providing meaningful biological context, facilitating rapid decision-making. VARista stands out as a freely available and comprehensive tool that consolidates various aspects of variant analysis into a single platform that embraces the forefront of genomic advancements. Its design inherently supports a shift in focus from technicalities to critical thinking, thereby promoting better-informed decisions in genetic disease research. Given its unique capabilities and user-centric design, VARista has the potential to become an essential asset for the genomic research community. https://VARista.link.
Collapse
Affiliation(s)
- Noam Hadar
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Vadim Dolgin
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Katya Oustinov
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tomer Poleg
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Amit Safran
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ofek Freund
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nadav Agam
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Matan M Jean
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Regina Proskorovski-Ohayon
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Max Drabkin
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Daniel Halperin
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Marina Eskin-Schwartz
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Ginat Narkis
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Sufa Sued-Hendrickson
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ilana Aminov
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Maya Gombosh
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Sarit Aharoni
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel.
| |
Collapse
|
22
|
Willsey HR, Seaby EG, Godwin A, Ennis S, Guille M, Grainger RM. Modelling human genetic disorders in Xenopus tropicalis. Dis Model Mech 2024; 17:dmm050754. [PMID: 38832520 PMCID: PMC11179720 DOI: 10.1242/dmm.050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Recent progress in human disease genetics is leading to rapid advances in understanding pathobiological mechanisms. However, the sheer number of risk-conveying genetic variants being identified demands in vivo model systems that are amenable to functional analyses at scale. Here we provide a practical guide for using the diploid frog species Xenopus tropicalis to study many genes and variants to uncover conserved mechanisms of pathobiology relevant to human disease. We discuss key considerations in modelling human genetic disorders: genetic architecture, conservation, phenotyping strategy and rigour, as well as more complex topics, such as penetrance, expressivity, sex differences and current challenges in the field. As the patient-driven gene discovery field expands significantly, the cost-effective, rapid and higher throughput nature of Xenopus make it an essential member of the model organism armamentarium for understanding gene function in development and in relation to disease.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA 94518, USA
| | - Eleanor G Seaby
- Genomic Informatics Group, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Annie Godwin
- European Xenopus Resource Centre (EXRC), School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Sarah Ennis
- Genomic Informatics Group, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Matthew Guille
- European Xenopus Resource Centre (EXRC), School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Robert M Grainger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
23
|
Dias KR, Shrestha R, Schofield D, Evans CA, O'Heir E, Zhu Y, Zhang F, Standen K, Weisburd B, Stenton SL, Sanchis-Juan A, Brand H, Talkowski ME, Ma A, Ghedia S, Wilson M, Sandaradura SA, Smith J, Kamien B, Turner A, Bakshi M, Adès LC, Mowat D, Regan M, McGillivray G, Savarirayan R, White SM, Tan TY, Stark Z, Brown NJ, Pérez-Jurado LA, Krzesinski E, Hunter MF, Akesson L, Fennell AP, Yeung A, Boughtwood T, Ewans LJ, Kerkhof J, Lucas C, Carey L, French H, Rapadas M, Stevanovski I, Deveson IW, Cliffe C, Elakis G, Kirk EP, Dudding-Byth T, Fletcher J, Walsh R, Corbett MA, Kroes T, Gecz J, Meldrum C, Cliffe S, Wall M, Lunke S, North K, Amor DJ, Field M, Sadikovic B, Buckley MF, O'Donnell-Luria A, Roscioli T. Narrowing the diagnostic gap: Genomes, episignatures, long-read sequencing, and health economic analyses in an exome-negative intellectual disability cohort. Genet Med 2024; 26:101076. [PMID: 38258669 DOI: 10.1016/j.gim.2024.101076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
PURPOSE Genome sequencing (GS)-specific diagnostic rates in prospective tightly ascertained exome sequencing (ES)-negative intellectual disability (ID) cohorts have not been reported extensively. METHODS ES, GS, epigenetic signatures, and long-read sequencing diagnoses were assessed in 74 trios with at least moderate ID. RESULTS The ES diagnostic yield was 42 of 74 (57%). GS diagnoses were made in 9 of 32 (28%) ES-unresolved families. Repeated ES with a contemporary pipeline on the GS-diagnosed families identified 8 of 9 single-nucleotide variations/copy-number variations undetected in older ES, confirming a GS-unique diagnostic rate of 1 in 32 (3%). Episignatures contributed diagnostic information in 9% with GS corroboration in 1 of 32 (3%) and diagnostic clues in 2 of 32 (6%). A genetic etiology for ID was detected in 51 of 74 (69%) families. Twelve candidate disease genes were identified. Contemporary ES followed by GS cost US$4976 (95% CI: $3704; $6969) per diagnosis and first-line GS at a cost of $7062 (95% CI: $6210; $8475) per diagnosis. CONCLUSION Performing GS only in ID trios would be cost equivalent to ES if GS were available at $2435, about a 60% reduction from current prices. This study demonstrates that first-line GS achieves higher diagnostic rate than contemporary ES but at a higher cost.
Collapse
Affiliation(s)
- Kerith-Rae Dias
- Neuroscience Research Australia, Sydney, NSW, Australia; Prince of Wales Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Rupendra Shrestha
- Centre for Economic Impacts of Genomic Medicine, Macquarie Business School, Macquarie University, Sydney, NSW, Australia
| | - Deborah Schofield
- Centre for Economic Impacts of Genomic Medicine, Macquarie Business School, Macquarie University, Sydney, NSW, Australia
| | - Carey-Anne Evans
- Neuroscience Research Australia, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Emily O'Heir
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Ying Zhu
- Neuroscience Research Australia, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia; The Genetics of Learning Disability Service, Waratah, NSW, Australia
| | - Futao Zhang
- Neuroscience Research Australia, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Krystle Standen
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Ben Weisburd
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sarah L Stenton
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Alan Ma
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, NSW, Australia; Specialty of Genomic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Sondy Ghedia
- Department of Clinical Genetics, Royal North Shore Hospital, Sydney, NSW, Australia; Northern Clinical School, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Meredith Wilson
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, NSW, Australia
| | - Sarah A Sandaradura
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, NSW, Australia; Disciplines of Child and Adolescent Health and Genetic Medicine, University of Sydney, Sydney, NSW 2050, Australia
| | - Janine Smith
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, NSW, Australia; Specialty of Genomic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Benjamin Kamien
- Genetic Services of Western Australia, Perth, WA, Australia; School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
| | - Anne Turner
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Madhura Bakshi
- Department of Clinical Genetics, Liverpool Hospital, Sydney, NSW, Australia
| | - Lesley C Adès
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney Children's Hospital Network, Sydney, NSW, Australia; Disciplines of Child and Adolescent Health and Genetic Medicine, University of Sydney, Sydney, NSW 2050, Australia
| | - David Mowat
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia; Discipline of Paediatrics & Child Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Matthew Regan
- Monash Genetics, Monash Health, Melbourne, VIC, Australia
| | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Ravi Savarirayan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Australian Genomics, Melbourne, VIC, Australia
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Luis A Pérez-Jurado
- Genetics Unit, Universitat Pompeu Fabra, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain; Women's and Children's Hospital, South Australian Health and Medical Research Institute & University of Adelaide, Adelaide, SA, Australia
| | - Emma Krzesinski
- Monash Genetics, Monash Health, Melbourne, VIC, Australia; Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, VIC, Australia; Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Lauren Akesson
- Melbourne Pathology, Melbourne, VIC, Australia; Department of Pathology, The Royal Melbourne Hospital, Melbourne, VIC, Australia; Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Paul Fennell
- Monash Genetics, Monash Health, Melbourne, VIC, Australia; Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Alison Yeung
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Tiffany Boughtwood
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Australian Genomics, Melbourne, VIC, Australia
| | - Lisa J Ewans
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia; Discipline of Paediatrics & Child Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia; Genomics and Inherited Disease Program, Garvan Institute of Medical Research, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre London Health Sciences Centre, London, ON, Canada
| | - Christopher Lucas
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Louise Carey
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Hugh French
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Melissa Rapadas
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, University of New South Wales Sydney, Sydney, NSW, Australia; Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, NSW, Australia
| | - Igor Stevanovski
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, University of New South Wales Sydney, Sydney, NSW, Australia; Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, NSW, Australia
| | - Ira W Deveson
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, University of New South Wales Sydney, Sydney, NSW, Australia; Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Sydney, NSW, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Corrina Cliffe
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - George Elakis
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Edwin P Kirk
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia; Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, NSW, Australia; Discipline of Paediatrics & Child Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | | | - Janice Fletcher
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Rebecca Walsh
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Mark A Corbett
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Thessa Kroes
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia; South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Cliff Meldrum
- State Wide Service, New South Wales Health Pathology, Sydney, NSW, Australia
| | - Simon Cliffe
- State Wide Service, New South Wales Health Pathology, Sydney, NSW, Australia
| | - Meg Wall
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - Kathryn North
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Australian Genomics, Melbourne, VIC, Australia; Global Alliance for Genomics and Health, Toronto, ON, Canada
| | - David J Amor
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Michael Field
- The Genetics of Learning Disability Service, Waratah, NSW, Australia
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre London Health Sciences Centre, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Michael F Buckley
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
| | - Tony Roscioli
- Neuroscience Research Australia, Sydney, NSW, Australia; Prince of Wales Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia.
| |
Collapse
|
24
|
Mao D, Liu C, Wang L, Ai-Ouran R, Deisseroth C, Pasupuleti S, Kim SY, Li L, Rosenfeld JA, Meng L, Burrage LC, Wangler MF, Yamamoto S, Santana M, Perez V, Shukla P, Eng CM, Lee B, Yuan B, Xia F, Bellen HJ, Liu P, Liu Z. AI-MARRVEL - A Knowledge-Driven AI System for Diagnosing Mendelian Disorders. NEJM AI 2024; 1:10.1056/aioa2300009. [PMID: 38962029 PMCID: PMC11221788 DOI: 10.1056/aioa2300009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
BACKGROUND Diagnosing genetic disorders requires extensive manual curation and interpretation of candidate variants, a labor-intensive task even for trained geneticists. Although artificial intelligence (AI) shows promise in aiding these diagnoses, existing AI tools have only achieved moderate success for primary diagnosis. METHODS AI-MARRVEL (AIM) uses a random-forest machine-learning classifier trained on over 3.5 million variants from thousands of diagnosed cases. AIM additionally incorporates expert-engineered features into training to recapitulate the intricate decision-making processes in molecular diagnosis. The online version of AIM is available at https://ai.marrvel.org. To evaluate AIM, we benchmarked it with diagnosed patients from three independent cohorts. RESULTS AIM improved the rate of accurate genetic diagnosis, doubling the number of solved cases as compared with benchmarked methods, across three distinct real-world cohorts. To better identify diagnosable cases from the unsolved pools accumulated over time, we designed a confidence metric on which AIM achieved a precision rate of 98% and identified 57% of diagnosable cases out of a collection of 871 cases. Furthermore, AIM's performance improved after being fine-tuned for targeted settings including recessive disorders and trio analysis. Finally, AIM demonstrated potential for novel disease gene discovery by correctly predicting two newly reported disease genes from the Undiagnosed Diseases Network. CONCLUSIONS AIM achieved superior accuracy compared with existing methods for genetic diagnosis. We anticipate that this tool may aid in primary diagnosis, reanalysis of unsolved cases, and the discovery of novel disease genes. (Funded by the NIH Common Fund and others.).
