1
|
Jiang Y, Yi Z, Zheng Y, Ouyang J, Guo D, Li S, Xiao X, Wang P, Sun W, Zhang Q. The Systemic Genotype-Phenotype Characterization of PAX6-Related Eye Disease in 164 Chinese Families. Invest Ophthalmol Vis Sci 2024; 65:46. [PMID: 39212610 PMCID: PMC11364179 DOI: 10.1167/iovs.65.10.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose This study aims to evaluate the genetic and phenotypic characteristics and elucidate the genotype-phenotype correlations of a large Chinese cohort with PAX6-related disorders. Methods Variants detected with exome sequencing were filtered through multistep bioinformatic and co-segregation analyses, and validated by Sanger sequencing. The related clinical data were collected, and cluster analysis and statistical analysis of the PAX6-related phenotypes across different variant groups were carried out. Parental mosaicism was investigated using cloning analysis and Droplet digital PCR. Results A total of 119 pathogenic or likely pathogenic PAX6 variants, including 74 truncation, 31 missense, and 14 others, were identified in 228 patients from 164 unrelated families. The most common phenotypes were foveal hypoplasia (97.8%), nystagmus (92.6%), aniridia (76.7%), cataract (36.8%), and iris hypoplasia (22.4%). Mosaicism ranging from 13.9% to 18.8% was identified in 3 unrelated patients' parents with relatively mild phenotypes. Missense variants in the linker region of the paired domain were associated with high myopia, whereas truncation variants in the homeodomain and proline-serine-threonine-rich domain were associated with hyperopia. Similarly, the degree of iris defects, visual acuity, and associated ocular comorbidity varied among the different types and locations of PAX6 variants. Conclusions Our data indicate that foveal hypoplasia but not aniridia is the most common sign of PAX6-related disorders, contributing to subtle iris changes that might easily be overlooked in clinical practice. Recognition of mosaicism in atypical cases or parents with very mild phenotypes is important in genetic counseling as their offspring are at increased risk of typical aniridia. Recognition of the genotype-phenotype relationship emphasizes involvement of PAX6 regulation in shaping complex ocular phenotypes.
Collapse
Affiliation(s)
- Yi Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhen Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxi Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jiamin Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dongwei Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
2
|
Stachon T, Fecher-Trost C, Latta L, Yapar D, Fries FN, Meyer MR, Käsmann-Kellner B, Seitz B, Szentmáry N. Protein profiling of conjunctival impression cytology samples of aniridia subjects. Acta Ophthalmol 2024; 102:e635-e645. [PMID: 38130099 DOI: 10.1111/aos.16614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Congenital aniridia is a rare disease, which is in most cases related to PAX6 haploinsufficiency. Aniridia associated keratopathy (AAK) also belongs to ocular signs of congenital aniridia. In AAK, there is corneal epithelial thinning, corneal inflammation, vascularization and scarring. In advanced stage AAK, typically, conjunctival epithelial cells slowly replace the corneal epithelium. Based on previous results we hypothesize that alterations of the conjunctival cells in congenital aniridia may also support the corneal conjunctivalization process. The aim of this study was to identify deregulated proteins in conjunctival impression cytology samples of congenital aniridia subjects. METHODS Conjunctival impression cytology samples of eight patients with congenital aniridia [age 34.5 ± 9.9 (17-51) years, 50% female] and eight healthy subjects [age 34.1 ± 11.9 (15-54) years, 50% female] were collected and analysed using mass spectrometry. Proteomic profiles were analysed in terms of molecular functions, biological processes, cellular components and pathway enrichment using the protein annotation of the evolutionary relationship (PANTHER) classification system. RESULTS In total, 3323 proteins could be verified and there were 127 deregulated proteins (p < 0.01) in congenital aniridia. From the 127 deregulated proteins (DEPs), 82 altered biological processes, 63 deregulated cellular components, 27 significantly altered molecular functions and 31 enriched signalling pathways were identified. Pathological alteration of the biological processes and molecular functions of retinol binding and retinoic acid biosynthesis, as well as lipid metabolism and apoptosis related pathways could be demonstrated. CONCLUSIONS Protein profile of conjunctival impression cytology samples of aniridia subjects identifies alterations of retinol binding, retinoic acid biosynthesis, lipid metabolism and apoptosis related pathways. Whether these changes are directly related to PAX6 haploinsufficiency, must be investigated in further studies. These new findings offer the possibility to identify potential new drug targets.
Collapse
Affiliation(s)
- Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany
| | - Claudia Fecher-Trost
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Lorenz Latta
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany
| | - Dalya Yapar
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany
| | - Fabian N Fries
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | | | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany
| |
Collapse
|
3
|
Wowra B, Wysocka-Kosmulska M, Dobrowolski D, Wylęgała E. Superficial Keratectomy Alone versus in Combination with Amniotic Membrane Transplantation in Aniridia-Associated Keratopathy and a Short-Term Clinical Outcome. J Clin Med 2024; 13:3258. [PMID: 38892970 PMCID: PMC11173058 DOI: 10.3390/jcm13113258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Background/Objectives: Aniridia-associated keratopathy (AAK) is a potentially vision-threatening pathology in congenital aniridia, for which both the underlying etiopathogenesis and effective treatment remain unclear. Methods:This prospective study was conducted to assess and compare the short-term outcome after superficial keratectomy (SK) alone or in a combination with an amniotic membrane transplantation (AMT). Here, 76 eyes were enrolled in 76 patients with grade 4 AAK. In all eyes, in order to assess preoperatively the efficiency of the limbal epithelial stem cells (LESC), the presence of corneal epithelial cells in confocal microscopy was established. The analyses included: best corrected visual acuity (BCVA), the stage of AAK and the number of corneal quadrants involved in corneal neovascularization (CNV). Results: Six months after surgery, the mean BCVA was 0.05 and ranged from 0.002 up to 0.1 in both groups. Improvement in BCVA occurred in 94.29% patients when *SK alone* was performed, and in 92.68% when in combination with AMT. There were no statistically significant differences in the effect of therapy depending on the type of surgery, regarding BCVA, stage of AAK and the number of quadrants with CNV. Conclusions: SK alone is an effective procedure in short outcomes limited to six months for advanced AAK in association with LESC partial efficiency.
