1
|
Redwitz J, Streich P, Zamfir M, Walser-Reichenbach SM, Seidel M, Herr CEW, Heinze S, Quartucci C. Verification and application of qPCR and viability-qPCR for Legionella monitoring in evaporative cooling systems complementing the conventional culture method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176011. [PMID: 39236821 DOI: 10.1016/j.scitotenv.2024.176011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/09/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
To date, in many countries the only legally valid method for evaporative cooling system (ECS) monitoring is the culture method. However, a duration of up to 14 days and a risk of underestimation of Legionella concentrations are seen as limitations of cultivation methods. Rapid cultivation-independent methods are an important step towards a more practicable monitoring of ECS to quickly control interventions if elevated concentrations of Legionella are found. Two commercial kits for quantitative polymerase chain reaction (qPCR) and viability-qPCR (v-qPCR) were studied, comprising sample filtration and DNA extraction. Cryopreserved Legionella pneumophila were established as calibration standard with intact (ILC) and total Legionella count (TLC) determined by flow cytometry before conducting spiking experiments in commercial mineral water and artificial process water. Final assessment was carried out using real ECS samples. Recovery and robustness ranged from 86 to 108 % for qPCR with a drop to 40-60 % for v-qPCR when compared to direct extraction, possibly attributable to cell damage during sample concentration. All methods including culture did perform well regarding linearity with R2 ≥ 0.95 for most trials. Detected concentrations in comparison to spiked Legionella counts differed with culture averaging 25 ± 7 % of spiked ILC and v-qPCR being closest to spiked concentrations with 65-144 %. In comparison, qPCR was several fold above spiked TLC concentrations. For real ECS samples Legionella spp. were detected in concentrations above 103 GU/100 mL by v-qPCR in 70-92 % of samples, depending on the kit used. Most of these samples were either culture-negative or not evaluable on agar plates. This study showed that a cryopreserved bacterial standard based examination is applicable and can be used for future v-qPCR verification. For assessment of differences in results between culture and v-qPCR/qPCR in ECS samples expert knowledge about the operating mode and used analytical methods is required. Guidelines addressing this issue could be a solution.
Collapse
Affiliation(s)
- J Redwitz
- Department of Occupational and Environmental Health, Epidemiology, Bavarian Health and Food Safety Authority, Munich, Germany.
| | - P Streich
- Chair of Analytical Chemistry and Water Chemistry, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - M Zamfir
- Department of Occupational and Environmental Health, Epidemiology, Bavarian Health and Food Safety Authority, Munich, Germany
| | - S M Walser-Reichenbach
- Department of Occupational and Environmental Health, Epidemiology, Bavarian Health and Food Safety Authority, Munich, Germany
| | - M Seidel
- Chair of Analytical Chemistry and Water Chemistry, TUM School of Natural Sciences, Technical University of Munich, Munich, Germany
| | - C E W Herr
- Department of Occupational and Environmental Health, Epidemiology, Bavarian Health and Food Safety Authority, Munich, Germany; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - S Heinze
- Department of Occupational and Environmental Health, Epidemiology, Bavarian Health and Food Safety Authority, Munich, Germany; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - C Quartucci
- Department of Occupational and Environmental Health, Epidemiology, Bavarian Health and Food Safety Authority, Munich, Germany; Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Bekkelund A, Angeloff LØ, Amato E, Hyllestad S. Adherence to Legionella control regulations and guidelines in Norwegian nursing homes: a cross-sectional survey. BMC Public Health 2024; 24:1491. [PMID: 38834949 DOI: 10.1186/s12889-024-18993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/29/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Infection by Legionella bacteria is a risk to elderly individuals in health care facilities and should be managed by preventing bacterial proliferation in internal water systems. Norwegian legislation calls for a mandatory Legionella-specific risk assessment with the subsequent introduction of an adapted water management programme. The present study investigates adherence to legislation and guidelines on Legionella control and prevention in Norwegian nursing homes. METHODS A cross-sectional survey was distributed to Norwegian municipalities to investigate the status of Legionella specific risk assessments of internal water distribution systems and the introduction of water management programmes in nursing homes. RESULTS A total of 55.1% (n = 228) of the participating nursing homes had performed Legionella-specific risk assessments, of which 55.3% (n = 126) stated that they had updated the risk assessment within the last year. 96.5% introduced a water management programme following a risk assessment, whereas 59.6% of the ones without a risk assessment did the same. Nursing homes with risk assessments were more likely to monitor Legionella levels than those without (61.2% vs 38.8%), to remove dead legs (44.7% vs 16.5%), and to select biocidal preventive treatment over hot water flushing (35.5% vs 4.6%). CONCLUSIONS This study presents novel insight into Legionella control in Norway, suggesting that adherence to mandatory risk assessment in nursing homes is moderate-low. Once performed, the risk assessment seems to be advantageous as an introduction to future Legionella prevention in terms of the scope and contents of the water management programme.
Collapse
Affiliation(s)
- Anders Bekkelund
- Department of Zoonotic, Food- and Waterborne Infections, Norwegian Institute of Public Health, Oslo, P.O. box 222, Norway
| | - Line Ødegård Angeloff
- Department of Zoonotic, Food- and Waterborne Infections, Norwegian Institute of Public Health, Oslo, P.O. box 222, Norway
| | - Ettore Amato
- Department of Zoonotic, Food- and Waterborne Infections, Norwegian Institute of Public Health, Oslo, P.O. box 222, Norway
| | - Susanne Hyllestad
- Department of Zoonotic, Food- and Waterborne Infections, Norwegian Institute of Public Health, Oslo, P.O. box 222, Norway.
| |
Collapse
|
3
|
Párraga-Niño N, Cortès-Tarragó R, Quero S, Garcia-Núñez M, Arqué E, Sabaté S, Ramirez D, Gavaldà L. Persistence of viable but nonculturable Legionella pneumophila state in hospital water systems: A hidden enemy? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172410. [PMID: 38608884 DOI: 10.1016/j.scitotenv.2024.172410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
There is little evidence of the long-term consequences of maintaining sanitary hot water at high temperatures on the persistence of Legionella in the plumbing system. The aims of this study were to describe the persistence and genotypic variability of L. pneumophila in a hospital building with two entirely independent hot water distribution systems, and to estimate the thermotolerance of the genotypic variants by studying the quantity of VBNC L. pneumophila. Eighty isolates from 55 water samples obtained between the years 2012-2017 were analyzed. All isolates correspond to L. pneumophila serogroup 6. The isolates were discriminated in four restriction patterns by pulsed-field gel electrophoresis. In one installation, pattern A + Aa predominated, accounting for 75.8 % of samples, while the other installation exhibited pattern B as the most frequent (81.8 % of samples; p < 0.001). The mean temperature of the isolates was: 52.6 °C (pattern A + Aa) and 55.0 °C (pattern B), being significantly different. Nine strains were selected as representative among patterns to study their thermotolerance by flow-cytometry after 24 h of thermic treatment. VBNC bacteria were detected in all samples. After thermic treatment at 50 °C, 52.0 % of bacteria had an intact membrane, and after 55 °C this percentage decreased to 23.1 %. Each pattern exhibited varying levels of thermotolerance. These findings indicate that the same hospital building can be colonized with different predominant types of Legionella if it has independent hot water installations. Maintaining a minimum temperature of 50 °C at distal points of the system would allow the survival of replicative L. pneumophila. However, the presence of Legionella in hospital water networks is underestimated if culture is considered as the standard method for Legionella detection, because VBNC do not grow on culture plates. This phenomenon can carry implications for the Legionella risk management plans in hospitals that adjust their control measures based on the microbiological surveillance of water.
