1
|
Koko M, Fabian L, Popov I, Eberhardt RY, Zakharov G, Huang QQ, Wade EE, Azad R, Danecek P, Ho K, Hough A, Huang W, Lindsay SJ, Malawsky DS, Bonfanti D, Mason D, Plowman D, Quail MA, Ring SM, Shireby G, Widaa S, Fitzsimons E, Iyer V, Bann D, Timpson NJ, Wright J, Hurles ME, Martin HC. Exome sequencing of UK birth cohorts. Wellcome Open Res 2024; 9:390. [PMID: 39839975 PMCID: PMC11747307 DOI: 10.12688/wellcomeopenres.22697.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 01/23/2025] Open
Abstract
Birth cohort studies involve repeated surveys of large numbers of individuals from birth and throughout their lives. They collect information useful for a wide range of life course research domains, and biological samples which can be used to derive data from an increasing collection of omic technologies. This rich source of longitudinal data, when combined with genomic data, offers the scientific community valuable insights ranging from population genetics to applications across the social sciences. Here we present quality-controlled whole exome sequencing data from three UK birth cohorts: the Avon Longitudinal Study of Parents and Children (8,436 children and 3,215 parents), the Millenium Cohort Study (7,667 children and 6,925 parents) and Born in Bradford (8,784 children and 2,875 parents). The overall objective of this coordinated effort is to make the resulting high-quality data widely accessible to the global research community in a timely manner. We describe how the datasets were generated and subjected to quality control at the sample, variant and genotype level. We then present some preliminary analyses to illustrate the quality of the datasets and probe potential sources of bias. We introduce measures of ultra-rare variant burden to the variables available for researchers working on these cohorts, and show that the exome-wide burden of deleterious protein-truncating variants, S het burden, is associated with educational attainment and cognitive test scores. The whole exome sequence data from these birth cohorts (CRAM & VCF files) are available through the European Genome-Phenome Archive, and here we provide guidance for their use.
Collapse
Affiliation(s)
- Mahmoud Koko
- Human Genetics, Wellcome Sanger Institute, Hinxton, England, CB10 1SA, UK
| | - Laurie Fabian
- Population Health Sciences, University of Bristol Medical School, Bristol, England, BS8 2BN, UK
| | - Iaroslav Popov
- Human Genetics, Wellcome Sanger Institute, Hinxton, England, CB10 1SA, UK
| | - Ruth Y. Eberhardt
- Human Genetics, Wellcome Sanger Institute, Hinxton, England, CB10 1SA, UK
| | - Gennadii Zakharov
- Human Genetics, Wellcome Sanger Institute, Hinxton, England, CB10 1SA, UK
| | - Qin Qin Huang
- Human Genetics, Wellcome Sanger Institute, Hinxton, England, CB10 1SA, UK
| | - Emma E. Wade
- Human Genetics, Wellcome Sanger Institute, Hinxton, England, CB10 1SA, UK
| | - Rafaq Azad
- Bradford Institute for Health Research, Bradford Royal Infirmary, Bradford, England, BD9 6RJ, UK
| | - Petr Danecek
- Human Genetics, Wellcome Sanger Institute, Hinxton, England, CB10 1SA, UK
| | - Karen Ho
- Population Health Sciences, University of Bristol Medical School, Bristol, England, BS8 2BN, UK
| | - Amy Hough
- Bradford Institute for Health Research, Bradford Royal Infirmary, Bradford, England, BD9 6RJ, UK
| | - Wei Huang
- Human Genetics, Wellcome Sanger Institute, Hinxton, England, CB10 1SA, UK
| | - Sarah J. Lindsay
- Human Genetics, Wellcome Sanger Institute, Hinxton, England, CB10 1SA, UK
| | - Daniel S. Malawsky
- Human Genetics, Wellcome Sanger Institute, Hinxton, England, CB10 1SA, UK
| | - Davide Bonfanti
- Human Genetics, Wellcome Sanger Institute, Hinxton, England, CB10 1SA, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Royal Infirmary, Bradford, England, BD9 6RJ, UK
| | - Deborah Plowman