Collapse
Affiliation(s)
- Bogumił Wowra
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-760 Katowice, Poland; (M.W.-K.); (D.D.); (E.W.)
- Department of Ophthalmology, District Railway Hospital, 65 Panewnicka Street, 40-760 Katowice, Poland
| | - Marzena Wysocka-Kosmulska
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-760 Katowice, Poland; (M.W.-K.); (D.D.); (E.W.)
- Department of Ophthalmology, St. Barbara Hospital, 41-200 Sosnowiec, Poland
| | - Dariusz Dobrowolski
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-760 Katowice, Poland; (M.W.-K.); (D.D.); (E.W.)
- Department of Ophthalmology, District Railway Hospital, 65 Panewnicka Street, 40-760 Katowice, Poland
- Department of Ophthalmology, St. Barbara Hospital, 41-200 Sosnowiec, Poland
| | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-760 Katowice, Poland; (M.W.-K.); (D.D.); (E.W.)
- Department of Ophthalmology, District Railway Hospital, 65 Panewnicka Street, 40-760 Katowice, Poland
| |
Collapse
|
4
|
Stachon T, Latta L, Fries FN, Seitz B, Szentmáry N. Secondary Data Analysis of Inflammation-Related mRNAs in Conjunctival Impression Cytology Samples of Aniridia Patients. Cornea 2024; 43:627-634. [PMID: 38147570 DOI: 10.1097/ico.0000000000003454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/14/2023] [Indexed: 12/28/2023]
Abstract
PURPOSE Aniridia is a rare corneal disease that is often associated with aniridia-associated keratopathy (AAK). In AAK, the conjunctival tissue crosses the limbal border, forming a corneal pannus that extends into the corneal center. With increasing AAK severity, corneal pannus formation, vascularization, and ocular surface inflammation increase. The purpose of this study was to investigate inflammation-related mRNA expression in conjunctival epithelial cells in AAK and its relationship with AAK severity. METHODS Using impression cytology, bulbar conjunctival cells were sampled from 20 subjects with congenital aniridia and 20 age-matched and sex-matched healthy control subjects. RNA was extracted, and mRNA analyses were performed using microarray, which was evaluated for inflammatory markers. RESULTS In the analyzed aniridia subjects, 70 deregulated mRNAs encoding proinflammatory or antiinflammatory cytokines or factors associated with chronic inflammation, including increased IL-1, IL-8, and MIP3A/CCL20 mRNA. The most downregulated mRNA was TIMP3, and the most upregulated mRNA was Protein c-Fos.Of the 70 mRNAs, 14 inflammation-related genes were altered only in the mild AAK forms, whereas only 2 mRNAs were altered only in the severe AAK forms (TLR4 and PPARG). CONCLUSIONS The expression of numerous proinflammatory and antiinflammatory cytokines is deregulated at the ocular surface of aniridia subjects with mild AAK. Thus, early antiinflammatory treatment may prevent or slow down corneal scarring and pannus formation in aniridia subjects.
Collapse
Affiliation(s)
- Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg, Saarland, Germany; and
| | - Lorenz Latta
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg, Saarland, Germany; and
| | - Fabian N Fries
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saarland, Germany
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg, Saarland, Germany; and
| |
Collapse
|
5
|
Gour A, Tibrewal S, Garg A, Vohra M, Ratna R, Sangwan VS. New horizons in aniridia management: Clinical insights and therapeutic advances. Taiwan J Ophthalmol 2023; 13:467-478. [PMID: 38249501 PMCID: PMC10798387 DOI: 10.4103/tjo.tjo-d-23-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 01/23/2024] Open
Abstract
Congenital aniridia is a rare genetic eye disorder characterized by the complete or partial absence of the iris from birth. Various theories and animal models have been proposed to understand and explain the pathogenesis of aniridia. In the majority of cases, aniridia is caused by a mutation in the PAX6 gene, which affects multiple structures within the eye. Treating these ocular complications is challenging and carries a high risk of side effects. However, emerging approaches for the treatment of aniridia-associated keratopathy, iris abnormalities, cataract abnormalities, and foveal hypoplasia show promise for improved outcomes. Genetic counseling plays a very important role to make informed choices. We also provide an overview of the newer diagnostic and therapeutic approaches such as next generation sequencing, gene therapy, in vivo silencing, and miRNA modulation.
Collapse
Affiliation(s)
- Abha Gour
- Department of Cornea and Anterior Segment, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
- Eicher-Shroff Centre for Stem Cell Research, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Shailaja Tibrewal
- Department of Pediatric Ophthalmology and Strabismus, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
- Department of Ocular Genetics, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Aastha Garg
- Department of Cornea and Anterior Segment, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Mehak Vohra
- Eicher-Shroff Centre for Stem Cell Research, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Ria Ratna
- Department of Ocular Genetics, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| | - Virender Singh Sangwan
- Department of Cornea and Anterior Segment, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
- Eicher-Shroff Centre for Stem Cell Research, Dr. Shroff’s Charity Eye Hospital, New Delhi, India
| |
Collapse
|
6
|
van Velthoven AJH, Utheim TP, Notara M, Bremond-Gignac D, Figueiredo FC, Skottman H, Aberdam D, Daniels JT, Ferrari G, Grupcheva C, Koppen C, Parekh M, Ritter T, Romano V, Ferrari S, Cursiefen C, Lagali N, LaPointe VLS, Dickman MM. Future directions in managing aniridia-associated keratopathy. Surv Ophthalmol 2023; 68:940-956. [PMID: 37146692 DOI: 10.1016/j.survophthal.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Congenital aniridia is a panocular disorder that is typically characterized by iris hypoplasia and aniridia-associated keratopathy (AAK). AAK results in the progressive loss of corneal transparency and thereby loss of vision. Currently, there is no approved therapy to delay or prevent its progression, and clinical management is challenging because of phenotypic variability and high risk of complications after interventions; however, new insights into the molecular pathogenesis of AAK may help improve its management. Here, we review the current understanding about the pathogenesis and management of AAK. We highlight the biological mechanisms involved in AAK development with the aim to develop future treatment options, including surgical, pharmacological, cell therapies, and gene therapies.
