1
|
Cai K, Wang F, Shi HQ, Shen AN, Zhao R, Geng HR, Lu JQ, Gui YH, Shi Y, Zhao JY. Maternal folic acid over-supplementation impairs cardiac function in mice offspring by inhibiting SOD1 expression. Cardiovasc Res 2024; 120:2092-2103. [PMID: 39253986 DOI: 10.1093/cvr/cvae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 06/13/2024] [Indexed: 09/11/2024] Open
Abstract
AIMS Folic acid (FA) supplementation during pregnancy aims to protect foetal development. However, maternal over-supplementation of FA has been demonstrated to cause metabolic dysfunction and increase the risk of autism, retinoblastoma, and respiratory illness in the offspring. Moreover, FA supplementation reduces the risk of congenital heart disease. However, little is known about its possible adverse effects on cardiac health resulting from maternal over-supplementation. In this study, we assessed the detrimental effects of maternal FA over-supplementation on the cardiac health of the offspring. METHODS AND RESULTS Eight-week-old C57BL/6J pregnant mice were randomly divided into control and over-supplemented groups. The offspring cardiac function was assessed using echocardiography. Cardiac fibrosis was assessed in the left ventricular myocardium by histological analysis. Proteomic, protein, RNA, and DNA methylation analyses were performed by liquid chromatography-tandem mass spectrometry, western blotting, real-time quantitative PCR, and bisulfite sequencing, respectively. We found that maternal periconceptional FA over-supplementation impaired cardiac function with the decreased left ventricular ejection fraction in the offspring. Biochemical indices and tissue staining further confirmed impaired cardiac function in offspring caused by maternal FA over-supplementation. The combined proteomic, RNA expression, and DNA methylation analyses suggested that key genes involved in cardiac function were inhibited at the transcriptional level possibly due to increased DNA methylation. Among these, superoxide dismutase 1 was down-regulated, and reactive oxygen species (ROS) levels increased in the mouse heart. Inhibition of ROS generation using the antioxidant N-acetylcysteine rescued the impaired cardiac function resulting from maternal FA over-supplementation. CONCLUSIONS Our study revealed that over-supplementation with FA during mouse pregnancy is detrimental to cardiac function with the decreased left ventricular ejection fraction in the offspring and provides insights into the mechanisms underlying the association between maternal FA status and health outcomes in the offspring.
Collapse
MESH Headings
- Animals
- Pregnancy
- Female
- Folic Acid/pharmacology
- Mice, Inbred C57BL
- Ventricular Function, Left/drug effects
- Prenatal Exposure Delayed Effects
- DNA Methylation/drug effects
- Superoxide Dismutase-1/metabolism
- Superoxide Dismutase-1/genetics
- Fibrosis
- Dietary Supplements
- Stroke Volume/drug effects
- Male
- Maternal Nutritional Physiological Phenomena
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/chemically induced
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Dysfunction, Left/enzymology
- Ventricular Dysfunction, Left/pathology
- Oxidative Stress/drug effects
- Mice
- Proteomics
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
Collapse
Affiliation(s)
- Ke Cai
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Shanghai 200092, China
| | - Feng Wang
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, 399 Wanyuan Rd, Shanghai 200438, China
| | - Hai-Qun Shi
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Shanghai 200092, China
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, 399 Wanyuan Rd, Shanghai 200438, China
| | - An-Na Shen
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, 399 Wanyuan Rd, Shanghai 200438, China
| | - Rui Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Shanghai 200092, China
| | - Hao-Ran Geng
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, 399 Wanyuan Rd, Shanghai 200438, China
| | - Jia-Quan Lu
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, 399 Wanyuan Rd, Shanghai 200438, China
| | - Yong-Hao Gui
- NHC Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University, State Key Laboratory of Genetic Engineering, and School of Life Sciences, Fudan University, 399 Wanyuan Rd, Shanghai 200438, China
| | - Yan Shi
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Shanghai 200092, China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Rd, Shanghai 200092, China
| |
Collapse
|
2
|
Choudhury TZ, Greskovich SC, Girard HB, Rao AS, Budhathoki Y, Cameron EM, Conroy S, Li D, Zhao MT, Garg V. Impact of genetic factors on antioxidant rescue of maternal diabetes-associated congenital heart disease. JCI Insight 2024; 9:e183516. [PMID: 39437002 PMCID: PMC11623948 DOI: 10.1172/jci.insight.183516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
Congenital heart disease (CHD) affects approximately 1% of live births. Although genetic and environmental etiologic contributors have been identified, the majority of CHD lacks a definitive cause, suggesting the role of gene-environment interactions (GxEs) in disease pathogenesis. Maternal diabetes mellitus (matDM) is among the most prevalent environmental risk factors for CHD. However, there is a substantial knowledge gap in understanding how matDM acts upon susceptible genetic backgrounds to increase disease expressivity. Previously, we reported a GxE between Notch1 haploinsufficiency and matDM leading to increased CHD penetrance. Here, we demonstrate a cell lineage-specific effect of Notch1 haploinsufficiency in matDM-exposed embryos, implicating endothelial/endocardial tissues in the developing heart. We report impaired atrioventricular cushion morphogenesis in matDM-exposed Notch1+/- animals and show a synergistic effect of NOTCH1 haploinsufficiency and oxidative stress in dysregulation of gene regulatory networks critical for endocardial cushion morphogenesis in vitro. Mitigation of matDM-associated oxidative stress via superoxide dismutase 1 overexpression did not rescue CHD in Notch1-haploinsufficient mice compared to wild-type littermates. Our results show the combinatorial interaction of matDM-associated oxidative stress and a genetic predisposition, Notch1 haploinsufficiency, on cardiac development, supporting a GxE model for CHD etiology and suggesting that antioxidant strategies alone may be ineffective in genetically susceptible individuals.
Collapse
Affiliation(s)
- Talita Z. Choudhury
- Center for Cardiovascular Research, Abigail Wexner Research Institute, and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, Ohio, USA
| | - Sarah C. Greskovich
- Center for Cardiovascular Research, Abigail Wexner Research Institute, and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Holly B. Girard
- Center for Cardiovascular Research, Abigail Wexner Research Institute, and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Anupama S. Rao
- Center for Cardiovascular Research, Abigail Wexner Research Institute, and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Yogesh Budhathoki
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, Ohio, USA
| | - Emily M. Cameron
- Center for Cardiovascular Research, Abigail Wexner Research Institute, and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Sara Conroy
- Center for Perinatal Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics and
| | - Deqiang Li
- Center for Cardiovascular Research, Abigail Wexner Research Institute, and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics and
| | - Ming-Tao Zhao
- Center for Cardiovascular Research, Abigail Wexner Research Institute, and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics and
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics and
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Zheng ZX, Feng X, Zhuang L. The Effect of Oxidative Stress and Antioxidants Treatment on Gestational Diabetes Mellitus Outcome: A Scoping Review. Cell Biochem Biophys 2024; 82:3003-3013. [PMID: 39003362 DOI: 10.1007/s12013-024-01417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Diagnosing a pregnant woman's glucose intolerance is referred to as gestational diabetes mellitus (GDM). Diabetes has been linked to enhanced oxidative stress. In this condition, oxidative stress may damage nucleic acids, fats, and proteins, which in turn affects cell and tissue functions. The present study highlights the relationship between oxidative stress and GDM, with a particular focus on the role of hyperglycemia-induced processes during reactive oxygen species (ROS) oversupply, followed by it discusses the oxidative stress biomarkers and assesses the effects of antioxidant supplements on glycemic control, inflammatory processes, and oxidative stress among individuals with GDM. Two reviewers conducted a comprehensive literature search utilizing the PubMed®, Web of Science™, and Scopus® databases. Only items published in the English language up until June 2024 were taken into account. We conducted a thorough search of research databases to identify articles that had the terms "oxidative stress" or "antioxidant" and "GDM". From this search, we selected 55 relevant papers to be included in this narrative review. Pregnancy-induced hypertension, postpartum bleeding, lower birth weight, a higher risk of hyperbilirubinemia in their neonates, fetal growth retardation, and birth asphyxia were revealed to be outcomes of women enduring major oxidative stress during pregnancy. Furthermore, tight glycemic control both before and throughout pregnancy as well as oxidative stress treatment may help women highly prone to GDM.
Collapse
Affiliation(s)
- Zhen-Xia Zheng
- Obstetrics Department, Zhongshan Hospital of Xiamen University, Fujian, China
| | - Xiao Feng
- Department of Pediatrics, Affiliated Zhongshan Hospital of Xiamen University, Fujian, China
| | - Lijuan Zhuang
- Department of Obstetrics and Gynecology, Zhongshan Hospital of Xiamen University, Fujian, China.
| |
Collapse
|
4
|
Elias-Llumbet A, Sharmin R, Berg-Sorensen K, Schirhagl R, Mzyk A. The Interplay between Mechanoregulation and ROS in Heart Physiology, Disease, and Regeneration. Adv Healthc Mater 2024; 13:e2400952. [PMID: 38962858 DOI: 10.1002/adhm.202400952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Indexed: 07/05/2024]
Abstract
Cardiovascular diseases are currently the most common cause of death in developed countries. Due to lifestyle and environmental factors, this problem is only expected to increase in the future. Reactive oxygen species (ROS) are a key player in the onset of cardiovascular diseases but also have important functions in healthy cardiac tissue. Here, the interplay between ROS generation and cardiac mechanical forces is shown, and the state of the art and a perspective on future directions are discussed. To this end, an overview of what is currently known regarding ROS and mechanosignaling at a subcellular level is first given. There the role of ROS in mechanosignaling as well as the interplay between both factors in specific organelles is emphasized. The consequences at a larger scale across the population of heart cells are then discussed. Subsequently, the roles of ROS in embryogenesis, pathogenesis, and aging are further discussed, exemplifying some aspects of mechanoregulation. Finally, different models that are currently in use are discussed to study the topics above.
Collapse
Affiliation(s)
- Arturo Elias-Llumbet
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
- Laboratory of Genomic of Germ Cells, Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia, Santiago, 1027, Chile
| | - Rokshana Sharmin
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | | | - Romana Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | - Aldona Mzyk
- DTU Health Tech, Ørsteds Plads Bldg 345C, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
5
|
Wang F, Han S, Fang L, Lin X. A fetal rat model of ventricular noncompaction caused by intrauterine hyperglycemia. Cardiovasc Pathol 2024; 69:107601. [PMID: 38072092 DOI: 10.1016/j.carpath.2023.107601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND This study aims to develop a fetal rat model of ventricular noncompaction (NVM) using streptozotocin (STZ)-induced gestational hyperglycemia and compare it with a retinoic acid (RA) model. METHODS Female SD rats were categorized into STZ, RA, and normal control (NC) groups. The STZ group was given a high-fat diet pre-pregnancy and 35 mg/kg of 2% STZ postpregnancy. The RA group received a 90 mg/kg dose of RA on day 13 postpregnancy. Embryonic myocardial morphology was analyzed through HE staining, and embryonic cardiomyocyte ultrastructures were studied using electron microscopy. Diagnoses of NVM were based on a ratio of noncompact myocardium (N) to compact myocardium (C) >1.4, accompanied by thick myocardial trabeculae and a thin myocardial compaction layer. Kruskal-Wallis test determined N/C ratio differences among groups. RESULTS Both STZ and RA groups displayed significant NVM characteristics. The left ventricular (LV) N/C in the STZ, RA, and NC groups were 1.983 (1.423-3.527), 1.640 (1.197-2.895), and 0.927 (0.806-1.087), respectively, with a statistically significant difference (P<0.001). The right ventricular (RV) N/C in the STZ, RA, and NC groups were 2.097 (1.364-3.081), 1.897 (1.337-2.662), and 0.869 (0.732-1.022), respectively, with a significant difference (P<0.001). Electron microscopy highlighted marked endoplasmic reticulum swelling in embryonic cardiomyocytes from both STZ and RA groups. CONCLUSION Our model underscores the pivotal role of an adverse intrauterine developmental environment in the onset of NVM. This insight holds significant implications for future studies exploring the pathogenesis of NVM.