- Human Genetics, Wellcome Sanger Institute, Hinxton, England, CB10 1SA, UK
| | - Michael A. Quail
- Sequencing R&D, Wellcome Sanger Institute, Hinxton, England, CB10 1SA, UK
| | - Susan M. Ring
- Population Health Sciences, University of Bristol Medical School, Bristol, England, BS8 2BN, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, England, BS8 2BN, UK
| | - Gemma Shireby
- Centre for Longitudinal Studies, University College London Institute of Education, London, England, WC1H 0NU, UK
| | - Sara Widaa
- Sequencing R&D, Wellcome Sanger Institute, Hinxton, England, CB10 1SA, UK
| | - Emla Fitzsimons
- Centre for Longitudinal Studies, University College London Institute of Education, London, England, WC1H 0NU, UK
| | - Vivek Iyer
- Human Genetics, Wellcome Sanger Institute, Hinxton, England, CB10 1SA, UK
| | - David Bann
- Centre for Longitudinal Studies, University College London Institute of Education, London, England, WC1H 0NU, UK
| | - Nicholas J. Timpson
- Population Health Sciences, University of Bristol Medical School, Bristol, England, BS8 2BN, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, England, BS8 2BN, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Royal Infirmary, Bradford, England, BD9 6RJ, UK
| | - Matthew E. Hurles
- Human Genetics, Wellcome Sanger Institute, Hinxton, England, CB10 1SA, UK
| | - Hilary C. Martin
- Human Genetics, Wellcome Sanger Institute, Hinxton, England, CB10 1SA, UK
| |
Collapse
|
2
|
Kumar M, Sharma S, Pandey S, Mammayil G, Pala Kuzhiyil A, Sreesh S, Arakkal R, Radhakrishnan DM, Rajan R, Amalnath D, Gulati R, Tayade N, Sadasivan S, Valsan A, Menon J, Kamate M, Mathur SK, Mahadevan R, Dhingra B, Rajan R, Singh K, Shalimar, Geevarghese SK, Kumar VS, Menachery J, Aliyar A, Bhoyar RC, Jolly B, Jain A, Vittal Rangan A, Moitra T, Mhaske A, Gupta V, Senthivel V, Mishra A, Saini A, Gaharwar U, Sivasubbu S, Scaria V, B K B. The Genomic Landscape of Wilson Disease in a Pan India Disease Cohort and Population-Scale Data. Mov Disord Clin Pract 2024. [PMID: 39535360 DOI: 10.1002/mdc3.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/14/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Wilson's disease (WD) results from pathogenic ATP7B gene variations, causing copper accumulation mainly in the liver, brain, and kidneys. OBJECTIVES In India, despite studies on ATP7B variants, WD often goes undiagnosed, with the prevalence, carrier rate, and mutation spectrum remaining unknown. METHODS A multicenter study examined genetic variations in WD among individuals of Indian origin via whole exome sequencing. The study used the InDelible structural variants calling pipeline and conducted molecular dynamic simulations on variants of uncertain significance (VUS) in ATP7B AlphaFold protein structures. Additionally, a high-throughput gene screening panel for WD was developed. RESULTS This study examined 128 clinically diagnosed cases of WD, revealing 74 genetically confirmed cases, 22 with ATP7B variants, and 32 without. Twenty-two novel ATP7B gene variants were identified, including a 322 bp deletion classified as a structural variant. Molecular dynamics simulations highlighted the potential deleterious effects of 11 ATP7B VUS. Gene burden analysis suggested associations with ANO8, LGR4, and CDC7. ATP7B gene hotspots for pathogenic variants were identified. Prevalence and carrier rates were determined as one in 18,678 and one in 67, respectively. A multiplex sequencing panel showed promise for accurate WD diagnosis. CONCLUSIONS This study offers crucial insights into WD's genetic variations and prevalence in India, addressing its underdiagnosis. It highlights the novel genetic variants in the ATP7B gene, the involvement of other genes, a scalable, cost-effective multiplex sequencing panel for WD diagnosis and management and promising advancements in WD care.