Collapse
Affiliation(s)
- Noemí Párraga-Niño
- Clinical and environmental infectious diseases study group, Fundació Institut d'Investigació Germans Trias i Pujol, Carretera de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain; Fundació Lluita contra les Infeccions, Carretera de Can Ruti, 08916 Badalona, Barcelona, Spain.
| | - Roger Cortès-Tarragó
- Clinical and environmental infectious diseases study group, Fundació Institut d'Investigació Germans Trias i Pujol, Carretera de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Sara Quero
- Clinical and environmental infectious diseases study group, Fundació Institut d'Investigació Germans Trias i Pujol, Carretera de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain; Fundació Lluita contra les Infeccions, Carretera de Can Ruti, 08916 Badalona, Barcelona, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029 Madrid, Spain; Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Plaça Torre de l'Aigua, s/n, 08208 Sabadell, Barcelona, Spain
| | - Marian Garcia-Núñez
- Clinical and environmental infectious diseases study group, Fundació Institut d'Investigació Germans Trias i Pujol, Carretera de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Elisenda Arqué
- Clinical and environmental infectious diseases study group, Fundació Institut d'Investigació Germans Trias i Pujol, Carretera de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Sara Sabaté
- Agència de Salut Pública de Barcelona (ASPB), Plaza Lesseps 1, 08023 Barcelona, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
| | - Dolors Ramirez
- Department of Preventive Medicine-Hospital Hygiene. Hospital Universitari de Bellvitge-IDIBELL, Barcelona, Spain
| | - Laura Gavaldà
- Department of Preventive Medicine-Hospital Hygiene. Hospital Universitari de Bellvitge-IDIBELL, Barcelona, Spain
| |
Collapse
|
4
|
Joshi S, Richard R, Hogue D, Brown J, Cahill M, Kotta V, Call K, Butzine N, Marcos-Hernández M, Alja'fari J, Voth-Gaeddert L, Boyer T, Hamilton KA. Water Quality Trade-offs for Risk Management Interventions in a Green Building. ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2024; 10:767-786. [PMID: 39185481 PMCID: PMC11343562 DOI: 10.1039/d3ew00650f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Premise plumbing water quality degradation has led to negative health impacts from pathogen outbreaks (e.g., Legionella pneumophila and non-tuberculous mycobacteria), as well as chronic effects from exposure to heavy metals or disinfection by-products (DBP). Common water quality management interventions include flushing, heat shock (thermal disinfection), supplemental disinfection (shock or super chlorination), and water heater temperature setpoint change. In this study, a Legionella pneumophila- colonized Leadership in Energy and Environmental Design (LEED) certified building was monitored to study health-relevant water quality changes before and after three controlled management interventions: (1) flushing at several points throughout the building; (2) changing the water heater set point; and (3) a combination of interventions (1) and (2) by flushing during a period of elevated water heater set point (incompletely performed due to operational issues). Microbial (culturable L. pneumophila, the L. pneumophila mip gene, and cATP) and physico-chemical (pH, temperature, conductivity, disinfectant residual, disinfection by-products (DBPs; total trihalomethanes, TTHM), and heavy metals) water quality were monitored alongside building occupancy as approximated using Wi-Fi logins. Flushing alone resulted in a significant decrease in cATP and L. pneumophila concentrations (p = 0.018 and 0.019, respectively) and a significant increase in chlorine concentrations (p = 0.002) as well as iron and DBP levels (p = 0.002). Copper concentrations increased during the water heater temperature setpoint increase alone to 140°F during December 2022 (p = 0.01). During the flushing and elevated temperature in parts of the building in February 2023, there was a significant increase in chlorine concentrations (p = 0.002) and iron (p = 0.002) but no significant decrease in L. pneumophila concentrations in the drinking water samples (p = 0.27). This study demonstrated the potential impacts of short term or incompletely implemented interventions which in this case were not sufficient to holistically improve water quality. As implementing interventions is logistically- and time-intensive, more effective and holistic approaches are needed for informing preventative and corrective actions that are beneficial for multiple water quality and sustainability goals.
Collapse
Affiliation(s)
- Sayalee Joshi
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Rain Richard
- NCS Engineering, 202 E. Earll Drive Suite 110, Phoenix AZ 85012, USA
| | - Derek Hogue
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
| | - James Brown
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
| | - Molly Cahill
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Vishnu Kotta
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Kathryn Call
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
| | - Noah Butzine
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Mariana Marcos-Hernández
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
| | - Jumana Alja'fari
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Lee Voth-Gaeddert
- The Biodesign Institute Center for Health Through Microbiomes, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| | - Treavor Boyer
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, PO Box 873005, Tempe, AZ 85287-3005, USA
| | - Kerry A Hamilton
- The School of Sustainable Engineering and the Built Environment, Arizona State University, 660S College Ave, Tempe, AZ 85281, USA
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAlister Ave, Tempe, AZ 85281, USA
| |
Collapse
|
5
|
Mesas Gómez M, Molina-Moya B, de Araujo Souza B, Boldrin Zanoni MV, Julián E, Domínguez J, Pividori MI. Improved biosensing of Legionella by integrating filtration and immunomagnetic separation of the bacteria retained in filters. Mikrochim Acta 2024; 191:82. [PMID: 38191940 PMCID: PMC10774190 DOI: 10.1007/s00604-023-06122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024]
Abstract
A novel approach is presented that combines filtration and the direct immunomagnetic separation of the retained bacteria Legionella in filters, for further electrochemical immunosensing. This strategy allows for the separation and preconcentration of the water-borne pathogen from high-volume samples, up to 1000 mL. The limit of detection of the electrochemical immunosensor resulted in 100 CFU mL-1 and improved up to 0.1 CFU mL-1 when the preconcentration strategy was applied in 1 L of sample (103-fold improvement). Remarkably, the immunosensor achieves the limit of detection in less than 2.5 h and simplified the analytical procedure. This represents the lowest concentration reported to date for electrochemical immunosensing of Legionella cells without the need for pre-enrichment or DNA amplification. Furthermore, the study successfully demonstrates the extraction of bacteria retained on different filtering materials using immunomagnetic separation, highlighting the high efficiency of the magnetic particles to pull out the bacteria directly from solid materials. This promising feature expands the applicability of the method beyond water systems for detecting bacteria retained in air filters of air conditioning units by directly performing the immunomagnetic separation in the filters.
Collapse
Affiliation(s)
- Melania Mesas Gómez
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Bárbara Molina-Moya
- Institut d'Investigació Germans Trias i Pujol (IGTP), 08916, Badalona, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Bárbara de Araujo Souza
- Department of Analytical Chemistry, Institute of Chemistry, UNESP, Universidad Estadual Paulista, Araraquara, SP, Brazil
| | - Maria Valnice Boldrin Zanoni
- Department of Analytical Chemistry, Institute of Chemistry, UNESP, Universidad Estadual Paulista, Araraquara, SP, Brazil
| | - Esther Julián
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - José Domínguez
- Institut d'Investigació Germans Trias i Pujol (IGTP), 08916, Badalona, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Maria Isabel Pividori
- Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Biosensing and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
6
|
Wang J, Tong J, Wang Y, Chen Y. Omadacycline use in a traveler with severe Legionella pneumonia. Travel Med Infect Dis 2023; 56:102654. [PMID: 37858711 DOI: 10.1016/j.tmaid.2023.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Affiliation(s)
- Jianfeng Wang
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310018, China; Institute of Respiratory Diseases of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310018, China
| | - Jiahuan Tong
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310018, China
| | - Ying Wang
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310018, China
| | - Yan Chen
- Department of General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310018, China.