Collapse
Affiliation(s)
- Dongxue Mao
- Department of Pediatrics, Baylor College of Medicine, Houston
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | - Chaozhong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
- Graduate School of Biomedical Sciences, Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston
| | - Linhua Wang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
- Graduate School of Biomedical Sciences, Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston
| | - Rami Ai-Ouran
- Department of Pediatrics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
- Department of Data Science and AI, Al Hussein Technical University, Amman, Jordan
| | - Cole Deisseroth
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | - Sasidhar Pasupuleti
- Department of Pediatrics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | - Seon Young Kim
- Department of Pediatrics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | - Lucian Li
- Department of Pediatrics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
| | - Linyan Meng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Baylor Genetics, Houston7
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| | | | | | | | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Baylor Genetics, Houston7
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Human Genome Sequencing Center, Baylor College of Medicine, Houston
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Baylor Genetics, Houston7
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
- Department of Neuroscience, Baylor College of Medicine, Houston
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston
- Baylor Genetics, Houston7
| | - Zhandong Liu
- Department of Pediatrics, Baylor College of Medicine, Houston
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston
| |
Collapse
|
25
|
Marchant RG, Bryen SJ, Bahlo M, Cairns A, Chao KR, Corbett A, Davis MR, Ganesh VS, Ghaoui R, Jones KJ, Kornberg AJ, Lek M, Liang C, MacArthur DG, Oates EC, O'Donnell-Luria A, O'Grady GL, Osei-Owusu IA, Rafehi H, Reddel SW, Roxburgh RH, Ryan MM, Sandaradura SA, Scott LW, Valkanas E, Weisburd B, Young H, Evesson FJ, Waddell LB, Cooper ST. Genome and RNA sequencing boost neuromuscular diagnoses to 62% from 34% with exome sequencing alone. Ann Clin Transl Neurol 2024; 11:1250-1266. [PMID: 38544359 DOI: 10.1002/acn3.52041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/24/2024] [Indexed: 05/15/2024] Open
Abstract
OBJECTIVE Most families with heritable neuromuscular disorders do not receive a molecular diagnosis. Here we evaluate diagnostic utility of exome, genome, RNA sequencing, and protein studies and provide evidence-based recommendations for their integration into practice. METHODS In total, 247 families with suspected monogenic neuromuscular disorders who remained without a genetic diagnosis after standard diagnostic investigations underwent research-led massively parallel sequencing: neuromuscular disorder gene panel, exome, genome, and/or RNA sequencing to identify causal variants. Protein and RNA studies were also deployed when required. RESULTS Integration of exome sequencing and auxiliary genome, RNA and/or protein studies identified causal or likely causal variants in 62% (152 out of 247) of families. Exome sequencing alone informed 55% (83 out of 152) of diagnoses, with remaining diagnoses (45%; 69 out of 152) requiring genome sequencing, RNA and/or protein studies to identify variants and/or support pathogenicity. Arrestingly, novel disease genes accounted for <4% (6 out of 152) of diagnoses while 36.2% of solved families (55 out of 152) harbored at least one splice-altering or structural variant in a known neuromuscular disorder gene. We posit that contemporary neuromuscular disorder gene-panel sequencing could likely provide 66% (100 out of 152) of our diagnoses today. INTERPRETATION Our results emphasize thorough clinical phenotyping to enable deep scrutiny of all rare genetic variation in phenotypically consistent genes. Post-exome auxiliary investigations extended our diagnostic yield by 81% overall (34-62%). We present a diagnostic algorithm that details deployment of genomic and auxiliary investigations to obtain these diagnoses today most effectively. We hope this provides a practical guide for clinicians as they gain greater access to clinical genome and transcriptome sequencing.
Collapse
Affiliation(s)
- Rhett G Marchant
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Samantha J Bryen
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Melanie Bahlo
- Functional Neuromics, Children's Medical Research Institute, Westmead, New South Wales, Australia
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Anita Cairns
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Neurosciences Department, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Katherine R Chao
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alastair Corbett
- Neurology Department, Repatriation General Hospital Concord, Concord, New South Wales, Australia
| | - Mark R Davis
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, Perth, WA, Australia
| | - Vijay S Ganesh
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Neuromuscular Division, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Roula Ghaoui
- Department of Neurology, Central Adelaide Local Health Network/Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Genetics & Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Kristi J Jones
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Clinical Genetics, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Andrew J Kornberg
- Department of Neurology, Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Neurosciences Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Monkol Lek
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christina Liang
- Department of Neurology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Neurogenetics, Northern Clinical School, Kolling Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel G MacArthur
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Centre for Population Genomics, Garvan Institute of Medical Research/University of New South Wales, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Emily C Oates
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Randwick, New South Wales, Australia
| | - Anne O'Donnell-Luria
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gina L O'Grady
- Starship Children's Health, Auckland District Health Board, Auckland, New Zealand
| | - Ikeoluwa A Osei-Owusu
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Haloom Rafehi
- Functional Neuromics, Children's Medical Research Institute, Westmead, New South Wales, Australia
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Stephen W Reddel
- Neurology Department, Repatriation General Hospital Concord, Concord, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard H Roxburgh
- Department of Neurology, Auckland District Health Board, Auckland, New Zealand
- Centre of Brain Research Neurogenetics Research Clinic, University of Auckland, Auckland, New Zealand
| | - Monique M Ryan
- Department of Neurology, Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Neurosciences Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sarah A Sandaradura
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Clinical Genetics, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Liam W Scott
- Functional Neuromics, Children's Medical Research Institute, Westmead, New South Wales, Australia
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Elise Valkanas
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Ben Weisburd
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Helen Young
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Department of Neurology, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Paediatrics, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Frances J Evesson
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Leigh B Waddell
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Sandra T Cooper
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
26
|
Wang Y, Xu Y, Zhou C, Cheng Y, Qiao N, Shang Q, Xia L, Song J, Gao C, Qiao Y, Zhang X, Li M, Ma C, Fan Y, Peng X, Wu S, Lv N, Li B, Sun Y, Zhang B, Li T, Li H, Zhang J, Su Y, Li Q, Yuan J, Liu L, Moreno-De-Luca A, MacLennan AH, Gecz J, Zhu D, Wang X, Zhu C, Xing Q. Exome sequencing reveals genetic heterogeneity and clinically actionable findings in children with cerebral palsy. Nat Med 2024; 30:1395-1405. [PMID: 38693247 DOI: 10.1038/s41591-024-02912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/06/2024] [Indexed: 05/03/2024]
Abstract
Cerebral palsy (CP) is the most common motor disability in children. To ascertain the role of major genetic variants in the etiology of CP, we conducted exome sequencing on a large-scale cohort with clinical manifestations of CP. The study cohort comprised 505 girls and 1,073 boys. Utilizing the current gold standard in genetic diagnostics, 387 of these 1,578 children (24.5%) received genetic diagnoses. We identified 412 pathogenic and likely pathogenic (P/LP) variants across 219 genes associated with neurodevelopmental disorders, and 59 P/LP copy number variants. The genetic diagnostic rate of children with CP labeled at birth with perinatal asphyxia was higher than the rate in children without asphyxia (P = 0.0033). Also, 33 children with CP manifestations (8.5%, 33 of 387) had findings that were clinically actionable. These results highlight the need for early genetic testing in children with CP, especially those with risk factors like perinatal asphyxia, to enable evidence-based medical decision-making.
Collapse
Affiliation(s)
- Yangong Wang
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Yiran Xu
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Chongchen Zhou
- Rehabilitation Department, Henan Key Laboratory of Child Genetics and Metabolism, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Ye Cheng
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
- Shanghai Center for Women and Children's Health, Shanghai, China
| | - Niu Qiao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine (Shanghai), and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Shang
- Rehabilitation Department, Henan Key Laboratory of Child Genetics and Metabolism, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Xia
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Juan Song
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Chao Gao
- Rehabilitation Department, Henan Key Laboratory of Child Genetics and Metabolism, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yimeng Qiao
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Ming Li
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Caiyun Ma
- Rehabilitation Department, Henan Key Laboratory of Child Genetics and Metabolism, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangyi Fan
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Xirui Peng
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Silin Wu
- Department of Neurosurgery, The Affiliated Zhongshan Hospital of Fudan University, Shanghai, China
| | - Nan Lv
- Rehabilitation Department, Henan Key Laboratory of Child Genetics and Metabolism, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingbing Li
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Yanyan Sun
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Bohao Zhang
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Tongchuan Li
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Hongwei Li
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Jin Zhang
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
- Shanghai Center for Women and Children's Health, Shanghai, China
| | - Yu Su
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Qiaoli Li
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Junying Yuan
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Lei Liu
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Andres Moreno-De-Luca
- Department of Radiology, Neuroradiology Section, Kingston Health Sciences Centre, Queen's University Faculty of Health Sciences, Kingston, Ontario, Canada
| | - Alastair H MacLennan
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jozef Gecz
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Dengna Zhu
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Centre for Perinatal Medicine and Health, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Department of Pediatrics, Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, The Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou, China.
| | - Qinghe Xing
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China.
- Shanghai Center for Women and Children's Health, Shanghai, China.
| |
Collapse
|
27
|
Jenkins D. How do stochastic processes and genetic threshold effects explain incomplete penetrance and inform causal disease mechanisms? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230045. [PMID: 38432317 PMCID: PMC10909503 DOI: 10.1098/rstb.2023.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/16/2024] [Indexed: 03/05/2024] Open
Abstract
Incomplete penetrance is the rule rather than the exception in Mendelian disease. In syndromic monogenic disorders, phenotypic variability can be viewed as the combination of incomplete penetrance for each of multiple independent clinical features. Within genetically identical individuals, such as isogenic model organisms, stochastic variation at molecular and cellular levels is the primary cause of incomplete penetrance according to a genetic threshold model. By defining specific probability distributions of causal biological readouts and genetic liability values, stochasticity and incomplete penetrance provide information about threshold values in biological systems. Ascertainment of threshold values has been achieved by simultaneous scoring of relatively simple phenotypes and quantitation of molecular readouts at the level of single cells. However, this is much more challenging for complex morphological phenotypes using experimental and reductionist approaches alone, where cause and effect are separated temporally and across multiple biological modes and scales. Here I consider how causal inference, which integrates observational data with high confidence causal models, might be used to quantify the relative contribution of different sources of stochastic variation to phenotypic diversity. Collectively, these approaches could inform disease mechanisms, improve predictions of clinical outcomes and prioritize gene therapy targets across modes and scales of gene function. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.
Collapse
Affiliation(s)
- Dagan Jenkins
- Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
28
|
Tsishyn M, Cia G, Hermans P, Kwasigroch J, Rooman M, Pucci F. FiTMuSiC: leveraging structural and (co)evolutionary data for protein fitness prediction. Hum Genomics 2024; 18:36. [PMID: 38627807 PMCID: PMC11020440 DOI: 10.1186/s40246-024-00605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Systematically predicting the effects of mutations on protein fitness is essential for the understanding of genetic diseases. Indeed, predictions complement experimental efforts in analyzing how variants lead to dysfunctional proteins that in turn can cause diseases. Here we present our new fitness predictor, FiTMuSiC, which leverages structural, evolutionary and coevolutionary information. We show that FiTMuSiC predicts fitness with high accuracy despite the simplicity of its underlying model: it was among the top predictors on the hydroxymethylbilane synthase (HMBS) target of the sixth round of the Critical Assessment of Genome Interpretation challenge (CAGI6) and performs as well as much more complex deep learning models such as AlphaMissense. To further demonstrate FiTMuSiC's robustness, we compared its predictions with in vitro activity data on HMBS, variant fitness data on human glucokinase (GCK), and variant deleteriousness data on HMBS and GCK. These analyses further confirm FiTMuSiC's qualities and accuracy, which compare favorably with those of other predictors. Additionally, FiTMuSiC returns two scores that separately describe the functional and structural effects of the variant, thus providing mechanistic insight into why the variant leads to fitness loss or gain. We also provide an easy-to-use webserver at https://babylone.ulb.ac.be/FiTMuSiC , which is freely available for academic use and does not require any bioinformatics expertise, which simplifies the accessibility of our tool for the entire scientific community.