Collapse
Affiliation(s)
- Mukesh Kumar
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Srishti Sharma
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Pandey
- Department of Neurology and Stroke Medicine, Amrita Hospital, Faridabad, India
- Department of Neurology, G B Pant Hospital, JLN Marg, New Delhi, India
| | | | | | - Srijaya Sreesh
- Department of Medical Gastroenterology and Hepatology, Government Medical College, Trivandrum, India
| | - Riyaz Arakkal
- Kannur Medical College, Anjarakandy Integrated Campus, Kannur, India
| | | | - Roopa Rajan
- Department of Neurology, AIIMS, New Delhi, India
| | - Deepak Amalnath
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Reena Gulati
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | | | - Shine Sadasivan
- Department of Hepatology and Gastroenterology, Amrita Institute of Medical Sciences and Research (AIMS), Kochi, India
| | - Arun Valsan
- Department of Hepatology and Gastroenterology, Amrita Institute of Medical Sciences and Research (AIMS), Kochi, India
| | - Jagadeesh Menon
- Department of Pediatric Hepatology and Gastroenterology, Dr Rela Institute and Medical Centre, Chennai, India
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mahesh Kamate
- Child Neurology, Belgaum Medical College, Belgaum, India
| | | | - Radha Mahadevan
- Department of Neurology, Tirunelveli Medical College, Tirunelveli, India
| | - Bhavna Dhingra
- Department of Paediatrics, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| | | | - Kuldeep Singh
- Department of Pediatrics, AIIMS Jodhpur, Jodhpur, India
| | - Shalimar
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | | | - Vikram S Kumar
- Subbaiah Institute of Medical Sciences, Shivamogga, India
| | - John Menachery
- Department Gastroenterology, Rajagiri Hospital, Aluva, India
| | - Aminu Aliyar
- Department of Neurology, AIIMS, New Delhi, India
| | - Rahul C Bhoyar
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Bani Jolly
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhinav Jain
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Arvinden Vittal Rangan
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Trisha Moitra
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditi Mhaske
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Vishu Gupta
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vigneshwar Senthivel
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anushree Mishra
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Arti Saini
- Department of Neurology, AIIMS, New Delhi, India
| | - Utkarsh Gaharwar
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Binukumar B K
- CSIR Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Demidov G, Laurie S, Torella A, Piluso G, Scala M, Morleo M, Nigro V, Graessner H, Banka S, Lohmann K, Ossowski S. Structural variant calling and clinical interpretation in 6224 unsolved rare disease exomes. Eur J Hum Genet 2024; 32:998-1004. [PMID: 38822122 PMCID: PMC11291474 DOI: 10.1038/s41431-024-01637-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/24/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Structural variants (SVs), including large deletions, duplications, inversions, translocations, and more complex events have the potential to disrupt gene function resulting in rare disease. Nevertheless, current pipelines and clinical decision support systems for exome sequencing (ES) tend to focus on small alterations such as single nucleotide variants (SNVs) and insertions-deletions shorter than 50 base pairs (indels). Additionally, detection and interpretation of large copy-number variants (CNVs) are frequently performed. However, detection of other types of SVs in ES data is hampered by the difficulty of identifying breakpoints in off-target (intergenic or intronic) regions, which makes robust identification of SVs challenging. In this paper, we demonstrate the utility of SV calling in ES resulting in a diagnostic yield of 0.4% (23 out of 5825 probands) for a large cohort of unsolved patients collected by the Solve-RD consortium. Remarkably, 8 out of 23 pathogenic SV were not found by comprehensive read-depth-based CNV analysis, resulting in a 0.13% increased diagnostic value.
Collapse
Affiliation(s)
- German Demidov
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
| | - Steven Laurie
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Manuela Morleo
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Holm Graessner
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Siddharth Banka
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Pagnamenta AT, Yu J, Walker S, Noble AJ, Lord J, Dutta P, Hashim M, Camps C, Green H, Devaiah S, Nashef L, Parr J, Fratter C, Ibnouf Hussein R, Lindsay SJ, Lalloo F, Banos-Pinero B, Evans D, Mallin L, Waite A, Evans J, Newman A, Allen Z, Perez-Becerril C, Ryan G, Hart R, Taylor J, Bedenham T, Clement E, Blair E, Hay E, Forzano F, Higgs J, Canham N, Majumdar A, McEntagart M, Lahiri N, Stewart H, Smithson S, Calpena E, Jackson A, Banka S, Titheradge H, McGowan R, Rankin J, Shaw-Smith C, Evans DG, Burghel GJ, Smith MJ, Anderson E, Madhu R, Firth H, Ellard S, Brennan P, Anderson C, Taupin D, Rogers MT, Cook JA, Durkie M, East JE, Fowler D, Wilson L, Igbokwe R, Gardham A, Tomlinson I, Baralle D, Uhlig HH, Taylor JC. The impact of inversions across 33,924 families with rare disease from a national genome sequencing project. Am J Hum Genet 2024; 111:1140-1164. [PMID: 38776926 PMCID: PMC11179413 DOI: 10.1016/j.ajhg.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Detection of structural variants (SVs) is currently biased toward those that alter copy number. The relative contribution of inversions toward genetic disease is unclear. In this study, we analyzed genome sequencing data for 33,924 families with rare disease from the 100,000 Genomes Project. From a database hosting >500 million SVs, we focused on 351 genes where haploinsufficiency is a confirmed disease mechanism and identified 47 ultra-rare rearrangements that included an inversion (24 bp to 36.4 Mb, 20/47 de novo). Validation utilized a number of orthogonal approaches, including retrospective exome analysis. RNA-seq data supported the respective diagnoses for six participants. Phenotypic blending was apparent in four probands. Diagnostic odysseys were a common theme (>50 years for one individual), and targeted analysis for the specific gene had already been performed for 30% of these individuals but with no findings. We provide formal confirmation of a European founder origin for an intragenic MSH2 inversion. For two individuals with complex SVs involving the MECP2 mutational hotspot, ambiguous SV structures were resolved using long-read sequencing, influencing clinical interpretation. A de novo inversion of HOXD11-13 was uncovered in a family with Kantaputra-type mesomelic dysplasia. Lastly, a complex translocation disrupting APC and involving nine rearranged segments confirmed a clinical diagnosis for three family members and resolved a conundrum for a sibling with a single polyp. Overall, inversions play a small but notable role in rare disease, likely explaining the etiology in around 1/750 families across heterogeneous clinical cohorts.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - Jing Yu