| |
Collapse
|
7
|
Liang J, Cameron G, Faucher SP. Development of heat-shock resistance in Legionella pneumophila modeled by experimental evolution. Appl Environ Microbiol 2023; 89:e0066623. [PMID: 37668382 PMCID: PMC10537758 DOI: 10.1128/aem.00666-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 09/06/2023] Open
Abstract
Because it can grow in buildings with complex hot water distribution systems (HWDS), healthcare facilities recognize the waterborne bacterium Legionella pneumophila as a major nosocomial infection threat and often try to clear the systems with a pasteurization process known as superheat-and-flush. After this treatment, many facilities find that the contaminating populations slowly recover, suggesting the possibility of in situ evolution favoring increased survival in high-temperature conditions. To mimic this process in a controlled environment, an adaptive laboratory evolution model was used to select a wild-type strain of L. pneumophila for survival to transient exposures to temperatures characteristic of routine hot water use or failed pasteurization processes in HWDS. Over their evolution, these populations became insensitive to exposure to 55°C and developed the ability to survive short exposures to 59°C heat shock. Heat-adapted lineages maintained a higher expression of heat-shock genes during low-temperature incubation in freshwater, suggesting a pre-adaptation to heat stress. Although there were distinct mutation profiles in each of the heat-adapted lineages, each acquired multiple mutations in the DnaJ/DnaK/ClpB disaggregase complex, as well as mutations in chaperone htpG and protease clpX. These mutations were specific to heat-shock survival and were not seen in control lineages included in the experimental model without exposure to heat shock. This study supports in situ observations of adaptation to heat stress and demonstrates the potential of L. pneumophila to develop resistance to control measures. IMPORTANCE As a bacterium that thrives in warm water ecosystems, Legionella pneumophila is a key factor motivating regulations on hot water systems. Two major measures to control Legionella are high circulating temperatures intended to curtail growth and the use of superheat-and-flush pasteurization processes to eliminate established populations. Facilities often suffer recolonization of their hot water systems; hospitals are particularly at risk due to the severe nosocomial pneumoniae caused by Legionella. To understand these long-term survivors, we have used an adaptive laboratory evolution model to replicate this process. We find major differences between the mutational profiles of heat-adapted and heat-naïve L. pneumophila populations including mutations in major heat-shock genes like chaperones and proteases. This model demonstrates that well-validated treatment protocols are needed to clear contaminated systems and-in an analog to antibiotic resistance-the importance of complete eradication of the resident population to prevent selection for more persistent bacteria.
Collapse
Affiliation(s)
- Jeffrey Liang
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Gillian Cameron
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
| | - Sébastien P. Faucher
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
8
|
Zacharias N, Waßer F, Freier L, Spies K, Koch C, Pleischl S, Mutters NT, Kistemann T. Legionella in drinking water: the detection method matters. JOURNAL OF WATER AND HEALTH 2023; 21:884-894. [PMID: 37515560 PMCID: wh_2023_035 DOI: 10.2166/wh.2023.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Legionella concentrations in drinking water have been regulated for decades and are evaluated with regard to their concentrations in drinking water plumbing systems (DWPS). The respective action levels differ at the international level. In Germany, the Federal Environment Agency (UBA) specifies the application of ISO 11731 for the detection of legionella in drinking water and gives a binding recommendation for the methods to be used for culturing and evaluation. Effective from 01 March 2019, the UBA recommendation was revised. The utilized culture media in the culture approach were altered, consequently affecting the spectrum of legionella colonies detected in drinking water. Using data from a routine legionella monitoring of a large laboratory, over a period of 6 years and 17,270 individual drinking water samples, allowed us to assess the impact of the alteration on the assessment of DWPS. By comparing the amount of action level exceedances before and after the method change, it could be demonstrated that exceedances are reported significantly more often under the new method. Consequently, the corresponding action level for evaluation of legionella contamination and the resulting risk to human health needs to be revised to avoid the misleading impression of increased health risk.
Collapse
Affiliation(s)
- Nicole Zacharias
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany E-mail:
| | - Felix Waßer
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Lia Freier
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Kirsten Spies
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Christoph Koch
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Stefan Pleischl
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Nico T Mutters
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany
| | - Thomas Kistemann
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, Bonn 53127, Germany; Department of Geography, University of Bonn, Meckenheimer Allee 166, Bonn 53115, Germany; Centre for Development Research, University of Bonn, Genscherallee 3, Bonn 53113, Germany
| |
Collapse
|
9
|
Sauget M, Richard M, Chassagne S, Hocquet D, Bertrand X, Jeanvoine A. Validation of quantitative real-time PCR for detection of Legionella pneumophila in hospital water networks. J Hosp Infect 2023:S0195-6701(23)00195-0. [PMID: 37353007 DOI: 10.1016/j.jhin.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
BACKGROUND Rapid monitoring of Legionella pneumophila (Lp) is essential to reduce the risk of Legionnaires' disease in healthcare facilities. However, culture results take at least eight days, delaying the implementation of corrective measures. Here, we assessed the performance of a qPCR method and determined qPCR action thresholds for the detection of Lp in hospital hot water networks (HWNs). METHODS Hot water samples (n=459) were collected from a hospital HWNs. Lp were quantified using iQ-Check® Quanti real-time PCR Quantification kits (Bio-Rad) and the results were compared with those of culture. qPCR thresholds corresponding to the culture action thresholds of 10 and 1,000 CFU/L were determined on a training dataset and validated on an independent dataset. RESULTS Lp concentrations measured by culture and qPCR were correlated for both the training dataset (Spearman's correlation coefficient ρ = 0.687, p-value < 0.0001) and the validation dataset (ρ = 0.661, p-value < 0.0001). Lp qPCR positivity thresholds corresponding to culture action thresholds of 10 CFU/L was 91 genome units (GU) per liter (sensitivity, 86.4%; negative predictive value - NPV, 93.3%) and that corresponding to culture action thresholds of 1,000 CFU/L was 1,048 GU/L (sensitivity, 100%; NPV, 100%). CONCLUSION Detection of Lp by qPCR could be implemented with confidence in hospitals as a complement to culture in the monitoring strategy to speed up the implementation of corrective measures.
Collapse
Affiliation(s)
- Marlène Sauget
- Hygiène Hospitalière, Centre Hospitalier Universitaire de Besançon, Besançon, France; Centre de Ressources Biologiques, Centre Hospitalier Universitaire de Besançon, Besançon, France.