Collapse
Affiliation(s)
- Fanglu Wang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Songbo Han
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Ligang Fang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xue Lin
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
6
|
Wang G, Song S, Shen WB, Reece EA, Yang P. MicroRNA-322 overexpression reduces neural tube defects in diabetic pregnancies. Am J Obstet Gynecol 2024; 230:254.e1-254.e13. [PMID: 37531989 PMCID: PMC10828117 DOI: 10.1016/j.ajog.2023.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Hyperglycemia from pregestational diabetes mellitus induces neural tube defects in the developing fetus. Folate supplementation is the only effective way to prevent neural tube defects; however, some cases of neural tube defects are resistant to folate. Excess folate has been linked to higher maternal cancer risk and infant allergy. Therefore, additional interventions are needed. Understanding the mechanisms underlying maternal diabetes mellitus-induced neural tube defects can identify potential targets for preventing such defects. Despite not yet being in clinical use, growing evidence suggests that microRNAs are important intermediates in embryonic development and can serve as both biomarkers and drug targets for disease intervention. Our previous studies showed that maternal diabetes mellitus in vivo activates the inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) in the developing embryo and that a high glucose condition in vitro reduces microRNA-322 (miR-322) levels. IRE1α is an RNA endonuclease; however, it is unknown whether IRE1α targets and degrades miR-322 specifically or whether miR-322 degradation leads to neural tube defects via apoptosis. We hypothesize that IRE1α can inhibit miR-322 in maternal diabetes mellitus-induced neural tube defects and that restoring miR-322 expression in developing neuroepithelium ameliorates neural tube defects. OBJECTIVE This study aimed to identify potential targets for preventing maternal diabetes mellitus-induced neural tube defects and to investigate the roles and relationship of a microRNA and an RNA endonuclease in mouse embryos exposed to maternal diabetes mellitus. STUDY DESIGN To determine whether miR-322 reduction is necessary for neural tube defect formation in pregnancies complicated by diabetes mellitus, male mice carrying a transgene expressing miR-322 were mated with nondiabetic or diabetic wide-type female mice to generate embryos with or without miR-322 overexpression. At embryonic day 8.5 when the neural tube is not yet closed, embryos were harvested for the assessment of 3 miR-322 transcripts (primary, precursor, and mature miR-322), tumor necrosis factor receptor-associated factor 3 (TRAF3), and neuroepithelium cell survival. Neural tube defect incidences were determined in embryonic day 10.5 embryos when the neural tube should be closed if there is no neural tube defect formation. To identify which miR-322 transcript is affected by maternal diabetes mellitus and high glucose conditions, 3 miR-322 transcripts were assessed in embryos from dams with or without diabetes mellitus and in C17.2 mouse neural stem cells treated with different concentrations of glucose and at different time points. To determine whether the endonuclease IRE1α targets miR-322, small interfering RNA knockdown of IRE1α or overexpression of inositol-requiring transmembrane kinase/endoribonuclease 1α by DNA plasmid transfection was used to determine the effect of IRE1α deficiency or overexpression on miR-322 expression. RNA immunoprecipitation was performed to reveal the direct targets of inositol-requiring transmembrane kinase/endoribonuclease 1α. RESULTS Maternal diabetes mellitus suppressed miR-322 expression in the developing neuroepithelium. Restoring miR-322 expression in the neuroepithelium blocked maternal diabetes mellitus-induced caspase-3 and caspase-8 cleavage and cell apoptosis, leading to a neural tube defect reduction. Reversal of maternal diabetes mellitus-inhibited miR-322 via transgenic overexpression prevented TRAF3 up-regulation in embryos exposed to maternal diabetes mellitus. Activated IRE1α acted as an endonuclease and degraded precursor miR-322, resulting in mature miR-322 reduction. CONCLUSION This study supports the crucial role of the IRE1α-microRNA-TRAF3 circuit in the induction of neuroepithelial cell apoptosis and neural tube defect formation in pregnancies complicated by diabetes mellitus and identifies IRE1α and miR-322 as potential targets for preventing maternal diabetes mellitus-induced neural tube defects.
Collapse
Affiliation(s)
- Guanglei Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Shicong Song
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Wei-Bin Shen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
7
|
Ibrahim S, Gaborit B, Lenoir M, Collod-Beroud G, Stefanovic S. Maternal Pre-Existing Diabetes: A Non-Inherited Risk Factor for Congenital Cardiopathies. Int J Mol Sci 2023; 24:16258. [PMID: 38003449 PMCID: PMC10671602 DOI: 10.3390/ijms242216258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Congenital heart defects (CHDs) are the most common form of birth defects in humans. They occur in 9 out of 1000 live births and are defined as structural abnormalities of the heart. Understanding CHDs is difficult due to the heterogeneity of the disease and its multifactorial etiology. Advances in genomic sequencing have made it possible to identify the genetic factors involved in CHDs. However, genetic origins have only been found in a minority of CHD cases, suggesting the contribution of non-inherited (environmental) risk factors to the etiology of CHDs. Maternal pregestational diabetes is associated with a three- to five-fold increased risk of congenital cardiopathies, but the underlying molecular mechanisms are incompletely understood. According to current hypotheses, hyperglycemia is the main teratogenic agent in diabetic pregnancies. It is thought to induce cell damage, directly through genetic and epigenetic dysregulations and/or indirectly through production of reactive oxygen species (ROS). The purpose of this review is to summarize key findings on the molecular mechanisms altered in cardiac development during exposure to hyperglycemic conditions in utero. It also presents the various in vivo and in vitro techniques used to experimentally model pregestational diabetes. Finally, new approaches are suggested to broaden our understanding of the subject and develop new prevention strategies.
Collapse
Affiliation(s)
- Stéphanie Ibrahim
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France;
| | - Bénédicte Gaborit
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, 13005 Marseille, France
| | - Marien Lenoir
- Department of Congenital Heart Surgery, La Timone Children Hospital, APHM, Aix Marseille University, 13005 Marseille, France
| | | | - Sonia Stefanovic
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France;
| |
Collapse
|
8
|
Kostina A, Lewis-Israeli YR, Abdelhamid M, Gabalski MA, Volmert BD, Lankerd H, Huang AR, Wasserman AH, Lydic T, Chan C, Olomu I, Aguirre A. ER stress and lipid imbalance drive embryonic cardiomyopathy in a human heart organoid model of pregestational diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544081. [PMID: 37333095 PMCID: PMC10274758 DOI: 10.1101/2023.06.07.544081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Congenital heart defects constitute the most common birth defect in humans, affecting approximately 1% of all live births. The incidence of congenital heart defects is exacerbated by maternal conditions, such as diabetes during the first trimester. Our ability to mechanistically understand these disorders is severely limited by the lack of human models and the inaccessibility to human tissue at relevant stages. Here, we used an advanced human heart organoid model that recapitulates complex aspects of heart development during the first trimester to model the effects of pregestational diabetes in the human embryonic heart. We observed that heart organoids in diabetic conditions develop pathophysiological hallmarks like those previously reported in mouse and human studies, including ROS-mediated stress and cardiomyocyte hypertrophy, among others. Single cell RNA-seq revealed cardiac cell type specific-dysfunction affecting epicardial and cardiomyocyte populations, and suggested alterations in endoplasmic reticulum function and very long chain fatty acid lipid metabolism. Confocal imaging and LC-MS lipidomics confirmed our observations and showed that dyslipidemia was mediated by fatty acid desaturase 2 (FADS2) mRNA decay dependent on IRE1-RIDD signaling. We also found that the effects of pregestational diabetes could be reversed to a significant extent using drug interventions targeting either IRE1 or restoring healthy lipid levels within organoids, opening the door to new preventative and therapeutic strategies in humans.
Collapse
Affiliation(s)
- Aleksandra Kostina
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Yonatan R. Lewis-Israeli
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Mishref Abdelhamid
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Mitchell A. Gabalski
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Brett D. Volmert
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Haley Lankerd
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Amanda R. Huang
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Aaron H. Wasserman
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| | - Todd Lydic
- Department of Physiology, Michigan State University, MI, USA
| | - Christina Chan
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Isoken Olomu
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Aitor Aguirre
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Hufnagel A, Grant ID, Aiken CEM. Glucose and oxygen in the early intrauterine environment and their role in developmental abnormalities. Semin Cell Dev Biol 2022; 131:25-34. [PMID: 35410716 DOI: 10.1016/j.semcdb.2022.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022]
Abstract
The early life environment can have profound impacts on the developing conceptus in terms of both growth and morphogenesis. These impacts can manifest in a variety of ways, including congenital fetal anomalies, placental dysfunction with subsequent effects on fetal growth, and adverse perinatal outcomes, or via effects on long-term health outcomes that may not be detected until later childhood or adulthood. Two key examples of environmental influences on early development are explored: maternal hyperglycaemia and gestational hypoxia. These are increasingly common pregnancy exposures worldwide, with potentially profound impacts on population health. We explore what is known regarding the mechanisms by which these environmental exposures can impact early intrauterine development and thus result in adverse outcomes in the immediate, short, and long term.
Collapse
Affiliation(s)
- Antonia Hufnagel
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Imogen D Grant
- Department of Obstetrics and Gynaecology, University of Cambridge, Box 223, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge CB2 0SW, UK
| | - Catherine E M Aiken
- Department of Obstetrics and Gynaecology, University of Cambridge, Box 223, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge CB2 0SW, UK; University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
10
|
Kokhanov A. Congenital Abnormalities in the Infant of a Diabetic Mother. Neoreviews 2022; 23:e319-e327. [PMID: 35490182 DOI: 10.1542/neo.23-5-e319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Diabetes mellitus is among the most common chronic diseases worldwide. Infants of diabetic mothers are at increased risk of having congenital abnormalities. Tremendous progress has been achieved in the pregnancy care of diabetic women; however, the risk of birth defects associated with maternal diabetes still exists. These anomalies might arise in many organs and systems of the developing fetus. Many mechanisms have been implicated in the teratogenicity of maternal diabetes and it is critical to achieve good glycemic control before conception in women with diabetes. Neonatal clinicians must be able to identify patients at risk and recognize the signs of diabetic embryopathy. This article presents a review of congenital anomalies associated with maternal diabetes.