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK; Novo Nordisk Oxford Research Centre, Oxford, UK
| | | | - Alexandra J Noble
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK
| | - Jenny Lord
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK; Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, UK
| | - Prasun Dutta
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Mona Hashim
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Carme Camps
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Hannah Green
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Smrithi Devaiah
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Lina Nashef
- Department of Neurology, King's College Hospital, London, UK
| | - Jason Parr
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Carl Fratter
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rana Ibnouf Hussein
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Sarah J Lindsay
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Fiona Lalloo
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Benito Banos-Pinero
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - David Evans
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Lucy Mallin
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Adrian Waite
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, UK
| | - Julie Evans
- Bristol Genetics Laboratory, North Bristol NHS Trust, Bristol, UK
| | - Andrew Newman
- The All Wales Medical Genomics Service, University Hospital of Wales, Cardiff, UK
| | - Zoe Allen
- North Thames Rare and Inherited Disease Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Cristina Perez-Becerril
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Gavin Ryan
- West Midlands Regional Genetics Laboratory, Central and South Genomic Laboratory Hub, Birmingham, UK
| | - Rachel Hart
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - John Taylor
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Tina Bedenham
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Emma Clement
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ed Blair
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Eleanor Hay
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Francesca Forzano
- Clinical Genetics Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Jenny Higgs
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Natalie Canham
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Anirban Majumdar
- Department of Paediatric Neurology, Bristol Children's Hospital, Bristol, UK
| | - Meriel McEntagart
- SW Thames Centre for Genomic Medicine, University of London & St George's University Hospitals NHS Foundation Trust, St George's, London, UK
| | - Nayana Lahiri
- SW Thames Centre for Genomic Medicine, University of London & St George's University Hospitals NHS Foundation Trust, St George's, London, UK
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sarah Smithson
- Department of Clinical Genetics, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Eduardo Calpena
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Unidad CIBERER (CB06/07/1030), Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Adam Jackson
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hannah Titheradge
- Department of Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Ruth McGowan
- West of Scotland Centre for Genomic Medicine, Glasgow, UK
| | - Julia Rankin
- Department of Clinical Genetics, Royal Devon University Healthcare NHS Trust, Exeter, UK
| | - Charles Shaw-Smith
- Department of Clinical Genetics, Royal Devon University Healthcare NHS Trust, Exeter, UK
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - George J Burghel
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Miriam J Smith
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Emily Anderson
- Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, UK
| | - Rajesh Madhu
- Paediatric Neurosciences Department, Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, UK
| | - Helen Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Paul Brennan
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle University, Newcastle, UK
| | - Claire Anderson
- Canberra Clinical Genomics, Canberra Health Services and The Australian National University, Canberra, ACT, Australia
| | - Doug Taupin
- Cancer Research, Canberra Hospital, Canberra, ACT, Australia
| | - Mark T Rogers
- The All Wales Medical Genomics Service, University Hospital of Wales, Cardiff, UK
| | - Jackie A Cook
- Department of Clinical Genetics, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Miranda Durkie
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, North East and Yorkshire Genomic Laboratory Hub, Sheffield, UK
| | - James E East
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK
| | - Darren Fowler
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Louise Wilson
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Rebecca Igbokwe
- Department of Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Alice Gardham
- North East Thames Regional Genetic Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford, UK
| | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Holm H Uhlig
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK; Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK
| | - Jenny C Taylor
- Oxford Biomedical Research Centre, Centre for Human Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Song B, Buckler ES, Stitzer MC. New whole-genome alignment tools are needed for tapping into plant diversity. TRENDS IN PLANT SCIENCE 2024; 29:355-369. [PMID: 37749022 DOI: 10.1016/j.tplants.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/19/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023]
Abstract
Genome alignment is one of the most foundational methods for genome sequence studies. With rapid advances in sequencing and assembly technologies, these newly assembled genomes present challenges for alignment tools to meet the increased complexity and scale. Plant genome alignment is technologically challenging because of frequent whole-genome duplications (WGDs) as well as chromosome rearrangements and fractionation, high nucleotide diversity, widespread structural variation, and high transposable element (TE) activity causing large proportions of repeat elements. We summarize classical pairwise and multiple genome alignment (MGA) methods, and highlight techniques that are widely used or are being developed by the plant research community. We also outline the remaining challenges for precise genome alignment and the interpretation of alignment results in plants.