| | - Marion Richard
- Hygiène Hospitalière, Centre Hospitalier Universitaire de Besançon, Besançon, France; Centre de Ressources Biologiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Sophie Chassagne
- Hygiène Hospitalière, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Didier Hocquet
- Hygiène Hospitalière, Centre Hospitalier Universitaire de Besançon, Besançon, France; Chrono-environnement, Université de Franche-Comté, CNRS, Besançon, France; Centre de Ressources Biologiques, Centre Hospitalier Universitaire de Besançon, Besançon, France
| | - Xavier Bertrand
- Hygiène Hospitalière, Centre Hospitalier Universitaire de Besançon, Besançon, France; Chrono-environnement, Université de Franche-Comté, CNRS, Besançon, France
| | - Audrey Jeanvoine
- Hygiène Hospitalière, Centre Hospitalier Universitaire de Besançon, Besançon, France
| |
Collapse
|
10
|
Kim T, Zhao X, LaPara TM, Hozalski RM. Flushing Temporarily Improves Microbiological Water Quality for Buildings Supplied with Chloraminated Surface Water but Has Little Effect for Groundwater Supplies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5453-5463. [PMID: 36952669 DOI: 10.1021/acs.est.2c08123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microbial communities in premise plumbing systems were investigated after more than 2 months of long-term stagnation, during a subsequent flushing event, and during post-flush stagnation. Water samples were collected from showers in buildings supplied with chlorinated groundwater, untreated groundwater, and chloraminated surface water. The building supplied with chlorinated groundwater generally had the lowest bacterial concentrations across all sites (ranging from below quantification limit to 5.2 log copies/L). For buildings supplied with untreated groundwater, bacterial concentrations (5.0 to 7.6 log copies/L) and microbial community diversity index (ACE) values were consistent throughout sampling. Nontuberculous mycobacteria (NTM) and Legionella pneumophila were not detected in any groundwater-supplied buildings. Total bacteria, Legionella spp., and NTM were abundant in the surface water-supplied buildings following long-term stagnation (up to 7.6, 6.2, and 7.6 log copies/L, respectively). Flushing decreased these concentrations by ∼1 to >4 log units and reduced microbial community diversity, but the communities largely recovered within a week of post-flush stagnation. The results suggest that buildings supplied with disinfected surface water are more likely than buildings supplied with treated or untreated groundwater to experience deleterious changes in microbiological water quality during stagnation and that the water quality improvements from flushing with chloraminated water, while substantial, are short-lived.
Collapse
Affiliation(s)
- Taegyu Kim
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, Minnesota 55455, United States
| | - Xiaotian Zhao
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, Minnesota 55455, United States
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, Minnesota 55455, United States
- Biotechnology Institute, University of Minnesota Twin Cities, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, Minnesota 55455, United States
- Biotechnology Institute, University of Minnesota Twin Cities, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| |
Collapse
|
11
|
Graham FF, Harte DJG, Baker MG. Environmental Investigation and Surveillance for Legionella in Aotearoa New Zealand, 2000-2020. Curr Microbiol 2023; 80:156. [PMID: 36997742 PMCID: PMC10063469 DOI: 10.1007/s00284-023-03261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/07/2023] [Indexed: 04/01/2023]
Abstract
The reported rate of legionellosis is increasing in Aotearoa New Zealand (NZ) with most cases community-acquired, sporadic (non-outbreak) and without an identifiable source. This analysis used two datasets to describe the environmental sources that contribute to Legionella in NZ, based on linkages with outbreaks and sporadic clinical cases, and analysis of environmental testing data. These findings highlight the need for enhanced environmental investigation of clinical cases and outbreaks. There is also a need for systematic surveillance testing of high-risk source environments to support more rigorous controls to prevent legionellosis.
Collapse
Affiliation(s)
- Frances F Graham
- Department of Public Health, University of Otago, P. O. 7343, Wellington South, 6242, New Zealand.
| | - David J G Harte
- ESR, Legionella Reference Laboratory, Health Programme, Kenepuru Science Centre, Wellington, New Zealand
| | - Michael G Baker
- Department of Public Health, University of Otago, P. O. 7343, Wellington South, 6242, New Zealand
| |
Collapse
|
12
|
Gea-Izquierdo E, Gil-de-Miguel Á, Rodríguez-Caravaca G. Legionella pneumophila Risk from Air–Water Cooling Units Regarding Pipe Material and Type of Water. Microorganisms 2023; 11:microorganisms11030638. [PMID: 36985212 PMCID: PMC10053303 DOI: 10.3390/microorganisms11030638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Legionellosis is a respiratory disease related to environmental health. There have been manifold studies of pipe materials, risk installations and legionellosis without considering the type of transferred water. The objective of this study was to determine the potential development of the causative agent Legionella pneumophila regarding air–water cooling units, legislative compliance, pipe material and type of water. Forty-four hotel units in Andalusia (Spain) were analysed with respect to compliance with Spanish health legislation for the prevention of legionellosis. The chi-square test was used to explain the relationship between material–water and legislative compliance, and a biplot of the first two factors was generated. Multiple correspondence analysis (MCA) was performed on the type of equipment, legislative compliance, pipe material and type of water, and graphs of cases were constructed by adding confidence ellipses by categories of the variables. Pipe material–type of water (p value = 0.29; p < 0.05) and legislative compliance were not associated (p value = 0.15; p < 0.05). Iron, stainless steel, and recycled and well water contributed the most to the biplot. MCA showed a global pattern in which lead, iron and polyethylene were well represented. Confidence ellipses around categories indicated significant differences among categories. Compliance with Spanish health legislation regarding the prevention and control of legionellosis linked to pipe material and type of water was not observed.
Collapse
Affiliation(s)
- Enrique Gea-Izquierdo
- Preventive Medicine and Public Health, Rey Juan Carlos University, 28922 Madrid, Spain
- Maria Zambrano Program, European Union, Spain
- Correspondence:
| | - Ángel Gil-de-Miguel
- Preventive Medicine and Public Health, Rey Juan Carlos University, 28922 Madrid, Spain
- CIBER of Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Gil Rodríguez-Caravaca
- Preventive Medicine and Public Health, Rey Juan Carlos University, 28922 Madrid, Spain
- Department of Preventive Medicine, Hospital Universitario Fundación Alcorcón, Universidad Rey Juan Carlos, 28922 Madrid, Spain
| |
Collapse
|
13
|
Vukić Lušić D, Piškur V, Cenov A, Tomić Linšak D, Broznić D, Glad M, Linšak Ž. Surveillance of Legionella pneumophila: Detection in Public Swimming Pool Environment. Microorganisms 2022; 10:microorganisms10122429. [PMID: 36557683 PMCID: PMC9784426 DOI: 10.3390/microorganisms10122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The bacterium Legionella pneumophila is a ubiquitous microorganism naturally present in water environments. The actual presence of this opportunistic premise plumbing pathogen in recreational swimming pools and hot tubs in the northwestern part of Croatia has not been investigated. This study aimed to analyze the presence of the opportunistic pathogen L. pneumophila in public swimming pool water in Primorje-Gorski Kotar County (N = 4587) over a four-year period (2018-2021). Additionally, the second aim was to investigate the connection between the presence of L. pneumophila and pool water physicochemical parameters using mathematical predictive models. The presence of L. pneumophila was detected in six pool samples. Five positive samples were found in the water of indoor hot tubs filled with fresh water, and one positive sample in an outdoor recreational saltwater pool. A predictive mathematical model showed the simultaneous influence of chemical parameters dominated by the temperature in saltwater and freshwater pools, as well as the significant influence of free residual chlorine and trihalomethanes. Our results pointed out that keeping all physicochemical parameters in perfect harmony is necessary to reach the best disinfection procedure and to avoid the optimum conditions for L. pneumophila occurrence.
Collapse
Affiliation(s)
- Darija Vukić Lušić
- Department of Environmental Health, Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia
| | - Vanda Piškur
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia
| | - Arijana Cenov
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia
| | - Dijana Tomić Linšak
- Department of Environmental Health, Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia
- Correspondence: or (D.T.L.); (D.B.); Tel.: +385-51-505-920 (D.T.L.); +385-51-651-132 (D.B.)
| | - Dalibor Broznić
- Department for Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
- Correspondence: or (D.T.L.); (D.B.); Tel.: +385-51-505-920 (D.T.L.); +385-51-651-132 (D.B.)
| | - Marin Glad
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia
| | - Željko Linšak
- Department of Environmental Health, Faculty of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia
| |
Collapse
|
14
|
Hadengue B, Morgenroth E, Larsen TA. Screening innovative technologies for energy-efficient domestic hot water systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115713. [PMID: 35932735 DOI: 10.1016/j.jenvman.2022.115713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Domestic hot water systems are large energy consumers. With the aim of reducing the energy footprint of these systems, we selected and simulated five technologies across a wide range of technology readiness levels: established technologies - pipe insulation and low-flow faucets -, relatively new technologies - shower drain heat exchangers and an innovative pipe system - and a novel experimental technology - a heat exchanger connected to membrane bioreactor for on-site greywater treatment. Using the WaterHub modeling framework, we simulated the technologies alone and in combination and compared the energetic performance of fifteen scenarios with a validated reference domestic hot water system. Low-flow appliances as standalone technologies performed best with 30% less energy required for the boiler tank, but combining low-flow appliances with a membrane bioreactor heat exchanger performed best overall (50% reduction). Deep insights into the temperature dynamics at all locations in the system led to the identification of technological competition patterns to prevent and synergies to exploit. Through our results, we are able to discuss and recommend further investigations regarding critical aspects like hygiene and economic performance.