Collapse
Affiliation(s)
- Arianne J H van Velthoven
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Tor P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Dominique Bremond-Gignac
- Ophthalmology Department, University Hospital Necker-Enfants Malades, APHP, Paris Cité University, Paris, France; Centre de Recherche des Cordeliers, Sorbonne Paris Cité University, Paris, France
| | - Francisco C Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne, UK; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Daniel Aberdam
- Centre de Recherche des Cordeliers, Sorbonne Paris Cité University, Paris, France
| | | | - Giulio Ferrari
- Cornea and Ocular Surface Unit, Eye Repair Lab, San Raffaele Hospital, Milan, Italy
| | - Christina Grupcheva
- Department of Ophthalmology and Visual Sciences, Medical University of Varna, Varna, Bulgaria
| | - Carina Koppen
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Mohit Parekh
- Schepens Eye Research Institute, Harvard Medical School, Boston, MA, USA
| | - Thomas Ritter
- Regenerative Medicine Institute, University of Galway, Galway, Ireland
| | - Vito Romano
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, Brescia, Italy
| | | | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Vanessa L S LaPointe
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Mor M Dickman
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands; University Eye Clinic Maastricht, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
7
|
Roshandel D, Semnani F, Rayati Damavandi A, Masoudi A, Baradaran-Rafii A, Watson SL, Morgan WH, McLenachan S. Genetic predisposition to ocular surface disorders and opportunities for gene-based therapies. Ocul Surf 2023; 29:150-165. [PMID: 37192706 DOI: 10.1016/j.jtos.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
The ocular surface, comprised of the corneal and conjunctival epithelium, innervation system, immune components, and tear-film apparatus, plays a key role in ocular integrity as well as comfort and vision. Gene defects may result in congenital ocular or systemic disorders with prominent ocular surface involvement. Examples include epithelial corneal dystrophies, aniridia, ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome, xeroderma pigmentosum (XP), and hereditary sensory and autonomic neuropathy. In addition, genetic factors may interact with environmental risk factors in the development of several multifactorial ocular surface disorders (OSDs) such as autoimmune disorders, allergies, neoplasms, and dry eye disease. Advanced gene-based technologies have already been introduced in disease modelling and proof-of-concept gene therapies for monogenic OSDs. For instance, patient-derived induced pluripotent stem cells have been used for modelling aniridia-associated keratopathy (AAK), XP, and EEC syndrome. Moreover, CRISPR/Cas9 genome editing has been used for disease modelling and/or gene therapy for AAK and Meesmann's epithelial corneal dystrophy. A better understanding of the role of genetic factors in OSDs may be helpful in designing personalized disease models and treatment approaches. Gene-based approaches in monogenic OSDs and genetic predisposition to multifactorial OSDs such as immune-mediated disorders and neoplasms with known or possible genetic risk factors has been seldom reviewed. In this narrative review, we discuss the role of genetic factors in monogenic and multifactorial OSDs and potential opportunities for gene therapy.
Collapse
Affiliation(s)
- Danial Roshandel
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
| | - Farbod Semnani
- School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amirmasoud Rayati Damavandi
- School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Masoudi
- Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Alireza Baradaran-Rafii
- Department of Ophthalmology, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Stephanie L Watson
- The University of Sydney, Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, Sydney, New South Wales, Australia
| | - William H Morgan
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
| | - Samuel McLenachan
- Lions Eye Institute, Perth, WA, Australia; Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
8
|
Swamynathan SK, Swamynathan S. Corneal epithelial development and homeostasis. Differentiation 2023; 132:4-14. [PMID: 36870804 PMCID: PMC10363238 DOI: 10.1016/j.diff.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/27/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
The corneal epithelium (CE), the most anterior cellular structure of the eye, is a self-renewing stratified squamous tissue that protects the rest of the eye from external elements. Each cell in this exquisite three-dimensional structure needs to have proper polarity and positional awareness for the CE to serve as a transparent, refractive, and protective tissue. Recent studies have begun to elucidate the molecular and cellular events involved in the embryonic development, post-natal maturation, and homeostasis of the CE, and how they are regulated by a well-coordinated network of transcription factors. This review summarizes the status of related knowledge and aims to provide insight into the pathophysiology of disorders caused by disruption of CE development, and/or homeostasis.
Collapse
Affiliation(s)
| | - Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| |
Collapse
|
9
|
Romano D, Bremond-Gignac D, Barbany M, Rahman A, Mauring L, Semeraro F, Cursiefen C, Lagali N, Romano V. Artificial iris implantation in congenital aniridia A systematic review. Surv Ophthalmol 2022:S0039-6257(22)00152-7. [PMID: 36379301 DOI: 10.1016/j.survophthal.2022.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Congenital aniridia is a rare, panocular disorder with a main phenotypic characteristic of a partial or complete absence of the iris existing alongside other ocular morbidities such as cataract, keratopathy, optic nerve and foveal hypoplasia, and nystagmus. The iris abnormality, however, often leads to symptoms such as photophobia, glare, and decreased visual acuity, as well as cosmetic dissatisfaction. Current management options for the iris deficit include colored iris contact lenses, corneal tattooing, and tinted contact lenses. Symptoms arising from small iris defects can be resolved with surgical management using micro-tying suture techniques such as McCannel or Siepser. Currently, larger iris defects can be treated with artificial iris implants. New prosthetic options range from colored intraocular lenses to flexible custom-made silicone iris implants. With a range of therapeutic options available and given the challenges of multiple comorbidities in aniridia, we evaluate the literature relating to the use of artificial iris implants in congenital aniridia, with a focus on the different surgical implantation techniques, the clinical outcomes achieved, complications occurred, and risk of bias of the studies included.