Collapse
Affiliation(s)
- Matsvei Tsishyn
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 50 Roosevelt Ave, 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Triumph Bvd, 1050, Brussels, Belgium
| | - Gabriel Cia
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 50 Roosevelt Ave, 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Triumph Bvd, 1050, Brussels, Belgium
| | - Pauline Hermans
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 50 Roosevelt Ave, 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Triumph Bvd, 1050, Brussels, Belgium
| | - Jean Kwasigroch
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 50 Roosevelt Ave, 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Triumph Bvd, 1050, Brussels, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 50 Roosevelt Ave, 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Triumph Bvd, 1050, Brussels, Belgium
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 50 Roosevelt Ave, 1050, Brussels, Belgium.
- Interuniversity Institute of Bioinformatics in Brussels, Triumph Bvd, 1050, Brussels, Belgium.
| |
Collapse
|
29
|
Luo T, Pan J, Zhu Y, Wang X, Li K, Zhao G, Li B, Hu Z, Xia K, Li J. Association between de novo variants of nuclear-encoded mitochondrial-related genes and undiagnosed developmental disorder and autism. QJM 2024; 117:269-276. [PMID: 37930872 PMCID: PMC11014680 DOI: 10.1093/qjmed/hcad249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Evidence suggests that mitochondrial abnormalities increase the risk of two neurodevelopmental disorders: undiagnosed developmental disorder (UDD) and autism spectrum disorder (ASD). However, which nuclear-encoded mitochondrial-related genes (NEMGs) were associated with UDD-ASD is unclear. AIM To explore the association between de novo variants (DNVs) of NEMGs and UDD-ASD. DESIGN Comprehensive analysis based on DNVs of NEMGs identified in patients (31 058 UDD probands and 10 318 ASD probands) and 4262 controls. METHODS By curating NEMGs and cataloging publicly published DNVs in NEMGs, we compared the frequency of DNVs in cases and controls. We also applied a TADA-denovo model to highlight disease-associated NEMGs and characterized them based on gene intolerance, functional networks and expression patterns. RESULTS Compared with levels in 4262 controls, an excess of protein-truncating variants and deleterious missense variants in 1421 cataloged NEMGs from 41 376 patients (31 058 UDD and 10 318 ASD probands) was observed. Overall, 3.23% of de novo deleterious missense variants and 3.20% of de novo protein-truncating variants contributed to 1.1% and 0.39% of UDD-ASD cases, respectively. We prioritized 130 disease-associated NEMGs and showed distinct expression patterns in the developing human brain. Disease-associated NEMGs expression was enriched in both excitatory and inhibitory neuronal lineages from the developing human cortex. CONCLUSIONS Rare genetic alterations of disease-associated NEMGs may play a role in UDD-ASD development and lay the groundwork for a better understanding of the biology of UDD-ASD.
Collapse
Affiliation(s)
- T Luo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - J Pan
- Department of Birth Health and Genetics, The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning 530022, China
| | - Y Zhu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - X Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - K Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - G Zhao
- 4National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008,China
- Bioinformatics Center, Furong Laboratory & Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - B Li
- 4National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008,China
- Bioinformatics Center, Furong Laboratory & Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Z Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - K Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- MOE Key Lab of Rare Pediatric Diseases & School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 410008, China
| | - J Li
- 4National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008,China
- Bioinformatics Center, Furong Laboratory & Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
30
|
AlMail A, Jamjoom A, Pan A, Feng MY, Chau V, D'Gama AM, Howell K, Liang NSY, McTague A, Poduri A, Wiltrout K, Bassett AS, Christodoulou J, Dupuis L, Gill P, Levy T, Siper P, Stark Z, Vorstman JAS, Diskin C, Jewitt N, Baribeau D, Costain G. Consensus reporting guidelines to address gaps in descriptions of ultra-rare genetic conditions. NPJ Genom Med 2024; 9:27. [PMID: 38582909 PMCID: PMC10998895 DOI: 10.1038/s41525-024-00408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/27/2024] [Indexed: 04/08/2024] Open
Abstract
Genome-wide sequencing and genetic matchmaker services are propelling a new era of genotype-driven ascertainment of novel genetic conditions. The degree to which reported phenotype data in discovery-focused studies address informational priorities for clinicians and families is unclear. We identified reports published from 2017 to 2021 in 10 genetics journals of novel Mendelian disorders. We adjudicated the quality and detail of the phenotype data via 46 questions pertaining to six priority domains: (I) Development, cognition, and mental health; (II) Feeding and growth; (III) Medication use and treatment history; (IV) Pain, sleep, and quality of life; (V) Adulthood; and (VI) Epilepsy. For a subset of articles, all subsequent published follow-up case descriptions were identified and assessed in a similar manner. A modified Delphi approach was used to develop consensus reporting guidelines, with input from content experts across four countries. In total, 200 of 3243 screened publications met inclusion criteria. Relevant phenotypic details across each of the 6 domains were rated superficial or deficient in >87% of papers. For example, less than 10% of publications provided details regarding neuropsychiatric diagnoses and "behavioural issues", or about the type/nature of feeding problems. Follow-up reports (n = 95) rarely contributed this additional phenotype data. In summary, phenotype information relevant to clinical management, genetic counselling, and the stated priorities of patients and families is lacking for many newly described genetic diseases. The PHELIX (PHEnotype LIsting fiX) reporting guideline checklists were developed to improve phenotype reporting in the genomic era.
Collapse
Affiliation(s)
- Ali AlMail
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Program in Genetics & Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Ahmed Jamjoom
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amy Pan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Min Yi Feng
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Vann Chau
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada
| | - Alissa M D'Gama
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Katherine Howell
- Department of Neurology, Royal Children's Hospital, Melbourne, VIC, Australia
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Nicole S Y Liang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, ON, Canada
| | - Amy McTague
- Department of Neurology, Great Ormond Street Hospital, London, UK
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Kimberly Wiltrout
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Anne S Bassett
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | | | - Lucie Dupuis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, ON, Canada
| | - Peter Gill
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Tess Levy
- Division of Psychiatry, Ichan School of Medicine at Mount Sinai, New York City, NY, USA
| | - Paige Siper
- Division of Psychiatry, Ichan School of Medicine at Mount Sinai, New York City, NY, USA
| | - Zornitza Stark
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia
| | - Jacob A S Vorstman
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
| | - Catherine Diskin
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Natalie Jewitt
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Danielle Baribeau
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada.
- Autism Research Centre, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.
| | - Gregory Costain
- Program in Genetics & Genome Biology, SickKids Research Institute, Toronto, ON, Canada.
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
31
|
Cheng YHH, Bohaczuk SC, Stergachis AB. Functional categorization of gene regulatory variants that cause Mendelian conditions. Hum Genet 2024; 143:559-605. [PMID: 38436667 PMCID: PMC11078748 DOI: 10.1007/s00439-023-02639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/30/2023] [Indexed: 03/05/2024]
Abstract
Much of our current understanding of rare human diseases is driven by coding genetic variants. However, non-coding genetic variants play a pivotal role in numerous rare human diseases, resulting in diverse functional impacts ranging from altered gene regulation, splicing, and/or transcript stability. With the increasing use of genome sequencing in clinical practice, it is paramount to have a clear framework for understanding how non-coding genetic variants cause disease. To this end, we have synthesized the literature on hundreds of non-coding genetic variants that cause rare Mendelian conditions via the disruption of gene regulatory patterns and propose a functional classification system. Specifically, we have adapted the functional classification framework used for coding variants (i.e., loss-of-function, gain-of-function, and dominant-negative) to account for features unique to non-coding gene regulatory variants. We identify that non-coding gene regulatory variants can be split into three distinct categories by functional impact: (1) non-modular loss-of-expression (LOE) variants; (2) modular loss-of-expression (mLOE) variants; and (3) gain-of-ectopic-expression (GOE) variants. Whereas LOE variants have a direct corollary with coding loss-of-function variants, mLOE and GOE variants represent disease mechanisms that are largely unique to non-coding variants. These functional classifications aim to provide a unified terminology for categorizing the functional impact of non-coding variants that disrupt gene regulatory patterns in Mendelian conditions.
Collapse
Affiliation(s)
- Y H Hank Cheng
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Stephanie C Bohaczuk
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
32
|
Stafford-Smith B, Sullivan JA, McAlister M, Walley N, Shashi V, McConkie-Rosell A. The book is just being written: The enduring journey of parents of children with emerging- ultrarare disorders. J Genet Couns 2024. [PMID: 38562053 DOI: 10.1002/jgc4.1894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Ultra rare disorders are being diagnosed at an unprecedented rate, due to genomic sequencing. These diagnoses are often a new gene association, for which little is known, and few share the diagnosis. For these diagnoses, we use the term emerging-ultrarare disorder (E-URD), defined as <100 diagnosed individuals. We contacted 20 parents of children diagnosed with an E-URD through the Duke University Research Sequencing Clinic. Seventeen completed semi-structured interviews exploring parental perspectives (7/17 had children in publications describing the phenotype; 4/17 had children in the first publication establishing a new disorder). Data were analyzed using a directed content approach informed by an empowerment framework. Parents reported a range of responses, including benefits of a diagnosis and challenges of facing the unknown, some described feeling lost and confused, while others expressed empowerment. Empowerment characteristics were hope for the future, positive emotions, engagement, and confidence/self-efficacy to connect with similar others, partner with healthcare providers, and seek new knowledge. We identified a subset of parents who proactively engaged researchers, supported research and publications, and created patient advocacy and support organizations to connect with and bolster similarly diagnosed families. Other parents reported challenges of low social support, low tolerance for uncertainty, limited knowledge about their child's disorder, as well as difficulty partnering with HCPs and connecting to an E-URD community. An overarching classification was developed to describe parental actions taken after an E-URD diagnosis: adjusting, managing, and pioneering. These classifications may help genetic counselors identify and facilitate positive steps with parents of a child with an E-URD.