Collapse
Affiliation(s)
- Artemiy Kokhanov
- Department of Neonatology, Memorial Care Miller Children's and Women's Hospital Long Beach, Long Beach, CA
| |
Collapse
|
11
|
Qu Y, Deng X, Lin S, Han F, Chang HH, Ou Y, Nie Z, Mai J, Wang X, Gao X, Wu Y, Chen J, Zhuang J, Ryan I, Liu X. Using Innovative Machine Learning Methods to Screen and Identify Predictors of Congenital Heart Diseases. Front Cardiovasc Med 2022; 8:797002. [PMID: 35071361 PMCID: PMC8777022 DOI: 10.3389/fcvm.2021.797002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Objective: Congenital heart diseases (CHDs) are associated with an extremely heavy global disease burden as the most common category of birth defects. Genetic and environmental factors have been identified as risk factors of CHDs previously. However, high volume clinical indicators have never been considered when predicting CHDs. This study aimed to predict the occurrence of CHDs by considering thousands of variables from self-reported questionnaires and routinely collected clinical laboratory data using machine learning algorithms. Methods: We conducted a birth cohort study at one of the largest cardiac centers in China from 2011 to 2017. All fetuses were screened for CHDs using ultrasound and cases were confirmed by at least two pediatric cardiologists using echocardiogram. A total of 1,127 potential predictors were included to predict CHDs. We used the Explainable Boosting Machine (EBM) for prediction and evaluated the model performance using area under the Receive Operating Characteristics (ROC) curves (AUC). The top predictors were selected according to their contributions and predictive values. Thresholds were calculated for the most significant predictors. Results: Overall, 5,390 mother-child pairs were recruited. Our prediction model achieved an AUC of 76% (69-83%) from out-of-sample predictions. Among the top 35 predictors of CHDs we identified, 34 were from clinical laboratory tests and only one was from the questionnaire (abortion history). Total accuracy, sensitivity, and specificity were 0.65, 0.74, and 0.65, respectively. Maternal serum uric acid (UA), glucose, and coagulation levels were the most consistent and significant predictors of CHDs. According to the thresholds of the predictors identified in our study, which did not reach the current clinical diagnosis criteria, elevated UA (>4.38 mg/dl), shortened activated partial thromboplastin time (<33.33 s), and elevated glucose levels were the most important predictors and were associated with ranges of 1.17-1.54 relative risks of CHDs. We have developed an online predictive tool for CHDs based on our findings that may help screening and prevention of CHDs. Conclusions: Maternal UA, glucose, and coagulation levels were the most consistent and significant predictors of CHDs. Thresholds below the current clinical definition of “abnormal” for these predictors could be used to help develop CHD screening and prevention strategies.
Collapse
Affiliation(s)
- Yanji Qu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinlei Deng
- Department of Environmental Health Sciences, University at Albany, State University of New York, New York, NY, United States
| | - Shao Lin
- Department of Environmental Health Sciences, University at Albany, State University of New York, New York, NY, United States
| | - Fengzhen Han
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Yanqiu Ou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhiqiang Nie
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jinzhuang Mai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ximeng Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiangmin Gao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jimei Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ian Ryan
- Department of Environmental Health Sciences, University at Albany, State University of New York, New York, NY, United States
| | - Xiaoqing Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
12
|
Al-Qudsi F, Alsudairi D. Effect of Corn Silk Aqueous Extract on Brown Adipose Tissue of Embryos and Neonates of Diabetic Pregnant Mice: A Histological Study. J Microsc Ultrastruct 2021; 10:133-139. [PMID: 36504586 PMCID: PMC9728089 DOI: 10.4103/jmau.jmau_22_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 12/15/2022] Open
Abstract
Context Many congenital malformations are seen increasingly, due to diabetic mothers causing a burden on health systems. Corn silk (CS) extract has been used as a natural hypoglycemic treatment. However, its teratogenic safety was not studied. Aims Therefore, in this study, we examine the effect of CS aqueous extract on fetuses, offspring of normal and diabetic female mice treated with CS aqueous extract. Settings and Design Pregnant female mice were divided into two groups diabetic and nondiabetic. Then, each of these groups was divided into control and treated. Subjects and Methods A daily dose of 4 g/kg of CS aqueous extract was given orally to the treated groups, control groups were given distilled water. The collection of samples was at day 16.5 of pregnancy, and neonates. Brown adipose tissue (BAT) in the sections of the preserved sample was examined. Statistical Analysis Used BAT areas were measured from 10 samples of each treatment age group in 2 sections. Data were analyzed with one-way ANOVA, then, two-independent sample test (Mann-Whitney) was done to test the significance of differences between groups. Results The BAT areas were negatively affected by diabetes and the extract. Both the extract and diabetes caused an increase in fat accumulation in the adipocytes with varying degrees. Conclusions This study showed for the first time to our knowledge that the use of CS aqueous extract during pregnancy affected BAT organization and area, and that the used dose did not decrease the malformations caused by diabetes. More studies with different doses should be investigated.
Collapse
Affiliation(s)
- Fatma Al-Qudsi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Address for correspondence: Dr. Fatma Al-Qudsi, Department of Biology, Faculty of Science, King Abdulaziz University, PO Box: 42650, Jeddah 21551, Saudi Arabia. E-mail:
| | - Dema Alsudairi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Choudhury TZ, Majumdar U, Basu M, Garg V. Impact of maternal hyperglycemia on cardiac development: Insights from animal models. Genesis 2021; 59:e23449. [PMID: 34498806 PMCID: PMC8599640 DOI: 10.1002/dvg.23449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
Congenital heart disease (CHD) is the leading cause of birth defect-related death in infants and is a global pediatric health concern. While the genetic causes of CHD have become increasingly recognized with advances in genome sequencing technologies, the etiology for the majority of cases of CHD is unknown. The maternal environment during embryogenesis has a profound impact on cardiac development, and numerous environmental factors are associated with an elevated risk of CHD. Maternal diabetes mellitus (matDM) is associated with up to a fivefold increased risk of having an infant with CHD. The rising prevalence of diabetes mellitus has led to a growing interest in the use of experimental diabetic models to elucidate mechanisms underlying this associated risk for CHD. The purpose of this review is to provide a comprehensive summary of rodent models that are being used to investigate alterations in cardiac developmental pathways when exposed to a maternal diabetic setting and to summarize the key findings from these models. The majority of studies in the field have utilized the chemically induced model of matDM, but recent advances have also been made using diet based and genetic models. Each model provides an opportunity to investigate unique aspects of matDM and is invaluable for a comprehensive understanding of the molecular and cellular mechanisms underlying matDM-associated CHD.
Collapse
Affiliation(s)
- Talita Z. Choudhury
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Uddalak Majumdar
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
| | - Madhumita Basu
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, United States
| | - Vidu Garg
- Center for Cardiovascular Research and Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
14
|
Nakano H, Fajardo VM, Nakano A. The role of glucose in physiological and pathological heart formation. Dev Biol 2021; 475:222-233. [PMID: 33577830 PMCID: PMC8107118 DOI: 10.1016/j.ydbio.2021.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/30/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Cells display distinct metabolic characteristics depending on its differentiation stage. The fuel type of the cells serves not only as a source of energy but also as a driver of differentiation. Glucose, the primary nutrient to the cells, is a critical regulator of rapidly growing embryos. This metabolic change is a consequence as well as a cause of changes in genetic program. Disturbance of fetal glucose metabolism such as in diabetic pregnancy is associated with congenital heart disease. In utero hyperglycemia impacts the left-right axis establishment, migration of cardiac neural crest cells, conotruncal formation and mesenchymal formation of the cardiac cushion during early embryogenesis and causes cardiac hypertrophy in late fetal stages. In this review, we focus on the role of glucose in cardiogenesis and the molecular mechanisms underlying heart diseases associated with hyperglycemia.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Viviana M Fajardo
- Department of Pediatrics, Division of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
15
|
Cao S, Shen WB, Reece EA, Yang P. Deficiency of the oxidative stress-responsive kinase p70S6K1 restores autophagy and ameliorates neural tube defects in diabetic embryopathy. Am J Obstet Gynecol 2020; 223:753.e1-753.e14. [PMID: 32416155 PMCID: PMC7609618 DOI: 10.1016/j.ajog.2020.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autophagy is highly active in neuroepithelial cells of the developing neuroepithelium, and impairment of autophagy leads to neural tube defects. In this study, we have found that maternal diabetes suppresses autophagy that leads to neural tube defects and consequent cellular imbalance in the endoplasmic reticulum where critical events occur, leading to the induction of diabetic embryopathy. Because the mammalian target of rapamycin pathway suppresses autophagy, we hypothesized that 70 kDa ribosomal protein S6 kinase 1 (p70S6K1), a major downstream effector of mammalian target of rapamycin, mediates the inhibitory effect of maternal diabetes on autophagy in the developing neuroepithelium. OBJECTIVE We investigated whether p70S6K1 mediates the inhibitory effect of maternal diabetes on autophagy during neurulation. We also examined whether p70S6K1 deficiency restores autophagy and therefore relieves endoplasmic reticulum stress and inhibits maternal diabetes-induced apoptosis, which leads to reduction in neural tube defect incidence in diabetic embryopathy. STUDY DESIGN Female p70S6K1 heterogeneous knockout (p70S6K1+/-) mice were bred with male p70S6K1 heterogeneous knockout (p70S6K1+/-) mice to generate wild-type (WT), p70S6K1+/- and p70S6K1 knockout (p70S6K1-/-) embryos. Embryos at embryonic day 8.5 were harvested for the assessment of indices of autophagy, endoplasmic reticulum stress, and apoptosis. Neural tube defect incidence in embryos was determined at embryonic day 10.5. For in vitro studies, small interfering RNA knockdown of p70S6K1 in C17.2 mouse neural stem cells was used to determine the effect of p70S6K1 deficiency on autophagy impairment and endoplasmic reticulum stress under high glucose conditions. RESULTS Knockout of the Rps6kb1 gene, which encodes for p70S6K1, ameliorated maternal diabetes-induced NTDs and restored autophagosome formation in neuroepithelial cells suppressed by maternal diabetes. Maternal diabetes-suppressed conversion of LC3-I (microtubule-associated protein 1A/1B-light chain 3) to LC3-II, an index of autophagic activity, in neurulation stage embryos was abrogated in the absence of p70S6K1. p70S6K1 knockdown in neural stem cells also restored autophagosome formation and the conversion of LC3-I to LC3-II. The activation of the major unfolded protein response, indicated by phosphorylation of inositol-requiring enzyme 1 alpha, and protein kinase R-like endoplasmic reticulum kinase, and eukaryotic translation initiation factor 2α, and the increase of the endoplasmic reticulum stress marker, C/EBP homologous protein, were induced by maternal diabetes in vivo and high glucose in vitro. Unfolded protein response and endoplasmic reticulum stress induced by maternal diabetes or high glucose were reduced by Rps6kb1 deletion or p70S6K1 knockdown, respectively. Rps6kb1 knockout blocked maternal diabetes-induced caspase cleavage and neuroepithelial cell apoptosis. The superoxide dismutase mimetic Tempol abolished high glucose-induced p70S6K1 activation. CONCLUSION The study revealed the critical involvement of p70S6K1 in the pathogenesis of diabetic embryopathy.
Collapse
Affiliation(s)
- Songying Cao
- Departments of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Wei-Bin Shen
- Departments of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Departments of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Departments of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
16
|
Lyu C, Webber DM, MacLeod SL, Hobbs CA, Li M. Gene-by-gene interactions associated with the risk of conotruncal heart defects. Mol Genet Genomic Med 2020; 8:e1010. [PMID: 31851787 PMCID: PMC6978401 DOI: 10.1002/mgg3.1010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The development of conotruncal heart defects (CTDs) involves a complex relationship among genetic variants and maternal lifestyle factors. In this article, we focused on the interactions between 13 candidate genes within folate, homocysteine, and transsulfuration pathways for potential association with CTD risk. METHODS Targeted sequencing was used for 328 case-parental triads enrolled in the National Birth Defects Prevention Study (NBDPS). To evaluate the interaction of two genes, we applied a conditional logistic regression model for all possible SNP pairs within two respective genes by contrasting the affected infants with their pseudo-controls. The findings were replicated in an independent sample of 86 NBDPS case-parental triads genotyped by DNA microarrays. The results of two studies were further integrated by a fixed-effect meta-analysis. RESULTS One SNP pair (i.e., rs4764267 and rs6556883) located in gene MGST1 and GLRX, respectively, was found to be associated with CTD risk after multiple testing adjustment using simpleM, a modified Bonferroni correction approach (nominal p-value of 4.62e-06; adjusted p-value of .04). Another SNP pair (i.e., rs11892646 and rs56219526) located in gene DNMT3A and MTRR, respectively, achieved marginal significance after multiple testing adjustment (adjusted p-value of .06). CONCLUSION Further studies with larger sample sizes are needed to confirm and elucidate these potential interactions.