Collapse
Affiliation(s)
- Bruno Hadengue
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093, Zürich, Switzerland
| | - Tove A Larsen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| |
Collapse
|
15
|
Ortí-Lucas RM, Luciano E. New immunomagnetic separation method to analyze risk factors for Legionella colonization in health care centres. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:744-750. [PMID: 35264765 PMCID: PMC8906530 DOI: 10.1038/s41370-022-00421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND It's pivotal to control the presence of legionella in sanitary structures. So, it's important to determine the risk factors associated with Legionella colonization in health care centres. In recent years that is why new diagnostic techniques have been developed. OBJECTIVE To evaluate risks factors for Legionella colonization using a novel and more sensitive Legionella positivity index. METHODS A total of 204 one-litre water samples (102 cold water samples and 102 hot water samples), were collected from 68 different sampling sites of the hospital water system and tested for Legionella spp. by two laboratories using culture, polymerase chain reaction and a method based on immunomagnetic separation (IMS). A Legionella positivity index was defined to evaluate Legionella colonization and associated risk factors in the 68 water samples sites. We performed bivariate analyses and then logistic regression analysis with adjustment of potentially confounding variables. We compared the performance of culture and IMS methods using this index as a new gold standard to determine if rapid IMS method is an acceptable alternative to the use of slower culture method. RESULTS Based on the new Legionella positivity index, no statistically significant differences were found neither between laboratories nor between methods (culture, IMS). Positivity was significantly correlated with ambulatory health assistance (p = 0.05) and frequency of use of the terminal points. The logistic regression model revealed that chlorine (p = 0.009) and the frequency of use of the terminal points (p = 0.001) are predictors of Legionella colonization. Regarding this index, the IMS method proved more sensitive (69%) than culture method (65.4%) in hot water samples. SIGNIFICANCE We showed that the frequency of use of terminal points should be considered when examining environmental Legionella colonization, which can be better evaluated using the provided Legionella positivity index. This study has implications for the prevention of Legionnaires' disease in hospital settings.
Collapse
Affiliation(s)
- Rafael Manuel Ortí-Lucas
- Research group on Public Health and Patient Safety, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
- Department of Preventive Medicine, Hospital Clínico Universitario de Valencia, Valencia, Spain.
| | - Eugenio Luciano
- Department of Preventive Medicine, Hospital Clínico Universitario de Valencia, Valencia, Spain.
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
| |
Collapse
|
16
|
Proctor C, Garner E, Hamilton KA, Ashbolt NJ, Caverly LJ, Falkinham JO, Haas CN, Prevost M, Prevots DR, Pruden A, Raskin L, Stout J, Haig SJ. Tenets of a holistic approach to drinking water-associated pathogen research, management, and communication. WATER RESEARCH 2022; 211:117997. [PMID: 34999316 PMCID: PMC8821414 DOI: 10.1016/j.watres.2021.117997] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 05/10/2023]
Abstract
In recent years, drinking water-associated pathogens that can cause infections in immunocompromised or otherwise susceptible individuals (henceforth referred to as DWPI), sometimes referred to as opportunistic pathogens or opportunistic premise plumbing pathogens, have received considerable attention. DWPI research has largely been conducted by experts focusing on specific microorganisms or within silos of expertise. The resulting mitigation approaches optimized for a single microorganism may have unintended consequences and trade-offs for other DWPI or other interests (e.g., energy costs and conservation). For example, the ecological and epidemiological issues characteristic of Legionella pneumophila diverge from those relevant for Mycobacterium avium and other nontuberculous mycobacteria. Recent advances in understanding DWPI as part of a complex microbial ecosystem inhabiting drinking water systems continues to reveal additional challenges: namely, how can all microorganisms of concern be managed simultaneously? In order to protect public health, we must take a more holistic approach in all aspects of the field, including basic research, monitoring methods, risk-based mitigation techniques, and policy. A holistic approach will (i) target multiple microorganisms simultaneously, (ii) involve experts across several disciplines, and (iii) communicate results across disciplines and more broadly, proactively addressing source water-to-customer system management.
Collapse
Affiliation(s)
- Caitlin Proctor
- Department of Agricultural and Biological Engineering, Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, USA
| | - Emily Garner
- Wadsworth Department of Civil & Environmental Engineering, West Virginia University, Morgantown, WV, USA
| | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment and The Biodesign Centre for Environmental Health Engineering, Arizona State University, Tempe, AZ, USA
| | - Nicholas J Ashbolt
- Faculty of Science and Engineering, Southern Cross University, Gold Coast. Queensland, Australia
| | - Lindsay J Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Charles N Haas
- Department of Civil, Architectural & Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - Michele Prevost
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, Montreal, Quebec, Canada
| | - D Rebecca Prevots
- Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA USA
| | - Lutgarde Raskin
- Department of Civil & Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Janet Stout
- Department of Civil & Environmental Engineering, University of Pittsburgh, and Special Pathogens Laboratory, Pittsburgh, PA, USA
| | - Sarah-Jane Haig
- Department of Civil & Environmental Engineering, and Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
Practitioners’ Perspective on the Prevalent Water Quality Management Practices for Legionella Control in Large Buildings in the United States. WATER 2022. [DOI: 10.3390/w14040663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Managing building water systems is complicated by the need to maintain hot water temperatures high enough to control the growth of Legionella spp. while minimizing the risk of scalding. This study assessed water quality management practices in large buildings in the United States. Surveys conducted with building water quality managers found that more than 85% of buildings have hot water temperatures that are consistent with scald risk mitigation guidelines (i.e., <122 °F/50 °C). However, nearly two thirds and three quarters of buildings do not comply with the common temperature guidance for opportunistic pathogen control, i.e., water heater setpoint > 140 °F (60 °C) and recirculation loop > 122 °F (50 °C), respectively; median values for both setpoint and recirculation loop temperatures are 10 °F (6 °C) or more below temperatures recommended for opportunistic pathogen control. These observations suggest that many buildings are prone to Legionella spp. risk. The study also found that 27% of buildings do not comply with guidelines for time to equilibrium hot water temperature, over 33% fail to monitor temperature in the recirculation loop, more than 70% fail to replace or disinfect showerheads, more than 40% lack a written management plan, and only a minority conduct any monitoring of residual disinfectant levels or microbiological quality. Given the rise in Legionellosis infections in recent years, coupled with highlighted water quality concerns because of prolonged water stagnation in plumbing, such as in buildings closed due to COVID-19, current management practices, which appear to be focused on scald risk, may need to be broadened to include greater attention to control of opportunistic pathogens. To accomplish this, there is a need for formal training and resources for facility managers.