Collapse
Affiliation(s)
- Baoxing Song
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China; Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA; Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA; Agricultural Research Service, United States Department of Agriculture, Ithaca, NY 14853, USA
| | - Michelle C Stitzer
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
6
|
Nappi F. In-Depth Genomic Analysis: The New Challenge in Congenital Heart Disease. Int J Mol Sci 2024; 25:1734. [PMID: 38339013 PMCID: PMC10855915 DOI: 10.3390/ijms25031734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The use of next-generation sequencing has provided new insights into the causes and mechanisms of congenital heart disease (CHD). Examinations of the whole exome sequence have detected detrimental gene variations modifying single or contiguous nucleotides, which are characterised as pathogenic based on statistical assessments of families and correlations with congenital heart disease, elevated expression during heart development, and reductions in harmful protein-coding mutations in the general population. Patients with CHD and extracardiac abnormalities are enriched for gene classes meeting these criteria, supporting a common set of pathways in the organogenesis of CHDs. Single-cell transcriptomics data have revealed the expression of genes associated with CHD in specific cell types, and emerging evidence suggests that genetic mutations disrupt multicellular genes essential for cardiogenesis. Metrics and units are being tracked in whole-genome sequencing studies.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
7
|
Wang X, Ling Z, Luo T, Zhou Q, Zhao G, Li B, Xia K, Li J. Severity of Autism Spectrum Disorder Symptoms Associated with de novo Variants and Pregnancy-Induced Hypertension. J Autism Dev Disord 2024; 54:749-764. [PMID: 36445517 DOI: 10.1007/s10803-022-05824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 11/30/2022]
Abstract
Genetic factors, particularly, de novo variants (DNV), and an environment factor, exposure to pregnancy-induced hypertension (PIH), were reported to be associated with risk of autism spectrum disorder (ASD); however, how they jointly affect the severity of ASD symptom is unclear. We assessed the severity of core ASD symptoms affected by functional de novo variants or PIH. We selected phenotype data from Simon's Simplex Collection database, used genotypes from previous studies, and created linear regression models. We found that ASD patients carrying DNV with PIH exposure had increased adaptive and cognitive ability, decreased social problems, and enhanced repetitive behaviors; however, there was no difference in patients without DNV between those with or without PIH exposure. In addition, the DNV genes carried by patients exposed to PIH were enriched in ubiquitin-dependent proteolytic processes, highlighting how candidate genes in pathways and environments interact. The results indicate the joint contribution of DNV and PIH to ASD.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China
| | - Zhengbao Ling
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China
| | - Tengfei Luo
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China
| | - Qiao Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guihu Zhao
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China.
- University of South China, Hengyang, Hunan, China.
| | - Jinchen Li
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 41008, Hunan, China.
- Centre for Medical Genetics, Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 41008, Hunan, China.
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Bioinformatics Center, National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Wijngaard R, Demidov G, O'Gorman L, Corominas-Galbany J, Yaldiz B, Steyaert W, de Boer E, Vissers LELM, Kamsteeg EJ, Pfundt R, Swinkels H, den Ouden A, Te Paske IBAW, de Voer RM, Faivre L, Denommé-Pichon AS, Duffourd Y, Vitobello A, Chevarin M, Straub V, Töpf A, van der Kooi AJ, Magrinelli F, Rocca C, Hanna MG, Vandrovcova J, Ossowski S, Laurie S, Gilissen C. Mobile element insertions in rare diseases: a comparative benchmark and reanalysis of 60,000 exome samples. Eur J Hum Genet 2024; 32:200-208. [PMID: 37853102 PMCID: PMC10853235 DOI: 10.1038/s41431-023-01478-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023] Open
Abstract
Mobile element insertions (MEIs) are a known cause of genetic disease but have been underexplored due to technical limitations of genetic testing methods. Various bioinformatic tools have been developed to identify MEIs in Next Generation Sequencing data. However, most tools have been developed specifically for genome sequencing (GS) data rather than exome sequencing (ES) data, which remains more widely used for routine diagnostic testing. In this study, we benchmarked six MEI detection tools (ERVcaller, MELT, Mobster, SCRAMble, TEMP2 and xTea) on ES data and on GS data from publicly available genomic samples (HG002, NA12878). For all the tools we evaluated sensitivity and precision of different filtering strategies. Results show that there were substantial differences in tool performance between ES and GS data. MELT performed best with ES data and its combination with SCRAMble increased substantially the detection rate of MEIs. By applying both tools to 10,890 ES samples from Solve-RD and 52,624 samples from Radboudumc we were able to diagnose 10 patients who had remained undiagnosed by conventional ES analysis until now. Our study shows that MELT and SCRAMble can be used reliably to identify clinically relevant MEIs in ES data. This may lead to an additional diagnosis for 1 in 3000 to 4000 patients in routine clinical ES.