Collapse
Affiliation(s)
- Chen Lyu
- Department of Epidemiology and BiostatisticsIndiana UniversityBloomingtonINUSA
| | - Daniel M. Webber
- Department of Pathology & ImmunologyWashington University at St LouisSaint LouisMOUSA
| | | | | | - Ming Li
- Department of Epidemiology and BiostatisticsIndiana UniversityBloomingtonINUSA
| | | |
Collapse
|
17
|
Engineer A, Saiyin T, Greco ER, Feng Q. Say NO to ROS: Their Roles in Embryonic Heart Development and Pathogenesis of Congenital Heart Defects in Maternal Diabetes. Antioxidants (Basel) 2019; 8:antiox8100436. [PMID: 31581464 PMCID: PMC6826639 DOI: 10.3390/antiox8100436] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Congenital heart defects (CHDs) are the most prevalent and serious birth defect, occurring in 1% of all live births. Pregestational maternal diabetes is a known risk factor for the development of CHDs, elevating the risk in the child by more than four-fold. As the prevalence of diabetes rapidly rises among women of childbearing age, there is a need to investigate the mechanisms and potential preventative strategies for these defects. In experimental animal models of pregestational diabetes induced-CHDs, upwards of 50% of offspring display congenital malformations of the heart, including septal, valvular, and outflow tract defects. Specifically, the imbalance of nitric oxide (NO) and reactive oxygen species (ROS) signaling is a major driver of the development of CHDs in offspring of mice with pregestational diabetes. NO from endothelial nitric oxide synthase (eNOS) is crucial to cardiogenesis, regulating various cellular and molecular processes. In fact, deficiency in eNOS results in CHDs and coronary artery malformation. Embryonic hearts from diabetic dams exhibit eNOS uncoupling and oxidative stress. Maternal treatment with sapropterin, a cofactor of eNOS, and antioxidants such as N-acetylcysteine, vitamin E, and glutathione as well as maternal exercise have been shown to improve eNOS function, reduce oxidative stress, and lower the incidence CHDs in the offspring of mice with pregestational diabetes. This review summarizes recent data on pregestational diabetes-induced CHDs, and offers insights into the important roles of NO and ROS in embryonic heart development and pathogenesis of CHDs in maternal diabetes.
Collapse
Affiliation(s)
- Anish Engineer
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, ON, N6A 5C1, Canada.
| | - Tana Saiyin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, ON, N6A 5C1, Canada.
| | - Elizabeth R Greco
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, ON, N6A 5C1, Canada.
| | - Qingping Feng
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, ON, N6A 5C1, Canada.
| |
Collapse
|
18
|
Chen X, Shen WB, Yang P, Dong D, Sun W, Yang P. High Glucose Inhibits Neural Stem Cell Differentiation Through Oxidative Stress and Endoplasmic Reticulum Stress. Stem Cells Dev 2019; 27:745-755. [PMID: 29695191 DOI: 10.1089/scd.2017.0203] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Maternal diabetes induces neural tube defects by suppressing neurogenesis in the developing neuroepithelium. Our recent study further revealed that high glucose inhibited embryonic stem cell differentiation into neural lineage cells. However, the mechanism whereby high glucose suppresses neural differentiation is unclear. To investigate whether high glucose-induced oxidative stress and endoplasmic reticulum (ER) stress lead to the inhibition of neural differentiation, the effect of high glucose on neural stem cell (the C17.2 cell line) differentiation was examined. Neural stem cells were cultured in normal glucose (5 mM) or high glucose (25 mM) differentiation medium for 3, 5, and 7 days. High glucose suppressed neural stem cell differentiation by significantly decreasing the expression of the neuron marker Tuj1 and the glial cell marker GFAP and the numbers of Tuj1+ and GFAP+ cells. The antioxidant enzyme superoxide dismutase mimetic Tempol reversed high glucose-decreased Tuj1 and GFAP expression and restored the numbers of neurons and glial cells differentiated from neural stem cells. Hydrogen peroxide treatment imitated the inhibitory effect of high glucose on neural stem cell differentiation. Both high glucose and hydrogen peroxide triggered ER stress, whereas Tempol blocked high glucose-induced ER stress. The ER stress inhibitor, 4-phenylbutyrate, abolished the inhibition of high glucose or hydrogen peroxide on neural stem cell differentiation. Thus, oxidative stress and its resultant ER stress mediate the inhibitory effect of high glucose on neural stem cell differentiation.
Collapse
Affiliation(s)
- Xi Chen
- 1 Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine , Baltimore, Maryland
| | - Wei-Bin Shen
- 1 Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine , Baltimore, Maryland
| | - Penghua Yang
- 1 Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine , Baltimore, Maryland
| | - Daoyin Dong
- 1 Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine , Baltimore, Maryland
| | - Winny Sun
- 1 Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine , Baltimore, Maryland.,2 Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Peixin Yang
- 1 Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine , Baltimore, Maryland.,2 Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
19
|
Ritchie HE, Oakes D, Farrell E, Ababneh D, Howe A. Fetal hypoxia and hyperglycemia in the formation of phenytoin-induced cleft lip and maxillary hypoplasia. Epilepsia Open 2019; 4:443-451. [PMID: 31440725 PMCID: PMC6698684 DOI: 10.1002/epi4.12352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Phenytoin exposure during the first trimester of pregnancy increases the risk of maxillary hypoplasia and cleft lip. The etiology of phenytoin embryopathy is unknown. Interestingly, phenytoin is also known to induce hyperglycemia in humans as well as rats. This study uses a rat model of fetal phenytoin syndrome to examine the role of hyperoxia, hyperglycemia, and arachidonic acid deficiency in the development of cleft lip and maxillary hypoplasia. METHODS Pregnant rats were dosed with phenytoin during the critical period of lip development (day 11 of pregnancy) with or without supplemental oxygen, insulin, or arachidonic acid. The fetuses from all studies were examined at term. RESULTS The frequency of cleft lip and maxillary hypoplasia was reduced by treating dams at the time of phenytoin exposure with either increased oxygen or insulin. However, in fetuses from phenytoin-treated dams dosed with arachidonic acid, the incidence of severe lip deformities remained the same although there was an increase in normal and mildly affected fetuses. Interestingly, this occurred in embryos from hyperglycemic dams. SIGNIFICANCE Together, the results from these experiments suggest phenytoin-induced malformations may be a multifactorial process as malformations were not solely linked to a hyperglycemic state of the dam.
Collapse
Affiliation(s)
- Helen E. Ritchie
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Diana Oakes
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Emma Farrell
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Deena Ababneh
- Department of Basic Engineering Sciences, College of EngineeringImam Abdulrahman bin Faisal UniversityDammamSaudi Arabia
| | - Andrew Howe
- School of Medical Sciences, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
20
|
Basu M, Garg V. Maternal hyperglycemia and fetal cardiac development: Clinical impact and underlying mechanisms. Birth Defects Res 2019; 110:1504-1516. [PMID: 30576094 DOI: 10.1002/bdr2.1435] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
Abstract
Congenital heart disease (CHD) is the most common type of birth defect and is both a significant pediatric and adult health problem, in light of a growing population of survivors. The etiology of CHD has been considered to be multifactorial with genetic and environmental factors playing important roles. The combination of advances in cardiac developmental biology, which have resulted in the elucidation of molecular pathways regulating normal cardiac morphogenesis, and genome sequencing technology have allowed the discovery of numerous genetic contributors of CHD ranging from chromosomal abnormalities to single gene variants. Conversely, mechanistic details of the contribution of environmental factors to CHD remain unknown. Maternal diabetes mellitus (matDM) is a well-established and increasingly prevalent environmental risk factor for CHD, but the underlying etiologic mechanisms by which pregestational matDM increases the vulnerability of embryos to cardiac malformations remains largely elusive. Here, we will briefly discuss the multifactorial etiology of CHD with a focus on the epidemiologic link between matDM and CHD. We will describe the animal models used to study the underlying mechanisms between matDM and CHD and review the numerous cellular and molecular pathways affected by maternal hyperglycemia in the developing heart. Last, we discuss how this increased understanding may open the door for the development of novel prevention strategies to reduce the incidence of CHD in this high-risk population.
Collapse
Affiliation(s)
- Madhumita Basu
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Vidu Garg
- Center for Cardiovascular Research and Heart Center, Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
21
|
Xu C, Chen X, Reece EA, Lu W, Yang P. The increased activity of a transcription factor inhibits autophagy in diabetic embryopathy. Am J Obstet Gynecol 2019; 220:108.e1-108.e12. [PMID: 30312583 DOI: 10.1016/j.ajog.2018.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Maternal diabetes induces neural tube defects and stimulates the activity of the forkhead box O3 (Fox)O3a in the embryonic neuroepithelium. We previously demonstrated that deleting the FOXO3a gene ameliorates maternal diabetes-induced neural tube defects. Macroautophagy (hereafter referred to as "autophagy") is essential for neurulation. Rescuing autophagy suppressed by maternal diabetes in the developing neuroepithelium inhibits neural tube defect formation in diabetic pregnancy. This evidence suggests a possible link between FoxO3a and impaired autophagy in diabetic embryopathy. OBJECTIVE We aimed to determine whether maternal diabetes suppresses autophagy through FoxO3a, and if the transcriptional activity of FoxO3a is required for the induction of diabetic embryopathy. STUDY DESIGN We used a well-established type 1 diabetic embryopathy mouse model, in which diabetes was induced by streptozotocin, for our in vivo studies. To determine if FoxO3a mediates the inhibitory effect of maternal diabetes on autophagy in the developing neuroepithelium, we induced diabetic embryopathy in FOXO3a gene knockout mice and FoxO3a dominant negative transgenic mice. Embryos were harvested at embryonic day 8.5 to determine FoxO3a and autophagy activity and at embryonic day 10.5 for the presence of neural tube defects. We also examined the expression of autophagy-related genes. C17.2 neural stem cells were used for in vitro examination of the potential effects of FoxO3a on autophagy. RESULTS Deletion of the FOXO3a gene restored the autophagy markers, lipidation of microtubule-associated protein 1A/1B-light chain 3I to light chain 3II, in neurulation stage embryos. Maternal diabetes decreased light chain 3I-positive puncta number in the neuroepithelium, which was restored by deleting FoxO3a. Maternal diabetes also decreased the expression of positive regulators of autophagy (Unc-51 like autophagy activating kinase 1, Coiled-coil myosin-like BCL2-interacting protein, and autophagy-related gene 5) and the negative regulator of autophagy, p62. FOXO3a gene deletion abrogated the dysregulation of autophagy genes. In vitro data showed that the constitutively active form of FoxO3a mimicked high glucose in repressing autophagy. In cells cultured under high-glucose conditions, overexpression of the dominant negative FoxO3a mutant blocked autophagy impairment. Dominant negative FoxO3a overexpression in the developing neuroepithelium restored autophagy and significantly reduced maternal diabetes-induced apoptosis and neural tube defects. CONCLUSION Our study revealed that diabetes-induced FoxO3a activation inhibited autophagy in the embryonic neuroepithelium. We also observed that FoxO3a transcriptional activity mediated the teratogenic effect of maternal diabetes because dominant negative FoxO3a prevents maternal diabetes-induced autophagy impairment and neural tube defect formation. Our findings suggest that autophagy activators could be therapeutically effective in treating maternal diabetes-induced neural tube defects.