Collapse
|
10
|
Othman IS, Gharieb HM, Ibrahim HMG. Eight-years Egyptian experience of Boston type I keratoprosthesis following failed penetrating keratoplasty or ocular surface disease. Saudi J Ophthalmol 2022; 36:102-106. [PMID: 35971487 PMCID: PMC9375450 DOI: 10.4103/sjopt.sjopt_36_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/16/2021] [Accepted: 11/23/2021] [Indexed: 11/04/2022] Open
Abstract
PURPOSE To evaluate the outcome and complications after implantation of the Boston type I keratoprosthesis (Kpro) in two groups of eyes. METHODS We retrospectively reviewed records of 28 eyes with failed Penetrating keratoplasty (PKP) (Group A) and 31 eyes with severe ocular surface diseases who implanted Kpro. Follow-up was performed for a mean 37 months. Primary outcomes were Kpro retention and visual improvement, secondary outcomes included the occurrence of complications as endophthalmitis, retro-prosthesis membrane (RPM), intraocular pressure (IOP) abnormalities, posterior capsule opacification (PCO), graft thinning and extrusion. RESULTS Visual improvement was achieved in 20 eyes in Group A, and in 19 eyes in Group B. In group A, the prosthesis was retained in 25 eyes, while prosthesis retention in Group B was in 26 eyes. Group A had higher rates of PCO, high IOP, soft IOP, and graft thinning. Group B had higher risk of RPM, and endophthalmitis. Two eyes in Group A, and Five eyes in Group B required redo procedure. CONCLUSION The Boston Kpro type I is an effective procedure in eyes with high risk of keratoplasty failure and in severe ocular surface diseases, it has a high retention rate, higher in cases following failed PKP.
Collapse
Affiliation(s)
- Ihab S. Othman
- Department of Ophthalmology, Faculty of Medicine, Cairo University, Giza, Egypt,Eye World Hospital, Giza, Egypt
| | - Hesham M. Gharieb
- Faculty of Medicine, Ain Shams University, Cairo, Egypt,Department of CMD and Head of R and D, Eye World Hospital, Giza, Egypt
| | - Hani M. G. Ibrahim
- Eye World Hospital, Giza, Egypt,Faculty of Medicine, Ain Shams University, Cairo, Egypt,Address for correspondence: Dr. Hani M. Gharieb Ibrahim, Lecturer of Ophthalmology, Faculty of Medicine, Ain Shams University, Cairo, Egypt. E-mail:
| |
Collapse
|
11
|
Tibrewal S, Ratna R, Gour A, Agarkar S, Dubey S, Ganesh S, Kekunnaya R, Sangwan V, Liu Y, Vanita V. Clinical and molecular aspects of congenital aniridia - A review of current concepts. Indian J Ophthalmol 2022; 70:2280-2292. [PMID: 35791108 PMCID: PMC9426064 DOI: 10.4103/ijo.ijo_2255_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Congenital aniridia is a pan ocular disorder characterized by partial or total loss of iris tissue as the defining feature. Classic aniridia, however, has a spectrum of ocular findings, including foveal hypoplasia, optic nerve hypoplasia, nystagmus, late-onset cataract, glaucoma, and keratopathy. The latter three are reasons for further visual compromise in such patients. This entity is often due to mutations in the PAX6 (Paired box protein Pax-6) gene. Recently, aniridia-like phenotypes have been reported due to non-PAX6 mutations as in PITX2, FOXC1, FOXD3, TRIM44, and CYP1B1 as well wherein there is an overlap of aniridia, such as iris defects with congenital glaucoma or anterior segment dysgenesis. In this review, we describe the various clinical features of classic aniridia, the comorbidities and their management, the mutation spectrum of the genes involved, genotype-phenotype correlation of PAX6 and non-PAX6 mutations, and the genetic testing plan. The various systemic associations and their implications in screening and genetic testing have been discussed. Finally, the future course of aniridia treatment in the form of drugs (such as ataluren) and targeted gene therapy has been discussed.
Collapse
Affiliation(s)
- Shailja Tibrewal
- Department of Ocular Genetics; Department of Pediatric Ophthalmology, Strabismus and Neuro-ophthalmology, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Ria Ratna
- Department of Ocular Genetics, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Abha Gour
- Department of Cornea and Anterior Segment, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Sumita Agarkar
- Department of Pediatric Ophthalmology and Strabismus, Medical Research Foundation, Sankara Netralaya, Chennai, Tamil Nadu, India
| | - Suneeta Dubey
- Department of Glaucoma, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Suma Ganesh
- Department of Pediatric Ophthalmology, Strabismus and Neuro-ophthalmology, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Ramesh Kekunnaya
- Child Sight Institute, Jasti V Ramanamma Children's Eye Care Centre, L V Prasad Eye Institute, KAR Campus, Hyderabad, Telangana, India
| | - Virender Sangwan
- Department of Cornea and Anterior Segment, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, USA
| | - Vanita Vanita
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
12
|
Jacobson A, Mian SI, Bohnsack BL. Clinical outcomes and visual prognostic factors in congenital aniridia. BMC Ophthalmol 2022; 22:235. [PMID: 35614435 PMCID: PMC9131660 DOI: 10.1186/s12886-022-02460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Evaluate outcomes and identify prognostic factors in congenital aniridia. Methods Retrospective interventional case series of patients with congenital aniridia treated between 2012–2020. Ocular examination and surgical details were collected. Surgical failure was defined as disease progression or need for additional surgery for same/related indication. Kaplan–Meier survival curves, Wilcoxon test, and univariate and multivariate linear regression analyses were performed. Results Ninety-four patients with congenital aniridia presented at median 19.0 years. Two-thirds of patients underwent ≥ 1intraocular surgery, with average of 1.7 ± 2.3 surgeries/eye. At final follow-up (median 4.0 years), 45% of eyes had undergone lensectomy. Aphakic eyes showed worse visual acuity (VA) than phakic or pseudophakic eyes. Glaucoma affected 52% of eyes, of which half required IOP-lowering surgery. Glaucoma drainage devices showed the highest success rate (71%) at 14.2 ± 15.4 years of follow-up. Keratopathy affected 65% of eyes and one-third underwent corneal surgery. Keratoprosthesis had the longest survival rates at 10-years (64% with 95% CI [32,84]). LogMAR VA at presentation and final follow-up were not statistically different. Half of patients were legally blind at final follow-up. Final VA was associated with presenting VA, glaucoma diagnosis, and cataract or keratopathy at presentation. Penetrating keratoplasty and keratoprosthesis implantation correlated with worse BCVA. Conclusions Most aniridic patients in this large US-based cohort underwent at least 1 intraocular surgery. Cataract, glaucoma, and keratopathy were associated with worse VA and are important prognostic factors to consider when managing congenital aniridia. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-022-02460-5.