Collapse
Affiliation(s)
- Robin Wijngaard
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - German Demidov
- Universitätsklinikum Tübingen - Institut für Medizinische Genetik und angewandte Genomik, Tübingen, Germany
| | - Luke O'Gorman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Burcu Yaldiz
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter Steyaert
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elke de Boer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hilde Swinkels
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Amber den Ouden
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris B A W Te Paske
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richarda M de Voer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurence Faivre
- Centre de Référence Maladies Rares "Anomalies du développement et syndromes malformatifs", Centre de Génétique, FHU-TRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- UMR1231-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
- Laboratoire de Génétique chromosomique et moléculaire, UF6254 Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Yannis Duffourd
- UMR1231-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
- Laboratoire de Génétique chromosomique et moléculaire, UF6254 Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Antonio Vitobello
- UMR1231-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
- Laboratoire de Génétique chromosomique et moléculaire, UF6254 Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Martin Chevarin
- UMR1231-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
- Laboratoire de Génétique chromosomique et moléculaire, UF6254 Innovation en diagnostic génomique des maladies rares, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Anneke J van der Kooi
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Clarissa Rocca
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- Clinical Pharmacology, William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Stephan Ossowski
- Universitätsklinikum Tübingen - Institut für Medizinische Genetik und angewandte Genomik, Tübingen, Germany
| | - Steven Laurie
- Centro Nacional de Análisis Genómico (CNAG), Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
9
|
Louw N, Carstens N, Lombard Z. Incorporating CNV analysis improves the yield of exome sequencing for rare monogenic disorders-an important consideration for resource-constrained settings. Front Genet 2023; 14:1277784. [PMID: 38155715 PMCID: PMC10753787 DOI: 10.3389/fgene.2023.1277784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
Exome sequencing (ES) is a recommended first-tier diagnostic test for many rare monogenic diseases. It allows for the detection of both single-nucleotide variants (SNVs) and copy number variants (CNVs) in coding exonic regions of the genome in a single test, and this dual analysis is a valuable approach, especially in limited resource settings. Single-nucleotide variants are well studied; however, the incorporation of copy number variant analysis tools into variant calling pipelines has not been implemented yet as a routine diagnostic test, and chromosomal microarray is still more widely used to detect copy number variants. Research shows that combined single and copy number variant analysis can lead to a diagnostic yield of up to 58%, increasing the yield with as much as 18% from the single-nucleotide variant only pipeline. Importantly, this is achieved with the consideration of computational costs only, without incurring any additional sequencing costs. This mini review provides an overview of copy number variant analysis from exome data and what the current recommendations are for this type of analysis. We also present an overview on rare monogenic disease research standard practices in resource-limited settings. We present evidence that integrating copy number variant detection tools into a standard exome sequencing analysis pipeline improves diagnostic yield and should be considered a significantly beneficial addition, with relatively low-cost implications. Routine implementation in underrepresented populations and limited resource settings will promote generation and sharing of CNV datasets and provide momentum to build core centers for this niche within genomic medicine.
Collapse
Affiliation(s)
- Nadja Louw
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nadia Carstens
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Genomics Platform, South African Medical Research Council, Cape Town, South Africa
| | - Zané Lombard
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
10
|
Baine-Savanhu F, Macaulay S, Louw N, Bollweg A, Flynn K, Molatoli M, Nevondwe P, Seymour H, Carstens N, Krause A, Lombard Z. Identifying the genetic causes of developmental disorders and intellectual disability in Africa: a systematic literature review. Front Genet 2023; 14:1137922. [PMID: 37234869 PMCID: PMC10208355 DOI: 10.3389/fgene.2023.1137922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Objective: Genetic variants cause a significant portion of developmental disorders and intellectual disabilities (DD/ID), but clinical and genetic heterogeneity makes identification challenging. Compounding the issue is a lack of ethnic diversity in studies into the genetic aetiology of DD/ID, with a dearth of data from Africa. This systematic review aimed to comprehensively describe the current knowledge from the African continent on this topic. Method: Applicable literature published up until July 2021 was retrieved from PubMed, Scopus and Web of Science databases, following PRISMA guidelines, focusing on original research reports on DD/ID where African patients were the focus of the study. The quality of the dataset was assessed using appraisal tools from the Joanna Briggs Institute, whereafter metadata was extracted for analysis. Results: A total of 3,803 publications were extracted and screened. After duplicate removal, title, abstract and full paper screening, 287 publications were deemed appropriate for inclusion. Of the papers analysed, a large disparity was seen between work emanating from North Africa compared to sub-Saharan Africa, with North Africa dominating the publications. Representation of African scientists on publications was poorly balanced, with most research being led by international researchers. There are very few systematic cohort studies, particularly using newer technologies, such as chromosomal microarray and next-generation sequencing. Most of the reports on new technology data were generated outside Africa. Conclusion: This review highlights how the molecular epidemiology of DD/ID in Africa is hampered by significant knowledge gaps. Efforts are needed to produce systematically obtained high quality data that can be used to inform appropriate strategies to implement genomic medicine for DD/ID on the African continent, and to successfully bridge healthcare inequalities.