Collapse
|
22
|
Zheng S, Long J, Liu Z, Tao W, Wang D. Identification and Evolution of TGF-β Signaling Pathway Members in Twenty-Four Animal Species and Expression in Tilapia. Int J Mol Sci 2018; 19:E1154. [PMID: 29641448 PMCID: PMC5979292 DOI: 10.3390/ijms19041154] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/24/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor β (TGF-β) signaling controls diverse cellular processes during embryogenesis as well as in mature tissues of multicellular animals. Here we carried out a comprehensive analysis of TGF-β pathway members in 24 representative animal species. The appearance of the TGF-β pathway was intrinsically linked to the emergence of metazoan. The total number of TGF-β ligands, receptors, and smads changed slightly in all invertebrates and jawless vertebrates analyzed. In contrast, expansion of the pathway members, especially ligands, was observed in jawed vertebrates most likely due to the second round of whole genome duplication (2R) and additional rounds in teleosts. Duplications of TGFB2, TGFBR2, ACVR1, SMAD4 and SMAD6, which were resulted from 2R, were first isolated. Type II receptors may be originated from the ACVR2-like ancestor. Interestingly, AMHR2 was not identified in Chimaeriformes and Cypriniformes even though they had the ligand AMH. Based on transcriptome data, TGF-β ligands exhibited a tissue-specific expression especially in the heart and gonads. However, most receptors and smads were expressed in multiple tissues indicating they were shared by different ligands. Spatial and temporal expression profiles of 8 genes in gonads of different developmental stages provided a fundamental clue for understanding their important roles in sex determination and reproduction. Taken together, our findings provided a global insight into the phylogeny and expression patterns of the TGF-β pathway genes, and hence contribute to the greater understanding of their biological roles in the organism especially in teleosts.
Collapse
Affiliation(s)
- Shuqing Zheng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Juan Long
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Zhilong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
23
|
Zhao Y, Dong D, Reece EA, Wang AR, Yang P. Oxidative stress-induced miR-27a targets the redox gene nuclear factor erythroid 2-related factor 2 in diabetic embryopathy. Am J Obstet Gynecol 2018; 218:136.e1-136.e10. [PMID: 29100869 DOI: 10.1016/j.ajog.2017.10.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Maternal diabetes induces neural tube defects, and oxidative stress is a causal factor for maternal diabetes-induced neural tube defects. The redox gene nuclear factor erythroid 2-related factor 2 is the master regulator of the cellular antioxidant system. OBJECTIVE In this study, we aimed to determine whether maternal diabetes inhibits nuclear factor erythroid 2-related factor 2 expression and nuclear factor erythroid 2-related factor 2-controlled antioxidant genes through the redox-sensitive miR-27a. STUDY DESIGN We used a well-established type 1 diabetic embryopathy mouse model induced by streptozotocin for our in vivo studies. Embryos at embryonic day 8.5 were harvested for analysis of nuclear factor erythroid 2-related factor 2, nuclear factor erythroid 2-related factor 2-controlled antioxidant genes, and miR-27a expression. To determine if mitigating oxidative stress inhibits the increase of miR-27a and the decrease of nuclear factor erythroid 2-related factor 2 expression, we induced diabetic embryopathy in superoxide dismutase 2 (mitochondrial-associated antioxidant gene)-overexpressing mice. This model exhibits reduced mitochondria reactive oxygen species even in the presence of hyperglycemia. To investigate the causal relationship between miR-27a and nuclear factor erythroid 2-related factor 2 in vitro, we examined C17.2 neural stem cells under normal and high-glucose conditions. RESULTS We observed that the messenger RNA and protein levels of nuclear factor erythroid 2-related factor 2 were significantly decreased in embryos on embryonic day 8.5 from diabetic dams compared to those from nondiabetic dams. High-glucose also significantly decreased nuclear factor erythroid 2-related factor 2 expression in a dose- and time-dependent manner in cultured neural stem cells. Our data revealed that miR-27a was up-regulated in embryos on embryonic day 8.5 exposed to diabetes, and that high glucose increased miR-27a levels in a dose- and time-dependent manner in cultured neural stem cells. In addition, we found that a miR-27a inhibitor abrogated the inhibitory effect of high glucose on nuclear factor erythroid 2-related factor 2 expression, and a miR-27a mimic suppressed nuclear factor erythroid 2-related factor 2 expression in cultured neural stem cells. Furthermore, our data indicated that the nuclear factor erythroid 2-related factor 2-controlled antioxidant enzymes glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione S-transferase A1 were down-regulated by maternal diabetes in embryos on embryonic day 8.5 and high glucose in cultured neural stem cells. Inhibiting miR-27a restored expression of glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione S-transferase A1. Overexpressing superoxide dismutase 2 reversed the maternal diabetes-induced increase of miR-27a and suppression of nuclear factor erythroid 2-related factor 2 and nuclear factor erythroid 2-related factor 2-controlled antioxidant enzymes. CONCLUSION Our study demonstrates that maternal diabetes-induced oxidative stress increases miR-27a, which, in turn, suppresses nuclear factor erythroid 2-related factor 2 and its responsive antioxidant enzymes, resulting in diabetic embryopathy.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Daoyin Dong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Ashley R Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Chashan University-town, Wenzhou, Zhejiang, China; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
24
|
Zhong J, Wang S, Shen WB, Kaushal S, Yang P. The current status and future of cardiac stem/progenitor cell therapy for congenital heart defects from diabetic pregnancy. Pediatr Res 2018; 83:275-282. [PMID: 29016556 PMCID: PMC5876137 DOI: 10.1038/pr.2017.259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/03/2017] [Indexed: 02/07/2023]
Abstract
Pregestational maternal diabetes induces congenital heart defects (CHDs). Cardiac dysfunction after palliative surgical procedures contributes to the high mortality of CHD patients. Autologous or allogeneic stem cell therapies are effective for improving cardiac function in animal models and clinical trials. c-kit+ cardiac progenitor cells (CPCs), the most recognized CPCs, have the following basic properties of stem cells: self-renewal, multicellular clone formation, and differentiation into multiple cardiac lineages. However, there is ongoing debate regarding whether c-kit+ CPCs can give rise to sufficient cardiomyocytes. A new hypothesis to address the beneficial effect of c-kit+ CPCs is that these cells stimulate endogenous cardiac cells through a paracrine function in producing a robust secretome and exosomes. The values of other cardiac CPCs, including Sca1+ CPCs and cardiosphere-derived cells, are beginning to be revealed. These cells may be better choices than c-kit+ CPCs for generating cardiomyocytes. Adult mesenchymal stem cells are considered immune-incompetent and effective for improving cardiac function. Autologous CPC therapy may be limited by the observation that maternal diabetes adversely affects the biological function of embryonic stem cells and CPCs. Future studies should focus on determining the mechanistic action of these cells, identifying new CPC markers, selecting highly effective CPCs, and engineering cell-free products.
Collapse
Affiliation(s)
- Jianxiang Zhong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shengbing Wang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Wei-Bin Shen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sunjay Kaushal
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Wang J, Wang F, Gui YH. [Research advances in the mechanism of congenital heart disease induced by pregestational diabetes mellitus]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:1297-1300. [PMID: 29237533 PMCID: PMC7389805 DOI: 10.7499/j.issn.1008-8830.2017.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
Congenital heart disease (CHD) is the most common birth defect at present and has a complex etiology which involves the combined effect of genetic and environmental factors. Pregestational diabetes mellitus is significantly associated with the development of CHD, but the detailed mechanism remains unknown. This article reviews the research advances in the molecular mechanism of CHD caused by pregestational diabetes mellitus.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cardiovascular Medicine, Children's Hospital of Fudan University, Shanghai 200023, China.
| | | | | |
Collapse
|
26
|
Wang J, Wang F, Gui YH. [Research advances in the mechanism of congenital heart disease induced by pregestational diabetes mellitus]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:1297-1300. [PMID: 29237533 PMCID: PMC7389805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/11/2017] [Indexed: 08/01/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect at present and has a complex etiology which involves the combined effect of genetic and environmental factors. Pregestational diabetes mellitus is significantly associated with the development of CHD, but the detailed mechanism remains unknown. This article reviews the research advances in the molecular mechanism of CHD caused by pregestational diabetes mellitus.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cardiovascular Medicine, Children's Hospital of Fudan University, Shanghai 200023, China.
| | | | | |
Collapse
|
27
|
Lin X, Yang P, Reece EA, Yang P. Pregestational type 2 diabetes mellitus induces cardiac hypertrophy in the murine embryo through cardiac remodeling and fibrosis. Am J Obstet Gynecol 2017; 217:216.e1-216.e13. [PMID: 28412087 PMCID: PMC5787338 DOI: 10.1016/j.ajog.2017.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/27/2017] [Accepted: 04/04/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cardiac hypertrophy is highly prevalent in patients with type 2 diabetes mellitus. Experimental evidence has implied that pregnant women with type 2 diabetes mellitus and their children are at an increased risk of cardiovascular diseases. Our previous mouse model study revealed that maternal type 2 diabetes mellitus induces structural heart defects in their offspring. OBJECTIVE This study aims to determine whether maternal type 2 diabetes mellitus induces embryonic heart hypertrophy in a murine model of diabetic embryopathy. STUDY DESIGN The type 2 diabetes mellitus embryopathy model was established by feeding 4-week-old female C57BL/6J mice with a high-fat diet for 15 weeks. Cardiac hypertrophy in embryos at embryonic day 17.5 was characterized by measuring heart size and thickness of the right and left ventricle walls and the interventricular septum, as well as the expression of β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, desmin, and adrenomedullin. Cardiac remodeling was determined by collagen synthesis and fibronectin synthesis. Fibrosis was evaluated by Masson staining and determining the expression of connective tissue growth factor, osteopontin, and galectin-3 genes. Cell apoptosis also was measured in the developing heart. RESULTS The thicknesses of the left ventricle walls and the interventricular septum of embryonic hearts exposed to maternal diabetes were significantly thicker than those in the nondiabetic group. Maternal diabetes significantly increased β-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, and desmin expression, but decreased expression of adrenomedullin. Moreover, collagen synthesis was significantly elevated, whereas fibronectin synthesis was suppressed, in embryonic hearts from diabetic dams, suggesting that cardiac remodeling is a contributing factor to cardiac hypertrophy. The cardiac fibrosis marker, galectin-3, was induced by maternal diabetes. Furthermore, maternal type 2 diabetes mellitus activated the proapoptotic c-Jun-N-terminal kinase 1/2 stress signaling and triggered cell apoptosis by increasing the number of terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end labeling-positive cells (10.4 ± 2.2% of the type 2 diabetes mellitus group vs 3.8 ± 0.7% of the nondiabetic group, P < .05). CONCLUSION Maternal type 2 diabetes mellitus induces cardiac hypertrophy in embryonic hearts. Adverse cardiac remodeling, including elevated collagen synthesis, suppressed fibronectin synthesis, profibrosis, and apoptosis, is implicated as the etiology of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xue Lin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Penghua Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
28
|
Wang F, Xu C, Reece EA, Li X, Wu Y, Harman C, Yu J, Dong D, Wang C, Yang P, Zhong J, Yang P. Protein kinase C-alpha suppresses autophagy and induces neural tube defects via miR-129-2 in diabetic pregnancy. Nat Commun 2017; 8:15182. [PMID: 28474670 PMCID: PMC5424165 DOI: 10.1038/ncomms15182] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 03/03/2017] [Indexed: 12/19/2022] Open
Abstract
Gene deletion-induced autophagy deficiency leads to neural tube defects (NTDs), similar to those in diabetic pregnancy. Here we report the key autophagy regulators modulated by diabetes in the murine developing neuroepithelium. Diabetes predominantly leads to exencephaly, induces neuroepithelial cell apoptosis and suppresses autophagy in the forebrain and midbrain of NTD embryos. Deleting the Prkca gene, which encodes PKCα, reverses diabetes-induced autophagy impairment, cellular organelle stress and apoptosis, leading to an NTD reduction. PKCα increases the expression of miR-129-2, which is a negative regulator of autophagy. miR-129-2 represses autophagy by directly targeting PGC-1α, a positive regulator for mitochondrial function, which is disturbed by maternal diabetes. PGC-1α supports neurulation by stimulating autophagy in neuroepithelial cells. These findings identify two negative autophagy regulators, PKCα and miR-129-2, which mediate the teratogenicity of hyperglycaemia leading to NTDs. We also reveal a function for PGC-1α in embryonic development through promoting autophagy and ameliorating hyperglycaemia-induced NTDs.