Collapse
|
18
|
Talapko J, Frauenheim E, Juzbašić M, Tomas M, Matić S, Jukić M, Samardžić M, Škrlec I. Legionella pneumophila-Virulence Factors and the Possibility of Infection in Dental Practice. Microorganisms 2022; 10:microorganisms10020255. [PMID: 35208710 PMCID: PMC8879694 DOI: 10.3390/microorganisms10020255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Legionella pneumophila is defined as a bacterium that can cause severe pneumonia. It is found in the natural environment and in water, and is often found in water tanks. It can be an integral part of biofilms in nature, and the protozoa in which it can live provide it with food and protect it from harmful influences; therefore, it has the ability to move into a sustainable but uncultured state (VBNC). L. pneumophila has been shown to cause infections in dental practices. The most common transmission route is aerosol generated in dental office water systems, which can negatively affect patients and healthcare professionals. The most common way of becoming infected with L. pneumophila in a dental office is through water from dental instruments, and the dental unit. In addition to these bacteria, patients and the dental team may be exposed to other harmful bacteria and viruses. Therefore, it is vital that the dental team regularly maintains and decontaminates the dental unit, and sterilizes all accessories that come with it. In addition, regular water control in dental offices is necessary.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Erwin Frauenheim
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Matej Tomas
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Suzana Matić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia
| | - Melita Jukić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- General Hospital Vukovar, Županijska 35, HR-32000 Vukovar, Croatia
| | - Marija Samardžić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- Correspondence:
| |
Collapse
|
19
|
Gleason JA, Cohn PD. A review of legionnaires' disease and public water systems - Scientific considerations, uncertainties and recommendations. Int J Hyg Environ Health 2021; 240:113906. [PMID: 34923288 DOI: 10.1016/j.ijheh.2021.113906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Legionella is an opportunistic premise plumbing pathogen and causative agent of a severe pneumonia called Legionnaires' Disease (LD). Cases of LD have been on the rise in the U.S. and globally. Although Legionella was first identified 45 years ago, it remains an 'emerging pathogen." Legionella is part of the normal ecology of a public water system and is frequently detected in regulatory-compliant drinking water. Drinking water utilities, regulators and public health alike are increasingly required to have a productive understanding of the evolving issues and complex discussions of the contribution of the public water utility to Legionella exposure and LD risk. This review provides a brief overview of scientific considerations important for understanding this complex topic, a review of findings from investigations of public water and LD, including data gaps, and recommendations for professionals interested in investigating public water utilities. Although the current literature is inconclusive in identifying a public water utility as a sole source of an LD outbreak, the evidence is clear that minimizing growth of Legionella in public water utilities through proper maintenance and sustained disinfectant residuals, throughout all sections of the water utility, will lead to a less conducive environment for growth of the bacteria in the system and the buildings they serve.
Collapse
Affiliation(s)
- Jessie A Gleason
- Environmental and Occupational Health Surveillance Program, New Jersey Department of Health, 135 E. State Street, P.O. Box 369, Trenton, NJ, 08625, USA.
| | - Perry D Cohn
- Retired, Environmental and Occupational Health Surveillance Program, New Jersey Department of Health, PO Box 369, Trenton, NJ, 08625, USA.
| |
Collapse
|
20
|
Glažar Ivče D, Rončević D, Šantić M, Cenov A, Tomić Linšak D, Mićović V, Lušić D, Glad M, Ljubas D, Vukić Lušić D. Is a Proactive Approach to Controlling Legionella in the Environment Justified? Food Technol Biotechnol 2021; 59:314-324. [PMID: 34759763 PMCID: PMC8542184 DOI: 10.17113/ftb.59.03.21.7016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/24/2021] [Indexed: 11/29/2022] Open
Abstract
Research background Legionella are Gram-negative bacteria that are ubiquitous in the natural environment. Contaminated water in man-made water systems is a potential source of transmission of legionnaires’ disease. The aim of this study is to explore the prevalence of Legionella pneumophila in the drinking water distribution system (DWDS) of Primorje-Gorski Kotar (PGK) County, Croatia, for the period 2013-2019, coupled with the incidence of legionnaires’ disease. A number of L. pneumophila-positive samples (>100 CFU/L), serogroup distribution and the degree of contamination of specific facilities (health and aged care, tourism, and sports) were assessed. Based on the obtained results, the reasoning for the implementation of a mandatory Legionella environmental surveillance program was assessed. Experimental approach Sample testing for Legionella was carried out according to the standard method for enumeration of this bacterium. A heterotrophic plate count (HPC) and Pseudomonas aeruginosa number were analysed along with the basic physicochemical indicators of drinking water quality. The research period was divided into two parts, namely, the 2013-2018 period (before implementation of the prevention program, after the outbreak of legionnaires’ disease), and the year 2019 (proactive approach, no disease cases recorded). Results and conclusion During the 7-year observation period in PGK County, an increase in the number of samples tested for Legionella was found. An increase in Legionella-positive samples (particularly pronounced during the warmer part of the year) was recorded, along with a growing trend in the number of reported legionnaires’ disease cases. In addition to hot water systems, the risk of Legionella colonisation also applies to cold water systems. Health and aged care facilities appear to be at highest risk. In addition to the higher proportion of positive samples and a higher degree of microbiological load in these facilities, the highest proportion of L. pneumophila SGs 2-14 was identified. Due to the diagnostic limitations of the applied tests, the number of legionnaires’ disease cases is underdiagnosed. Novelty and scientific contribution The introduction of a mandatory preventive approach to monitoring Legionella in DWDS water samples, along with the definition of national criteria for the interpretation of the results will create the preconditions for diagnosis and adequate treatment of larger numbers of legionnaires’ disease cases.