Collapse
|
13
|
Karaconji T, Zagora S, Grigg JR. Approach to childhood glaucoma: A review. Clin Exp Ophthalmol 2022; 50:232-246. [PMID: 35023613 DOI: 10.1111/ceo.14039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022]
Abstract
Childhood glaucoma represents a heterogenous group of rare ocular conditions that may result in significant sight threatening complications related to elevated intraocular pressure (IOP). It can be classified as either primary or secondary and the latter may have systemic associations. This review will be based on the work of the childhood glaucoma research network (CGRN) and will focus on the diagnosis and management of the most common types of childhood glaucoma. These include primary congenital glaucoma (PCG) and juvenile open angle glaucoma (JOAG) as well as secondary causes of glaucoma associated with non-acquired ocular anomalies (Axenfeld-Rieger anomaly; Peters anomaly and Aniridia), glaucoma associated with systemic disease (Sturge Weber syndrome and Neurofibromatosis), those due to acquired conditions (Uveitic glaucoma, trauma and tumours) and importantly glaucoma following cataract surgery.
Collapse
Affiliation(s)
- Tanya Karaconji
- Speciality of Ophthalmology, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Department of Ophthalmology, The Children's Hospital, Westmead, Australia
| | - Sophia Zagora
- Speciality of Ophthalmology, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Department of Ophthalmology, The Children's Hospital, Westmead, Australia
| | - John R Grigg
- Speciality of Ophthalmology, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.,Department of Ophthalmology, The Children's Hospital, Westmead, Australia.,Eye Genetics Research Group Children's Medical Research Institute, The Children's Hospital at Westmead and Eye Genetics Clinics, The Children's Hospital at Westmead, Westmead, Australia
| |
Collapse
|
14
|
Behaegel J, Tassignon MJ, Lagali N, Consejo A, Koppen C, Ní Dhubhghaill S. Outcomes of Human Leukocyte Antigen-Matched Allogeneic Cultivated Limbal Epithelial Transplantation in Aniridia-Associated Keratopathy-A Single-Center Retrospective Analysis. Cornea 2022; 41:69-77. [PMID: 33928920 PMCID: PMC8647694 DOI: 10.1097/ico.0000000000002729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE To assess the efficacy and safety of human leukocyte antigen-matched allogeneic cultivated limbal epithelial stem cell grafts in the treatment of aniridia-associated keratopathy (AAK). METHODS Six eyes of 6 patients with severe AAK received an allogeneic stem cell graft between January 2010 and March 2017. Anatomical and functional results were assessed at 6 months, 1 year, 2 years, and the final follow-up visit available. Safety analysis was performed by considering all perioperative and postoperative adverse events and additional surgeries required during the follow-up period. RESULTS The mean follow-up was 53.6 months (range 24-104 months). In most patients (80%), there was an early improvement of the keratopathy postoperatively, which slowly regressed during longer follow-up. At the final follow-up, 4 of the eyes were graded as failure and 1 eye was graded as partial success. Grading the sixth eye was not possible because of an adverse event. None of the patients maintained a total anatomical success in the long-term. Only 1 patient maintained a modest improvement in best-corrected visual acuity from hand motion to counting fingers. Four serious adverse events were recorded in 2 patients. CONCLUSIONS Severe AAK remains a challenging condition to manage. Transplantation of allogenic ex vivo cultivated limbal stem cells may provide a temporary improvement in ocular surface stability, but anatomical and functional results are poor in the long-term. The eyes are prone to adverse events, and any surgical treatment should take this into consideration.
Collapse
Affiliation(s)
- Joséphine Behaegel
- Ophthalmology, Visual Optics and Visual Rehabilitation, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Marie-José Tassignon
- Ophthalmology, Visual Optics and Visual Rehabilitation, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linkoping University, Linköping, Sweden; and
| | - Alejandra Consejo
- Department of Applied Physics, University of Zaragoza, Zaragoza, Spain
| | - Carina Koppen
- Ophthalmology, Visual Optics and Visual Rehabilitation, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Sorcha Ní Dhubhghaill
- Ophthalmology, Visual Optics and Visual Rehabilitation, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
15
|
Overview of Congenital Corneal Opacities: Clinical Diagnosis, Treatment, and Prognosis. Int Ophthalmol Clin 2022; 62:1-13. [PMID: 34965222 DOI: 10.1097/iio.0000000000000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Yang Y, Tong CM, Dahoud A, Harissi-Dagher M. Commentary: Long-Term Anatomical and Functional Survival of Boston Type 1 Keratoprosthesis in Congenital Aniridia. Front Med (Lausanne) 2021; 8:815926. [PMID: 35004793 PMCID: PMC8732952 DOI: 10.3389/fmed.2021.815926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
|
17
|
Álvarez de Toledo Elizalde J, López García S, Benítez Del Castillo JM, Durán de la Colina J, Gris Castejón O, Celis Sánchez J, Herreras Cantalapiedra JM. Aniridia and the ocular surface: Medical and surgical problems and solutions. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2021; 96 Suppl 1:15-37. [PMID: 34836585 DOI: 10.1016/j.oftale.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Congenital aniridia is a multisystemic genetic disease due to a mutation in PAX6 gene which severely affects the development and functionality of the human eyes. In patients affected by the mutation, aside from the absence or defects of iris tissue formation, abnormalities in position or opacities of the crystalline lens, macular hypoplasia, ocular surface disease is the main cause of visual loss and the deterioration of the quality of life of most patients. Limbal stem cell deficiency combined with tear film instability and secondary dry eye cause aniridic keratopathy which, in advanced stages, ends up in corneal opacification. In this paper, the actual knowledge about congenital aniridia keratopathy physiopathology and medical and surgical treatment options and their efficacy are discussed. Indications and results of topical treatments with artificial tears and blood-derivatives in its initial stages, and different surgical techniques as limbal stem cell transplantation, keratoplasty and keratoprostheses are reviewed. Finally, recent advances and results in regenerative medicine techniques with ex vivo stem cell cultivation or other types of cultivated cells are presented.