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Cheng Xu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - E. Albert Reece
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Xuezheng Li
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Yanqing Wu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Christopher Harman
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Jingwen Yu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Daoyin Dong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Cheng Wang
- Department of Obstetrics, Gynecology, Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Penghua Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Jianxiang Zhong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
29
|
Deregulated Cardiac Specific MicroRNAs in Postnatal Heart Growth. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6241763. [PMID: 28105427 PMCID: PMC5220435 DOI: 10.1155/2016/6241763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/13/2016] [Indexed: 02/06/2023]
Abstract
The heart is recognized as an organ that is terminally differentiated by adulthood. However, during the process of human development, the heart is the first organ with function in the embryo and grows rapidly during the postnatal period. MicroRNAs (miRNAs, miRs), as regulators of gene expression, play important roles during the development of multiple systems. However, the role of miRNAs in postnatal heart growth is still unclear. In this study, by using qRT-PCR, we compared the expression of seven cardiac- or muscle-specific miRNAs that may be related to heart development in heart tissue from mice at postnatal days 0, 3, 8, and 14. Four miRNAs-miR-1a-3p, miR-133b-3p, miR-208b-3p, and miR-206-3p-were significantly decreased while miR-208a-3p was upregulated during the postnatal heart growth period. Based on these results, GeneSpring GX was used to predict potential downstream targets by performing a 3-way comparison of predictions from the miRWalk, PITA, and microRNAorg databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to identify potential functional annotations and signaling pathways related to postnatal heart growth. This study describes expression changes of cardiac- and muscle-specific miRNAs during postnatal heart growth and may provide new therapeutic targets for cardiovascular diseases.
Collapse
|
30
|
Yang P, Chen X, Kaushal S, Reece EA, Yang P. High glucose suppresses embryonic stem cell differentiation into cardiomyocytes : High glucose inhibits ES cell cardiogenesis. Stem Cell Res Ther 2016; 7:187. [PMID: 27938398 PMCID: PMC5148851 DOI: 10.1186/s13287-016-0446-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 12/18/2022] Open
Abstract
Background Babies born to mothers with pregestational diabetes have a high risk for congenital heart defects (CHD). Embryonic stem cells (ESCs) are excellent in vitro models for studying the effect of high glucose on cardiac lineage specification because ESCs can be differentiated into cardiomyocytes. ESC maintenance and differentiation are currently performed under high glucose conditions, whose adverse effects have never been clarified. Method We investigated the effect of high glucose on cardiomyocyte differentiation from a well-characterized ESC line, E14, derived from mouse blastocysts. E14 cells maintained under high glucose (25 mM) failed to generate any beating cardiomyocytes using the hanging-drop embryonic body method. We created a glucose-responsive E14 cell line (GR-E14) through a graduated low glucose adaptation. The expression of stem cell markers was similar in the parent E14 cells and the GR-E14 cells. Results Glucose transporter 2 gene was increased in GR-E14 cells. When GR-E14 cells were differentiated into cardiomyocytes under low (5 mM) or high (25 mM) glucose conditions, high glucose significantly delayed the appearance and reduced the number of TNNT2 (Troponin T Type 2)-positive contracting cardiomyocytes. High glucose suppressed the expression of precardiac mesoderm markers, cardiac transcription factors, mature cardiomyocyte markers, and potassium channel proteins. High glucose impaired the functionality of ESC-derived cardiomyocytes by suppressing the frequencies of Ca2+ wave and contraction. Conclusions Our findings suggest that high glucose inhibits ESC cardiogenesis by suppressing key developmental genes essential for the cardiac program. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0446-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Penghua Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, BRB11-039, 655W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Xi Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, BRB11-039, 655W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Sunjay Kaushal
- Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, BRB11-039, 655W. Baltimore Street, Baltimore, MD, 21201, USA.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, BRB11-039, 655W. Baltimore Street, Baltimore, MD, 21201, USA. .,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
31
|
Yang P, Yang WW, Chen X, Kaushal S, Dong D, Shen WB. Maternal diabetes and high glucose in vitro trigger Sca1 + cardiac progenitor cell apoptosis through FoxO3a. Biochem Biophys Res Commun 2016; 482:575-581. [PMID: 27856257 DOI: 10.1016/j.bbrc.2016.11.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/12/2016] [Indexed: 12/21/2022]
Abstract
Recent controversies surrounding the authenticity of c-kit+ cardiac progenitor cells significantly push back the advance in regenerative therapies for cardiovascular diseases. There is an urgent need for research in characterizing alternative types of cardiac progenitor cells. Towards this goal, in the present study, we determined the effect of maternal diabetes on Sca1+ cardiac progenitor cells. Maternal diabetes induced caspase 3-dependent apoptosis in Sca1+ cardiac progenitor cells derived from embryonic day 17.5 (E17.5). Similarly, high glucose in vitro but not the glucose osmotic control mannitol triggered Sca1+ cardiac progenitor cell apoptosis in a dose- and time-dependent manner. Both maternal diabetes and high glucose in vitro activated the pro-apoptotic transcription factor, Forkhead O 3a (FoxO3a) via dephosphorylation at threonine 32 (Thr-32) residue. foxo3a gene deletion abolished maternal diabetes-induced Sca1+ cardiac progenitor cell apoptosis. The dominant negative FoxO3a mutant without the transactivation domain from the C terminus blocked high glucose-induced Sca1+ cardiac progenitor cell apoptosis, whereas the constitutively active FoxO3a mutant with the three phosphorylation sites, Thr-32, Ser-253, and Ser-315, being replaced by alanine residues mimicked the pro-apoptotic effect of high glucose. Thus, maternal diabetes and high glucose in vitro may limit the regenerative potential of Sca1+ cardiac progenitor cells by inducing apoptosis through FoxO3a activation. These findings will serve as the guide in optimizing the autologous therapy using Sca1+ cardiac progenitor cells in cardiac defect babies born exposed to maternal diabetes.
Collapse
Affiliation(s)
- Penghua Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wendy W Yang
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xi Chen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sunjay Kaushal
- Division of Cardiac Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Daoyin Dong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei-Bin Shen
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
32
|
Dong D, Zhang Y, Reece EA, Wang L, Harman CR, Yang P. microRNA expression profiling and functional annotation analysis of their targets modulated by oxidative stress during embryonic heart development in diabetic mice. Reprod Toxicol 2016; 65:365-374. [PMID: 27629361 DOI: 10.1016/j.reprotox.2016.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/03/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
Abstract
Maternal pregestational diabetes mellitus (PGDM) induces congenital heart defects (CHDs). The molecular mechanism underlying PGDM-induced CHDs is unknown. microRNAs (miRNAs), small non-coding RNAs, repress gene expression at the posttranscriptional level and play important roles in heart development. We performed a global miRNA profiling study to assist in revealing potential miRNAs modulated by PGDM and possible developmental pathways regulated by miRNAs during heart development. A total of 149 mapped miRNAs in the developing heart were significantly altered by PGDM. Bioinformatics analysis showed that the majority of the 2111 potential miRNA target genes were associated with cardiac development-related pathways including STAT3 and IGF-1 and transcription factors (Cited2, Zeb2, Mef2c, Smad4 and Ets1). Overexpression of the antioxidant enzyme, superoxide dismutase 1, reversed PGDM-altered miRNAs, suggesting that oxidative stress is responsible for dysregulation of miRNAs. Thus, our study provides the foundation for further investigation of a miRNA-dependent mechanism underlying PGDM-induced CHDs.
Collapse
Affiliation(s)
- Daoyin Dong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Yuji Zhang
- Division of Biostatistics and Bioinformatics, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 ,United States
| | - E Albert Reece
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine Baltimore, MD 21201, United States
| | - Lei Wang
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Christopher R Harman
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine Baltimore, MD 21201, United States.
| |
Collapse
|
33
|
Zhong J, Xu C, Reece EA, Yang P. The green tea polyphenol EGCG alleviates maternal diabetes-induced neural tube defects by inhibiting DNA hypermethylation. Am J Obstet Gynecol 2016; 215:368.e1-368.e10. [PMID: 26979632 PMCID: PMC5270539 DOI: 10.1016/j.ajog.2016.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Maternal diabetes increases the risk of neural tube defects in offspring. Our previous study demonstrated that the green tea polyphenol, Epigallocatechin gallate, inhibits high glucose-induced neural tube defects in cultured embryos. However, the therapeutic effect of Epigallocatechin gallate on maternal diabetes-induced neural tube defects is still unclear. OBJECTIVE We aimed to examine whether Epigallocatechin gallate treatment can reduce maternal diabetes-induced DNA methylation and neural tube defects. STUDY DESIGN Nondiabetic and diabetic pregnant mice at embryonic day 5.5 were given drinking water with or without 1 or 10 μM Epigallocatechin gallate. At embryonic day 8.75, embryos were dissected from the visceral yolk sac for the measurement of the levels and activity of DNA methyltransferases, the levels of global DNA methylation, and methylation in the CpG islands of neural tube closure essential gene promoters. embryonic day 10.5 embryos were examined for neural tube defect incidence. RESULTS Epigallocatechin gallate treatment did not affect embryonic development because embryos from nondiabetic dams treated with Epigallocatechin gallate did not exhibit any neural tube defects. Treatment with 1 μM Epigallocatechin gallate did not reduce maternal diabetes-induced neural tube defects significantly. Embryos from diabetic dams treated with 10 μM Epigallocatechin gallate had a significantly lower neural tube defect incidence compared with that of embryos without Epigallocatechin gallate treatment. Epigallocatechin gallate reduced neural tube defect rates from 29.5% to 2%, an incidence that is comparable with that of embryos from nondiabetic dams. Ten micromoles of Epigallocatechin gallate treatment blocked maternal diabetes-increased DNA methyltransferases 3a and 3b expression and their activities, leading to the suppression of global DNA hypermethylation. Additionally, 10 μM Epigallocatechin gallate abrogated maternal diabetes-increased DNA methylation in the CpG islands of neural tube closure essential genes, including Grhl3, Pax3, and Tulp3. CONCLUSION Epigallocatechin gallate reduces maternal diabetes-induced neural tube defects formation and blocks the enhanced expression and activity of DNA methyltransferases, leading to the suppression of DNA hypermethylation and the restoration of neural tube closure essential gene expression. These observations suggest that Epigallocatechin gallate supplements could mitigate the teratogenic effects of hyperglycemia on the developing embryo and prevent diabetes-induced neural tube defects.