Collapse
Affiliation(s)
- Fiona Baine-Savanhu
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shelley Macaulay
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nadja Louw
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alanna Bollweg
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kaitlyn Flynn
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mhlekazi Molatoli
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patracia Nevondwe
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heather Seymour
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nadia Carstens
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Genomics Platform, South African Medical Research Council, Cape Town, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zané Lombard
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Wright CF, Campbell P, Eberhardt RY, Aitken S, Perrett D, Brent S, Danecek P, Gardner EJ, Chundru VK, Lindsay SJ, Andrews K, Hampstead J, Kaplanis J, Samocha KE, Middleton A, Foreman J, Hobson RJ, Parker MJ, Martin HC, FitzPatrick DR, Hurles ME, Firth HV. Genomic Diagnosis of Rare Pediatric Disease in the United Kingdom and Ireland. N Engl J Med 2023; 388:1559-1571. [PMID: 37043637 PMCID: PMC7614484 DOI: 10.1056/nejmoa2209046] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
BACKGROUND Pediatric disorders include a range of highly penetrant, genetically heterogeneous conditions amenable to genomewide diagnostic approaches. Finding a molecular diagnosis is challenging but can have profound lifelong benefits. METHODS We conducted a large-scale sequencing study involving more than 13,500 families with probands with severe, probably monogenic, difficult-to-diagnose developmental disorders from 24 regional genetics services in the United Kingdom and Ireland. Standardized phenotypic data were collected, and exome sequencing and microarray analyses were performed to investigate novel genetic causes. We developed an iterative variant analysis pipeline and reported candidate variants to clinical teams for validation and diagnostic interpretation to inform communication with families. Multiple regression analyses were performed to evaluate factors affecting the probability of diagnosis. RESULTS A total of 13,449 probands were included in the analyses. On average, we reported 1.0 candidate variant per parent-offspring trio and 2.5 variants per singleton proband. Using clinical and computational approaches to variant classification, we made a diagnosis in approximately 41% of probands (5502 of 13,449). Of 3599 probands in trios who received a diagnosis by clinical assertion, approximately 76% had a pathogenic de novo variant. Another 22% of probands (2997 of 13,449) had variants of uncertain significance in genes that were strongly linked to monogenic developmental disorders. Recruitment in a parent-offspring trio had the largest effect on the probability of diagnosis (odds ratio, 4.70; 95% confidence interval [CI], 4.16 to 5.31). Probands were less likely to receive a diagnosis if they were born extremely prematurely (i.e., 22 to 27 weeks' gestation; odds ratio, 0.39; 95% CI, 0.22 to 0.68), had in utero exposure to antiepileptic medications (odds ratio, 0.44; 95% CI, 0.29 to 0.67), had mothers with diabetes (odds ratio, 0.52; 95% CI, 0.41 to 0.67), or were of African ancestry (odds ratio, 0.51; 95% CI, 0.31 to 0.78). CONCLUSIONS Among probands with severe, probably monogenic, difficult-to-diagnose developmental disorders, multimodal analysis of genomewide data had good diagnostic power, even after previous attempts at diagnosis. (Funded by the Health Innovation Challenge Fund and Wellcome Sanger Institute.).