Collapse
Affiliation(s)
- Daniela Glažar Ivče
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia
| | - Dobrica Rončević
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia.,Faculty of Health Studies, Viktora cara Emina 5, 51000 Rijeka, Croatia
| | - Marina Šantić
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Arijana Cenov
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia
| | - Dijana Tomić Linšak
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia.,Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Vladimir Mićović
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia.,Faculty of Health Studies, Viktora cara Emina 5, 51000 Rijeka, Croatia.,Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Dražen Lušić
- Faculty of Health Studies, Viktora cara Emina 5, 51000 Rijeka, Croatia.,Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia.,Center for Advanced Computing and Modelling, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Marin Glad
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia
| | - Davor Ljubas
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, Zagreb, Croatia
| | - Darija Vukić Lušić
- Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia.,Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia.,Center for Advanced Computing and Modelling, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| |
Collapse
|
21
|
Zhang C, Lu J. Legionella: A Promising Supplementary Indicator of Microbial Drinking Water Quality in Municipal Engineered Water Systems. FRONTIERS IN ENVIRONMENTAL SCIENCE 2021; 9:1-22. [PMID: 35004706 PMCID: PMC8740890 DOI: 10.3389/fenvs.2021.684319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Opportunistic pathogens (OPs) are natural inhabitants and the predominant disease causative biotic agents in municipal engineered water systems (EWSs). In EWSs, OPs occur at high frequencies and concentrations, cause drinking-water-related disease outbreaks, and are a major factor threatening public health. Therefore, the prevalence of OPs in EWSs represents microbial drinking water quality. Closely or routinely monitoring the dynamics of OPs in municipal EWSs is thus critical to ensuring drinking water quality and protecting public health. Monitoring the dynamics of conventional (fecal) indicators (e.g., total coliforms, fecal coliforms, and Escherichia coli) is the customary or even exclusive means of assessing microbial drinking water quality. However, those indicators infer only fecal contamination due to treatment (e.g., disinfection within water utilities) failure and EWS infrastructure issues (e.g., water main breaks and infiltration), whereas OPs are not contaminants in drinking water. In addition, those indicators appear in EWSs at low concentrations (often absent in well-maintained EWSs) and are uncorrelated with OPs. For instance, conventional indicators decay, while OPs regrow with increasing hydraulic residence time. As a result, conventional indicators are poor indicators of OPs (the major aspect of microbial drinking water quality) in EWSs. An additional or supplementary indicator that can well infer the prevalence of OPs in EWSs is highly needed. This systematic review argues that Legionella as a dominant OP-containing genus and natural inhabitant in EWSs is a promising candidate for such a supplementary indicator. Through comprehensively comparing the behavior (i.e., occurrence, growth and regrowth, spatiotemporal variations in concentrations, resistance to disinfectant residuals, and responses to physicochemical water quality parameters) of major OPs (e.g., Legionella especially L. pneumophila, Mycobacterium, and Pseudomonas especially P. aeruginosa), this review proves that Legionella is a promising supplementary indicator for the prevalence of OPs in EWSs while other OPs lack this indication feature. Legionella as a dominant natural inhabitant in EWSs occurs frequently, has a high concentration, and correlates with more microbial and physicochemical water quality parameters than other common OPs. Legionella and OPs in EWSs share multiple key features such as high disinfectant resistance, biofilm formation, proliferation within amoebae, and significant spatiotemporal variations in concentrations. Therefore, the presence and concentration of Legionella well indicate the presence and concentrations of OPs (especially L. pneumophila) and microbial drinking water quality in EWSs. In addition, Legionella concentration indicates the efficacies of disinfectant residuals in EWSs. Furthermore, with the development of modern Legionella quantification methods (especially quantitative polymerase chain reactions), monitoring Legionella in ESWs is becoming easier, more affordable, and less labor-intensive. Those features make Legionella a proper supplementary indicator for microbial drinking water quality (especially the prevalence of OPs) in EWSs. Water authorities may use Legionella and conventional indicators in combination to more comprehensively assess microbial drinking water quality in municipal EWSs. Future work should further explore the indication role of Legionella in EWSs and propose drinking water Legionella concentration limits that indicate serious public health effects and require enhanced treatment (e.g., booster disinfection).
Collapse
Affiliation(s)
- Chiqian Zhang
- Pegasus Technical Services, Inc., Cincinnati, OH, United States
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| |
Collapse
|
22
|
Walker JT, McDermott PJ. Confirming the Presence of Legionella pneumophila in Your Water System: A Review of Current Legionella Testing Methods. J AOAC Int 2021; 104:1135-1147. [PMID: 33484265 PMCID: PMC8378878 DOI: 10.1093/jaoacint/qsab003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022]
Abstract
Legionnaires' disease has been recognized since 1976 and Legionella pneumophila still accounts for more than 95% of cases. Approaches in countries, including France, suggest that focusing risk reduction specifically on L. pneumophila is an effective strategy, as detecting L. pneumophila has advantages over targeting multiple species of Legionella. In terms of assays, the historically accepted plate culture method takes 10 days for confirmed Legionella spp. results, has variabilities which affect trending and comparisons, requires highly trained personnel to identify colonies on a plate in specialist laboratories, and does not recover viable-but-non-culturable bacteria. PCR is sensitive, specific, provides results in less than 24 h, and determines the presence/absence of Legionella spp. and/or L. pneumophila DNA. Whilst specialist personnel and laboratories are generally required, there are now on-site PCR options, but there is no agreement on comparing genome units to colony forming units and action limits. Immunomagnetic separation assays are culture-independent, detect multiple Legionella species, and results are available in 24 h, with automated processing options. Field-use lateral flow devices provide presence/absence determination of L. pneumophila serogroup 1 where sufficient cells are present, but testing potable waters is problematic. Liquid culture most probable number (MPN) assays provide confirmed L. pneumophila results in 7 days that are equivalent to or exceed plate culture, are robust and reproducible, and can be performed in a variety of laboratory settings. MPN isolates can be obtained for epidemiological investigations. This accessible, non-technical review will be of particular interest to building owners, operators, risk managers, and water safety groups and will enable them to make informed decisions to reduce the risk of L. pneumophila.
Collapse
|
23
|
Checa J, Carbonell I, Manero N, Martí I. Comparative study of Legiolert with ISO 11731-1998 standard method-conclusions from a Public Health Laboratory. J Microbiol Methods 2021; 186:106242. [PMID: 34019935 DOI: 10.1016/j.mimet.2021.106242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/16/2021] [Accepted: 05/16/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Legionella pneumophila (L. pneumophila) is responsible for 96% of Legionnaires' disease (LD) and 10% of all worldwide pneumonia cases. Legiolert™, a liquid culture method for most probable number (MPN) enumeration of L. pneumophila, was developed by IDEXX Laboratories. The method detects all serogroups of L. pneumophila in potable and non-potable water samples. OBJECTIVE The goal of this study is to establish that Legiolert is a suitable alternative method to meet testing requirements in Spain for the enumeration of Legionella in water samples. METHODOLOGY The laboratory analyzed 118 environmental water samples from the Barcelona region (56 potable and 62 non-potable) in parallel by the Standard method for detection and enumeration of Legionella (ISO 11731:1998) and by Legiolert. Comparison of the recovery of the alternative method (Legiolert) and the Standard was made using ISO 17994:2014 and McNemar's binomial test statistical methods. RESULTS 44 samples were positive for Legionella (36 potable and 8 non-potable). Legiolert and the Standard method detected a similar percentage of positive samples, with Legiolert being slightly higher (31 vs 30%) and detecting higher concentrations of Legionella within the samples. ISO 17994:2014 analysis of the potable water samples found Legiolert was more sensitive than the Standard at detecting Legionella, even when complete Legionella species (L. spp.) results were considered for both methods. The two methods also demonstrated equivalent detection of L. spp. according to the McNemar's test. The comparison is significantly more in favor of Legiolert when only L. pneumophila results are considered. Each confirmation run with material extracted from positive Legiolert wells contained L. pneumophila, giving the method a specificity of 100%. Although statistical results for non-potable waters are not included because of the low number of samples, the two methods trended towards equivalence. CONCLUSIONS Relative to the Standard method, Legiolert has a greater sensitivity and selectivity, and appears to have higher recovery for L. pneumophila, and equivalent recovery when L. spp. is included in the comparison. Legiolert also has high specificity. The procedural advantages of Legiolert allow laboratories to save on resources, costs, and time and consequently to test more frequently. In conclusion, the study finds IDEXX Legiolert a suitable alternative to ISO 11731:1998.