Collapse
Affiliation(s)
- Jianxiang Zhong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Cheng Xu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - E Albert Reece
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
34
|
Type 2 diabetes mellitus induces congenital heart defects in murine embryos by increasing oxidative stress, endoplasmic reticulum stress, and apoptosis. Am J Obstet Gynecol 2016; 215:366.e1-366.e10. [PMID: 27038779 DOI: 10.1016/j.ajog.2016.03.036] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Maternal type 1 and 2 diabetes mellitus are strongly associated with high rates of severe structural birth defects, including congenital heart defects. Studies in type 1 diabetic embryopathy animal models have demonstrated that cellular stress-induced apoptosis mediates the teratogenicity of maternal diabetes leading to congenital heart defect formation. However, the mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects remain largely unknown. OBJECTIVE We aim to determine whether oxidative stress, endoplasmic reticulum stress, and excessive apoptosis are the intracellular molecular mechanisms underlying maternal type 2 diabetes mellitus-induced congenital heart defects. STUDY DESIGN A mouse model of maternal type 2 diabetes mellitus was established by feeding female mice a high-fat diet (60% fat). After 15 weeks on the high-fat diet, the mice showed characteristics of maternal type 2 diabetes mellitus. Control dams were either fed a normal diet (10% fat) or the high-fat diet during pregnancy only. Female mice from the high-fat diet group and the 2 control groups were mated with male mice that were fed a normal diet. At E12.5, embryonic hearts were harvested to determine the levels of lipid peroxides and superoxide, endoplasmic reticulum stress markers, cleaved caspase 3 and 8, and apoptosis. E17.5 embryonic hearts were harvested for the detection of congenital heart defect formation using India ink vessel patterning and histological examination. RESULTS Maternal type 2 diabetes mellitus significantly induced ventricular septal defects and persistent truncus arteriosus in the developing heart, along with increasing oxidative stress markers, including superoxide and lipid peroxidation; endoplasmic reticulum stress markers, including protein levels of phosphorylated-protein kinase RNA-like endoplasmic reticulum kinase, phosphorylated-IRE1α, phosphorylated-eIF2α, C/EBP homologous protein, and binding immunoglobulin protein; endoplasmic reticulum chaperone gene expression; and XBP1 messenger RNA splicing, as well as increased cleaved caspase 3 and 8 in embryonic hearts. Furthermore, maternal type 2 diabetes mellitus triggered excessive apoptosis in ventricular myocardium, endocardial cushion, and outflow tract of the embryonic heart. CONCLUSION Similar to those observations in type 1 diabetic embryopathy, maternal type 2 diabetes mellitus causes heart defects in the developing embryo manifested with oxidative stress, endoplasmic reticulum stress, and excessive apoptosis in heart cells.
Collapse
|
35
|
Yang Y, Yang Y, Wang X, Du J, Hou J, Feng J, Tian Y, He L, Li X, Pei H. Does growth differentiation factor 11 protect against myocardial ischaemia/reperfusion injury? A hypothesis. J Int Med Res 2016; 45:1629-1635. [PMID: 27565745 PMCID: PMC5805180 DOI: 10.1177/0300060516658984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of myocardial ischaemia/reperfusion injury is multifactorial. Understanding the mechanisms of myocardial ischaemia/reperfusion will benefit patients with ischaemic heart disease. Growth differentiation factor 11 (GDF11), a member of the secreted transforming growth factor-β superfamily, has been found to reverse age-related hypertrophy, revealing the important role of GDF11 in cardiovascular disease. However, the functions of GDF11 in myocardial ischaemia/reperfusion have not been elucidated yet. A number of signalling molecules are known to occur downstream of GDF11, including mothers against decapentaplegic homolog 3 (SMAD3) and forkhead box O3a (FOXO3a). A hypothesis is presented that GDF11 has protective effects in acute myocardial ischaemia/reperfusion injury through suppression of oxidative stress, prevention of calcium ion overload and promotion of the elimination of abnormal mitochondria via both canonical (SMAD3) and non-canonical (FOXO3a) pathways. Since circulating GDF11 may mainly derive from the spleen, the lack of a spleen may make the myocardium susceptible to damaging insults. Administration of GDF11 may be an efficacious therapy to protect against cardiovascular diseases in splenectomized patients.
Collapse
Affiliation(s)
- Yongjian Yang
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Yi Yang
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Xiong Wang
- 2 Department of Cardiology, Fourth Military Medical University, Xi'an, China
| | - Jin Du
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Juanni Hou
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Juan Feng
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Yue Tian
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Lei He
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Xiuchuan Li
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| | - Haifeng Pei
- 1 Department of Cardiology, Chengdu Military General Hospital, Chengdu, China
| |
Collapse
|
36
|
Zhong J, Xu C, Gabbay-Benziv R, Lin X, Yang P. Superoxide dismutase 2 overexpression alleviates maternal diabetes-induced neural tube defects, restores mitochondrial function and suppresses cellular stress in diabetic embryopathy. Free Radic Biol Med 2016; 96:234-44. [PMID: 27130031 PMCID: PMC4912469 DOI: 10.1016/j.freeradbiomed.2016.04.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Pregestational diabetes disrupts neurulation leading to neural tube defects (NTDs). Oxidative stress resulting from reactive oxygen species (ROS) plays a central role in the induction of NTD formation in diabetic pregnancies. We aimed to determine whether mitochondrial dysfunction increases ROS production leading to oxidative stress and diabetic embryopathy. Overexpression of the mitochondrion-specific antioxidant enzyme superoxide dismutase 2 (SOD2) in a transgenic (Tg) mouse model significantly reduced maternal diabetes-induced NTDs. SOD2 overexpression abrogated maternal diabetes-induced mitochondrial dysfunction by inhibiting mitochondrial translocation of the pro-apoptotic Bcl-2 family members, reducing the number of defective mitochondria in neuroepithelial cells, and decreasing mitochondrial membrane potential. Furthermore, SOD2 overexpression blocked maternal diabetes-increased ROS production by diminishing dihydroethidium staining signals in the developing neuroepithelium, and reducing the levels of nitrotyrosine-modified proteins and lipid hydroperoxide level in neurulation stage embryos. SOD2 overexpression also abolished maternal diabetes-induced endoplasmic reticulum stress. Finally, caspase-dependent neuroepithelial cell apoptosis enhanced by oxidative stress was significantly reduced by SOD2 overexpression. Thus, our findings support the hypothesis that mitochondrial dysfunction in the developing neuroepithelium enhances ROS production, which leads to oxidative stress and endoplasmic reticulum (ER) stress. SOD2 overexpression blocks maternal diabetes-induced oxidative stress and ER stress, and reduces the incidence of NTDs in embryos exposed to maternal diabetes.
Collapse
Affiliation(s)
- Jianxiang Zhong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Cheng Xu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Rinat Gabbay-Benziv
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Xue Lin
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
37
|
Yu J, Wu Y, Yang P. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects. J Neurochem 2016; 137:371-83. [PMID: 26896748 DOI: 10.1111/jnc.13587] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
Aberrant epigenetic modifications are implicated in maternal diabetes-induced neural tube defects (NTDs). Because cellular stress plays a causal role in diabetic embryopathy, we investigated the possible role of the stress-resistant sirtuin (SIRT) family histone deacetylases. Among the seven sirtuins (SIRT1-7), pre-gestational maternal diabetes in vivo or high glucose in vitro significantly reduced the expression of SIRT 2 and SIRT6 in the embryo or neural stem cells, respectively. The down-regulation of SIRT2 and SIRT6 was reversed by superoxide dismutase 1 (SOD1) over-expression in the in vivo mouse model of diabetic embryopathy and the SOD mimetic, tempol and cell permeable SOD, PEGSOD in neural stem cell cultures. 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), a superoxide generating agent, mimicked high glucose-suppressed SIRT2 and SIRT6 expression. The acetylation of histone 3 at lysine residues 56 (H3K56), H3K14, H3K9, and H3K27, putative substrates of SIRT2 and SIRT6, was increased by maternal diabetes in vivo or high glucose in vitro, and these increases were blocked by SOD1 over-expression or tempol treatment. SIRT2 or SIRT6 over-expression abrogated high glucose-suppressed SIRT2 or SIRT6 expression, and prevented the increase in acetylation of their histone substrates. The potent sirtuin activator (SRT1720) blocked high glucose-increased histone acetylation and NTD formation, whereas the combination of a pharmacological SIRT2 inhibitor and a pan SIRT inhibitor mimicked the effect of high glucose on increased histone acetylation and NTD induction. Thus, diabetes in vivo or high glucose in vitro suppresses SIRT2 and SIRT6 expression through oxidative stress, and sirtuin down-regulation-induced histone acetylation may be involved in diabetes-induced NTDs. The mechanism underlying pre-gestational diabetes-induced neural tube defects (NTDs) is still elusive. Our study unravels a new epigenetic mechanism in which maternal diabetes-induced oxidative stress represses sirtuin deacetylase 2 (SIRT2) and 6 (SIRT6) expression leading to histone acetylation and gene expression. SIRT down-regulation mediates the teratogenicity of diabetes leading to (NTD) formation. The study provides a mechanistic basis for the development of natural antioxidants and SIRT activators as therapeutics for diabetic embryopathy.
Collapse
Affiliation(s)
- Jingwen Yu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yanqing Wu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
38
|
Dong D, Fu N, Yang P. MiR-17 Downregulation by High Glucose Stabilizes Thioredoxin-Interacting Protein and Removes Thioredoxin Inhibition on ASK1 Leading to Apoptosis. Toxicol Sci 2015; 150:84-96. [PMID: 26660634 DOI: 10.1093/toxsci/kfv313] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Pregestational diabetes significantly increases the risk of neural tube defects (NTDs). Maternal diabetes activates an Apoptosis Signal-regulating Kinase 1 (ASK1)-initiated pathway, which triggers neural stem cell apoptosis of the developing neuroepithelium leading to NTD formation. How high glucose of diabetes activates ASK1 is still unclear. In this study, we investigated the mechanism underlying high glucose-induced ASK1 activation. High glucose suppressed miR-17 expression, which led to an increase in its target gene Txnip (Thioredoxin-interacting protein). High glucose-increased Txnip enhanced its binding to the ASK1 inhibitor, thioredoxin (Trx), and thereby sequestered Trx from the Trx-ASK1 complex. High glucose-induced ASK1 activation and consequent apoptosis were abrogated by either the miR-17 mimic or Txnip siRNA knockdown. In contrast, the miR-17 inhibitor or Txnip ectopic overexpression mimicked the stimulative effect of high glucose on ASK1 and apoptosis. Thus, our study demonstrated that miR-17 repression mediates the pro-apoptotic effect of high glucose, and revealed a new mechanism underlying ASK1 activation, in which decreased miR-17 removes Trx inhibition on ASK1 through Txnip.