Collapse
Affiliation(s)
| | - S López García
- Hospital Universitario Severo Ochoa, Leganés, Madrid, Spain
| | - J M Benítez Del Castillo
- Cátedra de Oftalmología, Hospital Clínico San Carlos, Universidad Complutense, Clínica Rementería, Madrid, Spain
| | - J Durán de la Colina
- Cátedra de Oftalmología, Universidad del País Vasco, Instituto Clínico-Quirúrgico de Oftalmología, Bilbao, Spain
| | - O Gris Castejón
- Departamento de Córnea y Superficie Ocular, Instituto de Microcirugía Ocular de Barcelona (IMO), Barcelona, Spain
| | - J Celis Sánchez
- Unidad de Córnea y Superficie ocular, Hospital La Mancha-Centro, Alcázar de San Juan, Spain
| | - J M Herreras Cantalapiedra
- Instituto Universitario de Oftalmobiología Aplicada (IOBA) de la Universidad de Valladolid, Servicio de Oftalmología del Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| |
Collapse
|
18
|
Dyer A, De Faria A, Julio G, Álvarez de Toledo J, Barraquer RI, de la Paz MF. Long-Term Anatomical and Functional Survival of Boston Type 1 Keratoprosthesis in Congenital Aniridia. Front Med (Lausanne) 2021; 8:749063. [PMID: 34660651 PMCID: PMC8514767 DOI: 10.3389/fmed.2021.749063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To analyze the long-term anatomical survival, functional survival, and complications of Boston type 1 keratoprosthesis (KPro) in the eyes with congenital aniridia-associated keratopathy (AAK). Methods: A retrospective review of 12 eyes with congenital aniridia that underwent a Boston type 1 KPro surgery was conducted. A Kaplan-Meier analysis was performed. Anatomical and functional success criteria were KPro retention and a best corrected visual acuity (BCVA) ≤1.3 LogMAR (≥0.05 decimal) at the end of a follow-up period. Postoperative complications were recorded. Results: The mean preoperative BCVA was 2.1 ± 0.9 (range: 3.8-1) LogMAR, and glaucoma was a comorbidity in all the cases. Five years after the surgery, the overall retention rate was 10/12 (83.3%), and 50% had functional success. Only three (25%) of the 12 cases did not achieve a BCVA ≤1.3 LogMAR. The cumulative probability of anatomical success was 92, 79, and 79% after 1, 5, and 10 years, respectively. The cumulative probability of functional success was 57 and 46% after 1 and 5 years, respectively. The mean anatomical and functional survival time was 10 ± 1.3 (95% IC = 7.5-12.3 years) and 3.8 ± 0.9 years (95% IC = 1.8-5.8 years), respectively. The most common postoperative complication was retroprosthetic membrane (RPM) formation in 8/16 cases (66%). The mean number of complications per case was 2.4 ± 1.8 (0-6). Conclusions: The Boston type 1 KPro is a viable option for patients with AAK with good anatomical and functional long-term results. Glaucoma is an important preoperative condition that affects functional results. Retroprosthetic membrane formation seems to have a higher incidence in this condition.
Collapse
Affiliation(s)
- Ariann Dyer
- Centro de Oftalmología Barraquer, Barcelona, Spain.,Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alix De Faria
- Centro de Oftalmología Barraquer, Barcelona, Spain.,Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Julio
- Centro de Oftalmología Barraquer, Barcelona, Spain.,Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Álvarez de Toledo
- Centro de Oftalmología Barraquer, Barcelona, Spain.,Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rafael I Barraquer
- Centro de Oftalmología Barraquer, Barcelona, Spain.,Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Maria Fideliz de la Paz
- Centro de Oftalmología Barraquer, Barcelona, Spain.,Institut Universitari Barraquer, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Amin S, Jalilian E, Katz E, Frank C, Yazdanpanah G, Guaiquil VH, Rosenblatt MI, Djalilian AR. The Limbal Niche and Regenerative Strategies. Vision (Basel) 2021; 5:vision5040043. [PMID: 34698278 PMCID: PMC8544688 DOI: 10.3390/vision5040043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
The protective function and transparency provided by the corneal epithelium are dependent on and maintained by the regenerative capacity of limbal epithelial stem cells (LESCs). These LESCs are supported by the limbal niche, a specialized microenvironment consisting of cellular and non-cellular components. Disruption of the limbal niche, primarily from injuries or inflammatory processes, can negatively impact the regenerative ability of LESCs. Limbal stem cell deficiency (LSCD) directly hampers the regenerative ability of the corneal epithelium and allows the conjunctival epithelium to invade the cornea, which results in severe visual impairment. Treatment involves restoring the LESC population and functionality; however, few clinically practiced therapies currently exist. This review outlines the current understanding of the limbal niche, its pathology and the emerging approaches targeted at restoring the limbal niche. Most emerging approaches are in developmental phases but show promise for treating LSCD and accelerating corneal regeneration. Specifically, we examine cell-based therapies, bio-active extracellular matrices and soluble factor therapies in considerable depth.