Collapse
Affiliation(s)
- Bethany Stafford-Smith
- Centre for Medical Education, Cardiff University, Cardiff, UK
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine and Duke Health System, Durham, North Carolina, USA
| | - Jennifer A Sullivan
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine and Duke Health System, Durham, North Carolina, USA
| | | | - Nicole Walley
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine and Duke Health System, Durham, North Carolina, USA
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine and Duke Health System, Durham, North Carolina, USA
| | - Allyn McConkie-Rosell
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine and Duke Health System, Durham, North Carolina, USA
| |
Collapse
|
33
|
Hiatt SM, Lawlor JM, Handley LH, Latner DR, Bonnstetter ZT, Finnila CR, Thompson ML, Boston LB, Williams M, Nunez IR, Jenkins J, Kelley WV, Bebin EM, Lopez MA, Hurst ACE, Korf BR, Schmutz J, Grimwood J, Cooper GM. Long-read genome sequencing and variant reanalysis increase diagnostic yield in neurodevelopmental disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.22.24304633. [PMID: 38585854 PMCID: PMC10996728 DOI: 10.1101/2024.03.22.24304633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Variant detection from long-read genome sequencing (lrGS) has proven to be considerably more accurate and comprehensive than variant detection from short-read genome sequencing (srGS). However, the rate at which lrGS can increase molecular diagnostic yield for rare disease is not yet precisely characterized. We performed lrGS using Pacific Biosciences "HiFi" technology on 96 short-read-negative probands with rare disease that were suspected to be genetic. We generated hg38-aligned variants and de novo phased genome assemblies, and subsequently annotated, filtered, and curated variants using clinical standards. New disease-relevant or potentially relevant genetic findings were identified in 16/96 (16.7%) probands, eight of which (8/96, 8.33%) harbored pathogenic or likely pathogenic variants. Newly identified variants were visible in both srGS and lrGS in nine probands (~9.4%) and resulted from changes to interpretation mostly from recent gene-disease association discoveries. Seven cases included variants that were only interpretable in lrGS, including copy-number variants, an inversion, a mobile element insertion, two low-complexity repeat expansions, and a 1 bp deletion. While evidence for each of these variants is, in retrospect, visible in srGS, they were either: not called within srGS data, were represented by calls with incorrect sizes or structures, or failed quality-control and filtration. Thus, while reanalysis of older data clearly increases diagnostic yield, we find that lrGS allows for substantial additional yield (7/96, 7.3%) beyond srGS. We anticipate that as lrGS analysis improves, and as lrGS datasets grow allowing for better variant frequency annotation, the additional lrGS-only rare disease yield will grow over time.
Collapse
Affiliation(s)
- Susan M. Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | - Lori H. Handley
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Donald R. Latner
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | | | | | - Lori Beth Boston
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Melissa Williams
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | - E. Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Michael A. Lopez
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Anna C. E. Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Bruce R. Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | |
Collapse
|
34
|
Faundes V, Repetto GM, Valdivia LE. Discovery of novel genetic syndromes in Latin America: Opportunities and challenges. Genet Mol Biol 2024; 47Suppl 1:e20230318. [PMID: 38466870 DOI: 10.1590/1678-4685-gmb-2023-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
Latin America (LatAm) has a rich and historically significant role in delineating both novel and well-documented genetic disorders. However, the ongoing advancements in the field of human genetics pose challenges to the relatively slow adaption of LatAm in the field. Here, we describe past and present contributions of LatAm to the discovery of novel genetic disorders, often referred as novel gene-disease associations (NGDA). We also describe the current methodologies for discovery of NGDA, taking into account the latest developments in genomics. We provide an overview of opportunities and challenges for NGDA research in LatAm considering the steps currently performed to identify and validate such associations. Given the multiple and diverse needs of populations and countries in LatAm, it is imperative to foster collaborations amongst patients, indigenous people, clinicians and scientists. Such collaborative effort is essential for sustaining and enhancing the LatAm´s contributions to the field of NGDA.
Collapse
Affiliation(s)
- Víctor Faundes
- Universidad de Chile, Instituto de Nutrición y Tecnología de los Alimentos, Laboratorio de Genética y Enfermedades Metabólicas, Santiago, Chile
| | - Gabriela M Repetto
- Universidad del Desarrollo, Facultad de Medicina, Instituto de Ciencias e Innovación en Medicina, Centro de Genética y Genómica, Programa de Enfermedades Raras, Santiago, Chile
| | - Leonardo E Valdivia
- Universidad Mayor, Facultad de Ciencias, Centro de Biología Integrativa, Santiago, Chile
- Universidad Mayor, Facultad de Ciencias, Escuela de Biotecnología, Santiago, Chile
| |
Collapse
|
35
|
Rahit KMTH, Avramovic V, Chong JX, Tarailo-Graovac M. GPAD: a natural language processing-based application to extract the gene-disease association discovery information from OMIM. BMC Bioinformatics 2024; 25:84. [PMID: 38413851 PMCID: PMC10898068 DOI: 10.1186/s12859-024-05693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Thousands of genes have been associated with different Mendelian conditions. One of the valuable sources to track these gene-disease associations (GDAs) is the Online Mendelian Inheritance in Man (OMIM) database. However, most of the information in OMIM is textual, and heterogeneous (e.g. summarized by different experts), which complicates automated reading and understanding of the data. Here, we used Natural Language Processing (NLP) to make a tool (Gene-Phenotype Association Discovery (GPAD)) that could syntactically process OMIM text and extract the data of interest. RESULTS GPAD applies a series of language-based techniques to the text obtained from OMIM API to extract GDA discovery-related information. GPAD can inform when a particular gene was associated with a specific phenotype, as well as the type of validation-whether through model organisms or cohort-based patient-matching approaches-for such an association. GPAD extracted data was validated with published reports and was compared with large language model. Utilizing GPAD's extracted data, we analysed trends in GDA discoveries, noting a significant increase in their rate after the introduction of exome sequencing, rising from an average of about 150-250 discoveries each year. Contrary to hopes of resolving most GDAs for Mendelian disorders by now, our data indicate a substantial decline in discovery rates over the past five years (2017-2022). This decline appears to be linked to the increasing necessity for larger cohorts to substantiate GDAs. The rising use of zebrafish and Drosophila as model organisms in providing evidential support for GDAs is also observed. CONCLUSIONS GPAD's real-time analyzing capacity offers an up-to-date view of GDA discovery and could help in planning and managing the research strategies. In future, this solution can be extended or modified to capture other information in OMIM and scientific literature.
Collapse
Affiliation(s)
- K M Tahsin Hassan Rahit
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Vladimir Avramovic
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jessica X Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
- Brotman-Baty Institute, Seattle, WA, 98195, USA
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
36
|
Clark KJ, Lubin EE, Gonzalez EM, Sangree AK, Layo-Carris DE, Durham EL, Ahrens-Nicklas RC, Nomakuchi TT, Bhoj EJ. NeuroTri2-VISDOT: An open-access tool to harness the power of second trimester human single cell data to inform models of Mendelian neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578438. [PMID: 38352329 PMCID: PMC10862881 DOI: 10.1101/2024.02.01.578438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Whole exome and genome sequencing, coupled with refined bioinformatic pipelines, have enabled improved diagnostic yields for individuals with Mendelian conditions and have led to the rapid identification of novel syndromes. For many Mendelian neurodevelopmental disorders (NDDs), there is a lack of pre-existing model systems for mechanistic work. Thus, it is critical for translational researchers to have an accessible phenotype- and genotype-informed approach for model system selection. Single-cell RNA sequencing data can be informative in such an approach, as it can indicate which cell types express a gene of interest at the highest levels across time. For Mendelian NDDs, such data for the developing human brain is especially useful. A valuable single-cell RNA sequencing dataset of the second trimester developing human brain was produced by Bhaduri et al in 2021, but access to these data can be limited by computing power and the learning curve of single-cell data analysis. To reduce these barriers for translational research on Mendelian NDDs, we have built the web-based tool, Neurodevelopment in Trimester 2 - VIsualization of Single cell Data Online Tool (NeuroTri2-VISDOT), for exploring this single-cell dataset, and we have employed it in several different settings to demonstrate its utility for the translational research community.
Collapse
Affiliation(s)
- Kelly J. Clark
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | - Emily E. Lubin
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | - Elizabeth M. Gonzalez
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | - Annabel K. Sangree
- Biomedical Graduate School, University of Pennsylvania, Perelman School of Medicine
- Children’s Hospital of Philadelphia
| | | | | | - Rebecca C. Ahrens-Nicklas
- Children’s Hospital of Philadelphia
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine
| | | | - Elizabeth J. Bhoj
- Children’s Hospital of Philadelphia
- Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine
| |
Collapse
|
37
|
Zech M, Winkelmann J. Next-generation sequencing and bioinformatics in rare movement disorders. Nat Rev Neurol 2024; 20:114-126. [PMID: 38172289 DOI: 10.1038/s41582-023-00909-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
The ability to sequence entire exomes and genomes has revolutionized molecular testing in rare movement disorders, and genomic sequencing is becoming an integral part of routine diagnostic workflows for these heterogeneous conditions. However, interpretation of the extensive genomic variant information that is being generated presents substantial challenges. In this Perspective, we outline multidimensional strategies for genetic diagnosis in patients with rare movement disorders. We examine bioinformatics tools and computational metrics that have been developed to facilitate accurate prioritization of disease-causing variants. Additionally, we highlight community-driven data-sharing and case-matchmaking platforms, which are designed to foster the discovery of new genotype-phenotype relationships. Finally, we consider how multiomic data integration might optimize diagnostic success by combining genomic, epigenetic, transcriptomic and/or proteomic profiling to enable a more holistic evaluation of variant effects. Together, the approaches that we discuss offer pathways to the improved understanding of the genetic basis of rare movement disorders.
Collapse
Affiliation(s)
- Michael Zech
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Juliane Winkelmann
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.
- Munich Cluster for Systems Neurology, SyNergy, Munich, Germany.
- DZPG, Deutsches Zentrum für Psychische Gesundheit, Munich, Germany.
| |
Collapse
|
38
|
Bagger FO, Borgwardt L, Jespersen AS, Hansen AR, Bertelsen B, Kodama M, Nielsen FC. Whole genome sequencing in clinical practice. BMC Med Genomics 2024; 17:39. [PMID: 38287327 PMCID: PMC10823711 DOI: 10.1186/s12920-024-01795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024] Open
Abstract
Whole genome sequencing (WGS) is becoming the preferred method for molecular genetic diagnosis of rare and unknown diseases and for identification of actionable cancer drivers. Compared to other molecular genetic methods, WGS captures most genomic variation and eliminates the need for sequential genetic testing. Whereas, the laboratory requirements are similar to conventional molecular genetics, the amount of data is large and WGS requires a comprehensive computational and storage infrastructure in order to facilitate data processing within a clinically relevant timeframe. The output of a single WGS analyses is roughly 5 MIO variants and data interpretation involves specialized staff collaborating with the clinical specialists in order to provide standard of care reports. Although the field is continuously refining the standards for variant classification, there are still unresolved issues associated with the clinical application. The review provides an overview of WGS in clinical practice - describing the technology and current applications as well as challenges connected with data processing, interpretation and clinical reporting.