Collapse
Affiliation(s)
- Daoyin Dong
- *Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Noah Fu
- *Department of Obstetrics, Gynecology and Reproductive Sciences
| | - Peixin Yang
- *Department of Obstetrics, Gynecology and Reproductive Sciences; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
39
|
Wang F, Weng H, Quon MJ, Yu J, Wang JY, Hueber AO, Yang P. Dominant negative FADD dissipates the proapoptotic signalosome of the unfolded protein response in diabetic embryopathy. Am J Physiol Endocrinol Metab 2015; 309:E861-73. [PMID: 26419589 PMCID: PMC4652069 DOI: 10.1152/ajpendo.00215.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/22/2015] [Indexed: 01/01/2023]
Abstract
Endoplasmic reticulum (ER) stress and caspase 8-dependent apoptosis are two interlinked causal events in maternal diabetes-induced neural tube defects (NTDs). The inositol-requiring enzyme 1α (IRE1α) signalosome mediates the proapoptotic effect of ER stress. Diabetes increases tumor necrosis factor receptor type 1R-associated death domain (TRADD) expression. Here, we revealed two new unfolded protein response (UPR) regulators, TRADD and Fas-associated protein with death domain (FADD). TRADD interacted with both the IRE1α-TRAF2-ASK1 complex and FADD. In vivo overexpression of a FADD dominant negative (FADD-DN) mutant lacking the death effector domain disrupted diabetes-induced IRE1α signalosome and suppressed ER stress and caspase 8-dependent apoptosis, leading to NTD prevention. FADD-DN abrogated ER stress markers and blocked the JNK1/2-ASK1 pathway. Diabetes-induced mitochondrial translocation of proapoptotic Bcl-2 members mitochondrial dysfunction and caspase cleavage were also alleviated by FADD-DN. In vitro TRADD overexpression triggered UPR and ER stress before manifestation of caspase 3 and caspase 8 cleavage and apoptosis. FADD-DN overexpression repressed high glucose- or TRADD overexpression-induced IRE1α phosphorylation, its downstream proapoptotic kinase activation and endonuclease activities, and apoptosis. FADD-DN also attenuated tunicamycin-induced UPR and ER stress. These findings suggest that TRADD participates in the IRE1α signalosome and induces UPR and ER stress and that the association between TRADD and FADD is essential for diabetes- or high glucose-induced UPR and ER stress.
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences
| | - Hongbo Weng
- Department of Obstetrics, Gynecology, and Reproductive Sciences
| | | | - Jingwen Yu
- Department of Obstetrics, Gynecology, and Reproductive Sciences
| | | | - Anne-Odile Hueber
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Institut de Biologie de Valrose, UMR CNRS 7277, UMR Institut National de la Sante et de la Recherche Medicale 1091, Université de Nice-Sophia-Antipolis, Nice, France
| |
Collapse
|
40
|
Zhong J, Reece EA, Yang P. Punicalagin exerts protective effect against high glucose-induced cellular stress and neural tube defects. Biochem Biophys Res Commun 2015; 467:179-84. [PMID: 26453010 DOI: 10.1016/j.bbrc.2015.10.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/03/2015] [Indexed: 01/27/2023]
Abstract
Maternal diabetes-induced birth defects remain a significant health problem. Studying the effect of natural compounds with antioxidant properties and minimal toxicities on diabetic embryopathy may lead to the development of new and safe dietary supplements. Punicalagin is a primary polyphenol found in pomegranate juice, which possesses antioxidant, anti-inflammatory and anti-tumorigenic properties, suggesting a protective effect of punicalagin on diabetic embryopathy. Here, we examined whether punicalagin could reduce high glucose-induced neural tube defects (NTDs), and if this rescue occurs through blockage of cellular stress and caspase activation. Embryonic day 8.5 (E8.5) mouse embryos were cultured for 24 or 36 h with normal (5 mM) glucose or high glucose (16.7 mM), in presence or absence of 10 or 20 μM punicalagin. 10 μM punicalagin slightly reduced NTD formation under high glucose conditions; however, 20 μM punicalagin significantly inhibited high glucose-induced NTD formation. Punicalagin suppressed high glucose-induced lipid peroxidation marker 4-hydroxynonenal, nitrotyrosine-modified proteins, and lipid peroxides. Moreover, punicalagin abrogated endoplasmic reticulum stress by inhibiting phosphorylated protein kinase ribonucleic acid (RNA)-like ER kinase (p-PERK), phosphorylated inositol-requiring protein-1α (p-IRE1α), phosphorylated eukaryotic initiation factor 2α (p-eIF2α), C/EBP-homologous protein (CHOP), binding immunoglobulin protein (BiP) and x-box binding protein 1 (XBP1) mRNA splicing. Additionally, punicalagin suppressed high glucose-induced caspase 3 and caspase 8 cleavage. Punicalagin reduces high glucose-induced NTD formation by blocking cellular stress and caspase activation. These observations suggest punicalagin supplements could mitigate the teratogenic effects of hyperglycemia in the developing embryo, and possibly prevent diabetes-induced NTDs.
Collapse
Affiliation(s)
- Jianxiang Zhong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
41
|
Dong D, Yu J, Wu Y, Fu N, Villela NA, Yang P. Maternal diabetes triggers DNA damage and DNA damage response in neurulation stage embryos through oxidative stress. Biochem Biophys Res Commun 2015; 467:407-12. [PMID: 26427872 DOI: 10.1016/j.bbrc.2015.09.137] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 01/28/2023]
Abstract
DNA damage and DNA damage response (DDR) in neurulation stage embryos under maternal diabetes conditions are not well understood. The purpose of this study was to investigate whether maternal diabetes and high glucose in vitro induce DNA damage and DDR in the developing embryo through oxidative stress. In vivo experiments were conducted by mating superoxide dismutase 1 (SOD1) transgenic male mice with wild-type (WT) female mice with or without diabetes. Embryonic day 8.75 (E8.75) embryos were tested for the DNA damage markers, phosphorylated histone H2A.X (p-H2A.X) and DDR signaling intermediates, including phosphorylated checkpoint 1 (p-Chk1), phosphorylated checkpoint 2 (p-Chk2), and p53. Levels of the same DNA damage markers and DDR signaling intermediates were also determined in the mouse C17.2 neural stem cell line. Maternal diabetes and high glucose in vitro significantly increased the levels of p-H2A.X. Levels of p-Chk1, p-Chk2, and p53, were elevated under both maternal diabetic and high glucose conditions. SOD1 overexpression blocked maternal diabetes-induced DNA damage and DDR in vivo. Tempol, a SOD1 mimetic, diminished high glucose-induced DNA damage and DDR in vitro. In conclusion, maternal diabetes and high glucose in vitro induce DNA damage and activates DDR through oxidative stress, which may contribute to the pathogenesis of diabetes-associated embryopathy.
Collapse
Affiliation(s)
- Daoyin Dong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jingwen Yu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yanqing Wu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Noah Fu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Natalia Arias Villela
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
42
|
Wang F, Wu Y, Quon MJ, Li X, Yang P. ASK1 mediates the teratogenicity of diabetes in the developing heart by inducing ER stress and inhibiting critical factors essential for cardiac development. Am J Physiol Endocrinol Metab 2015; 309:E487-99. [PMID: 26173459 PMCID: PMC4556884 DOI: 10.1152/ajpendo.00121.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/13/2015] [Indexed: 12/30/2022]
Abstract
Maternal diabetes in mice induces heart defects similar to those observed in human diabetic pregnancies. Diabetes enhances apoptosis and suppresses cell proliferation in the developing heart, yet the underlying mechanism remains elusive. Apoptosis signal-regulating kinase 1 (ASK1) activates the proapoptotic c-Jun NH2-terminal kinase 1/2 (JNK1/2) leading to apoptosis, suggesting a possible role of ASK1 in diabetes-induced heart defects. We aimed to investigate whether ASK1 is activated in the heart and whether deleting the Ask1 gene blocks diabetes-induced adverse events and heart defect formation. The ASK1-JNK1/2 pathway was activated by diabetes. Deleting Ask1 gene significantly reduced the rate of heart defects, including ventricular septal defects (VSDs) and persistent truncus arteriosus (PTA). Additionally, Ask1 deletion diminished diabetes-induced JNK1/2 phosphorylation and its downstream transcription factors and endoplasmic reticulum (ER) stress markers. Consistent with this, caspase activation and apoptosis were blunted. Ask1 deletion blocked the increase in cell cycle inhibitors (p21 and p27) and the decrease in cyclin D1 and D3 and reversed diabetes-repressed cell proliferation. Ask1 deletion also restored the expression of BMP4, NKX2.5, and GATA5, Smad1/5/8 phosphorylation, whose mutations or deletion result in reduced cell proliferation, VSD, and PTA formation. We conclude that ASK1 may mediate the teratogenicity of diabetes through activating the JNK1/2-ER stress pathway and inhibiting cell cycle progression, thereby impeding the cardiogenesis pathways essential for ventricular septation and outflow tract development.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Bone Morphogenetic Protein 4/metabolism
- Cell Proliferation
- Cyclin D1/metabolism
- Cyclin D3/metabolism
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Endoplasmic Reticulum Stress/genetics
- Female
- GATA5 Transcription Factor/metabolism
- Heart/embryology
- Heart Defects, Congenital/etiology
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Heart Septal Defects, Ventricular/etiology
- Heart Septal Defects, Ventricular/genetics
- Heart Septal Defects, Ventricular/metabolism
- Homeobox Protein Nkx-2.5
- Homeodomain Proteins/metabolism
- MAP Kinase Kinase Kinase 5/genetics
- Mice
- Mice, Knockout
- Mitogen-Activated Protein Kinase 8/metabolism
- Mitogen-Activated Protein Kinase 9/metabolism
- Phosphorylation
- Pregnancy
- Pregnancy in Diabetics/genetics
- Pregnancy in Diabetics/metabolism
- Signal Transduction
- Smad1 Protein/metabolism
- Smad5 Protein/metabolism
- Smad8 Protein/metabolism
- Teratogenesis/genetics
- Transcription Factors/metabolism
- Truncus Arteriosus, Persistent/etiology
- Truncus Arteriosus, Persistent/genetics
- Truncus Arteriosus, Persistent/metabolism
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences
| | - Yanqing Wu
- Department of Obstetrics, Gynecology, and Reproductive Sciences
| | | | - Xuezheng Li
- Department of Obstetrics, Gynecology, and Reproductive Sciences
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
43
|
Wu Y, Wang F, Fu M, Wang C, Quon MJ, Yang P. Cellular Stress, Excessive Apoptosis, and the Effect of Metformin in a Mouse Model of Type 2 Diabetic Embryopathy. Diabetes 2015; 64:2526-36. [PMID: 25720389 PMCID: PMC4477360 DOI: 10.2337/db14-1683] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/22/2015] [Indexed: 12/15/2022]
Abstract
Increasing prevalence of type 2 diabetes in women of childbearing age has led to a higher incidence of diabetes-associated birth defects. We established a model of type 2 diabetic embryopathy by feeding 4-week-old female mice a high-fat diet (HFD) (60% fat). After 15 weeks on HFD, the mice showed characteristics of type 2 diabetes mellitus (DM) and were mated with lean male mice. During pregnancy, control dams fed a normal diet (10% fat) were maintained on either normal diet or HFD, serving as a control group with elevated circulating free fatty acids. DM dams produced offspring at a rate of 11.3% for neural tube defect (NTD) formation, whereas no embryos in the control groups developed NTDs. Elevated markers of oxidative stress, endoplasmic reticulum stress, caspase activation, and neuroepithelial cell apoptosis (causal events in type 1 diabetic embryopathy) were observed in embryos of DM dams. DM dams treated with 200 mg/kg metformin in drinking water ameliorated fasting hyperglycemia, glucose intolerance, and insulin resistance with consequent reduction of cellular stress, apoptosis, and NTDs in their embryos. We conclude that cellular stress and apoptosis occur and that metformin effectively reduces type 2 diabetic embryopathy in a useful rodent model.
Collapse
Affiliation(s)
- Yanqing Wu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Fang Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD
| | - Mao Fu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Cheng Wang
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE
| | - Michael J Quon
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|