Collapse
Affiliation(s)
- Caroline F. Wright
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, RILD Building, Royal Devon & Exeter Hospital, Barrack Road, Exeter UK, EX2 5DW
| | - Patrick Campbell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
- Cambridge University Hospitals Foundation Trust, Addenbrooke’s Hospital, Cambridge UK, CB2 0QQ
| | - Ruth Y. Eberhardt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Stuart Aitken
- MRC Human Genetics Unit, Institute of Genetic and Cancer, University of Edinburgh, Edinburgh UK, EH4 2XU
| | - Daniel Perrett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SD
| | - Simon Brent
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SD
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Eugene J. Gardner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - V. Kartik Chundru
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Sarah J. Lindsay
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Katrina Andrews
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Juliet Hampstead
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Joanna Kaplanis
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Kaitlin E. Samocha
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Anna Middleton
- Wellcome Connecting Science, Wellcome Genome Campus, Hinxton, Cambridge, UK, CB10 1SA
| | - Julia Foreman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SD
| | - Rachel J. Hobson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Michael J. Parker
- Wellcome Centre for Ethics and Humanities/Ethox Centre, Oxford Population Health, University of Oxford, Big Data Institute, Old Road Campus, Oxford, UK, OX3 7LF
| | - Hilary C. Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - David R. FitzPatrick
- MRC Human Genetics Unit, Institute of Genetic and Cancer, University of Edinburgh, Edinburgh UK, EH4 2XU
| | - Matthew E. Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
| | - Helen V. Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge UK, CB10 1SA
- Cambridge University Hospitals Foundation Trust, Addenbrooke’s Hospital, Cambridge UK, CB2 0QQ
| |
Collapse
|
12
|
Bezdvornykh I, Cherkasov N, Kanapin A, Samsonova A. A collection of read depth profiles at structural variant breakpoints. Sci Data 2023; 10:186. [PMID: 37024526 PMCID: PMC10079824 DOI: 10.1038/s41597-023-02076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
SWaveform, a newly created open genome-wide resource for read depth signal in the vicinity of structural variant (SV) breakpoints, aims to boost development of computational tools and algorithms for discovery of genomic rearrangement events from sequencing data. SVs are a dominant force shaping genomes and substantially contributing to genetic diversity. Still, there are challenges in reliable and efficient genotyping of SVs from whole genome sequencing data, thus delaying translation into clinical applications and wasting valuable resources. SWaveform includes a database containing ~7 M of read depth profiles at SV breakpoints extracted from 911 sequencing samples generated by the Human Genome Diversity Project, generalised patterns of the signal at breakpoints, an interface for navigation and download, as well as a toolbox for local deployment with user's data. The dataset can be of immense value to bioinformatics and engineering communities as it empowers smooth application of intelligent signal processing and machine learning techniques for discovery of genomic rearrangement events and thus opens the floodgates for development of innovative algorithms and software.
Collapse
Affiliation(s)
- Igor Bezdvornykh
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, 199004, Russia
| | - Nikolay Cherkasov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, 199004, Russia
| | - Alexander Kanapin
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, 199004, Russia
| | - Anastasia Samsonova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, 199004, Russia.
| |
Collapse
|
13
|
Xie H, Yin H, Ye X, Liu Y, Liu N, Zhang Y, Chen X, Chen X. Detection of Small CYP11B1 Deletions and One Founder Chimeric CYP11B2/CYP11B1 Gene in 11β-Hydroxylase Deficiency. Front Endocrinol (Lausanne) 2022; 13:882863. [PMID: 35685215 PMCID: PMC9171383 DOI: 10.3389/fendo.2022.882863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE 11β-Hydroxylase deficiency (11β-OHD) caused by mutations in the CYP11B1 gene is the second most common form of congenital adrenal hyperplasia. Both point mutations and genomic rearrangements of CYP11B1 are important causes of 11β-OHD. However, the high degree of sequence identity between CYP11B1 and its homologous gene CYP11B2, presents unique challenges for molecular diagnosis of suspected 11β-OHD. The aim of this study was to detect the point mutation, indel, small deletion of CYP11B1 and chimeric CYP11B2/CYP11B1 gene in a one-tube test, improving the genetic diagnosis of 11β-OHD. METHODS Optimized custom-designed target sequencing strategy was performed in three patients with suspected 11β-OHD, in which both the coverage depth of paired-end reads and the breakpoint information of split reads from sequencing data were analysed in order to detect genomic rearrangements covering CYP11B1. Long-range PCR was peformed to validate the speculated CYP11B1 rearrangements with the breakpoint-specifc primers. RESULTS Using the optimized target sequencing approach, we detected two intragenic/intergenic deletions of CYP11B1 and one chimeric CYP11B2/CYP11B1 gene from three suspected patients with 11β-OHD besides three pathogenic heterozygous point mutation/indels. Furthermore, we mapped the precise breakpoint of this chimeric CYP11B2/CYP11B1 gene located on chr8:143994517 (hg19) and confirmed it as a founder rearrangement event in the Chinese population. CONCLUSIONS Our optimized target sequencing approach improved the genetic diagnosis of 11β-OHD.
Collapse
Affiliation(s)
- Hua Xie
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Hui Yin
- Department of Endocrinology, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Xue Ye
- Department of Endocrinology, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Ying Liu
- Department of Endocrinology, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Na Liu
- Bioinformation Department, Beijing Mygenostics Co., Ltd, Beijing, China
| | - Yu Zhang
- Department of Laboratory Center, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoli Chen
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
- *Correspondence: Xiaobo Chen, ; Xiaoli Chen,
| | - Xiaobo Chen
- Department of Endocrinology, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
- *Correspondence: Xiaobo Chen, ; Xiaoli Chen,
| |
Collapse
|