Collapse
Affiliation(s)
- Sohil Amin
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Eitan Katz
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Charlie Frank
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Victor H. Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
- Correspondence:
| |
Collapse
|
20
|
Balikov DA, Jacobson A, Prasov L. Glaucoma Syndromes: Insights into Glaucoma Genetics and Pathogenesis from Monogenic Syndromic Disorders. Genes (Basel) 2021; 12:genes12091403. [PMID: 34573386 PMCID: PMC8471311 DOI: 10.3390/genes12091403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Monogenic syndromic disorders frequently feature ocular manifestations, one of which is glaucoma. In many cases, glaucoma in children may go undetected, especially in those that have other severe systemic conditions that affect other parts of the eye and the body. Similarly, glaucoma may be the first presenting sign of a systemic syndrome. Awareness of syndromes associated with glaucoma is thus critical both for medical geneticists and ophthalmologists. In this review, we highlight six categories of disorders that feature glaucoma and other ocular or systemic manifestations: anterior segment dysgenesis syndromes, aniridia, metabolic disorders, collagen/vascular disorders, immunogenetic disorders, and nanophthalmos. The genetics, ocular and systemic features, and current and future treatment strategies are discussed. Findings from rare diseases also uncover important genes and pathways that may be involved in more common forms of glaucoma, and potential novel therapeutic strategies to target these pathways.
Collapse
Affiliation(s)
- Daniel A. Balikov
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (D.A.B.); (A.J.)
| | - Adam Jacobson
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (D.A.B.); (A.J.)
| | - Lev Prasov
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; (D.A.B.); (A.J.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence:
| |
Collapse
|
21
|
Farah CJ, Fries FN, Latta L, Käsmann-Kellner B, Seitz B. An attempt to optimize the outcome of penetrating keratoplasty in congenital aniridia-associated keratopathy (AAK). Int Ophthalmol 2021; 41:4091-4098. [PMID: 34324101 PMCID: PMC8572819 DOI: 10.1007/s10792-021-01982-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/16/2021] [Indexed: 11/30/2022]
Abstract
Purpose To propose an optimized microsurgical and medical approach to reduce the risk of complications after penetrating keratoplasty (PKP) in patients with aniridia-associated keratopathy (AAK). Methods Retrospective observational case series of 25 PKP performed in 16 patients with AAK. Preoperative indications were endothelial decompensation and vascularized scars (68%) or graft failure (32%) due to limbal stem cell deficiency. The optimized approach included a combination of a small corneal graft size (around 7.0 mm), interrupted 10–0nylon sutures, simultaneous AMT as a patch, large bandage contact lens, temporary lateral tarsorrhaphy, postoperative autologous serum eye drops, and systemic immunosuppression. Main outcome measures included: visual acuity, transplant survival, and complications encountered during follow-up of 107 weeks on average. Results A complete modified keratoplasty scheme was used in 10 of 25 PKP (group 1), while at least one of the modifications was missing in the other 15 PKP (group 2). After 8 weeks of follow-up, the epithelium was closed in 23 eyes. Visual acuity improved in 19 eyes at 6 months of follow-up, and remained stable in six eyes. None of the eyes showed a decrease in visual acuity. At the last post-operative follow-up, this visual improvement persisted in 14 eyes and graft survival rate after 156 weeks (3 years) was 69% in group 1 versus 44% in group 2 (p = 0.39, log-rank test). Secondary corneal neovascularization (8%), scarring (4%), ulcer (4%), or graft rejection (8%) happened mostly in the second group which was missing at least one of the suggested modifications. Conclusions PKP in congenital aniridia must be considered as a high-risk keratoplasty. An optimized therapeutic approach seems to be promising in order to reduce the postoperative complication rate in these most difficult eyes.
Collapse
Affiliation(s)
- C J Farah
- Department of Ophthalmology, Saarland University Medical Center, 100 Kirrbergerstr., Building 22, 66421, Homburg, Saar, Germany.
| | - F N Fries
- Department of Ophthalmology, Saarland University Medical Center, 100 Kirrbergerstr., Building 22, 66421, Homburg, Saar, Germany
| | - L Latta
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell Research and Congenital Aniridia, Saarland University Medical Center, Homburg, Saar, Germany
| | - B Käsmann-Kellner
- Department of Ophthalmology, Saarland University Medical Center, 100 Kirrbergerstr., Building 22, 66421, Homburg, Saar, Germany
| | - B Seitz
- Department of Ophthalmology, Saarland University Medical Center, 100 Kirrbergerstr., Building 22, 66421, Homburg, Saar, Germany
| |
Collapse
|
22
|
Kit V, Cunha DL, Hagag AM, Moosajee M. Longitudinal genotype-phenotype analysis in 86 patients with PAX6-related aniridia. JCI Insight 2021; 6:e148406. [PMID: 34101622 PMCID: PMC8410060 DOI: 10.1172/jci.insight.148406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022] Open
Abstract
Aniridia is most commonly caused by haploinsufficiency of the PAX6 gene, characterized by variable iris and foveal hypoplasia, nystagmus, cataracts, glaucoma, and aniridia-related keratopathy (ARK). Genotype-phenotype correlations have previously been described; however, detailed longitudinal studies of aniridia are less commonly reported. We identified 86 patients from 62 unrelated families with molecularly confirmed heterozygous PAX6 variants from a UK-based single-center ocular genetics service. They were categorized into mutation groups, and a retrospective review of clinical characteristics (ocular and systemic) from baseline to most recent was recorded. One hundred and seventy-two eyes were evaluated, with a mean follow-up period of 16.3 ± 12.7 years. Nystagmus was recorded in 87.2% of the eyes, and foveal hypoplasia was found in 75%. Cataracts were diagnosed in 70.3%, glaucoma in 20.6%, and ARK in 68.6% of eyes. Prevalence, age of diagnosis and surgical intervention, and need for surgical intervention varied among mutation groups. Overall, the missense mutation subgroup had the mildest phenotype, and surgically naive eyes maintained better visual acuity. Systemic evaluation identified type 2 diabetes in 12.8% of the study group, which is twice the UK prevalence. This is the largest longitudinal study of aniridia in the UK, and as such, it can provide insights into prognostic indicators for patients and guiding clinical management of both ocular and systemic features.