Collapse
Affiliation(s)
- Frederik Otzen Bagger
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Line Borgwardt
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Sand Jespersen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna Reimer Hansen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Bertelsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Miyako Kodama
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
39
|
Saffari A, Brechmann B, Böger C, Saber WA, Jumo H, Whye D, Wood D, Wahlster L, Alecu JE, Ziegler M, Scheffold M, Winden K, Hubbs J, Buttermore ED, Barrett L, Borner GHH, Davies AK, Ebrahimi-Fakhari D, Sahin M. High-content screening identifies a small molecule that restores AP-4-dependent protein trafficking in neuronal models of AP-4-associated hereditary spastic paraplegia. Nat Commun 2024; 15:584. [PMID: 38233389 PMCID: PMC10794252 DOI: 10.1038/s41467-023-44264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Unbiased phenotypic screens in patient-relevant disease models offer the potential to detect therapeutic targets for rare diseases. In this study, we developed a high-throughput screening assay to identify molecules that correct aberrant protein trafficking in adapter protein complex 4 (AP-4) deficiency, a rare but prototypical form of childhood-onset hereditary spastic paraplegia characterized by mislocalization of the autophagy protein ATG9A. Using high-content microscopy and an automated image analysis pipeline, we screened a diversity library of 28,864 small molecules and identified a lead compound, BCH-HSP-C01, that restored ATG9A pathology in multiple disease models, including patient-derived fibroblasts and induced pluripotent stem cell-derived neurons. We used multiparametric orthogonal strategies and integrated transcriptomic and proteomic approaches to delineate potential mechanisms of action of BCH-HSP-C01. Our results define molecular regulators of intracellular ATG9A trafficking and characterize a lead compound for the treatment of AP-4 deficiency, providing important proof-of-concept data for future studies.
Collapse
Affiliation(s)
- Afshin Saffari
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Child Neurology and Inherited Metabolic Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Barbara Brechmann
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cedric Böger
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wardiya Afshar Saber
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hellen Jumo
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dosh Whye
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Delaney Wood
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lara Wahlster
- Department of Hematology & Oncology, Boston Children's Hospital & Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Julian E Alecu
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Marvin Ziegler
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Marlene Scheffold
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kellen Winden
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jed Hubbs
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Elizabeth D Buttermore
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lee Barrett
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Georg H H Borner
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, 82152, Germany
| | - Alexandra K Davies
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, 82152, Germany
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Darius Ebrahimi-Fakhari
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Mustafa Sahin
- Department of Neurology & F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
40
|
Cacheiro P, Lawson S, Van den Veyver IB, Marengo G, Zocche D, Murray SA, Duyzend M, Robinson PN, Smedley D. Lethal phenotypes in Mendelian disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.12.24301168. [PMID: 38260283 PMCID: PMC10802756 DOI: 10.1101/2024.01.12.24301168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Essential genes are those whose function is required for cell proliferation and/or organism survival. A gene's intolerance to loss-of-function can be allocated within a spectrum, as opposed to being considered a binary feature, since this function might be essential at different stages of development, genetic backgrounds or other contexts. Existing resources that collect and characterise the essentiality status of genes are based on either proliferation assessment in human cell lines, embryonic and postnatal viability evaluation in different model organisms, and gene metrics such as intolerance to variation scores derived from human population sequencing studies. There are also several repositories available that document phenotypic annotations for rare disorders in humans such as the Online Mendelian Inheritance in Man (OMIM) and the Human Phenotype Ontology (HPO) knowledgebases. This raises the prospect of being able to use clinical data, including lethality as the most severe phenotypic manifestation, to further our characterisation of gene essentiality. Here we queried OMIM for terms related to lethality and classified all Mendelian genes into categories, according to the earliest age of death recorded for the associated disorders, from prenatal death to no reports of premature death. To showcase this curated catalogue of human essential genes, we developed the Lethal Phenotypes Portal (https://lethalphenotypes.research.its.qmul.ac.uk), where we also explore the relationships between these lethality categories, constraint metrics and viability in cell lines and mouse. Further analysis of the genes in these categories reveals differences in the mode of inheritance of the associated disorders, physiological systems affected and disease class. We highlight how the phenotypic similarity between genes in the same lethality category combined with gene family/group information can be used for novel disease gene discovery. Finally, we explore the overlaps and discrepancies between the lethal phenotypes observed in mouse and human and discuss potential explanations that include differences in transcriptional regulation, functional compensation and molecular disease mechanisms. We anticipate that this resource will aid clinicians in the diagnosis of early lethal conditions and assist researchers in investigating the properties that make these genes essential for human development.
Collapse
Affiliation(s)
- Pilar Cacheiro
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | | | - Ignatia B. Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA
| | - Gabriel Marengo
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - David Zocche
- North West Thames Regional Genetics Service, Northwick Park & St Mark’s Hospitals, London, UK
| | | | | | - Peter N. Robinson
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
41
|
Torene RI, Guillen Sacoto MJ, Millan F, Zhang Z, McGee S, Oetjens M, Heise E, Chong K, Sidlow R, O'Grady L, Sahai I, Martin CL, Ledbetter DH, Myers SM, Mitchell KJ, Retterer K. Systematic analysis of variants escaping nonsense-mediated decay uncovers candidate Mendelian diseases. Am J Hum Genet 2024; 111:70-81. [PMID: 38091987 PMCID: PMC10806863 DOI: 10.1016/j.ajhg.2023.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 01/07/2024] Open
Abstract
Protein-truncating variants (PTVs) near the 3' end of genes may escape nonsense-mediated decay (NMD). PTVs in the NMD-escape region (PTVescs) can cause Mendelian disease but are difficult to interpret given their varying impact on protein function. Previously, PTVesc burden was assessed in an epilepsy cohort, but no large-scale analysis has systematically evaluated these variants in rare disease. We performed a retrospective analysis of 29,031 neurodevelopmental disorder (NDD) parent-offspring trios referred for clinical exome sequencing to identify PTVesc de novo mutations (DNMs). We identified 1,376 PTVesc DNMs and 133 genes that were significantly enriched (binomial p < 0.001). The PTVesc-enriched genes included those with PTVescs previously described to cause dominant Mendelian disease (e.g., SEMA6B, PPM1D, and DAGLA). We annotated ClinVar variants for PTVescs and identified 948 genes with at least one high-confidence pathogenic variant. Twenty-two known Mendelian PTVesc-enriched genes had no prior evidence of PTVesc-associated disease. We found 22 additional PTVesc-enriched genes that are not well established to be associated with Mendelian disease, several of which showed phenotypic similarity between individuals harboring PTVesc variants in the same gene. Four individuals with PTVesc mutations in RAB1A had similar phenotypes including NDD and spasticity. PTVesc mutations in IRF2BP1 were found in two individuals who each had severe immunodeficiency manifesting in NDD. Three individuals with PTVesc mutations in LDB1 all had NDD and multiple congenital anomalies. Using a large-scale, systematic analysis of DNMs, we extend the mutation spectrum for known Mendelian disease-associated genes and identify potentially novel disease-associated genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthew Oetjens
- Geisinger, Danville, PA, USA; Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| | | | | | | | | | | | - Christa L Martin
- Geisinger, Danville, PA, USA; Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| | - David H Ledbetter
- University of Florida, College of Medicine-Jacksonville, Jacksonville, FL, USA
| | - Scott M Myers
- Geisinger, Danville, PA, USA; Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| | - Kevin J Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Kyle Retterer
- GeneDx, Gaithersburg, MD, USA; Geisinger, Danville, PA, USA.
| |
Collapse
|
42
|
Fowler DM, Rehm HL. Will variants of uncertain significance still exist in 2030? Am J Hum Genet 2024; 111:5-10. [PMID: 38086381 PMCID: PMC10806733 DOI: 10.1016/j.ajhg.2023.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023] Open
Abstract
In 2020, the National Human Genome Research Institute (NHGRI) made ten "bold predictions," including that "the clinical relevance of all encountered genomic variants will be readily predictable, rendering the diagnostic designation 'variant of uncertain significance (VUS)' obsolete." We discuss the prospects for this prediction, arguing that many, if not most, VUS in coding regions will be resolved by 2030. We outline a confluence of recent changes making this possible, especially advances in the standards for variant classification that better leverage diverse types of evidence, improvements in computational variant effect predictor performance, scalable multiplexed assays of variant effect capable of saturating the genome, and data-sharing efforts that will maximize the information gained from each new individual sequenced and variant interpreted. We suggest that clinicians and researchers can realize a future where VUSs have largely been eliminated, in line with the NHGRI's bold prediction. The length of time taken to reach this future, and thus whether we are able to achieve the goal of largely eliminating VUSs by 2030, is largely a consequence of the choices made now and in the next few years. We believe that investing in eliminating VUSs is worthwhile, since their predominance remains one of the biggest challenges to precision genomic medicine.
Collapse
Affiliation(s)
- Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| | - Heidi L Rehm
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
43
|
Canavati C, Sherill-Rofe D, Kamal L, Bloch I, Zahdeh F, Sharon E, Terespolsky B, Allan IA, Rabie G, Kawas M, Kassem H, Avraham KB, Renbaum P, Levy-Lahad E, Kanaan M, Tabach Y. Using multi-scale genomics to associate poorly annotated genes with rare diseases. Genome Med 2024; 16:4. [PMID: 38178268 PMCID: PMC10765705 DOI: 10.1186/s13073-023-01276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) has significantly transformed the landscape of identifying disease-causing genes associated with genetic disorders. However, a substantial portion of sequenced patients remains undiagnosed. This may be attributed not only to the challenges posed by harder-to-detect variants, such as non-coding and structural variations but also to the existence of variants in genes not previously associated with the patient's clinical phenotype. This study introduces EvORanker, an algorithm that integrates unbiased data from 1,028 eukaryotic genomes to link mutated genes to clinical phenotypes. METHODS EvORanker utilizes clinical data, multi-scale phylogenetic profiling, and other omics data to prioritize disease-associated genes. It was evaluated on solved exomes and simulated genomes, compared with existing methods, and applied to 6260 knockout genes with mouse phenotypes lacking human associations. Additionally, EvORanker was made accessible as a user-friendly web tool. RESULTS In the analyzed exomic cohort, EvORanker accurately identified the "true" disease gene as the top candidate in 69% of cases and within the top 5 candidates in 95% of cases, consistent with results from the simulated dataset. Notably, EvORanker outperformed existing methods, particularly for poorly annotated genes. In the case of the 6260 knockout genes with mouse phenotypes, EvORanker linked 41% of these genes to observed human disease phenotypes. Furthermore, in two unsolved cases, EvORanker successfully identified DLGAP2 and LPCAT3 as disease candidates for previously uncharacterized genetic syndromes. CONCLUSIONS We highlight clade-based phylogenetic profiling as a powerful systematic approach for prioritizing potential disease genes. Our study showcases the efficacy of EvORanker in associating poorly annotated genes to disease phenotypes observed in patients. The EvORanker server is freely available at https://ccanavati.shinyapps.io/EvORanker/ .