Collapse
Affiliation(s)
- Javier Checa
- Public Health Laboratory of L'Hospitalet. Health Service, L'Hospitalet City Council, Cobalt Building. Cobalt street, 57-59, 2nd floor, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Iago Carbonell
- Public Health Laboratory of L'Hospitalet. Health Service, L'Hospitalet City Council, Cobalt Building. Cobalt street, 57-59, 2nd floor, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Neus Manero
- Public Health Laboratory of L'Hospitalet. Health Service, L'Hospitalet City Council, Cobalt Building. Cobalt street, 57-59, 2nd floor, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Inés Martí
- Public Health Laboratory of L'Hospitalet. Health Service, L'Hospitalet City Council, Cobalt Building. Cobalt street, 57-59, 2nd floor, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
24
|
A Methodology for Classifying Root Causes of Outbreaks of Legionnaires' Disease: Deficiencies in Environmental Control and Water Management. Microorganisms 2021; 9:microorganisms9010089. [PMID: 33401429 PMCID: PMC7824450 DOI: 10.3390/microorganisms9010089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/03/2022] Open
Abstract
We piloted a methodology for collecting and interpreting root cause—or environmental deficiency (ED)—information from Legionnaires’ disease (LD) outbreak investigation reports. The methodology included a classification framework to assess common failures observed in the implementation of water management programs (WMPs). We reviewed reports from fourteen CDC-led investigations between 1 January 2015 and 21 June 2019 to identify EDs associated with outbreaks of LD. We developed an abstraction guide to standardize data collection from outbreak reports and define relevant parameters. We categorized each ED according to three criteria: ED type, WMP-deficiency type, and source of deficiency. We calculated the prevalence of EDs among facilities and explored differences between facilities with and without WMPs. A majority of EDs identified (81%) were classified as process failures. Facilities with WMPs (n = 8) had lower prevalence of EDs attributed to plumbed devices (9.1%) and infrastructure design (0%) than facilities without WMPs (n = 6; 33.3% and 24.2%, respectively). About three quarters (72%) of LD cases and 81% of the fatalities in our sample originated at facilities without a WMP. This report highlights the importance of WMPs in preventing and mitigating outbreaks of LD. Building water system process management is a primary obstacle toward limiting the root causes of LD outbreaks. Greater emphasis on the documentation, verification, validation, and continuous program review steps will be important in maximizing the effectiveness of WMPs.
Collapse
|
25
|
Rasheduzzaman M, Singh R, Haas CN, Gurian PL. Required water temperature in hotel plumbing to control Legionella growth. WATER RESEARCH 2020; 182:115943. [PMID: 32590203 DOI: 10.1016/j.watres.2020.115943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 05/07/2023]
Abstract
Legionella spp. occurring in hotel hot water systems, in particular Legionella pneumophila, are causing serious pneumonic infections, and water temperature is a key factor to control their occurrence in plumbing systems. We performed a systematic review and meta-analyses of the available evidence on the association between water temperature and Legionella colonization to identify the water temperature in hotel hot water systems required for control of Legionella. Qualitative synthesis and quantitative analysis were performed on 13 studies that met our inclusion criteria to identify the effect of temperature. The Receiver Operating Characteristic (ROC) curve identified 55 °C as a cutoff point for hotel hot water temperature with an Area Under the Curve (AUC) value of 0.914. The odds ratios (OR) for detecting Legionella at temperatures >55 °C compared to lower temperatures from a meta-analysis of three studies was 0.17 [95% CI: 0.11, 0.25], which indicates a strong negative association between temperature and Legionella colonization. A logistic regression on results from multiple studies using both molecular and culture methods found a temperature of 59 °C associated with an 8% probability of detectable Legionella. Only two studies reported sufficiently detailed data to allow a model of concentration vs. temperature to be fit, and this model was not statistically significant. Additional research or more detailed reporting of existing datasets is required to assess if Legionella growth can be limited below particular concentration targets at different temperatures.
Collapse
Affiliation(s)
- Md Rasheduzzaman
- Department of Civil, Architectural and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA.
| | - Rajveer Singh
- Department of Civil, Architectural and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Charles N Haas
- Department of Civil, Architectural and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Patrick L Gurian
- Department of Civil, Architectural and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
26
|
Microbial Agents in the Indoor Environment: Associations with Health. CURRENT TOPICS IN ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE 2020. [PMCID: PMC7122805 DOI: 10.1007/978-981-32-9182-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is international consensus that damp buildings and indoor mould can increase the risk of asthma, rhinitis, bronchitis and respiratory tract infections but we do not know which types of microbial agents that are causing the observed adverse health effects. Microbial indoor exposure is a broader concept than microbial growth in buildings. Other sources of indoor microbial exposure include the outdoor environment, humans (crowdedness) and furry pet keeping. Microbial exposure can have different health effects depending on the dose, different exposure route, genetic disposition and the timing of exposure. Microbial stimulation linked to large microbial diversity in early life can protect against disease development, especially for allergic asthma and atopy. Protective effects are more often reported for bacterial exposure and adverse health effects are more often linked to mould exposure. There are many studies on health associations for indoor exposure to endotoxin, mainly from homes. The risk of getting atopic asthma may be less if you are exposed to endotoxin in childhood but the risk of non-atopic asthma may increase if exposed to endotoxin especially in adulthood. Moreover, genetic disposition modifies health effects of endotoxin. Epidemiological studies on muramic acid (from gram-positive bacteria) or ergosterol (from mould) are few. Studies on health effects of indoor exposure to beta-1-3-glucan (from mould) have conflicting results (positive as well as negative associations). Epidemiological studies on health effects of indoor exposure to mycotoxins are very few. Some studies have reported health associations for MVOC, but it is unclear to what extent MVOC has microbial sources in indoor environments. Many studies have reported health associations for fungal DNA, especially as a risk factor for childhood asthma at home. Since most studies on health effects of indoor exposure to mould, bacteria and microbial agents are cross-sectional, it is difficult to draw conclusions on causality. More prospective studies on indoor microbial exposure are needed and studies should include other indoor environments than homes, such as day care centers, schools, hospitals and offices.
Collapse
|
27
|
Valciņa O, Pūle D, Mališevs A, Trofimova J, Makarova S, Konvisers G, Bērziņš A, Krūmiņa A. Co-Occurrence of Free-Living Amoeba and Legionella in Drinking Water Supply Systems. MEDICINA-LITHUANIA 2019; 55:medicina55080492. [PMID: 31443316 PMCID: PMC6723719 DOI: 10.3390/medicina55080492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022]
Abstract
Background and Objectives:Legionella is one of the most important water-related pathogens. Inside the water supply systems and the biofilms, Legionella interact with other bacteria and free-living amoeba (FLA). Several amoebas may serve as hosts for bacteria in aquatic systems. This study aimed to investigate the co-occurrence of Legionella spp. and FLA in drinking water supply systems. Materials and Methods: A total of 268 water samples were collected from apartment buildings, hotels, and public buildings. Detection of Legionella spp. was performed in accordance with ISO 11731:2017 standard. Three different polymerase chain reaction (PCR) protocols were used to identify FLA. Results: Occurrence of Legionella varied from an average of 12.5% in cold water samples with the most frequent occurrence observed in hot water, in areas receiving untreated groundwater, where 54.0% of the samples were Legionella positive. The occurrence of FLA was significantly higher. On average, 77.2% of samples contained at least one genus of FLA and, depending on the type of sample, the occurrence of FLA could reach 95%. In the samples collected during the study, Legionella was always isolated along with FLA, no samples containing Legionella in the absence of FLA were observed. Conclusions: The data obtained in our study can help to focus on the extensive distribution, close interaction, and long-term persistence of Legionella and FLA. Lack of Legionella risk management plans and control procedures may promote further spread of Legionella in water supply systems. In addition, the high incidence of Legionella-related FLA suggests that traditional monitoring methods may not be sufficient for Legionella control.
Collapse
Affiliation(s)
- Olga Valciņa
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Rīga, Latvia.
| | - Daina Pūle
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Rīga, Latvia
- Department of Water Engineering and Technology, Riga Technical University, LV-1658 Rīga, Latvia
| | - Artjoms Mališevs
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Rīga, Latvia
| | - Jūlija Trofimova
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Rīga, Latvia
| | - Svetlana Makarova
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Rīga, Latvia
| | - Genadijs Konvisers
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Rīga, Latvia
| | - Aivars Bērziņš
- Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Rīga, Latvia
| | - Angelika Krūmiņa
- Department of Infectology and Dermatology, Riga Stradiņš University, LV-1007 Rīga, Latvia
| |
Collapse
|