Collapse
Affiliation(s)
- Vivienne Kit
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom.,UCL Institute of Ophthalmology, London, United Kingdom
| | | | - Ahmed M Hagag
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom.,UCL Institute of Ophthalmology, London, United Kingdom
| | - Mariya Moosajee
- Moorfields Eye Hospital, NHS Foundation Trust, London, United Kingdom.,UCL Institute of Ophthalmology, London, United Kingdom.,Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
23
|
Abstract
Purpose: This review provides an overview of the causes and treatment of neurotrophic keratopathy in the pediatric population.Methods: A thorough review of the current literature discussing neurotrophic keratopathy was conducted then summarized.Results:Fourty-nine papers were reviewed. Congenital and acquired causes of neurotrophic keratopathy exist in the pediatric population. Both medical and surgical approaches to treatment have been trialed, albeit to a limited extent, in pediatric patients. Conservative treatment includes topical lubrication and antibiotics to prevent concurrent infectious ulcer formation. Various neurotrophic factors have been trialed in the form of serum drops to restore corneal sensation when conservative measures fail. Surgically, different corneal neurotization techniques have been developed whereby a donor nerve is routed to the anesthetized cornea to restore innervation and sensation. Conclusions: Advances in the treatment of neurotrophic keratopathy have made corneal reinnervation and restoration of vision more easily attainable in pediatric patients.
Collapse
Affiliation(s)
- C Scelfo
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.,Department of Ophthalmology, Boston Children's Hospital, Hawthorne, NY, USA
| | - I S Mantagos
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Landsend ECS, Lagali N, Utheim TP. Congenital aniridia - A comprehensive review of clinical features and therapeutic approaches. Surv Ophthalmol 2021; 66:1031-1050. [PMID: 33675823 DOI: 10.1016/j.survophthal.2021.02.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
Congenital aniridia is a rare genetic eye disorder with total or partial absence of the iris from birth. In most cases the genetic origin of aniridia is a mutation in the PAX6 gene, leading to involvement of most eye structures. Hypoplasia of the fovea is usually present and is associated with reduced visual acuity and nystagmus. Aniridia-associated keratopathy, glaucoma, and cataract are serious and progressive complications that can further reduce visual function. Treatment of the ocular complications of aniridia is challenging and has a high risk of side effects. New approaches such as stem cell therapy may, however, offer better prognoses. We describe the various ocular manifestations of aniridia, with a special focus on conditions that commonly require treatment. We also review the growing literature reporting systemic manifestations of the disease.
Collapse
Affiliation(s)
| | - Neil Lagali
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Tor P Utheim
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
25
|
Shah R, Amador C, Tormanen K, Ghiam S, Saghizadeh M, Arumugaswami V, Kumar A, Kramerov AA, Ljubimov AV. Systemic diseases and the cornea. Exp Eye Res 2021; 204:108455. [PMID: 33485845 PMCID: PMC7946758 DOI: 10.1016/j.exer.2021.108455] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/08/2023]
Abstract
There is a number of systemic diseases affecting the cornea. These include endocrine disorders (diabetes, Graves' disease, Addison's disease, hyperparathyroidism), infections with viruses (SARS-CoV-2, herpes simplex, varicella zoster, HTLV-1, Epstein-Barr virus) and bacteria (tuberculosis, syphilis and Pseudomonas aeruginosa), autoimmune and inflammatory diseases (rheumatoid arthritis, Sjögren's syndrome, lupus erythematosus, gout, atopic and vernal keratoconjunctivitis, multiple sclerosis, granulomatosis with polyangiitis, sarcoidosis, Cogan's syndrome, immunobullous diseases), corneal deposit disorders (Wilson's disease, cystinosis, Fabry disease, Meretoja's syndrome, mucopolysaccharidosis, hyperlipoproteinemia), and genetic disorders (aniridia, Ehlers-Danlos syndromes, Marfan syndrome). Corneal manifestations often provide an insight to underlying systemic diseases and can act as the first indicator of an undiagnosed systemic condition. Routine eye exams can bring attention to potentially life-threatening illnesses. In this review, we provide a fairly detailed overview of the pathologic changes in the cornea described in various systemic diseases and also discuss underlying molecular mechanisms, as well as current and emerging treatments.
Collapse
Affiliation(s)
- Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kati Tormanen
- Center for Neurobiology and Vaccine Development, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vaithi Arumugaswami
- Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Singhal D, Nagpal R, Maharana PK. Comment on: Management of Congenital Aniridia-Associated Keratopathy: Long-term Outcomes From a Tertiary Referral Center. Am J Ophthalmol 2020; 217:348-349. [PMID: 32684278 DOI: 10.1016/j.ajo.2020.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/24/2020] [Indexed: 11/17/2022]
|
27
|
Yazdanpanah G, Cortina MS, Djalilian AR. Reply to Comment on: Management of Congenital Aniridia-Associated Keratopathy: Long-term Outcomes From a Tertiary Referral Center. Am J Ophthalmol 2020; 217:349-350. [PMID: 32684279 DOI: 10.1016/j.ajo.2020.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 11/28/2022]
|
28
|
Comment on: Management of Congenital Aniridia-Associated Keratopathy: Long-term Outcomes From a Tertiary Referral Center. Am J Ophthalmol 2020; 214:196. [PMID: 32307036 DOI: 10.1016/j.ajo.2019.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022]
|
29
|
Reply to Comment on: Management of Congenital Aniridia-Associated Keratopathy: Long-term Outcomes From a Tertiary Referral Center. Am J Ophthalmol 2020; 214:197. [PMID: 32312475 DOI: 10.1016/j.ajo.2020.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 11/22/2022]
|