Collapse
Affiliation(s)
- Christina Canavati
- Department of Developmental Biology and Cancer Research, Institute of Medical Research - Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
- Molecular Genetics Lab, Istishari Arab Hospital, Ramallah, Palestine
| | - Dana Sherill-Rofe
- Department of Developmental Biology and Cancer Research, Institute of Medical Research - Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Lara Kamal
- Molecular Genetics Lab, Istishari Arab Hospital, Ramallah, Palestine
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Idit Bloch
- Department of Developmental Biology and Cancer Research, Institute of Medical Research - Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Fouad Zahdeh
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
| | - Elad Sharon
- Department of Developmental Biology and Cancer Research, Institute of Medical Research - Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Batel Terespolsky
- Department of Developmental Biology and Cancer Research, Institute of Medical Research - Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
| | - Islam Abu Allan
- Molecular Genetics Lab, Istishari Arab Hospital, Ramallah, Palestine
| | - Grace Rabie
- Hereditary Research Laboratory and Department of Life Sciences, Bethlehem University, Bethlehem, 72372, Palestine
| | - Mariana Kawas
- Hereditary Research Laboratory and Department of Life Sciences, Bethlehem University, Bethlehem, 72372, Palestine
| | - Hanin Kassem
- Molecular Genetics Lab, Istishari Arab Hospital, Ramallah, Palestine
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Paul Renbaum
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
| | - Ephrat Levy-Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, 91031, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Moien Kanaan
- Molecular Genetics Lab, Istishari Arab Hospital, Ramallah, Palestine
- Hereditary Research Laboratory and Department of Life Sciences, Bethlehem University, Bethlehem, 72372, Palestine
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute of Medical Research - Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel.
| |
Collapse
|
44
|
Damaraju N, Miller AL, Miller DE. Long-Read DNA and RNA Sequencing to Streamline Clinical Genetic Testing and Reduce Barriers to Comprehensive Genetic Testing. J Appl Lab Med 2024; 9:138-150. [PMID: 38167773 DOI: 10.1093/jalm/jfad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/24/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Obtaining a precise molecular diagnosis through clinical genetic testing provides information about disease prognosis or progression, allows accurate counseling about recurrence risk, and empowers individuals to benefit from precision therapies or take part in N-of-1 trials. Unfortunately, more than half of individuals with a suspected Mendelian condition remain undiagnosed after a comprehensive clinical evaluation, and the results of any individual clinical genetic test ordered during a typical evaluation may take weeks or months to return. Furthermore, commonly used technologies, such as short-read sequencing, are limited in the types of disease-causing variation they can identify. New technologies, such as long-read sequencing (LRS), are poised to solve these problems. CONTENT Recent technical advances have improved accuracy, increased throughput, and decreased the costs of commercially available LRS technologies. This has resolved many historical concerns about the use of LRS in the clinical environment and opened the door to widespread clinical adoption of LRS. Here, we review LRS technology, how it has been used in the research setting to clarify complex variants or identify disease-causing variation missed by prior clinical testing, and how it may be used clinically in the near future. SUMMARY LRS is unique in that, as a single data source, it has the potential to replace nearly every other clinical genetic test offered today. When analyzed in a stepwise fashion, LRS will simplify laboratory processes, reduce barriers to comprehensive genetic testing, increase the rate of genetic diagnoses, and shorten the amount of time required to make a molecular diagnosis.
Collapse
Affiliation(s)
- Nikhita Damaraju
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, United States
| | - Angela L Miller
- Department of Pediatrics, University of Washington, Seattle, WA 98195, United States
| | - Danny E Miller
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, United States
- Department of Pediatrics, University of Washington, Seattle, WA 98195, United States
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
45
|
Yamamoto S, Kanca O, Wangler MF, Bellen HJ. Integrating non-mammalian model organisms in the diagnosis of rare genetic diseases in humans. Nat Rev Genet 2024; 25:46-60. [PMID: 37491400 DOI: 10.1038/s41576-023-00633-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
Next-generation sequencing technology has rapidly accelerated the discovery of genetic variants of interest in individuals with rare diseases. However, showing that these variants are causative of the disease in question is complex and may require functional studies. Use of non-mammalian model organisms - mainly fruitflies (Drosophila melanogaster), nematode worms (Caenorhabditis elegans) and zebrafish (Danio rerio) - enables the rapid and cost-effective assessment of the effects of gene variants, which can then be validated in mammalian model organisms such as mice and in human cells. By probing mechanisms of gene action and identifying interacting genes and proteins in vivo, recent studies in these non-mammalian model organisms have facilitated the diagnosis of numerous genetic diseases and have enabled the screening and identification of therapeutic options for patients. Studies in non-mammalian model organisms have also shown that the biological processes underlying rare diseases can provide insight into more common mechanisms of disease and the biological functions of genes. Here, we discuss the opportunities afforded by non-mammalian model organisms, focusing on flies, worms and fish, and provide examples of their use in the diagnosis of rare genetic diseases.
Collapse
Affiliation(s)
- Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
46
|
Racine C, Denommé-Pichon AS, Engel C, Tran Mau-Them F, Bruel AL, Vitobello A, Safraou H, Sorlin A, Nambot S, Delanne J, Garde A, Colin E, Moutton S, Thevenon J, Jean-Marçais N, Willems M, Geneviève D, Pinson L, Perrin L, Laffargue F, Lespinasse J, Lacaze E, Molin A, Gerard M, Lambert L, Benigni C, Patat O, Bourgeois V, Poe C, Chevarin M, Couturier V, Garret P, Philippe C, Duffourd Y, Faivre L, Thauvin-Robinet C. Multiple molecular diagnoses in the field of intellectual disability and congenital anomalies: 3.5% of all positive cases. J Med Genet 2023; 61:36-46. [PMID: 37586840 DOI: 10.1136/jmg-2023-109170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/27/2023] [Indexed: 08/18/2023]
Abstract
PURPOSE Wide access to clinical exome/genome sequencing (ES/GS) enables the identification of multiple molecular diagnoses (MMDs), being a long-standing but underestimated concept, defined by two or more causal loci implicated in the phenotype of an individual with a rare disease. Only few series report MMDs rates (1.8% to 7.1%). This study highlights the increasing role of MMDs in a large cohort of individuals addressed for congenital anomalies/intellectual disability (CA/ID). METHODS From 2014 to 2021, our diagnostic laboratory rendered 880/2658 positive ES diagnoses for CA/ID aetiology. Exhaustive search on MMDs from ES data was performed prospectively (January 2019 to December 2021) and retrospectively (March 2014 to December 2018). RESULTS MMDs were identified in 31/880 individuals (3.5%), responsible for distinct (9/31) or overlapping (22/31) phenotypes, and potential MMDs in 39/880 additional individuals (4.4%). CONCLUSION MMDs are frequent in CA/ID and remain a strong challenge. Reanalysis of positive ES data appears essential when phenotypes are partially explained by the initial diagnosis or atypically enriched overtime. Up-to-date clinical data, clinical expertise from the referring physician, strong interactions between clinicians and biologists, and increasing gene discoveries and improved ES bioinformatics tools appear all the more fundamental to enhance chances of identifying MMDs. It is essential to provide appropriate patient care and genetic counselling.
Collapse
Affiliation(s)
- Caroline Racine
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Camille Engel
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
| | - Frederic Tran Mau-Them
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Ange-Line Bruel
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Antonio Vitobello
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Hana Safraou
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Arthur Sorlin
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
| | - Sophie Nambot
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Julian Delanne
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
| | - Aurore Garde
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
| | - Estelle Colin
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
| | - Sébastien Moutton
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
| | - Julien Thevenon
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
| | - Nolwenn Jean-Marçais
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
| | - Marjolaine Willems
- Centre de Référence "Anomalies du Développement syndromes malformatifs" Occitanie, Service de Génétique Médicale, Hôpital Arnaud de Villeneuve, Montpellier, France
| | - David Geneviève
- Centre de Référence "Anomalies du Développement syndromes malformatifs" Occitanie, Service de Génétique Médicale, Hôpital Arnaud de Villeneuve, Montpellier, France
- INSERM U1183, Université de Montpellier, Montpellier, France
| | - Lucile Pinson
- Centre de Référence "Anomalies du Développement syndromes malformatifs" Occitanie, Service de Génétique Médicale, Hôpital Arnaud de Villeneuve, Montpellier, France
| | - Laurence Perrin
- Genetic Department, Robert-Debré Hospital Department of Genetics, Paris, France
| | - Fanny Laffargue
- Service de Génétique médicale, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - James Lespinasse
- Unité de Génétique médicale, Centre Hospitalier Métropole Savoie, Chambery, France
| | - Elodie Lacaze
- Department of Medical Genetics, Hospital Group Le Havre, Le Havre, France
| | - Arnaud Molin
- Service de Génétique, University Hospital Centre Caen, Caen, France
| | - Marion Gerard
- Service de Génétique, University Hospital Centre Caen, Caen, France
| | | | | | - Olivier Patat
- Department of Medical Genetics, University Hospital Centre Toulouse, Toulouse, France
| | - Valentin Bourgeois
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Charlotte Poe
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Martin Chevarin
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Victor Couturier
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Philippine Garret
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Christophe Philippe
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Yannis Duffourd
- Functional Unity of Innovative Diagnosis for Rare Diseases, University of Burgundy, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| | - Christel Thauvin-Robinet
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'interrégion Est et FHU TRANSLAD, Centre Hospitalier Universitaire de Dijon Centre de Genetique, Dijon, France
- Inserm UMR1231 team GAD, University of Burgundy, Dijon, France
| |
Collapse
|
47
|
Solomon BD. The future of commercial genetic testing. Curr Opin Pediatr 2023; 35:615-619. [PMID: 37218641 PMCID: PMC10667560 DOI: 10.1097/mop.0000000000001260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
PURPOSE OF REVIEW There are thousands of different clinical genetic tests currently available. Genetic testing and its applications continue to change rapidly for multiple reasons. These reasons include technological advances, accruing evidence about the impact and effects of testing, and many complex financial and regulatory factors. RECENT FINDINGS This article considers a number of key issues and axes related to the current and future state of clinical genetic testing, including targeted versus broad testing, simple/Mendelian versus polygenic and multifactorial testing models, genetic testing for individuals with high suspicion of genetic conditions versus ascertainment through population screening, the rise of artificial intelligence in multiple aspects of the genetic testing process, and how developments such as rapid genetic testing and the growing availability of new therapies for genetic conditions may affect the field. SUMMARY Genetic testing is expanding and evolving, including into new clinical applications. Developments in the field of genetics will likely result in genetic testing becoming increasingly in the purview of a very broad range of clinicians, including general paediatricians as well as paediatric subspecialists.
Collapse
Affiliation(s)
- Benjamin D. Solomon
- Medical Genetics Branch, National Human Genome Research Institute, United States of America
| |
Collapse
|
48
|
Abstract
Rare diseases are a leading cause of infant mortality and lifelong disability. To improve outcomes, timely diagnosis and effective treatments are needed. Genomic sequencing has transformed the traditional diagnostic process, providing rapid, accurate and cost-effective genetic diagnoses to many. Incorporating genomic sequencing into newborn screening programmes at the population scale holds the promise of substantially expanding the early detection of treatable rare diseases, with stored genomic data potentially benefitting health over a lifetime and supporting further research. As several large-scale newborn genomic screening projects launch internationally, we review the challenges and opportunities presented, particularly the need to generate evidence of benefit and to address the ethical, legal and psychosocial issues that genomic newborn screening raises.
Collapse
Affiliation(s)
- Zornitza Stark
- Australian Genomics, Melbourne, Victoria, Australia.
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.
| | - Richard H Scott
- Great Ormond Street Hospital for Children, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
- Genomics England, London, UK
| |
Collapse
|
49
|
Hartley T, Gillespie MK, Graham ID, Hayeems RZ, Li S, Sampson M, Boycott KM, Potter BK. Exome and genome sequencing for rare genetic disease diagnosis: A scoping review and critical appraisal of clinical guidance documents produced by genetics professional organizations. Genet Med 2023; 25:100948. [PMID: 37551668 DOI: 10.1016/j.gim.2023.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
PURPOSE Exome and genome sequencing have rapidly transitioned from research methods to widely used clinical tests for diagnosing rare genetic diseases. We sought to synthesize the topics covered and appraise the development processes of clinical guidance documents generated by genetics professional organizations. METHODS We conducted a scoping review of guidance documents published since 2010, systematically identified in peer-reviewed and gray literature, using established methods and reporting guidelines. We coded verbatim recommendations by topic using content analysis and critically appraised documents using the Appraisal of Guidelines Research and Evaluation (AGREE) II tool. RESULTS We identified 30 guidance documents produced by 8 organizations (2012-2022), yielding 611 recommendations covering 21 topics. The most common topic related to findings beyond the primary testing indication. Mean AGREE II scores were low across all 6 quality domains; scores for items related to rigor of development were among the lowest. More recently published documents generally received higher scores. CONCLUSION Guidance documents included a broad range of recommendations but were of low quality, particularly in their rigor of development. Developers should consider using tools such as AGREE II and basing recommendations on living knowledge syntheses to improve guidance development in this evolving space.
Collapse
Affiliation(s)
- Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; University of Ottawa, Ottawa, Ontario, Canada.
| | - Meredith K Gillespie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Ian D Graham
- University of Ottawa, Ottawa, Ontario, Canada; The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Robin Z Hayeems
- Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Sheena Li
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Margaret Sampson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; University of Ottawa, Ottawa, Ontario, Canada; Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | | |
Collapse
|
50
|
Warman-Chardon J, Hartley T, Marshall AE, McBride A, Couse M, Macdonald W, Mann MRW, Bourque PR, Breiner A, Lochmüller H, Woulfe J, Sampaio ML, Melkus G, Brais B, Dyment DA, Boycott KM, Kernohan K. Biallelic SOX8 Variants Associated With Novel Syndrome With Myopathy, Skeletal Deformities, Intellectual Disability, and Ovarian Dysfunction. Neurol Genet 2023; 9:e200088. [PMID: 38235364 PMCID: PMC10508790 DOI: 10.1212/nxg.0000000000200088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/30/2023] [Indexed: 01/19/2024]
Abstract
Background and Objectives The human genome contains ∼20,000 genes, each of which has its own set of complex regulatory systems to govern precise expression in each developmental stage and cell type. Here, we report a female patient with congenital weakness, respiratory failure, skeletal dysplasia, contractures, short stature, intellectual delay, respiratory failure, and amenorrhea who presented to Medical Genetics service with no known cause for her condition. Methods Whole-exome and whole-genome sequencing were conducted, as well as investigational functional studies to assess the effect of SOX8 variant. Results The patient was found to have biallelic SOX8 variants (NM_014587.3:c.422+5G>C; c.583dup p.(His195ProfsTer11)). SOX8 is a transcriptional regulator, which is predicted to be imprinted (expressed from only one parental allele), but this has not yet been confirmed. We provide evidence that while SOX8 was maternally expressed in adult-derived fibroblasts and lymphoblasts, it was biallelically expressed in other cell types and therefore suggest that biallelic variants are associated with this recessive condition. Functionally, we showed that the paternal variant had the capacity to affect mRNA splicing while the maternal variant resulted in low levels of a truncated protein, which showed decreased binding at and altered expression of SOX8 targets. Discussion Our findings associate SOX8 variants with this novel condition, highlight how complex genome regulation can complicate novel disease-gene identification, and provide insight into the molecular pathogenesis of this disease.
Collapse
Affiliation(s)
- Jodi Warman-Chardon
- From the Department of Medicine (J.W.-C., P.R.B., A.B., H.L.), The Ottawa Hospital; The Ottawa Hospital Research Institute (J.W.-C., P.R.B., H.L., J.W., M.L.S., G.M.); Faculty of Medicine (J.W.-C., P.R.B., A.B., H.L., J.W., M.L.S., D.A.D., K.M.B.); Children's Hospital of Eastern Ontario Research Institute (J.W.-C., T.H., A.E.M., A.M., H.L., D.A.D., K.M.B., K.K.), University of Ottawa; Hospital for Sick Children (M.C.), Centre for Computational Medicine, Toronto, Canada; Department of Obstetrics (W.M., M.R.W.M.), Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine; Magee-Womens Research Institute (W.M., M.R.W.M.), Pittsburgh, PA; Department of Pathology and Laboratory Medicine (A.B., J.W.), The Ottawa Hospital; Department of Radiology (M.L.S., G.M.), Radiation Oncology and Medical Physics, University of Ottawa; Department of Neurology and Neurosurgery (B.B.), Montreal Neurological Institute and Hospital, McGill University; and Newborn Screening Ontario (K.K.), Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Taila Hartley
- From the Department of Medicine (J.W.-C., P.R.B., A.B., H.L.), The Ottawa Hospital; The Ottawa Hospital Research Institute (J.W.-C., P.R.B., H.L., J.W., M.L.S., G.M.); Faculty of Medicine (J.W.-C., P.R.B., A.B., H.L., J.W., M.L.S., D.A.D., K.M.B.); Children's Hospital of Eastern Ontario Research Institute (J.W.-C., T.H., A.E.M., A.M., H.L., D.A.D., K.M.B., K.K.), University of Ottawa; Hospital for Sick Children (M.C.), Centre for Computational Medicine, Toronto, Canada; Department of Obstetrics (W.M., M.R.W.M.), Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine; Magee-Womens Research Institute (W.M., M.R.W.M.), Pittsburgh, PA; Department of Pathology and Laboratory Medicine (A.B., J.W.), The Ottawa Hospital; Department of Radiology (M.L.S., G.M.), Radiation Oncology and Medical Physics, University of Ottawa; Department of Neurology and Neurosurgery (B.B.), Montreal Neurological Institute and Hospital, McGill University; and Newborn Screening Ontario (K.K.), Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Aren Elizabeth Marshall
- From the Department of Medicine (J.W.-C., P.R.B., A.B., H.L.), The Ottawa Hospital; The Ottawa Hospital Research Institute (J.W.-C., P.R.B., H.L., J.W., M.L.S., G.M.); Faculty of Medicine (J.W.-C., P.R.B., A.B., H.L., J.W., M.L.S., D.A.D., K.M.B.); Children's Hospital of Eastern Ontario Research Institute (J.W.-C., T.H., A.E.M., A.M., H.L., D.A.D., K.M.B., K.K.), University of Ottawa; Hospital for Sick Children (M.C.), Centre for Computational Medicine, Toronto, Canada; Department of Obstetrics (W.M., M.R.W.M.), Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine; Magee-Womens Research Institute (W.M., M.R.W.M.), Pittsburgh, PA; Department of Pathology and Laboratory Medicine (A.B., J.W.), The Ottawa Hospital; Department of Radiology (M.L.S., G.M.), Radiation Oncology and Medical Physics, University of Ottawa; Department of Neurology and Neurosurgery (B.B.), Montreal Neurological Institute and Hospital, McGill University; and Newborn Screening Ontario (K.K.), Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Arran McBride
- From the Department of Medicine (J.W.-C., P.R.B., A.B., H.L.), The Ottawa Hospital; The Ottawa Hospital Research Institute (J.W.-C., P.R.B., H.L., J.W., M.L.S., G.M.); Faculty of Medicine (J.W.-C., P.R.B., A.B., H.L., J.W., M.L.S., D.A.D., K.M.B.); Children's Hospital of Eastern Ontario Research Institute (J.W.-C., T.H., A.E.M., A.M., H.L., D.A.D., K.M.B., K.K.), University of Ottawa; Hospital for Sick Children (M.C.), Centre for Computational Medicine, Toronto, Canada; Department of Obstetrics (W.M., M.R.W.M.), Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine; Magee-Womens Research Institute (W.M., M.R.W.M.), Pittsburgh, PA; Department of Pathology and Laboratory Medicine (A.B., J.W.), The Ottawa Hospital; Department of Radiology (M.L.S., G.M.), Radiation Oncology and Medical Physics, University of Ottawa; Department of Neurology and Neurosurgery (B.B.), Montreal Neurological Institute and Hospital, McGill University; and Newborn Screening Ontario (K.K.), Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Madeline Couse
- From the Department of Medicine (J.W.-C., P.R.B., A.B., H.L.), The Ottawa Hospital; The Ottawa Hospital Research Institute (J.W.-C., P.R.B., H.L., J.W., M.L.S., G.M.); Faculty of Medicine (J.W.-C., P.R.B., A.B., H.L., J.W., M.L.S., D.A.D., K.M.B.); Children's Hospital of Eastern Ontario Research Institute (J.W.-C., T.H., A.E.M., A.M., H.L., D.A.D., K.M.B., K.K.), University of Ottawa; Hospital for Sick Children (M.C.), Centre for Computational Medicine, Toronto, Canada; Department of Obstetrics (W.M., M.R.W.M.), Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine; Magee-Womens Research Institute (W.M., M.R.W.M.), Pittsburgh, PA; Department of Pathology and Laboratory Medicine (A.B., J.W.), The Ottawa Hospital; Department of Radiology (M.L.S., G.M.), Radiation Oncology and Medical Physics, University of Ottawa; Department of Neurology and Neurosurgery (B.B.), Montreal Neurological Institute and Hospital, McGill University; and Newborn Screening Ontario (K.K.), Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - William Macdonald
- From the Department of Medicine (J.W.-C., P.R.B., A.B., H.L.), The Ottawa Hospital; The Ottawa Hospital Research Institute (J.W.-C., P.R.B., H.L., J.W., M.L.S., G.M.); Faculty of Medicine (J.W.-C., P.R.B., A.B., H.L., J.W., M.L.S., D.A.D., K.M.B.); Children's Hospital of Eastern Ontario Research Institute (J.W.-C., T.H., A.E.M., A.M., H.L., D.A.D., K.M.B., K.K.), University of Ottawa; Hospital for Sick Children (M.C.), Centre for Computational Medicine, Toronto, Canada; Department of Obstetrics (W.M., M.R.W.M.), Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine; Magee-Womens Research Institute (W.M., M.R.W.M.), Pittsburgh, PA; Department of Pathology and Laboratory Medicine (A.B., J.W.), The Ottawa Hospital; Department of Radiology (M.L.S., G.M.), Radiation Oncology and Medical Physics, University of Ottawa; Department of Neurology and Neurosurgery (B.B.), Montreal Neurological Institute and Hospital, McGill University; and Newborn Screening Ontario (K.K.), Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Mellissa R W Mann
- From the Department of Medicine (J.W.-C., P.R.B., A.B., H.L.), The Ottawa Hospital; The Ottawa Hospital Research Institute (J.W.-C., P.R.B., H.L., J.W., M.L.S., G.M.); Faculty of Medicine (J.W.-C., P.R.B., A.B., H.L., J.W., M.L.S., D.A.D., K.M.B.); Children's Hospital of Eastern Ontario Research Institute (J.W.-C., T.H., A.E.M., A.M., H.L., D.A.D., K.M.B., K.K.), University of Ottawa; Hospital for Sick Children (M.C.), Centre for Computational Medicine, Toronto, Canada; Department of Obstetrics (W.M., M.R.W.M.), Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine; Magee-Womens Research Institute (W.M., M.R.W.M.), Pittsburgh, PA; Department of Pathology and Laboratory Medicine (A.B., J.W.), The Ottawa Hospital; Department of Radiology (M.L.S., G.M.), Radiation Oncology and Medical Physics, University of Ottawa; Department of Neurology and Neurosurgery (B.B.), Montreal Neurological Institute and Hospital, McGill University; and Newborn Screening Ontario (K.K.), Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Pierre R Bourque
- From the Department of Medicine (J.W.-C., P.R.B., A.B., H.L.), The Ottawa Hospital; The Ottawa Hospital Research Institute (J.W.-C., P.R.B., H.L., J.W., M.L.S., G.M.); Faculty of Medicine (J.W.-C., P.R.B., A.B., H.L., J.W., M.L.S., D.A.D., K.M.B.); Children's Hospital of Eastern Ontario Research Institute (J.W.-C., T.H., A.E.M., A.M., H.L., D.A.D., K.M.B., K.K.), University of Ottawa; Hospital for Sick Children (M.C.), Centre for Computational Medicine, Toronto, Canada; Department of Obstetrics (W.M., M.R.W.M.), Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine; Magee-Womens Research Institute (W.M., M.R.W.M.), Pittsburgh, PA; Department of Pathology and Laboratory Medicine (A.B., J.W.), The Ottawa Hospital; Department of Radiology (M.L.S., G.M.), Radiation Oncology and Medical Physics, University of Ottawa; Department of Neurology and Neurosurgery (B.B.), Montreal Neurological Institute and Hospital, McGill University; and Newborn Screening Ontario (K.K.), Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Ari Breiner
- From the Department of Medicine (J.W.-C., P.R.B., A.B., H.L.), The Ottawa Hospital; The Ottawa Hospital Research Institute (J.W.-C., P.R.B., H.L., J.W., M.L.S., G.M.); Faculty of Medicine (J.W.-C., P.R.B., A.B., H.L., J.W., M.L.S., D.A.D., K.M.B.); Children's Hospital of Eastern Ontario Research Institute (J.W.-C., T.H., A.E.M., A.M., H.L., D.A.D., K.M.B., K.K.), University of Ottawa; Hospital for Sick Children (M.C.), Centre for Computational Medicine, Toronto, Canada; Department of Obstetrics (W.M., M.R.W.M.), Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine; Magee-Womens Research Institute (W.M., M.R.W.M.), Pittsburgh, PA; Department of Pathology and Laboratory Medicine (A.B., J.W.), The Ottawa Hospital; Department of Radiology (M.L.S., G.M.), Radiation Oncology and Medical Physics, University of Ottawa; Department of Neurology and Neurosurgery (B.B.), Montreal Neurological Institute and Hospital, McGill University; and Newborn Screening Ontario (K.K.), Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Hanns Lochmüller
- From the Department of Medicine (J.W.-C., P.R.B., A.B., H.L.), The Ottawa Hospital; The Ottawa Hospital Research Institute (J.W.-C., P.R.B., H.L., J.W., M.L.S., G.M.); Faculty of Medicine (J.W.-C., P.R.B., A.B., H.L., J.W., M.L.S., D.A.D., K.M.B.); Children's Hospital of Eastern Ontario Research Institute (J.W.-C., T.H., A.E.M., A.M., H.L., D.A.D., K.M.B., K.K.), University of Ottawa; Hospital for Sick Children (M.C.), Centre for Computational Medicine, Toronto, Canada; Department of Obstetrics (W.M., M.R.W.M.), Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine; Magee-Womens Research Institute (W.M., M.R.W.M.), Pittsburgh, PA; Department of Pathology and Laboratory Medicine (A.B., J.W.), The Ottawa Hospital; Department of Radiology (M.L.S., G.M.), Radiation Oncology and Medical Physics, University of Ottawa; Department of Neurology and Neurosurgery (B.B.), Montreal Neurological Institute and Hospital, McGill University; and Newborn Screening Ontario (K.K.), Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - John Woulfe
- From the Department of Medicine (J.W.-C., P.R.B., A.B., H.L.), The Ottawa Hospital; The Ottawa Hospital Research Institute (J.W.-C., P.R.B., H.L., J.W., M.L.S., G.M.); Faculty of Medicine (J.W.-C., P.R.B., A.B., H.L., J.W., M.L.S., D.A.D., K.M.B.); Children's Hospital of Eastern Ontario Research Institute (J.W.-C., T.H., A.E.M., A.M., H.L., D.A.D., K.M.B., K.K.), University of Ottawa; Hospital for Sick Children (M.C.), Centre for Computational Medicine, Toronto, Canada; Department of Obstetrics (W.M., M.R.W.M.), Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine; Magee-Womens Research Institute (W.M., M.R.W.M.), Pittsburgh, PA; Department of Pathology and Laboratory Medicine (A.B., J.W.), The Ottawa Hospital; Department of Radiology (M.L.S., G.M.), Radiation Oncology and Medical Physics, University of Ottawa; Department of Neurology and Neurosurgery (B.B.), Montreal Neurological Institute and Hospital, McGill University; and Newborn Screening Ontario (K.K.), Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Marcos Loreto Sampaio
- From the Department of Medicine (J.W.-C., P.R.B., A.B., H.L.), The Ottawa Hospital; The Ottawa Hospital Research Institute (J.W.-C., P.R.B., H.L., J.W., M.L.S., G.M.); Faculty of Medicine (J.W.-C., P.R.B., A.B., H.L., J.W., M.L.S., D.A.D., K.M.B.); Children's Hospital of Eastern Ontario Research Institute (J.W.-C., T.H., A.E.M., A.M., H.L., D.A.D., K.M.B., K.K.), University of Ottawa; Hospital for Sick Children (M.C.), Centre for Computational Medicine, Toronto, Canada; Department of Obstetrics (W.M., M.R.W.M.), Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine; Magee-Womens Research Institute (W.M., M.R.W.M.), Pittsburgh, PA; Department of Pathology and Laboratory Medicine (A.B., J.W.), The Ottawa Hospital; Department of Radiology (M.L.S., G.M.), Radiation Oncology and Medical Physics, University of Ottawa; Department of Neurology and Neurosurgery (B.B.), Montreal Neurological Institute and Hospital, McGill University; and Newborn Screening Ontario (K.K.), Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Gerd Melkus
- From the Department of Medicine (J.W.-C., P.R.B., A.B., H.L.), The Ottawa Hospital; The Ottawa Hospital Research Institute (J.W.-C., P.R.B., H.L., J.W., M.L.S., G.M.); Faculty of Medicine (J.W.-C., P.R.B., A.B., H.L., J.W., M.L.S., D.A.D., K.M.B.); Children's Hospital of Eastern Ontario Research Institute (J.W.-C., T.H., A.E.M., A.M., H.L., D.A.D., K.M.B., K.K.), University of Ottawa; Hospital for Sick Children (M.C.), Centre for Computational Medicine, Toronto, Canada; Department of Obstetrics (W.M., M.R.W.M.), Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine; Magee-Womens Research Institute (W.M., M.R.W.M.), Pittsburgh, PA; Department of Pathology and Laboratory Medicine (A.B., J.W.), The Ottawa Hospital; Department of Radiology (M.L.S., G.M.), Radiation Oncology and Medical Physics, University of Ottawa; Department of Neurology and Neurosurgery (B.B.), Montreal Neurological Institute and Hospital, McGill University; and Newborn Screening Ontario (K.K.), Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Bernard Brais
- From the Department of Medicine (J.W.-C., P.R.B., A.B., H.L.), The Ottawa Hospital; The Ottawa Hospital Research Institute (J.W.-C., P.R.B., H.L., J.W., M.L.S., G.M.); Faculty of Medicine (J.W.-C., P.R.B., A.B., H.L., J.W., M.L.S., D.A.D., K.M.B.); Children's Hospital of Eastern Ontario Research Institute (J.W.-C., T.H., A.E.M., A.M., H.L., D.A.D., K.M.B., K.K.), University of Ottawa; Hospital for Sick Children (M.C.), Centre for Computational Medicine, Toronto, Canada; Department of Obstetrics (W.M., M.R.W.M.), Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine; Magee-Womens Research Institute (W.M., M.R.W.M.), Pittsburgh, PA; Department of Pathology and Laboratory Medicine (A.B., J.W.), The Ottawa Hospital; Department of Radiology (M.L.S., G.M.), Radiation Oncology and Medical Physics, University of Ottawa; Department of Neurology and Neurosurgery (B.B.), Montreal Neurological Institute and Hospital, McGill University; and Newborn Screening Ontario (K.K.), Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - David A Dyment
- From the Department of Medicine (J.W.-C., P.R.B., A.B., H.L.), The Ottawa Hospital; The Ottawa Hospital Research Institute (J.W.-C., P.R.B., H.L., J.W., M.L.S., G.M.); Faculty of Medicine (J.W.-C., P.R.B., A.B., H.L., J.W., M.L.S., D.A.D., K.M.B.); Children's Hospital of Eastern Ontario Research Institute (J.W.-C., T.H., A.E.M., A.M., H.L., D.A.D., K.M.B., K.K.), University of Ottawa; Hospital for Sick Children (M.C.), Centre for Computational Medicine, Toronto, Canada; Department of Obstetrics (W.M., M.R.W.M.), Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine; Magee-Womens Research Institute (W.M., M.R.W.M.), Pittsburgh, PA; Department of Pathology and Laboratory Medicine (A.B., J.W.), The Ottawa Hospital; Department of Radiology (M.L.S., G.M.), Radiation Oncology and Medical Physics, University of Ottawa; Department of Neurology and Neurosurgery (B.B.), Montreal Neurological Institute and Hospital, McGill University; and Newborn Screening Ontario (K.K.), Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Kym M Boycott
- From the Department of Medicine (J.W.-C., P.R.B., A.B., H.L.), The Ottawa Hospital; The Ottawa Hospital Research Institute (J.W.-C., P.R.B., H.L., J.W., M.L.S., G.M.); Faculty of Medicine (J.W.-C., P.R.B., A.B., H.L., J.W., M.L.S., D.A.D., K.M.B.); Children's Hospital of Eastern Ontario Research Institute (J.W.-C., T.H., A.E.M., A.M., H.L., D.A.D., K.M.B., K.K.), University of Ottawa; Hospital for Sick Children (M.C.), Centre for Computational Medicine, Toronto, Canada; Department of Obstetrics (W.M., M.R.W.M.), Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine; Magee-Womens Research Institute (W.M., M.R.W.M.), Pittsburgh, PA; Department of Pathology and Laboratory Medicine (A.B., J.W.), The Ottawa Hospital; Department of Radiology (M.L.S., G.M.), Radiation Oncology and Medical Physics, University of Ottawa; Department of Neurology and Neurosurgery (B.B.), Montreal Neurological Institute and Hospital, McGill University; and Newborn Screening Ontario (K.K.), Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Kristin Kernohan
- From the Department of Medicine (J.W.-C., P.R.B., A.B., H.L.), The Ottawa Hospital; The Ottawa Hospital Research Institute (J.W.-C., P.R.B., H.L., J.W., M.L.S., G.M.); Faculty of Medicine (J.W.-C., P.R.B., A.B., H.L., J.W., M.L.S., D.A.D., K.M.B.); Children's Hospital of Eastern Ontario Research Institute (J.W.-C., T.H., A.E.M., A.M., H.L., D.A.D., K.M.B., K.K.), University of Ottawa; Hospital for Sick Children (M.C.), Centre for Computational Medicine, Toronto, Canada; Department of Obstetrics (W.M., M.R.W.M.), Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine; Magee-Womens Research Institute (W.M., M.R.W.M.), Pittsburgh, PA; Department of Pathology and Laboratory Medicine (A.B., J.W.), The Ottawa Hospital; Department of Radiology (M.L.S., G.M.), Radiation Oncology and Medical Physics, University of Ottawa; Department of Neurology and Neurosurgery (B.B.), Montreal Neurological Institute and Hospital, McGill University; and Newborn Screening Ontario (K.K.), Children's Hospital of Eastern Ontario, Ottawa, Canada
| |
Collapse
|